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Abstract Nowadays it is possible to calculate, at the ab initio level, any prop-
erty of condensed matter, from its crystal structure and mechanical properties,
to its thermodynamics, and therefore its stability in a given environment and in
a range of temperature and pressure conditions. Predictions from calculations
of this type can be used to estimate geophysical properties like densities of
mantle rocks as they change along geoterms, the geotherms themselves, phase
transitions and their properties, seismic velocity profiles to be compared with
models derived from other paradigms and techniques. Moreover, known facts
and observations concerning structure, behaviour, properties of materials and
properties of whole complex systems of materials can be explained or at least
rationalized within a common and very general frame that is at the basis of
all the currently known physics and chemistry. However, the development of
ideas, paradigms and related techniques did not come out all of a sudden,
but steadily proceeded from the early days till now, without a real solution of
continuity. During the time, quantum mechanics heavily contributed to cre-
ate a language, a set of basic ideas and a frame of mind that is extensively
used by chemists and crystallographers to interpret the relevant facts. What
we know today, and how we currently apply quantum mechanics to systems
of our interest, is largely dependent upon the path followed during the years
to implement the theory in practical and efficient algorithms to make calcu-
lations for real systems. This paper will present a brief review of the paths
followed, along with their motivations, since those early and heroic days of
physics at the beginning of the last past century. The aim is to provide the
reader with a general view of the subject that could possibly drive her/him
toward the choice of more specific papers from the huge literature, concerning
more restricted and specialized topics.
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1 Introduction

The present paper is intended for scientists working in the Earth Science field,
who do not have a strong background in quantum mechanics, but that are nev-
ertheless interested to discover what contribution such discipline could bring in
their field. My choice was to present the evolution of the quantum mechanical
based approach in the field of the Earth Sciences, by showing the conceptual
tenets and milestones, together with the practical calculation techniques, from
an historical perspective. By no means the paper pretends to be an exaustive
account of the history of the ideas, their motivations and advancements; rather,
the material here presented reflects the view of the author, based as it is on his
personal knowledge, interests and experience. The material is organized follow-
ing a logical scheme that might not always coincide with the actual historical
line of development, as it is well known that very often scientific research does
not proceed linearly in its evolution, so that the real chronological sequence
of steps undertaken could be somewhat dissimilar from what could be expect
from a strictly logical point of view.

Quantum mechanics born out of classical mechanics to solve some peculiar
problems that were discovered by the end of the XIXth century. The approach
followed to solve such problems was deeply interconnected with the previous
classical physical building. In this view, a shot of what was classical physics
at that early time is due, and will be provided in section one, together with a
perhaps too brief presentation of the foundation of the new physics that was
built up to answer those problems.

The second section is devoted to the development and the advancement
of quantum chemistry: the specialized field of quantum mechanics applied to
many electrons systems (atoms and molecules). Indeed, from the computa-
tional techniques employed for the difficult practical solution of the equation
of motion (the Schrödinger equation) for such systems, a whole conceptual
frame arose to interpret the chemical bond, its properties, the energetic, the
stability and the reactivity of molecules. Such wave function based frame still
dominates the chemical thinking in case an explanation of molecular properties
is wanted, at the fundamental level of physics.

The transfer to condensed matter, crystalline state in particular, of the
quantum-chemical technologies developed for molecules was particularly trou-
blesome, especially due to the infinite size of crystals. Thus, instead of a wave
function based approach, which is typical of the molecular quantum-chemistry
world, methods based on the electron density were developed, thank also to
the efforts made to study the problem of the homogeneus electron gas, which
later found its rather obvious model in materials like the metals. The resulting
Density Functional Theory (DFT), which continues to be a very active field of
research, is the subject of a third section. DFT is nowadays largely employed
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even in molecular quantum chemistry, due to its good effectiveness at a limited
cost of calculation (cost in terms of power of computers and computing time).
Since the literature concerning DFT is huge, for reasons of space, scope of the
present paper and experience of the author, the examples discussed will be
limited to the hybrid Hartree-Fock/Density Functional approch, as it will be
explained in the relavant section.

Starting from the ’80s, the focus on the electron density, which is a real
and measurable scalar function of position, rather than on the wave function
which, instead, is a non-measurable function living in an infinite dimensional
Hilbert space, stimulated a new way of interpreting bonds, their classification
and properties. The Quantum Theory of Atoms in Molecules (and Crystals),
QTAIM (QTAIMC) was developed by Richard Bader working at the McMaster
University in Canada, and will be briefly addressed in section four.

A last fifth section deals with the computation of properties at the macro-
scopic scale, like whole crystals in the case of solid state systems, starting
from properties determined at the molecular level, or at the level of the unit
cell of a crystal. The method discussed is firmly grounded to the quantum
statistical approach which is the formal link between the microscopic and the
macroscopic worlds, the latter being described within the frame offered by
thermodynamics.

2 The early days, the crisis of physics and the quantum-mechanical
picture

2.1 The Classical World

By the end of the XIXth century, what we now call classical physics reached
a very high and sofisticated level, believed to be capable, at least in principle,
to explain every possible fact of the physical world. Starting from Galilei, the
World knew giants like Newton, Lagrange, Hamilton and Maxwell, to name
just a few of them, that set up physics and its formalism to describe and
predict the behavior of mechanical systems, and electric and magnetic phe-
nomena. Meanwhile, heath was recognized as a form of energy and thermody-
namics arose as the formal physical frame suitable to explain heath transfer,
its transformation in mechanical work and, perhaps mostly important from the
conceptual point of view, as the theory under which the problem of the arrow of
time could be formalized and discussed. Maxwell theory and, in particular, its
prediction of a unique speed for electromagnetic waves (the speed of light) did
not agree with the relativity principle in the form stated by Galilei, and this
fact together with a bunch of experimental observations and considerations
(e.g. the Michelson and Morley experiment) led Albert Einstein to develop
the theory of special relativity. The Einstein theory was then incorporated in
a more general principle from which the whole (relativistic) classical physics
can be derived: the principle of least action. More precisely, given a system
and its Lagrangian L(qi, q̇i, t) [a function depending upon generalized coordi-
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nates (qi), velocities (q̇i) and time (t)] the space-time trajectory followed by
the system in a given time interval [ti, tf ] is the one that minimizes the action
(S):

S =

∫ tf

ti

L(qi, q̇i, t)dt (1)

by keeping fixed the end points q(ti) and q(tf ) of the trajectory. In fact, it can
be easily demonstrated that the Lagrange equations of motion do directly fol-
low as a consequence of such least action principle. By requiring the Lagrangian
to be a Lorentz scalar (that is, invariant under Lorentz transformations) and
gauge invariant, all of the classical relativistic physics can be derived. Indeed
the same action principle is also at the basis of quantum mechanics, and of
quantum field theory (QFT) as well, from which all of the current modern
physics is systematically developed. In this respect, the action principle is ei-
ther the unifying principle of the classical, relativistic and quantum physics,
or a formidable operational tool to derive theories which are consistent with
the basic principles of relativity, gauge invariance, locality and continuity.

In spite of the great success reached by classical physics around the turn of
the XIXth century, new facts hardly explainable by the dominant paradigma,
at that time, started to emerge: the most significant ones were probably the
failure of the classical law of radiation from the black body at any finite tem-
perature (the failure is known with the name of ultraviolet catastrophe); the
difficulties of the classical theory of specific heat; the nature of the emission
spectra of gases; the stability of atoms according to the model proposed in
those years by Ernest Rutherford. The black body problem was solved by
Max Planck by assuming that the energy associated with each frequency of
the infinite set of oscillators constituting the ideal black body, was restricted
to a discrete set of values of the form En = nhν where n is an integer number,
ν is the frequency of the given oscillator and h is a constant having the dimen-
sion of the action (energy × time), which is known as the Planck constant. The
black body problem was the first example of quantization of energy (the energy
of each oscillator cannot assume arbitrary values related to the amplitude of
vibration as, instead, it was possible at the classical level of description) and its
solution led to the Planck’s formula for predicting the shape and the intensity
of the electromagnetic spectrum emitted by bodies at any given temperature.
Concerning the stability of atoms, the Rutherford model was very attractive
due to its similarity with the planetary model: a positively charged nucleus
around which negatively charged electrons orbit like planets around their star:
the Coulomb force had only to be sostituted for the Newtonian gravitational
force, the two forces having the same functional form. The point was that
orbiting electric charges were also accelerated charges, that were predicted to
emit electromagnetic radiation (and, therefore, energy) by the already estab-
lished Maxwell classical theory of electromagnetism. The Rutherford atom was
then not stable, and the electrons had to fall on the nucleus in a very short
time.
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A first solution to both the atomic stability and the nature of the atomic
emission spectra was formulated by Niels Bohr (with the contribution of other
scientists like A. Sommerfeld). Essentially, the idea was to accept the de Broglie
hypothesis of a link between the momentum p of a particle and the wavelength
λ of an associated pilot wave driving its motion, in the form of λ = h/p, where
h is the Planck’s constant. Indeed the de Broglie hypothesis stemmed from
a parallelism drawn between massive particles and massless particles like the
photon whose energy E can be expressed as E = hν from the Planck the-
ory, and E = pc from the Einstein relativity (where c is the speed of light):
hν = pc→ λ = c/ν = h/p. The de Broglie hypothesis was experimentally con-
firmed in 1927 by Davisson and Germer, who were able to produce diffraction
effects by firing electrons against a nickel crystal. The idea of pilot waves was
then incorporated by Bohr in a model of the quantum atom, in which electrons
where confined to move around the nucleus along orbits whose lengths had to
be multiple integers of the wavelength of the associated pilot wave, thereby
establishing a precise link between the radius of each allowable orbit and its
energy. The Bohr (or the Bohr-Sommerfeld) model has a clear historical im-
portance, but by no means it represents the picture of the atom that emerged
afterward from the Schrödinger work (despite it is often presented as the model
of the modern atom in too many High School textbooks).

