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Testing Hardy–Weinberg equilibrium: An
objective Bayesian analysis
Guido Consonni,a∗† Elías Morenob and Sergio Venturinic

We analyze the general (multiallelic) Hardy–Weinberg equilibrium problem from an objective Bayesian testing standpoint. We
argue that for small or moderate sample sizes the answer is rather sensitive to the prior chosen, and this suggests to carry out
a sensitivity analysis with respect to the prior. This goal is achieved through the identification of a class of priors specifically
designed for this testing problem. In this paper, we consider the class of intrinsic priors under the full model, indexed by
a tuning quantity, the training sample size. These priors are objective, satisfy Savage’s continuity condition and have proved
to behave extremely well for many statistical testing problems. We compute the posterior probability of the Hardy–Weinberg
equilibrium model for the class of intrinsic priors, assess robustness over the range of plausible answers, as well as stability of
the decision in favor of either hypothesis. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

The Hardy–Weinberg law plays a fundamental role in the study of population genetics [1]. For a particular autosomal
locus that is always one of r different alleles {Ai , i =1, . . . ,r}, the law provides the sampling distribution of genotype
counts in a random sample of individuals drawn from a population which is assumed to be in Hardy–Weinberg equilibrium
(HWE). We recall that a genotype is an unordered pair of allele combination {Ai , A j }, and consequently a sample
of genotype counts is a triangular array of the form {yi j ,1� j�i�r}. Interest centers on testing the null hypothesis
that the population is in HWE. Recently, there has been great interest in testing for HWE in genome-wide association
studies (GWAS) in which departure from HWE may indicate problems with quality control for the single-nucleotide
polymorphism (SNP) in question; see [2].

In the frequentist setting, the chi-square test does not provide reliable answers for testing HWE especially when
some counts in the sample are zero or the triangular array is scarce; see [3]. This has led to the adoption of exact tests.
Algorithms for generating the exact distribution of genotype counts of a sample drawn from a population satisfying the
HWE have been developed by Louis and Dempster [4]. The paper by Guo and Thompson [3] provided for the first time
general algorithms to perform an exact test using Monte Carlo methods. Specifically, they presented two methods to
estimate the significance level for the exact test of HWE for multiple alleles: one is a direct Monte Carlo method, while
the other is based on a Markov chain approach. Recently, Huber et al. [5] provided a new and improved Monte Carlo
algorithm for testing HWE.

The HWE testing problem has also been analyzed from a Bayesian standpoint. Early papers approached the two-allele
case as an estimation problem, providing posterior credibility intervals for a specific parametrization; see [6, 7]. Such
intervals are used as acceptance regions for the HWE null model, although the Hardy–Weinberg law does not play
any role in their construction. Alternative reparametrizations were presented in [8] again for the two-allele case. Chow
and Fong [9] addressed the issue of simultaneous estimation of the allelic proportions. More recently, HWE has been
analyzed according to an unconventional Bayesian hypothesis testing procedure by Montoya-Delgado et al. [10]. They
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computed a Bayes factor using a uniform prior on the parameter of the full model, together with its ‘projection’ prior
on the parameter space corresponding to HWE (the null model). Next, they used this Bayes factor to set up an ordering
of the points in the sample space with the objective of computing a ‘Bayesian p-value’. In [11] the ‘Full Bayesian
Significance Test’ is introduced. This is an unconventional measure of evidence against the null hypothesis that the
population is in HWE. The computation of this quantity does not require a prior distribution for the parameters of the
HWE null model, but only a prior as well as a ‘reference’ distribution (the two can be equal) on the parameter space
of the full model; see also [12]. In a very recent contribution, Consonni et al. [13] discuss notions of compatibility of
prior specifications for comparing nested models, illustrating the methodology with respect to HWE for the two-allele
testing problem, and computing the Bayes factor assuming that the prior under the full model is a symmetric Dirichlet
distribution: the novelty lies in the construction of the prior under the HWE model, which is obtained using a variety
of methods, including ‘Kullback–Leibler projection’ and conditioning. Another very recent contribution is [14]. This
represents a rich contribution in the area because it clarifies various contexts in which the issue of HWE may arise and
deals simultaneously both with testing as well as estimation of specific parameters, which may indicate the strength of
departure from HWE. There is also a careful consideration of sampling models. For instance, besides the full (saturated)
model, alternative intermediate submodels are considered, an interesting one being the inbreeding model; for further
details and references see [14, Section 2.2].