Subsequent crucial developments came out from the works of Erwin Schrö-
dinger, Werner Heisenberg, Paul A.M. Dirac, Wolfang Pauli and others, who
were able to lay down the principle of quantum mechanics by suitably crafting
the formalism already available for classical systems, to derive the equation of
motions and the rules necessary to translate every classical dynamical variable
into the corresponding quantum-mechanical one. It is important to give here
some details of the theory at the very basic level, in order to understand the
more advanced applications. So, let’s take our time to discuss at least the
principles, in the most simple and straighforward way.

2.2 Quantum mechanics in a nutshell

Probably the most clear account of the foundation of quantum mechanics was
given by Dirac himself in his book (Dirac, 1930a). One of the key points at
the base of the new physics, which also is our entry point in the theory, was
the recognition of the possible interference of an observer with the system
being observed; therefore, a theory had to be established that formalized the
description of the state of the system, so that the state itself became an active
part of the theoretical formal building. Dirac invented the notion of the ket
vector | 〉 that represents the state of the system (kets may be labelled to
represent a specific state: e.g. |A〉). Kets can be acted upon by operators F̂
representing dynamical variables (classical observables) to give, in general, a
different state: F̂ |A〉 = |B〉; this action of the operator on a ket, to give a
different ket, is just the mathematical way to describe the interference of the
observer (which measures the observable F ) on the observed state: indeed,
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at the end of the measurement process, the system is found in a final state
|B〉 different from the initial state |A〉. Of particular importance is the case
where the two vectors involved are actually parallel (they differ at most by
a multiplicative scalar f): F̂ |A〉 = f |A〉; in words: the action of the operator
F̂ on the ket vector |A〉 produces the same vector multiplied by a scalar. In
this case |A〉 is said to be an eigenvectors of F̂ , and f is the corresponding
eigenvalue. The equation (eigenvalue equation) is interpreted as follow: the
scalar f is the result of the measurement of the observable F , represented by
the operator F̂ , on a system that is in a state described by the ket |A〉 that
happens to be an eigenvector of the operator F̂ . It is important to note that if
the state of the system is an eigenstate of the observable being measured, the
act of measurement does not change it; moreover it is important to emphasize
that the result of the measurement is certainly f . On this basis, to cut a long
story short (actually, jumping too soon to a conclusion), the time independent
Schrödinger equation:

Ĥ|ψ〉 = E|ψ〉 (2)

can be understood exactly in the same way: the act of measuring the energy
(that is, the Hamiltonian H), represented by the operator Ĥ, of a system that
is in a state represented by an eigenvector of Ĥ (|ψ〉), provides the value of
the energy (E), and the state of the system remains unaltered.

It is interesting to consider the case of the measurement of an observable F
for a system that is in a state which is not represented by an eigenvector of the
relevant operator; to this end, let’s call |B〉 the vector representing the system,
F̂ the operator, |Fi〉 the set of its eigenvectors and fi the set of the associated
eigenvalues (that is, for each i, the following equations hold: F̂ |Fi〉 = fi|Fi〉):
it is postulated that the result of the measurement of F is one of the possible
eigenvalues fi and, at the end of the process, the system will be found in
the corresponding state |Fi〉. Which one of the particular fi’s will come out
from the measurement process is not known: only a probability distribution of
possible outcomes can be defined. In particular, it is postulated (under the
name of superposition principle) that whatever |B〉 is, it can be expanded as
a linear combination of eigenvectors of whatever operator F̂ representing an
observable: |B〉 =

∑
i bi|Fi〉, where the coefficients bi’s are, in general, complex

numbers. The square module of each bi is the probability that a measurement
of F will provide the value fi. The average value of measurements of F on a
large set of identical systems |B〉 is indicated with the symbol 〈F 〉B . It can be
shown that:

〈F 〉B ≡ 〈B|F̂ |B〉 =
∑
i

|bi|2fi (3)

Thus, each measure provides an eigenvalue of F̂ ; the average of such measures
eventually coincides with the classical expectation from a single measurement
on the same system.

In case the operator F̂ is the one that measures the position x of a particle
in some state |B〉, the set of coefficients b’s assumes the form of a continuous
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function of x [ψB(x)] called wave function. The quantity |ψB(x)|2 dx is in-
terpreted as the probability of finding the particle in the volume element dx.
Also, the wave function ψB(x) is said to be the representation of the ket |B〉
in the space of coordinates (Schrödinger representation).

Now, imagine to have two observables F and G, and imagine the system
be initially in a state represented by an eigenvector |Fi〉 of F̂ . Let’s take two
measures: the first one of the observable F , followed by the G measurement.
The measurement of F will certainly provide the value fi and the system
will be left unaltered in the state |Fi〉; the second measurement of G on |Fi〉
will provide one of the gj eigenvalues of Ĝ with a probability that depends

by the coefficients of the expansion of |Fi〉 into the eigenvectors |Gj〉 of Ĝ.
If the two measures are reversed, the outcome of the G observation will be
again an eigenvalue gj of Ĝ, with the same probability distribution discussed
above, but the measure of F will not any longer be certainly fi, as after the G
measurement the system will be left in one of the |Gj〉 state, that in general

is not an eigenvector of F̂ , too; thus the second measurement will provide one
of the possible fi with a distribution of probability that dependes upon the
coefficients of the expansion of |Gj〉 into the |Fi〉’s. The moral is that the order

of the measurements matters: ĜF̂ 6= F̂ Ĝ→ ĜF̂−F̂ Ĝ ≡ [Ĝ, F̂ ] 6= 0. It has been
here introduced the commutator of two operators [Ĝ, F̂ ] which is by definition
the difference ĜF̂ − F̂ Ĝ: it plays a key role in quantum mechanics: a given
quantum state can be associated with a definite set of values of a corresponding
set of observables if, and only if, all of the corresponding operators commute: be
{F̂i}i=1,N a set ofN commuting operators, states exist that can be represented
by the simultaneous eigenvectors of all the operators in the set; such states
can be given definite values of all the corresponding observables. The most
important examples are the atomic orbitals for the hydrogen atom, which are
simultaneous eigenvectors of the Hamiltonian (for the hydrogen atom) and of
the operators of the module of the total angular momentum, and of only one
component of the angular momentum vector in a given spatial direction. Such
reasoning justifies the three quantum numbers (generally indicated with n, `
and m`) assigned to each orbital.

Commutation relations are important for another aspect: given a classi-
cal observable F , what are the rules necessary to define the corresponding
quantum operator F̂? Indeed, since classical mechanics correctly works for
macroscopic systems, where the effect of the observer on the observed ob-
ject is neglibible, a connection should be established between classical and
quantum operators, so that classical mechanics could naturally emerge from
quantum mechanics as the size of the system grows at the macroscopic scale.
At variance with the classical case where two observations always commute,
in the quantum theory operators generally do not commute and thus, in the
quest of translation rules between the two worlds, some mathematical struc-
ture of the classical formalism had to be identified that could map commuting
classical observables onto non-commuting quantum operators. Such classical
structure was chosen to be the Poisson bracket: reducing for simplicity to just
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one coordinate q and conjungate momentum p (it should be noted that, in
the classical Hamiltonian formalism, q and p are two independent variables),
given two observables F and G, functions of q and p, their Poisson bracket is:

{F,G} =
∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
(4)

The value of the Poisson bracket of two observables is invariant with respect
to all the possible equivalent pairs of coordinates and conjungate momenta
that can be chosen to describe the system, so it must reflect some intrinsic
quality of the physics describing it: a quality that is independent by the way
the system is described. For precisely this reason, the classical Poisson bracket
of two observables F and G was identified with the quantum commutator
of the corresponding two operators F̂ and Ĝ. In the particular case where
F is q and G is p, equation (4) gives {q, p} = 1 and, therefore, [q̂, p̂] = 1.
One the one hand, such not null commutator immediately tells about the
Heisenberg uncertainty principle for which it is impossible to assign definite
values of position and momentum to a particle; on the other hand, it justifies
the reason why the representation of the momentum operator p, in the space
of the coordinate q, is proportional to −d/dq: indeed, given any differentiable
function f(q),

[q,−d/dq]f(q) = −
[
q

df(q)

dq
− d

dq
qf(q)

]
= f(q) → [q,−d/dq] = 1 (5)

Thus the operator −d/dq shows the same commutation relation with q as p
does and, therefore, it could be taken as the representation of the momentum
operator p in the space of the coordinate q. On the basis of some other rather
technical considerations, the actual form of the quantum momentum operator
(in the Schrödinger representation, that is in the representation of the coordi-
nates qi) is p̂i = −ıh̄d/dqi , where h̄ is h/2π. Knowing the form of p̂ is enough
to derive the form of many other quantum operators: for instance the non-
relativistic classical Hamiltonian for a free particle of mass m and momentum
p (the Hamiltonian reduces to the kinetic energy E = p2/2m) is transformed
into the operator

Ĥ = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
≡ − h̄2

2m
∇2 (6)

Wanting to describe a single electron bound to a nucleus by the Coulomb
potential V (that’s the case of the hydrogen atom), the time independent
Schrödinger equation to solve is:

Ĥ|ψ〉 = (T̂ + V̂ )|ψ〉 = E|ψ〉 → − h̄2

2m
∇2ψ − e2

r
ψ = Eψ (7)

in some appropriate units of the electric charge (e). This is a second order
differential equation with partial derivatives; it can be solved exactly: the so-
lutions ψ are the well known atomic orbitals.
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Such set of rules to derive quantum operators from classical observable was
named the correspondence principle. It can be derived from other assumptions
and considerations, together with the equation of motions, as Schrödinger did,
as well as Dirac himself (or later by Schwinger, 1951): indeed it can be shown
that, at the basic level, quantum mechanics can be derived from the least
action principle.

2.3 Identical particles and spin

At the non-relativistic level, to explain fine details of the hydrogen emission
spectrum (Zeeman effect), scientists were forced to admit the existence of
spin: a property of particles related to an intrinsic magnetic moment and an
intrinsic angular momentum that particles may have. Spin is quantized fol-
lowing exactly the same quantization rules derived for the orbital angular
momentum, and it can assume integer or half integer values in units of h̄.
In particular, for the electrons in an atom, spin had an impact on the fine
structure of atomic emission spectra, suggesting that each energy level com-
puted by the (non-relativistic) Schrödinger equation was further splitted in
several sub-levels according to simple rules related to the spin coupling among
different electrons. Later on, spin emerged naturally from the relativistic for-
mulation of the quantum theory of the free electron given by Dirac but, before
of that, its very existence and features had to be postulated. By Looking at
the structure of the atomic emission spectra, at the structure of the Periodic
Table of Elements, and on the basis of very general considerations concerning
systems of identical particles, Wolfang Pauli postulated the so called antisym-
metry principle: let’s take |ab〉 to be the ket describing two identical particles,
the first one (a) occupying the position x1 = (s1, r1), in the four-dimensional
spin-spatial coordinates space, and the second one (b) being in the position x2
in the same space1; then |ab〉 = −|ba〉 if the spin s is half integer, whereas, if
s is integer, |ab〉 = |ba〉. The particles belonging to the first type (half integer
spin) are named fermions; particles of the second type are named bosons (e.g.
the photon). Electrons are fermions and therefore they satisfy the principle
with the negative sign: ψ(x1, x2) = −ψ(x2, x1) (kets are here represented in
the space of the 4D spin-spatial coordinates space).

The antisymmetry principle plays a key role in determining the energetic
of a system of identical particles. Let’s take two electrons having identical spin

1 Two electrons have always the same total spin; however their spin vectors may differ in
the orientation; the latter one is specified by the three components of the vector along the
axes of a cartesian frame. Due to the commutation rules of the angular momentum operators,
only one component of the spin vector can be precisely assigned and, by convection, this is
the z component. The variable s given in the text is exactly such component, and it can
assume only two possible values: 1/2 or -1/2 in units of h̄. In the jargon, when it is said
that two electrons have the same spin (spin parallel electrons), the z component of it is
meant; the same is true for spin paired electrons: they have different (opposite) values of the
z component.
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(parallel spins as it is often said): the relation holds:

ψ(x1, x2) = −ψ(x2, x1) → ψ(r1, s1; r2, s1) = −ψ(r2, s1; r1, s1) (8)

Now, keep the position r1 of the first particle fixed and gradually change the
spatial position r2 of the second particle towards r1: when the condition r1 = r2
is met, one also has x1 = x2, and ψ(x1, x1) = −ψ(x1, x1) = 0. Recalling the
interpretation of the meaning of the wave function: |ψ(x1, x2)|2 dx1 dx2 is the
probability to find the particle 1 in the volume element dx1 and the particle
2 in the volume element dx2, it is deduced that the probability to find two
spin-parallel identical particles in the same dr1 spatial volume element must be
zero. Moreover, since wave functions are continuous and are required to have
no sharp changes with r, even the probability to find two spin-parallel particles
in close volume elements dr1 and dr2 must be small. That is, two electrons
having the same spin avoid each other. It is most important to notice that
such avoidance has nothing to do with the electrons, being charged, repel
each other, nor it has to do with any other possible repulsion force (and the
associated energy): simply, the wave function of two electrons is shaped in
such a way that it is small the probability of having two spin-parallel electrons
close to one another. Note also that things are different for two electron having
different spin (they are spin paired), as in this case x1 is always different from
x2 even if r1 = r2.

When Coulomb interaction is considered by integrating the 1/|r| Coulomb
potential over all the spatial positions assumed by the two electrons, weighted
by the relevant probability:

Vee =

∫
dr1dr2

e2

|r|
|ψ(r1, r2)|2 (9)

it turns out that, if the two electrons have the same spin, such interaction
energy Vee is lower than the energy for two spin-paired electrons. This fact is
called electronic exchange and the energy difference between the two cases is
named exchange energy.

2.4 The Hartree-Fock method

In spite of its fairly simple look, the time independent Schrödinger equation
can be exactly solved in very few cases. The hydrogen atom is one of those,
but with just the two electrons case (the helium atom, for instance) an exact
solution is impossible and approximated methods of solution had to be devised.
Many of them relied upon the variational theorem which will be here stated
without a proof (that can be easily found on many basic textbooks): given
an approximate wave function φ of an exact wave function ψ, the energies
Eφ = 〈φ|H|φ〉 and the exact Eψ, from the equation H|ψ〉 = Eψ|ψ〉, are such
that Eφ ≥ Eψ, and Eφ = Eψ if and only if φ = ψ. In words, the energy
correspondent to whatever approximated wave function will be always greater
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than the exact energy associated to the exact wave function. The trick is then
to make the approximate wave function φ dependent upon some parameter a
(or upon a set of parameters), and minimizing the resulting Eφ(a) function
with respect to a: the particular value of a that minimize Eφ (let’s call it a0)
will provide the closest possible energy Eφ(a0) and wave function φ(x; a0) to
the correspondent exact Eψ and ψ(x). Such procedure is named the variational
method.

Let’s see how the variational method is employed in the solution of a two-
electron system (like the helium atom). This simple system alone will show
many of the key points and issues that we find when quantum mechanics
is applied in the derivation of properties of many-electron atoms, molecules
and crystals. First, one has to express the (exact) two-electron wave function
ψ(x1, x2) in terms of one-electron functions η(x): a common choice for the η are
the atomic spin-orbitals of hydrogen. In fact, any complete set of functions η
can be used for the purpose, and a theorem from mathematics says that the set
of eigenfunctions of any operator related to whatever observable (technically,
any Hermitian operator) is complete. The atomic spin-orbitals of hydrogen
do indeed constitute a complete set, since they are the eigenfunctions of an
Hamiltonian. The expansion of a two-electron function in terms of one-electron
functions can always be done exactly, as assured by the Boys’ theorem:

ψ(x1, x2) =

∞∑
i,j=1

cijηi(x1)ηj(x2) (10)

where the cij are scalars. By introducing the antisymmetry principle [that is,
ψ(x1, x2) = −ψ(x2, x1)] in equation (10), one easily derives that cij = −cji,
cii = 0 and the whole sum can be expressed as an infinite series of determinants
(Slater determinants, or detors):

ψ(x1, x2) =
∑∞
i,j 6=i cij [ηi(x1)ηj(x2)− ηj(x1)ηi(x2)] =

= c12

∣∣∣∣ η1(x1) η2(x1)
η1(x2) η2(x2)

∣∣∣∣+ c13

∣∣∣∣ η1(x1) η3(x1)
η1(x2) η3(x2)

∣∣∣∣+ · · ·
(11)

It must be emphasized that such infinite expansion is an exact representation
of the original two-electron wave function. Since, when doing real calculations,
it is practically impossible to work with infinite series, the above Boys’ series
must be truncated. One way to do such truncation is to build all the possi-
ble detors from a finite subset of the, otherwise infinite, set of one-electron η
functions. The resulting approximated wave function will depend upon the cij
scalars [φ(x1, x2; c) ≈ ψ(x1, x2)] and, by following the variational method, the
most effective approximation can be found by minimizing Eφ with respect to
the c’s. Such technique is known with the name of Full CI where CI stands for
Configuration Interactions. The energy minimization process (common in all
the variational techniques) reduces to the diagonalization of the Hamiltonian
matrix which is the representation of the Hamiltonian operator in the space
spanned by the detors. The lowest eigenvalue of such a matrix is the energy
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of the lowest energy state, and the corresponding eigenvector gives the c’s co-
efficients of the polydetor representing the same state. Each detor represents
an electronic configuration, and the polydetor somehow incorporates their in-
teractions. To clarify the point, if η1 and η2 represent the 1s electrons with
spin up and down respectively, and η3 is the 2s electron with spin up, then
the first detor in expression (11) is the configuration with the two electrons
paired in the 1s orbital; the second detor represents an excited configuration:
two spin-parallel electrons, one of which occupying the 1s orbital, and the sec-
ond one occupying the 2s orbital. The resulting φ wave function is a mix of
of the two configurations with weights determined by the variationally opti-
mized c’s coefficients. In a case like the one considered (the helium atom), c12
will be very large compared to the coefficient associated to the excited con-
figuration, thus we say that the ground state electronic configuration of He is
reasonably well described by the electrons occupying the two 1s hydrogenoid
spin-orbitals, with spins paired2. The Full CI method is very effective (actually
is one of the most accurate techniques developed) but it is really very costly
in terms of computer power and computing time, as the number of detors to
be considered in the calculation increases very rapidly with the number of
one-electron functions and the number of electrons in the system. In fact, Full
CI is usually applied for atoms and small molecules only. On the same line,
the CAS-CI (Complete Active Space CI) or RAS-CI (Restricted Active Space
CI) techniques are less expensive and based on truncation criteria of the Full
CI polydetor.

The most popular and widely used method, at least in the past, due to its
reasonable cost and accurate enough results (for at least a set of systems, as it
will be seen below) is the Hartree-Fock one: it is based on a very crude trun-
cation of expression (11): one determinant only! To reduce the generally very
large truncation error that would result, the trick is to modify (and variation-
ally optimize) the one-electron spin-orbitals η used to build the determinant.
In practice, every η is substituted with a new one-electron function ξ which,
in turn, is defined through a linear combination of one-electron hydrogenoid
wave function η’s. In formula, the exact two-electron wave function ψ is ap-
proximated by a two-electron function φ:

ψ(x1, x2) ≈ φ(x1, x2) = c

∣∣∣∣ ξ1(x1) ξ2(x1)
ξ1(x2) ξ2(x2)

∣∣∣∣
ξi(x) =

∑N
j=1 aijηj(x)

(12)

where c is a normalization constant, N is the number of hydrogenoid functions
used to expand each function ξ, and the aij scalars are the set of coefficients
to be variationally optimized to get the best possible approximated wave func-
tion φ together with its energy. In the case of helium we could, for instance,
decide to use the 1s and 2s hydrogenoid spin-orbitals as η functions (four

2 In systems having no spin unpaired electrons, in a non-relativistic approximation, an
orbital (ζ) gives rise to two spin-orbitals (η1 and η2) having the same orbital part (ζ) and
two different spin function (σ1 and σ2): ηi(x) = ζ(r) · σi(s).
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functions, considering the spin variable). The Hamiltonian operator will then
be represented in the space of such four functions, and the diagonalization
of the resulting 4x4 H matrix will provides the four eigenvalues and the cor-
responding eigenvectors. Such four eigenvalues are the energies of the four
one-electron atomic spin-orbitals (ξ) of helium expressed in terms (a linear
combination of) the one-electron hydrogenoid spin-orbitals (η). In terms of
orbitals, the two electrons occupy the same orbital with opposite spins (the
first two spin-orbitals are degenerate: they have the same energy; likewise the
third and fourth spin-orbitals).