In this paper, we concentrate on testing the HWE hypothesis. We argue that this problem exhibits a high sensitivity
to the choice of the prior whose subjective specification may be problematic in some circumstances; this suggests an
objective approach coupled with a robust Bayesian analysis. Here is an outline of our procedure: we start with a default
parameter prior both under the full and the null HWE models; next we derive a class of intrinsic priors on the parameter
space of the full model, conditional on the HWE null model. This generates objective Bayesian tests by letting the prior
distribution vary over the class of intrinsic priors, thus producing an effective robustness analysis. For the notion of
intrinsic priors see [15--17]; for recent analyzes of discrete data problems using intrinsic prior methodology see [18] and
[19]. We implemented our methodology in an R package called HWEintrinsic available from the Comprehensive R
Archive Network (www.r-project.org).

The remainder of the paper is organized as follows. In Section 2, we highlight the sensitivity of Bayesian testing to
the choice of priors with specific reference to the HWE problem. In Section 3, we obtain the posterior probabilities of
the null and the alternative model using the intrinsic priors. Section 4 presents some applications to simulated and real
data sets. Section 5 contains some concluding remarks.

2. Motivating the class of intrinsic priors for the Hardy–Weinberg testing problem

The Hardy–Weinberg testing problem may exhibit a high sensitivity to the prior, as illustrated in the following artificial
example.

Example 1
Consider the genotype counts y={y11, y12, y22}={6,8,6} for a sample of 20 individuals drawn from a population with
two alleles {A1, A2}, and unknown genotype probabilities {p11, p21, p22}, where p11 + p21 + p22 =1. The full sampling
model for these data is a trinomial with n =20 and parameters {p11, p21, p22}, which reduces to a closely related null
model (see Section 3.4) indexed by a scalar parameter p under HWE. As prior for the parameters {p11, p21, p22}, we
consider a symmetric Dirichlet distribution D(p11, p21, p22|�,�,�), which contains all default choices (in particular the
uniform and Jeffreys prior). Similarly, we take as prior for the parameter p of the HWE null model the symmetric beta
distribution Be(p|�,�).

For �=�=1/2, the posterior probability of HWE is Pr(HWE|y)=0.64, while for �=�=1 (uniform prior), we
have Pr(HWE|y)=0.55; finally for �=�=3 the posterior probability turns out to be Pr(HWE|y)=0.45. Therefore,
using the standard convention that an hypothesis is accepted whenever it exceeds 0.5, we would accept HWE if
�=�=1/2 or �=�=1, and reject it when �=�=3. In fact, it can be shown that inf�,� Pr(H W E |y,�,�)=0 while
sup�,� Pr(H W E |y,�,�)=1. As a curiosity, we note that the Dirichlet priors with �=1 and �=3 essentially produce
the same Bayesian estimates for the data in Example 1. This shows that the Bayesian tests do not necessarily share the
stability exhibited by the Bayesian estimators.

It is a well-documented fact that testing problems in multinomial families are very sensitive to the choice of priors.
In a series of papers, Good and co-workers [20--22] analyzed independence in contingency tables and robustified the
Bayesian model by considering mixtures of Dirichlet distributions with respect to the common hyper-parameter �.
The recommended mixing distribution was a log-Cauchy distribution. Different mixtures of Dirichlet have also been
considered by Casella and Moreno [19] and Albert [23]. In the former paper, these mixtures arise as intrinsic priors for
analyzing independence in contingency tables.
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Intrinsic priors were initially introduced to convert objective priors for estimation (typically improper) into suitable
priors for testing problems [15, 17]. However, their scope is wider, and this becomes apparent for discrete data problems,
wherein default priors are usually proper. In this context, the intrinsic prior methodology gives rise to a natural class
of priors for testing nested models when prior information on the parameters is weak. This class represents a suitable
environment for evaluating the robustness of the resulting test.