When extended to the case of molecules, such ξ functions are called molec-
ular orbital (MO) expressed as Linear Combination of Atomic Orbitals (η;
LCAO), centered on each nucleus of the atoms constituting the molecule; the
whole Hartree-Fock (HF) procedure (HF-MO-LCAO) is the core of the model
used for the interpretation of the molecular structure and molecular proper-
ties, in terms of bonds properties inferred from the nature (spatial extension,
shape, nodes) and energies of the molecular orbitals.

It is both interesting and important to take a look at the energy of a multi-
electronic system in the frame of the Hartree-Fock approximation. Given the
exact Hamiltonian H with nuclei standing still (no kinetic energy terms for
nuclei) in the form of:

H = − h̄2

2m

n∑
i=1

∇2
i −

n,N∑
i,a=1

Zae
2

ria
+

1

2

N∑
a,b6=a

ZaZbe
2

rab
+

1

2

n∑
i,j 6=i

e2

rij
(13)

where n is the number of electrons, N in the number of nuclei; the indices a
and b run on nuclei, whereas i and j run on electrons; Zae and Zbe are nu-
clear charges, ria, rab and rij are respectively electron-nuclear, inter-nuclear
and inter-electron distances. The first term in (13) accounts for the kinetic
energy of electrons [see equation (6)]; the second term is the nuclei-electrons
interaction; the third and fourth terms are respectively the nuclei-nuclei and
electrons-electrons interactions. It is precisely the last term that creates prob-
lems in the solution of the Schrödinger equation, even within the Hartree-
Fock approximation. Anyway such problems can be overcome with the re-
course to an iterative approach called Self Consistent Field (SCF). When the
operator H is represented in the space of the molecular orbitals (to variation-
ally solve the Schrödinger equation) several contributions arise: kinetic (Te)
and electrons-nuclei (VNe) one-electron terms; two-electron terms due to the
electrons-electrons interaction (Vee). The VNN nuclei-nuclei interaction term
is just a fixed contribution for a fixed nuclear spatial configuration. After some
algebraic manipulations and after integration over the spin variable, it can be
shown that (within the Hartree-Fock frame) the Vee term for two electrons in
the i and j spin-orbitals consists of two contributions: a Coulomb contribution
Jij :

Jij =

∫
dr1 dr2 ρi(r1) ρj(r2)

e2

r12
(14)
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and an exchange contribution Xij :

Xij = −δs1s2
∫

dr1 dr2 ζ
∗
i (r1)ζ∗j (r2)ζj(r1)ζi(r2)

e2

r12
(15)

In expression (14), ρi is the distribution of the ith electron; likewise for ρj .
Thus Jij is nothing else than the Coulomb interaction of the two electrons i
and j described by their respective charge distributions ρ. Note the absence
of pointwise interactions: the interaction is calculated by averaging over the
positions of the two electrons, each one being subjected to the mean field
created by the other electron. This fact is at the core of the correlation problem
(lack of pointwise electronic interactions) which will be discussed below.

The term X of expression (15) is known with the name of electronic ex-
change. It is a direct consequence of the antisymmetry principle as it is declined
in the Hartree-Fock approximation. Symbols ζ’s represent the orbital part of
the spin-orbitals, and the ∗ in ζ∗ denotes complex conjugation. The electronic
exchange has essentially three important features: (i) it is non local, due to the
presence of products like ζi(r)ζ

∗
j (r) that cannot be reduced to local electron

densities as it was for the J term; (ii) it is not zero only if the spins of the two
electrons are parallel (the Kronecker δs1s2 assures that); (iii) it has a negative
sign. The total electrostatic interaction term between the two electrons is then:
Vij = Jij + Xij . Due to the sign of X, the interelectronic potential energy is
lower for electrons having parallel spins, compared to spin paired electrons: (it
costs energy to pair two electrons: this is at the base of the well known Hund’s
rule). It must be emphasized that the exchange energy is not a new kind of
energy: it is just a corrective term to the way the electrostatic interaction is
evaluated (through the J term) to take antisymmetry into account.

By the way, a point that could seem just technical and fundamentally
unimportant at this level of discussion (but that, instead, will result to be
crucial in the density functional approach discussed in the next section) has
to do with the practical implementation of the Hartree-Fock technique. The
term Jij can be written as:

Jij =

∫
dr1 ζ

∗
i (r1)

{∫
dr2 ζ

∗
j (r2)

e2

r12
ζj(r2)

}
ζi(r1) ≡

∫
dr1 ζ

∗
i (r1)Ĵjζi(r1) (16)

where a one-electron operator Ĵj has been defined. Likewise, a similar one-

electron operator X̂j is defined for the exchange term. After some manipula-
tion, the electronic potential Vee can be expressed in the form

Vee =
1

2

∑
i

∫
dr1 ζ

∗
i (r1)(Ĵ − X̂)ζi(r1) (17)

where, for each i term of the summation, the Ĵ and X̂ operators are defined
as

Ĵ =
∑
j 6=i

Ĵj and X̂ =
∑
j 6=i

X̂j (18)
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The condition j 6= i in the two summations (18) means that the operators
Ĵ and X̂, to be plugged in the expression (17), are different for each i of
the summation occuring in (17). This is not practical for the coding of an
automated algorithm written to solve the equations. The way out is to remove
the condition j 6= i in the summations (18), and this can be done with no harm
as, when j = i, Jii = Xii so that the two terms cancel out exactly in (17). Note
that Jii would mean the interaction of the ith electron with itself. The Hartree-
Fock exchange term ensures that such self-interaction error (SIE), introduced
in the algorithm, is exactly zero.

2.4.1 Some examples

Let’s consider an hydrogen molecule (H2) and, by using the Hartree-Fock
method, let’s calculate the total energy and its separate contributions, for
different values of the distance between the two nuclei (see figure 1).

Fig. 1 Total, kinetic and potential energy terms [in atomic units (hartree)] of the H2

molecule as a function of internuclear separation (H-H distance in Å). The scale on the
left refers to the total energy; kinetic (electronic) and the VNN potential energies refer to
the scale on the right; the total potential energy (VNN +Vee+VNe) refers to the farthermost
scale on the right.

The total energy (continuous curve) has a minimum for an H-H distance
of 0.72Å: that is the estimated equilibrium internuclear separation. By look-
ing at the left energy scale it can be noted how small is the variation of the
total energy, as the H-H distance is changed, in comparison to the relative
variations of the kinetic energy of the electrons (their kinetic energy increases
significantly as the two nuclei are squeezed together) and of the total elec-
trostatic potential (the sum VNN + Vee + VNe), that decreases toward more
negative values as the H-H distance is reduced. The total energy is thus the
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small difference between two large contributions of opposite sign: a positive
kinetic energy contribution and a negative electrostatic one. From the compu-
tational point of view, this has the consequence that even small relative errors
in the evaluation of the separate contributions can result in large relative er-
rors of their difference, having therefore a dramatic impact on the prediction
of the equilibrium geometry and on the binding energy (thermochemistry).
From the physical-chemical point of view, it is interesting to note that the
rapid increase of the total energy, at H-H distances lower than the equilibrium
one, is not due to an increased electrostatic repulsion, nor to the presence of a
mysterious short range force of quantum origin (as it is sometimes written is
basic chemistry textbooks): it is rather due to the rapid increase of the kinetic
energy of the electrons. Indeed, the total potential is still decreasing at the
equilibrium distance (see the dotted curve in figure 1) due to the dominance
of the Vne (negative) energy term over the (positive) VNN and Vee ones. These
facts are not at all new: they were already clearly pointed out by Slater (1967),
for instance, in one of his masterpieces on quantum chemistry.

The Hartree-Fock wave function φ (12) is not an eigefunction of the exact
Hamiltonian (13); it is however the eigenfunction of the Hartree-Fock Hamil-
tonian (HHF ): the non-exact nature of φ is transferred onto the Hamiltonian,
and thus we have an exact solution of an approximated Hamiltonian rather
than an approximated solution of an exact Hamiltonian. Formally:

HHFφ = EHFφ (19)

where EHF is the Hartree-Fock energy. The difference between the two Hamil-
tonian operators Hc = H −HHF is the definition of the correlation Hamilto-
nian, and the corresponding energy difference (Ec = E −EHF ) is the correla-
tion energy. It has to do with the short range pointwise electronic interactions
that are neglected in the mean field Hartree-Fock approach. A fraction of such
interactions is responsible for the dispersion energy and the associated dis-
persion force. However small, such correlation energy can have a magnitude
comparable with the binding energy of a system, so that its neglection can
lead to relatively large errors in geometry and termochemistry.

Correlation lays in those neglected determinants of the truncated Boys
expansion (11) and, since each of those determinants would correspond to
an excited electronic configuration, dispersion forces are often pictorially de-
scribed as if they were due to the coupling of fluctuating dipole moments, the
latter being generated by fluctuations of the electron density, in turn due to
random electronic excitations. Of course, there cannot be real fluctuations in
whatever model based on the time independent Schrödinger equation [nor the
time is a variable entering in the exact Hamiltonian (13) at all].

The electronic correlation is generally negligible in those systems having a
small number of electrons and a large binding energy. That is at the core of the
success of the Hartree-Fock method in quantum-chemistry, for the modeling
of a very large number of molecules, expecially organic compounds.

Traditionally, quantum mechanical calculations for crystals did follow a
different path: rather than a wave function based approach, the one based
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on the electron density was developed (the Density Functional Theory, DFT,
as it will be discussed in the next section). However, in the ’80s, a pro-
gram (CRYSTAL) was developed at the University of Torino that applied the
Hartree-Fock method to crystals (see for instance Pisani and Dovesi, 1980).
Since then, CRYSTAL has been applied to study a very large set of covalent
and ionic compounds, many of them being of mineralogical interest. In this
respect, looking at the Hartree-Fock calculations only (actually, CRYSTAL
applies DFT and hybrid HF/DFT approaches, too), the literature is huge
and a list of works can be found on the CRYSTAL web site, at the address
http://www.crystal.unito.it/elementi/node1.html. Here I only report
the early calculations on α-quartz (Dovesi et al., 1987) and corundum (Causà
et al., 1987), as well as the systematic application of the method to the alkali
halides as an example of application to ionic compounds [Prencipe M, 1990:
Master thesis, University of Torino, Italy; Prencipe et al., 1995]. Other exam-
ples of application of the Hartree-Fock technique to minerals can be found in
Prencipe (2002) and Prencipe et al. (2003), dedicated to beryl and spodumene
respectively.

Concerning alkali halides, calculations provided results in reasonable agree-
ment with experimental measurements if the elements involved had a low
atomic number, due to the low correlation error. Discrepancies with respect to
the experiments increased with the atomic number. Looking at the results for
NaCl, and to the bulk modulus (K0) in particular, the Hartree-Fock datum
from the second derivative of the energy-cell volume curve, at the equilibrium
volume, gave 22.3 GPa (Prencipe et al., 1995). An estimation of the same
quantity (this work) from a volume-integrated third order Birch-Murnaghan
(BM3) equation of state, gave 24.0 GPa (K ′ = 4.6), not too far from the older
result. These estimations are however at the static level: they do not take into
account the effect of atomic vibrations within the solid that have a role in
generally decreasing the elastic moduli (this point will be further discussed in
the last section; see also Prencipe et al., 2011). When such dynamic effects
are properly taken into account, at a temperature of 300 K, K0 decreases to
20.6 GPa (and K ′ = 4.0; this work). The experimental estimation of the bulk
modulus of NaCl provides a value of 23.7 GPa [from a BM3 fit of P (V ) data;
K ′ = 5.14; see Matsui et al., 2012]. Thus the Hartree-Fock estimation of K0 is
somewhat underestimated with respect to the experiment. An hybrid HF/DFT
approach, that corrects for some correlation effects (see next section), provides
a bulk modulus at 300 K of 23.05 GPa and K ′ = 5.2 (this work) which is very
close to the experimental value at the same temperature.

There are limiting cases where the Hartree-Fock method is useless: as said
above, when the binding energy (due essentially to the accumulation of elec-
tronic charge in the binding regions of a molecule; see Berlin, 1951) is so low to
become comparable to the correlation energy, computed results could be very
far from reality. That is the case of dimers of noble gases whose very weak bind-
ing is attributed to dispersion forces, which means that it is correctly described
only with the recourse to a generally very large number (millions) of Slater
determinants in the Boys’ expansion above. Figure (2) illustrates the point in

http://www.crystal.unito.it/elementi/node1.html
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the case of the helium dimer where the energy variations, with He-He distance,
are about one hundredth of the corresponding variations in H2 [compare the
left energy scales of figures (1) and (2)]. The continuous curve in figure (2) has

Fig. 2 Total energy (in hartree) of the He2 dimer as a function of the He-He nuclear distance
(in Å). The continuous curve refers to a coupled cluster calculation [CCSD(T); see text for
explanations]; the dashed curve is evaluated with a Density Functional approach (see next
section) and the dotted curve is the Hartree-Fock one

been obtained (this work) by using a version of the coupled cluster technique
(see for instance Crawford and Schaefer, 2007); coupled cluster is a very effi-
cient and accurate quantum chemical technology: it is comparable to the Full
CI method, but it is faster and significantly less expansive than the latter. It is
our reference here. Coupled cluster predicts a bound state having an equilib-
rium distance of 2.97 Å which is the same value proposed by Ogilvie and Wang
(1991), whereas Hartree-Fock does not find a minimum in the energy curve
(no bound state). A Density Functional calculation (this work) made by using
one of the most recent functional developed (ω-B97X-D; Chai and Gordon,
2008) also predicted a bound state but overestimates the equilibrium distance
and shows a too sharp increase of the energy at small He-He distances, com-
pared to the coupled cluster calculation. Systems like those of noble gases (or
even clusters or crystals of apolar organic molecules) are limiting cases where
the Hartree-Fock method is surely not the right choice. Other cases are less
extreme; however, to reach an accuracy level comparable to what experimental
measures do provide, it is necessary to move beyond Hartree-Fock and to deal
with the electron correlation problem. This is discussed in the next section.
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3 The Density Function Theory (DFT)

As seen in section 2, at the molecular level the approch followed to solve the
Schrödinger equation was the Hartree-Fock one or other wave function based
technologies like the Full CI, the coupled cluster or even other methods not
quoted in this paper (a very popular one is the Møller-Plesset perturbative
method - MP2). In the solid state field, historically, scientists proceeded dif-
ferently. As soon as quantum mechanics was established at a very basic level,
scientists tried to deal with problems like the electrical conductivity in metals
and their optical properties. Metals were particularly actractive as the reason-
able hypothesis of a substantially free electron gas, which could be modelled
in a relatively easy way, seemed to be a good starting point to explain their
conductivity. Textbooks like the Ashcroft and Mermin (1976) provide really
good accounts of the early ideas and attemps to apply quantum mechanics to
metals. Anyhow rather than on the wave function, the focus was on the elec-
tron density function [ρ(r)] that can easily be related to the wave function. In
fact, for a two-electron system one has:

ρ(r) = 2

∫
dr′ |ψ(r, r′)|2 (20)

(the dependence upon a spin variable is here neglected). Indeed, integrating
ρ(r) over all the space, one gets 2 (the number of the electrons in the system),
as the wave function ψ is normalized (its double integral over all the space is
1). A relation was found relating the kinetic energy of the homogenous free
electron gas and its electron density (which is a constant in such a gas) and this
fact was used to successfully explain some properties of the metals of the first
group of the Periodic Table (with some good luck due to errors cancellation).

Since those early attemps, Density Functional Theory (DFT) had a huge
development and it is the technique invariably employed at the solid state level
as, by insisting on a wave function based approach, it proved to be extremely
difficult and expansive to go beyond the Hartree-Fock approximation [see how-
ever the CRYSCOR project (Pisani et al., 2008) that applies the perturbative
MP2 technique to crystals]. Its foundations rest on the Hohenberg-Kohn the-
orem (Hohenberg and Kohn, 1964) that was proved to be true somewhat later
than many applications of DFT to real problems were already published. As
it is generally stated today, the theorem says that, given an external potential
(for instance the electrostatic potential due to a specific configuration of nu-
clei), the electron density is uniquely determined and, viceversa, the electron
density uniquely determines the nuclear potential and thus the total Hamil-
tonian of the system. Thereby, there must exist a functional of ρ (ε[ρ]) whose
knowledge allows the calculation of the total energy of the system:Etot = E[ρ] + 1

2

∑
a,b6=a

ZaZbe
2

|Ra−Rb|

E[ρ] =
∫

dr ρ ε[ρ]
(21)
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where E[ρ] is the total electronic energy. If the functional ε[ρ] were known,
then the correct electron density ρ, for a system having a given nuclear con-
figuration, could be found by minimizing E[ρ], without the recourse to the
Schrödinger equation at all. In the practical implementation of DFT, the elec-
tron density is still strumentally calculated, through integrals like (20), from
a wave function depending upon some parameters, as in the Hartree-Fock
method discussed in the previous section, and then the energy is variationally
minimized with respect to those parameters. The important point here is that
the Hohenberg-Kohn theorem does not provide the form of ε: the functional
must exist but nobody knows what it is.

The quest for effective and general functionals is a never-ending story.
A good account of it, from the basic to the advanced level, can be found in
chapter 11 of the Trindle and Shillady book (Trindle and Shillady, 2008). Here
we just note the key points. One of the first model proposed for the electronic
energy [ETFD] was the Thomas-Fermi-Dirac one:

ETFD[ρ] = TTF [ρ] + Ene[ρ] + J [ρ]−XD[ρ] (22)

where TTF , Ene, J and XD are respectively the kinetic energy of electrons,
the nuclei-electrons potential energy, the electrons-electrons potential energy
and the exchange (electronic) energy as proposed by Dirac (Dirac, 1930b). For
the curious reader, the expressions of the functionals are:

TTF = 3(3π2)2/3

10

∫
ρ5/3(r) dr

Ene =
∑N
a

∫ Zaρ(r)
|Ra−r| dr

J = 1
2

∫∫ ρ(r)ρ(r′)
|r−r′| drdr′

XD = 3
4

(
3
π

)1/3 ∫
ρ4/3(r) dr

(23)

One of the important aspects concerning the expressions of the various com-
ponents of the total electronic energy is that they are all local: they depends
only upon the electron density at any given point and not on its derivatives.
All of the subsequent developments of local functionals proposed by other
more modern Schools fall under the LDA category (Local Density Approxi-
mation; Trindle and Shillady, 2008). The problem with locality is essentially
that exchange [which is non-local, as discussed in section (2.4)] and long range
correlation effects (dispersion forces) are not properly described. On the other
hand, short range correlation effects3 are taken into (approximated) account.
More advanced functionals try to go beyond locality by introducing, in their

3 Although pointwise correlation effects are short ranged if compared to mean field effects
described at the Hartree-Fock level, they can be classified in two categories: short range
and long range effects, where the adjectives short and long have here a relative meaning
inside this further classification. Dispersion forces are ascribed to such long range correlation
effects, and are generally not properly accounted for by DFT functionals; DFT correlation
functionals are instead effective in dealing with the short range effects.
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expressions, dependences upon the gradient of the electron density: they fall
under the GGA category (Generalized Gradient Approximation). However,
apart some very recent formulations, even GGA functionals are generally not
effective in dealing with dispersion forces.