2.1. Intrinsic priors

Consider a general model selection problem between two Bayesian models, M0 (null) and M1 (full),

M0 :{ f0(y|�0),�0(�0)}, M1 :{ f1(y|�1),�1(�1)} (1)

with �0 ∈�0, �1 ∈�1, �0 ⊂�1. The family of densities { f0(y|�0),�0 ∈�0} is nested in the family { f1(y|�1),�1 ∈�1}.
Finally, �0(�0) and �1(�1) are objective (possibly improper) priors, such as those typically used for estimation purposes,
for instance reference priors [24].

Note that although the sampling model f0 is nested in f1, the objective prior �1(�1) is not related to the objective prior
�0(�0) in M0 because �i (�i ) only depends on fi (y|�i ), i =0,1. This is not reasonable, as we expect some connections
between the prior distributions of the parameters �0 and �1; see also [25] on the general issue of compatibility of prior
distributions for Bayesian model choice. In particular, the prior �1(�1) will typically not concentrate enough probability
mass around the null parameter space �0. We will elaborate on this point shortly.

At this stage, it is expedient for the subsequent theoretical developments to abstract from the actual data y and consider
t independent random variables x= (x1, . . . , xt ) with joint distribution f1(x|�1, t) =∏t

j=1 f1(x j |�1) under model M1
(note that the notation now involves explicitly the sample size t as this will play an important role later on).

We assume that the marginal distribution m1(x|t)=∫
f1(x|�1, t)�1(�1)d�1 is strictly positive and finite for an integer

t , where t is called the training sample size. Then, the intrinsic prior for �1, conditional on the null point �0 and for the
given training sample size t , is defined as

�I
1(�1|�0, t)=�1(�1)Ex|�1

f0(x|�0, t)

m1(x|t) , (2)

where the expectation is taken with respect to the sampling distribution f1(x|�1, t). Furthermore, integrating out the
parameter �0, we obtain the unconditional intrinsic prior for �1 as

�I
1(�1|t)=

∫
�I

1(�1|�0, t)�0(�0)d�0. (3)

The pair of distributions (�0(�0),�I
1(�1|t)) represents the intrinsic priors for testing model M0 versus M1 in (1) based

on a training sample of size t . When the prior �1 is improper, t is usually taken to be equal to the minimal sample
size for which m1(x|t) is positive and finite, so that �I

1(�1|t) exists. However, this restriction on t is not necessary and
other values of t can be of interest, as we will see below. We also note that x is a random vector that is eliminated by
integration, so that the intrinsic prior �I

1(�1|t) only depends on the training sample size t .
Intrinsic priors enjoy some interesting properties: (i) since �0 and �1 are objective priors they do not require prior

elicitation on the side of the user; (ii) the intrinsic prior for �1 satisfies the ‘Savage continuity condition’ [26], thus
providing a fairer comparison between the two hypotheses under investigation, as will be illustrated for the HWE testing
problem. This condition is a widely accepted requirement; see [18, 19, 27--30]. Furthermore, it has also been argued
that, if the null model is a reasonable one, it is important to be able to distinguish f0 from close alternatives; on the
other hand, putting prior probability on extreme models, far from f0, will discount the more reasonable alternatives [19];
(iii) they are invariants to reparameterizations; (iv) for the HWE problem they allow us to assess posterior robustness
of the test as t varies in the set of integer {1, . . . ,n}, where n is the size of the observed sample; this is a crucial point
when n is small or moderate; (v) in the HWE setting, closed-form expressions for the Bayes factor, and posterior model
probabilities, can be provided for intrinsic priors; (vi) the testing procedure is consistent. Finally, for large sample sizes,
the intrinsic testing procedure can be implemented using an efficient Monte Carlo technique.