The density functional approach is applied not only to solids, but at the
molecular level too, to study large systems and bio-molecules, due to its limited
cost compared to more advanced Full CI or coupled cluster calculations. To
this end, many advanced functionals has been developed and one example of
the most recent formulations is provided by the ω-B97X-D functional (Chai
and Gordon, 2008) used above for the calculation of the equilibrium distance
in the He2 dimer (this formulation also includes a parametrization to deal with
dispersion energy at the classical level). As crystals are concerned, however,
the most popular functionals which are systematically employed are those from
the Becke and Perdew Schools, and they only will be briefly reviewed here
(although many of the modern functionals are nowadays coded in programs
for crystals, too; see for instance the last release of the CRYSTAL program;
Dovesi et al., 2018).

The two Becke and Perdew Schools developed different functionals to de-
scribe the GGA electronic exchange to be associated, as a correction, to the
original Dirac LDA exchange (Dirac, 1930b): Becke developed the B88 gradi-
ent term (Becke, 1988) to be added to the LDA part; Perdew developed the
PBE gradient corrections to be multiplied to the same Dirac LDA exchange
(Perdew et al., 1996). Note that the expressions for electronic exchange, for-
mulated at the DFT level, are always approximations of the exact non-local
Hartree-Fock exchange.

In the Becke approach, electronic exchange must be coupled to an ap-
propriate formulation of electronic correlation (absent, by definition, at the
Hartree-Fock level). To this end, the LDA Vosko, Wilk and Nusair functional
(VWN, from the expression derived for the homogeneous electron gas; Vosko
et al., 1980) or the GGA Lee, Yang and Parr functional (LYP, derived from the
knowledge of the one-electron and two-electron density matrices, calculated at
the Hartree-Fock level; Lee et al., 1988) are often employed. On the Perdew
side, the PBE functional provides both exchange and correlation.

Many other functionals for both exchange and correlation do exist, and
they can be combined following some criteria to get the best results for some
classes of systems. However, note that exchange and correlation functionals
are generally developed together following some philosophy, and thus it is not
wise to combine them randomly.

A first procedure, attempting to introduce correlation effects to correct the
Hartree-Fock predictions, was to plug in the Hartree-Fock electron density in
a correlation functional in order to calculate the correlation energy; an exam-
ple was the set of alkali halides from LiF to RbBr (Prencipe M, 1990: Master
thesis, University of Torino, Italy): the correlation PW86 functional (Perdew,
1986) was employed, but the results were not very satisfactory. In particular,
the correction was somewhat too rigid: the cell parameter, for instance, was
over-corrected for light compounds like LiF or NaF (that, in fact, need not
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to be corrected), whereas it was not corrected enough for heavier compounds
(RbBr). The reasons of such partial failure had to be searched in the wrong
exchange-correlation coupling (the exchange was the exact Hartree-Fock one)
and in the fact that the electron density was obtained without taking cor-
relation into account. Concerning the first point, it seems to be a bad idea
to couple the (total) Hartree-Fock exchange with some correlation functional
(Prencipe and Nestola, 2005).

3.1 The hybrid functionals

One of the problem of the DFT approach has to do with the Self Interaction
Error (SIE) discussed at the end of section (2.4). Precisely, the pratical im-
plementation of a DFT algorithm closely parallels the Hartree-Fock procedure
and, in particular, the Coulomb operator Ĵ is calculated with the same method
already discussed above [equation (18)] by removing the condition j 6= i in the
summation (we recall that the added i = j term is equivalent to the inter-
action of an electron with itself). This gave no problem at the Hartree-Fock
level as, for each i, the corresponding exchange term X̂i exactly canceled such
unphysical Ĵi contribution. At the DFT level the situation is different as the
exchange is evaluated through an approximate functional X[ρ], so that the
cancellation of SIE is not complete. As the SIE increases with the electron
density, the atomic core regions are those where the error is larger and, as a
consequence, their volumes are expanded (to reduce ρ, and hence SIE and the
total energy). This leads to an overestimation of the geometrical parameters
(interatomic distances and lattice constants). Not only, but another possibility
that the DFT model has, in order to reduce the SIE, is to shift electrons out
of the core regions to the valence part of the atoms (Cremer, 2001): this de-
creases the energy but creates spurious forces that simulates dispersion effects,
generally in a not proper way (indeed, it can be said that the apparent success
that some GGA functionals have, in dealing with dispersion forses, is due to
the self interaction error in the core region).

The SIE can be reduced by adding a fraction of the Hartree-Fock exchange
to the corresponding DFT term. This strategy led to the development of the
so called hybrid HF/DFT functionals. One of the most popular is the B3LYP
functional, developed by the Becke group (Becke, 1993) and extensively ap-
plied to molecules and crystals (Koch and Holthausen, 2000). Its formulation
consists of a fraction (20%) of Hartree-Fock exchange, added to LDA e GGA
exchange functionals; precisely, such formulation is:

Ex(B3LYP) = Ex(LDA) + a0[Ex(HF) − Ex(LDA)] + ax[Ex(GGA) − Ex(LDA)] (24)

where Ex(LDA) is the Dirac LDA exchange (Dirac, 1930b); Ex(HF) is the
Hartree-Fock exchange, and Ex(GGA) is the Becke GGA exchange (Becke,
1988). The coefficients a0 = 0.2 and ax = 0.72 specify the weights of the
Hartree-Fock and of the GGA contributions, respectively, to the total ex-
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change. The correlation part of B3LYP is formulated as:

Ec(B3LYP) = Ec(LDA) + ac[Ec(GGA)− Ec(LDA)] (25)

where Ec(LDA) is the VWN LDA correlation (Vosko et al., 1980), and
Ec(GGA) is the LYP GGA functional (Lee et al., 1988); the value of the
ac coefficient is 0.81. The values of the three coefficients a0, ax and ac were set
by best fit of the computed results against the experimental ones, for a number
of properties (atomization energies, ionization potentials, affinities, and total
atomic energies) of a set of atoms (Becke, 1993).

Another more recent hybrid formulation that provides very good results,
expecially concerning compressibilities and vibrational properties (computed
frequencies and relative intensities in Raman and infrared spectra) of carbon-
ates and silicates, is the WC1LYP functional, which employs the Wu-Cohen
GGA exchange functional (Wu and Cohen, 2006). The weight of the Hartree-
Fock exchange in WC1LYP amounts to 16%.

3.2 Some examples

The examples shown here do not pretend to review the overall range of pos-
sibilities and applications of the DFT techniques published in literature (not
even a whole book would be enough to cover every aspect). Rather, the discus-
sion and the supporting examples are mainly focused on comparisons of results
from different functionals concerning the calculation of vibrational frequencies.
The choice of such observables is due to several reasons: (i) they are one of
the first outputs from quantum-mechanical calculations (after the estimation
of the geometrical structure under a specific space group); (ii) vibrational fre-
quencies are quantities subtle enough to reveal weakness and strength points
of the chosen DFT functionals; (iii) they are immediately useful in the in-
terpretation of infrared and Raman spectra; (iv) they serve as a basis for
the estimation of thermo-elastic and thermodynamical properties within a
statistical-thermodynamical frame (discussed in the last section).

The relative performances of various DFT and HF/DFT formulations has
been tested in a number of cases and, generally, the HF/DFT results are more
accurate than those from pure DFT. For instance, in Prencipe et al. (2012)
the Raman spectrum of diopside was calculated by using several functionals:
WC1LYP, B3LYP, PBE0, PBE, WCPBE, LDA and the Hartree-Fock. Besides
WC1LYP and B3LYP, PBE0 is the hybrid version (25% of HF exchange) of
the purely DFT GGA PBE functional by Perdew et al. (1996); WCPBE is the
original version of the Wu-Cohen exchange-correlation functional (WC func-
tional for exchange, and PBE functional for correlation; Wu and Cohen, 2006).
With reference to the experimental wave numbers, the best agreement was
obtained with WC1LYP (average discrepancy 3.2 cm−1), followed by B3LYP
(4.7 cm−1) and PBE0 (6.5 cm−1); of the purely DFT GGA functionals, the
worst was PBE (18.0 cm−1) with WCPBE performing better (9.7 cm−1). LDA
performed better than GGA (7.3 cm−1). Hartree-Fock was definitely the worst
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with its 40.6 cm−1 of average discrepancy. Note the performance of LDA which
is better than GGA, in spite of the fact that LDA represents a lower level of
approximation with respect to GGA (this fact probably reflects some error
cancellation in LDA, that is removed in GGA, thereby worsening the results;
Cremer, 2001).

The relative performance of the B3LYP and PBE functionals was also
tested in the case of the vibrational spectrum of lizardite (Prencipe et al.,
2009): PBE systematically provided lower frequencies with respect to B3LYP
even if, in the comparison with experimental data (infrared and Raman spec-
tra), the two functionals were almost equivalent. The comparison with the
experiments was however complicated by the presence of several anharmonic
modes involving hydrogen: it was possible to correct the frequencies of the
O-H stretching modes for the anharmonic effect, but the same could not be
done for the bending modes (due to the coupling among modes falling in the
same spectral range). Significant differences in the frequencies of at least some
vibrational modes (with respect to both experimental values and B3LYP or
PBE calculations) were instead observed in the computational work of Balan
et al. (2002): the latter Authors used the PBE functional along with a plane
waves basis set, instead of localized hydrogenoid orbitals, to represent the wave
function used to work out the electron density. This fact is quite common in
solid state calculations: the set of one-electron functions employed in the rep-
resentation of the multi-electronic wave function [Boys’ expansion (10)] can be
any set satisfying the completeness condition: in short, every function satisfy-
ing very general requirements can be represented as a linear combination of
functions of a complete set, more or less like every vector of a vector space can
be represented as a linear combination of a set of basis vectors; in turn, every
set of functions that happen to be eigenfunctions of whatever Hermitian oper-
ator is complete. For this reason, the set of hydrogenoid atomic spin-orbitals
is complete, as indeed they are the eigenfunctions of the Hamiltonian (Her-
mitian operator) of the hydrogen atom. The same is true for plane waves as
they are eigenfunctions of the Hamiltonian for the free electron (of course, the
set of plane waves is complete for other mathematical reasons too, but the
explanation given here puts orbitals and plane waves on equal footing). Plane
waves are employed by the majority of codes for the quantum-mechanical
calculations for crystals essentially because they simplify the calculation of
the Coulomb integrals, but have two important drawbacks: (i) it is pratically
impossible to describe the highly localized electron density of atomic core re-
gions by using plane waves, so that rigid pseudopotentials for the cores must
be employed: the latter are effective potentials that make the job of taking
into account both the nuclear and the core electrons charges and imposing,
at the same time, suitable mathematical conditions to avoid the penetration
of the valence electron wave function into the core region (a requirement that
is ultimately motivated by the Pauli antisymmetry principle); (ii) the estima-
tion of the Hartree-Fock exchange requires extremely long computing times
if a plane waves basis is employed; thus plane waves are generally coupled
to purely DFT functionals only, thereby giving up the benefits derived from
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the hybrid HF/DFT approaches. As discussed in Prencipe et al. (2009) the
problems in the Balan et al. (2002) computation are probably related to the
use of plane waves (and of the pseudopotential for H), more than to the use of
the PBE functional.

For extensive comparisons of performances of different functionals, con-
cerning structures at equilibrium, vibrational properties and relative stability
of some minerals, see also the works by De La Pierre et al. (2011), Demichelis
et al. (2010a,b) and Maschio et al. (2011). Other examples of ab initio com-
putations of vibrational frequencies relevant for Earth Sciences, which employ
hybrid functionals, can be found in Aliatis et al. (2015); Corno et al. (2006);
De La Pierre and Belmonte (2016), Noel et al. (2006), Pascale et al. (2005),
Prencipe et al. (2004, 2006, 2014a); Stangarone et al. (2016, 2017); Tosoni et
al. (2006). As a rule of thumb it can be said that, as demonstrated in nearly
all of the quoted papers, the performance of the hybrid HF/DFT functionals
in predicting the frequencies of vibrational modes in crystals is very good, the
average discrepancy between the computed wave-numbers and those measured
in Raman, or IR, spectra being generally within 5 cm−1.

4 The Atoms In Molecules theory

The electron density function ρ(r) of molecules and crystals, which is one of
the key ingredients and output from the DFT methodologies (and that can,
of course, even be measured experimentally) is at the core of a review of the
chemical bond definition, and its related properties, developed by Richard
Bader, at the McMaster University in Hamilton (Canada), since the eighties
onward (Bader, 1994). Fundamentally the theory proposes to base every pos-
sible definition and interpretation of bond and its properties, in chemistry, on
observable quantities (and ρ is one of those) rather than on a wave function
which is not an observable, but an object living in an infinite-dimensional
Hilbert’s space (whatever an Hilbert’s space might be, let’s say it is not the
ordinary space used to describe the experimentally accessible reality). To this
end, Bader proposed a method for partitioning the space occupied by a given
system [a molecule or a (unit cell of a) crystal] based on some features of the
total electron density, in order to identify the atoms inside the system. This
point is not trivial: given a biatomic molecule, for instance, where is the sur-
face of contact between the two bonded atoms? Is an atomic radius definable?
Moreover, in more complex structures, which atoms are bonded together and
which are not? Is the energy of an atom within the molecule a measurable
quantity? What is the real charge of an ion within a molecule or crystal? Is
it definable? Everyone having some experience in mineralogy, immediately re-
alizes that all these questions have to do with the definition of ionic radius,
the coordination number and, in general, with the Pauling’s rules which dom-
inated the classical thinking in crystal-chemistry for years. Curiously, David
Brown, whose contributions to crystal-chemistry are widely acknowledged in
the mineralogial community, had his room close to the Bader’s one at the Mc-
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Master University, but the two scientists did not interact too much (Brown,
personal communication), though they worked for years on the same subject,
even if from two different perspectives.

It must be strongly emphasized that the Bader’s partitions of the elec-
tron density function into atomic basins is not just one of the many possible
schemes that can be devised to partition a given domain in several subdomains:
at variance with all of the other possibile schemes, the Bader’s partitioning has
a sound physical basis and clear motivations. To understand the importance
of Bader’s work, putting it in the appropropriate frame, it must be premised
that, in 1951, Julian Schwinger (Schwinger, 1951) published a milestone paper
where he showed how the whole quantum-mechanics could be derived from
an action principle [see section (2.1) above]; in particular, the equation of mo-
tions and the correspondence principle [discussed above, in section (2.2)] where
obtained from the minimization of a quantum action formulated in terms of
a quantum Lagrange operator. The Schwinger formulation, that was subse-
quently used as a building block of important conceptual advancements of
quantum-mechanics (ending in the developments of the quantum field theory
or the string theory) unified both classical and quantum mechanics under the
common principle of least action. In the Schwinger work, the general quantum
system considered, whose time evolution was considered, is isolated (e.g, a par-
ticle, a system of particles, a molecule or a whole crystal, with no interactions
with the surrounding).

Bader extended the Schwinger approach to non-isolated systems, for in-
stance to the atoms within a molecule, which interact with all of the sur-
rounding atoms (Bader, 1994). Such extension of quantum-mechanics to open
systems is possible if, and only if, each open subsystem (quantum atom) of the
total system (molecule) is bounded by a surface (Ω) defined by the condition
of zero flux of the gradient of the electron density: ∇ρ(r) · n(r) = 0 for each
point of the Ω surface [n(r) is a unit vector normal to the surface, at each
point r]. That is the Bader’s partitioning: a subdivision of the total system in
interacting subdomains, each one being bounded by an Ω surface satisfying
the property stated above. Apart from being consistent with the most general
principle of least action, such partitioning has the great advantage of being
the only one for which it is possible to assign definite values to several physical
key quantities: for instance, it can be shown (Bader, 1994) that it is possible to
assign a definite value of energy to a given (atomic) subdomain of a molecule,
only if the subdomain is bounded by such Ω surface. Starting from the to-
tal electron density, the Bader’s topological analysis of a molecule or a crystal
identifies the atomic interaction lines, the bonds, the interatomic surfaces, the
critical points of ρ together with key features assigned to each of such points
(electron density, Laplacian, Hessian matrix, energy density, etc.) that can
be used to build physically consistent schemes for the classification of atomic
interactions (in terms of observable quantities; Bader and Essen, 1984); more-
over, by integrating the relevant quantities over each atomic basin, the charge
or the energy of each atom can be calculated, or the forces that the electrons
belonging to that atom exert on the nucleus of the same atom, or on the nuclei
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of nearby atoms. In this way it is possible to describe and rationalize the force
schemes, the mechanics and the dynamics of deformation of a crystal structure
under stress, in a consistent physical framewok (see for instance Prencipe and
Nestola, 2007). Moreover, the Bader’s picture resumed and extend the idea
of Theodore Berlin of the chemical bond being the result of accumulation of
electron charge in the binding region between the nuclei (Berlin, 1951), putting
it on a firm physical and quantitative basis. In addition, a strong connection
was found between the minima of the Laplacian of the electron density and
the positions of the electron pairs in a molecule, the latter being predicted
by the well known Valence Shell Electron Pair Repulsion model (VSEPR) of
Ronald Gillespie, also working at the McMaster University, which is useful for
the prediction and the interpretation of molecular geometries (Bader et al.,
1988; Gillespie and Robinson, 1996).

A pioneer in the application of the Bader’s theory to mineralogy was Gerald
V. Gibbs at the Virginia Tech. His many works on the subject, so well written
and clear even for non-specialists, greatly contributed to the formation of
a view of crystal-chemistry that is alternative to the one merely based on
geometric interpretations about how sets of essentially spherical, rigid and
charged ions (that do not really exist) should arrange themselves in space, and
react to external stresses. See for instance Bader and Austen (1997), Gibbs
et al. (1994, 2001, 2006, 2008, 2014), Prencipe (2002); Prencipe et al. (2003);
Prencipe and Nestola (2007), and the interesting work by Merli and Pavese
(2018) on catastrophe theory (also based on the Bader’s analysis) to predict
and characterize instability in crystal structures, and used to discuss about
phase transitions in rutile, periclase and corundum. See also Gatti (2015) for
a comprehensive review of the applications of the Bader’s theory in crystal-
chemistry.

5 Quantum statistics and applications to thermodynamics of
minerals and rocks

The Hamiltonian formulated in equation (13) lacked of the kinetic term of
nuclei that were considered fixed in a given configuration; however, nuclei move
and contribute, with their kinetic energy, to the total energy of the molecule
or crystal. The kinetic energy of the nuclei is generally accurately estimated
by using the harmonic approximation: the equation of motion is solved for a
system of nuclei moving in an effective potential Veff (R) [which is the sum of
Vee, VNN , VNe and the kinetic energy of electrons, evaluated at the nuclear
configuration described by the R vector4; see subsection (2.4.1)]; the potential
Veff (R) is then Taylor-expandend around the nuclear equilibrium configuration

4 This is at the core of the Born-Oppenheimer approximation that separates the nuclear
motion from the electron motion, justified by the large difference of mass of the two types
of particles.
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R0, and the expansion is truncated at the quadratic term. Schematically:

Veff (R−R0) =

(
∂2Veff (R)

∂R2

)
R0

(R−R0)2 (26)

where the zero of the energy scale is set to Veff (R0) and the first order term
is also zero, as R0 is the equilibrium configuration [where Veff (R) has a mini-
mum]. Such truncated expansion is valid provided that the amplitudes of the
nuclear motii are small compared to the internuclear distances (as they gen-
erally are). Expression (26) corresponds to an harmonic potential, and thus
the equation of motion for nuclei provides 3N solutions (N being the number
of nuclei; 3 modes, out of 3N , correspond to rigid translations of the whole
crystal along the 3 axes of a cartesian frame) having the form of harmonic
oscillators. The frequencies νi of such oscillators (i = 1, . . . , 3N) are related to
the eigenvalues of the Hessian matrix: the matrix of the second derivatives of
Veff (R) with respect to the mass weighted atomic coordinates. Each oscillator
contributes a vibrational energy Ei = (1/2 + ni)hνi to the total energy of the
system, where ni is an integer number (actually, it is the vibrational quantum
number).