3. Testing Hardy–Weinberg equilibrium using intrinsic priors

We focus attention on a particular locus which is always one of r�2 different alleles {Ai , i =1, . . . ,r}.
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3.1. Sampling models

Suppose we draw a random sample of n individuals from this population and denote by yi j the number of genotypes
in the sample of the form {Ai , A j }. There are R =r (r +1)/2 counts {yi j ,1� j�i�r} satisfying

∑
yi j =n. Then, the

probability distribution of the observed triangular array y under the full model is given by

P1(y|p1,n)= n!∏
i� j yi j !

∏
i� j

p
yi j
i j , (4)

where the probability pi j of occurrence of the genotype {Ai , A j } ranges over the space

�1 =
{

pi j : pi j�0,
∑

1� j�i�r
pi j =1

}

having dim(�1)= R−1. A generic point in the space �1 is denoted by p1.
Under the Hardy–Weinberg equilibrium law the probabilities pi j are assumed to belong to the subset �0 ⊂�1 defined

as

�0 ={pi j : pii = p2
i , pi j =2pi p j }, (5)

where {pi , i =1, . . . ,r} are such that pi�0 and
∑r

i=1 pi =1, and represent the allele frequencies in the population. We
note that dim(�0)=r −1.

It is straightforward to verify that under law (5) the sampling model (4) reduces to the null model

P0(y|p0,n)= n!∏
i� j yi j !

2n−
∑r

i=1 yii
r∏

i=1
pri +ci

i , (6)

where p0 = (p1, . . . , pr ), ri =
∑i

j=1 yi j and ci =
∑r

k=i yki are the sum of the i th row and i th column, respectively, of the
triangular array y.

3.2. Intrinsic priors

To complete the Bayesian specification of the sampling models (4) and (6) we need prior distributions for the parameters
p1 and p0. We start with the most simple objective prior distribution for the parameter p1, namely a uniform prior which
we can write as D(p1|1, . . . ,1). We proceed similarly with the parameter p0 to which we assign a Dirichlet distribution
D(p0|1, . . . ,1). Clearly the dimensions of the two distributions are different, although we do not make this explicit in the
notation. Thus, for a random array x={xi j ,1� j�i�r} having total t , that is

∑
xi j = t , the objective Bayesian models

involved in the HWE testing problem are

M0 :{P0(x|p0, t), D(p0|1, . . . ,1)} (7)

and

M1 :{P1(x|p1, t), D(p1|1, . . . ,1)}. (8)

Applying (2), we obtain the intrinsic prior for p1, conditional on an arbitrary but fixed null point p0

�I
1(p1|p0, t)= D(p1|1, . . . ,1)Ex|p1

P0(x|p0, t)

m1(x|t) , (9)

where the sampling model P0 is defined in (6) and the expectation is taken with respect to the sampling distribution
P1(x|p1, t) with P1 defined in (4). The unconditional intrinsic prior for p1 is given by

�I
1(p1|t)=

∫
�I

1(p1|p0, t)D(p0|1, . . . ,1)dp0. (10)

Recall that the quantity t controls the degree of concentration of the conditional intrinsic prior �I
1(p1|p0, t) around the

point p0. Consequently, t also controls the degree of concentration of the prior �I
1(p1|t) around the null parameter space

�0.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 62--74

65



G. CONSONNI, E. MORENO AND S. VENTURINI

3.3. Bayes factor

Given the observed triangular array y={yi j , 1� j�i�r,
∑

yi j =n}, we consider the problem of choosing between the
two models

M0 : {P0(y|p0,n), D(p0|1, . . . ,1)},
M I

1 : {P1(y|p1,n),�I
1(p1|t)},

(11)

where M I
1 stands for the intrinsic Bayesian model (omitting for simplicity its dependence on t). Assuming the common

0-1 loss function and the model prior Pr(M0)=Pr(M I
1 )=1/2, the optimal model is the one having the larger posterior

probability, with the model posterior probabilities being given by

Pr(M0|y, t)= 1

1+ B I
10(y, t)

, Pr(M I
1 |y, t)=1−Pr(M0|y, t) (12)

with B I
10(y, t)=1/B I

01(y, t), where B I
01(y, t), the Bayes factor to compare M0 and M I

1 , is given by

B I
01(y, t)= m0(y)

m I
1(y|t) =

∫
P0(y|p0,n)D(p0|1, . . . ,1)dp0∫

P1(y|p1,n)�I
1(p1|t)dp1

.