The collection of a large number (of the order of the Avogadro number)
of identical molecules, or unit cells of a macroscopic crystal, is dealt with
under the framework provided by statistical thermodynamics. In the case of
crystals, ni is interpreted as the number of phonons associated to the given
oscillator i; ni is zero at T = 0K and increases with T following the Bose-
Einstein statistic: in other words, vibrational excitations are interpreted as
virtual quasi-particles named phonons, that are bosons [see subsection (2.3)]
and whose number is a function of the temperature of the crystal. In particular,
there are no phonons at 0K but they are created and their number increases
at T > 0, thereby creating some sort of boson gas confined in the crystal [see
Ashcroft and Mermin (1976) for more details]. Such phonon gas can exert a
pressure provided that the crystal is not perfectly harmonic (see below).

A perfectly harmonic crystal is the ideal one defined by a potential Veff (R)
whose shape (curvature) does not change with the volume of the crystal itself.
Real crystals are not harmonic as Veff (R) is a function of the volume V of the
unit cell. However, at each volume V, Veff (R) can generally be effectively de-
scribed by the quadratic expression (26) around the corresponding equilibrium
nuclear configuration R0(V ). This assumption is the so called quasi-harmonic
approximation (QHA). The change of Veff with the volume V reflects in the
change of the vibrational frequencies and hence in a change of the vibrational
energy (Evib) of the crystal: this amounts to having a pressure [−(∂Evib/∂V )T ]
that increases with temperature, and that can be interpreted as due to the
phonon gas being created in the crystal as the temperature is increased. The
QHA model successfully interprets thermal expansion, thermal effects on the
elastic properties and the whole thermodynamics of crystals. Failures of the
QHA are however observed in those cases where phase transitions do occur,
triggered by soft modes whose frequencies approach zero in the neighborhood
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of the transition volume, and intrinsic anharmonic effects become large [that
is, the expression (26) is no longer valid, and higher order terms must be
considered].

A precise and clear account of the relevant theory and the QHA model
can be found in the classic textbooks by Max Born and Kun Huang (Born
and Huang, 1954), or Orson Anderson (Anderson, 1995). However the basic
principles are easily recognised and reconducted to the statistical expression
for the Helmholtz free energy (F ):

F (V, T ) = −kBT lnZ (27)

where kB is the Boltzmann’s constants and Z is the partition function:

Z(V, T ) =
∑
i

e−εi(V )/kBT (28)

where the sum on i is extended to all the energy levels (εi) of the crystal.
Once vibrational energies have been calculated for a given unit cell volume, the
corresponding energies are used to calculate Z, following the definition (28),
and the free energy (27) is derived. Pressure is obtained from the derivative of
F with respect to V , at constant T , so that the Gibbs free energy can also be
calculated as a function of pressure and temperature. This is exactly the way
how elastic properties (elastic constants, bulk moduli) are being computed at
any pressure and temperature conditions. For representative examples (limited
to the use of hybrid HF/DTF functionals) see for instance Belmonte (2017a),
Erba et al. (2014), Ottonello et al. (2010a), Prencipe et al. (2011, 2014b).
With reference to hybrid HF/DFT functionals only, to have an idea of the
accuracy reached in the ab initio estimation of bulk moduli of minerals, at room
temperature, note that the discrepancy with the best experimental results
available is often in the range between 1-3 GPa [see for instance Prencipe et
al., 2011, 2014b; Ungureanu et al., 2010, 2012].

The interest in the ab initio computation of thermodynamics and thermo-
elastic properties lies not only in the accurate reproduction of already avail-
able experimental measures, but in the possibility to provide accurate data at
conditions difficult to be achieved or controlled experimentally. Typical it is
the case of simultaneus high-pressure/high-temperature conditions (HP/HT):
even if such conditions are indeed easily achieved in laser heated diamond anvil
cells (LHDAC), the difficulty is in the accurate measure of the obtained actual
pressure/temperature. Concerning thermodynamics, another experimental dif-
ficulty is related to the possibility to reach real equilibrium conditions during
the limited time of a typical experiment of mineral synthesis, or to preserve
the synthetized HP/HT mineralogy during the subsequent quencing proce-
dure. In these cases, the ab initio methodology provides at least a cross check
of experimental data, or it can provide data when experiments are lacking or
judged to be inaccurate. An example in this direction is the thermodynam-
ics dataset prepared by Lars Stixrude (Stixrude and Lithgow-Bertelloni, 2005,
2011): the database contains data from both experimental and computational
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sources, and it was implemented in the PERPLEX program by James Connolly
(Connolly, 2005) to model the Earth’s mantle, making predictions about min-
eralogy, phase transitions, density and seismic wave velocities in the mantle,
at various depths, to be compared with data derived from seismic tomography
(see Bass et al., 2008; Frost, 2008).

6 Conclusions: recent advancements and challenges

In the introductions to many papers it is often written that, in the last decades,
the enhanced computer power enabled applications of the quantum-mechanical
formalism to problems that were not previously solvable. Of course this is true
as many of the calculations described in the previous sections require consid-
erable hardware resources (generally large clusters of processors working in
parallels, and several weeks of computing time). But computer power is not
enough, and new ideas, a variety of new approaches, software technology and
engineering are steadily developed. Not only, but also the class of problems un-
der consideration is continuolsly extended, mainly prompted by new requests
from the experimental world, or problems having difficult experimental solu-
tion. This is for instance the case of modeling of fluids, with the purpose to
derive consistent thermodynamical datasets to be used in the prediction of the
topology of phase diagrams describing rock melting even at high pressure; for
accounts on these issues, see Belmonte et al. (2013, 2017b,c); Ottonello et al.
(2010b, 2013).

Another point concerns the modeling of minerals under non-hydrostatic
stress; the more direct and recent application of these calculations is in the
predictions of shifts in Raman spectra of non-cubic crystals entrapped, as in-
clusions, in other minerals from high pressure regions at large depths in the
Earth mantle. Raman shifts are widely used to estimate the remnant pressures
of inclusions and, from those, the entrapment pressures; however if the gener-
ally anisotropic relaxation of the inclusions (resulting from the exumation of
the hosting minerals from those depths to the surface), with its peculiar effects
on the vibrational spectrum, is not taken in due account, wrong estimations of
the remnant pressures might occur. Although it is not easy to experimentally
evaluate the effect of anisotropic stress, or strain, on the position of the Raman
bands (because it is difficult to characterize the state of stress of generally very
small inclusions), such estimation is not particularly difficult at the computa-
tional level, provided that sufficiently accurate functionals are available for the
calculation of vibrational spectra [these are the hybrid HF/DFT functionals
discussed in section (3.1)]. For examples in this direction, see Anzolini et al.
(2018); Murri et al. (2018); Nestola et al. (2018).

Important advancements are also in the quantum-mechanical study of sur-
faces: the traditional and very effective experimental techniques employed to
study the bulk properties of minerals, hardly work for their surfaces, so that
any contribution from other areas is greatly welcome. Needless to say, the
knowledge of surface properties is very important as they control the mor-
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phology of minerals and their interactions with the surrounding mineral or
biotic worlds. See Aquilano et al. (2015); Bruno et al. (2015, 2016).

One problem that still requires some hard work to be satisfactorily solved
is related to the anharmonic vibrations in crystals: at present, the issue is
generally limited to the minerals containing hydrogen and, within them, only
to those modes directly involving H (in fact, the O-H effective potential curve is
strongly anharmonic). Perturbative methods have been implemented in some
quantum-mechanical codes for crystal (e.g. Dovesi et al., 2018), but at the
moment they are not general enough to deal with phonon coupling phenomena.
In these cases, mismatches between computed (at the harmonic level) and
experimental frequencies can reach 100-150 cm−1; see for instance Prencipe et
al. (2009).

All the applications to minerals, discussed so far, concern pure end-member
phases. Indeed, although some attempts and codes had been written (e.g.
D’Arco et al., 2013) to apply the formalism to homogeneous mixtures (solid
solutions, for short), at least in the author’s view, results are generally not
very satisfactory, except for some specific cases. The point is strictly connected
with the possibility to model a really disordered crystal, that is a system lack-
ing translational symmetry, at variance with the current computational ap-
proaches that build periodic structures out of large supercells simulating some
disordered configuration in their inside. Such operation generally creates pe-
riodic structures having a lower symmetry compared to the real disordered
structures, and this can be reflected in a resulting strong anisotropy of the
long range Coulomb field, especially in ionic crystals. In turn, such anisotropy
can have dramatic effects in the computed vibrational spectra. On the other
hand, on the computational side, if some reason justifies a selection of config-
urations (that is, distributions of ions within a supercell) that maintain the
symmetry of the real disordered phase, results may however be of value: see
for instance De La Pierre et al. (2013); Lacivita et al. (2014); Scanavino et al.
(2012); Scanavino and Prencipe (2013); Zucchini et al. (2012, 2017). Together
with melts, disordered systems and solid solutions are probably the challenges
for the near future, at least among those fields which are really crucial and
relevant to the Earth Sciences.
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Causà M, Dovesi R, Roetti C, Kotomin E, Saunders VR (1987) A periodic ab initio Hartree-
Fock calculation on corundum. Chem Phys Letters 140:120-123

Chai JD, Gordon MH (2008) Long-range corrected hybrid density functionals with damped
atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615-6620

Connolly JAD (2005) Computation of phase equilibria by linear programming: A tool for
geodynamic modeling and its application to subduction zone decarbonation. Earth Plane
Sci Lett 236:524-541

Corno M, Busco C, Civalleri B, Ugliengo P (2006) Periodic ab initio study of structural and
vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys Chem Chem
Phys 8:2464-2472

Crawford TD, Schaefer HF (2007) An Introduction to Coupled Cluster Theory for Compu-
tational Chemists. In Reviews in Computational Chemistry 14: 33-136, ed. by Lipkowitz
KB, Boyd DB, VCH Publishers, New York.

Cremer D (2001) Density functional theory: coverage of dynamic and non-dynamic electron
correlation effects. Molec Phys 99:1899-1940
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