Thus, for each t , equation (12) will provide the appropriate answer to the HWE problem.
We will let t vary between 1 and n (note that t =0 formally returns the standard analysis with a uniform parameter

prior under each of the two models). Condition t�n, i.e. the training sample size is less than or equal to the actual
sample size, ensures that prior precision does not exceed sample precision. Accordingly, we consider the class of priors
{�I

1(p1|t), t =1, . . . ,n}. We compute the posterior probability of H0 as t varies. The smaller the range of such probabilities,
the more robust the analysis. Additionally, if the curve of posterior probabilities does not cross a conventional decision
threshold (e.g. 0.5), then a stable decision in favor of either hypothesis can be reached.

3.4. Two alleles

For illustrative purposes we first consider the Hardy–Weinberg problem for the simplest case of two alleles. We start

from models (7) and (8) with r =2, where P0(x|p, t)=
(

t∏
i� j xi j

)
2x21 p2x11+x21 (1− p)x21+2x22 , while P1 is a trinomial

model with two free cell-probabilities {p11, p21}. The default Bayesian models under consideration are therefore

M0 : {P0(x|p, t),�0(p)=1(0,1)(p)},
M1 : {P1(x|p11, p21, t),�1(p11, p21)= D(p11, p21, p22|1,1,1),

where 1A is the indicator function of the set A. The intrinsic prior, conditional on an arbitrary but fixed point p, is

�I
1(p11, p21|p, t)= t!(t +2)!

∑
xi j ∈C2(t)

2x21

(x11!x21!x22!)2
p2x11+x21 (1− p)x21+2x22

∏
i� j

p
xi j
i j , (13)

where C2(t)={xi j :1� j�i�2,
∑

xi j = t}.
Figure 1 displays the intrinsic prior given p=0.5 and for the values t =5 and t =30, illustrating how the intrinsic

prior concentrates more probability mass around the null value p=0.5 as t increases.
Integrating out the parameter p in expression (13) with respect to the uniform prior, we obtain the unconditional

intrinsic prior for {p11, p21} as

�I (p11, p21|t)= t!(t +2)!

(2t +1)!

∑
xi j ∈C2(t)

[
2x21

(x11!x21!x22!)2
(2x11 +x21)!(x21 +2x22)!

∏
i� j

p
xi j
i j

]
.

The null parameter space �0, which is now a curve in the plane, is plotted in Figure 2. The picture of the intrinsic prior
�I (p11, p21|t) for t =30 is given in Figure 3 and it shows how the prior concentrates mass around �0.

For the observed triangular array y={yi j ,1� j�i�2,
∑

yi j =n} the marginal distribution of y under model M0 is

m0(y)= n!

y11!y21!y22!
2y21

(2y11 + y21)!(y21 +2y22)!

(2n+1)!
, (14)
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Figure 1. Conditional intrinsic prior of (p11, p21) given p=0.5, with two distinct degrees of concentration on the null corresponding
to t =5 (left panel) and t =30 (right panel).
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Figure 2. Null space �0 for the two alleles case; �0 ={p11 = p2, p21 =2p(1− p);0�p�1}.
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Figure 3. Intrinsic prior for (p11, p21) with t =30.
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while under M I
1 is

m I
1(y|t) = t!(t +2)!

(2t +1)!(t +n+2)!

n!∏
i� j yi j !

× ∑
xi j ∈C2(t)

[
2x21

(x11!x21!x22!)2
(2x11 +x21)!(x21 +2x22)!(x11+ y11)!(x21 + y21)!(x22 + y22)!

]
(15)

Both the Bayes factor and the posterior probabilities of model M0 and M I
1 are now computable.

Example 1 (continued) :
For the data set used in Example 1, the range of posterior probabilities for the HWE model, as the intrinsic prior varies
in the class {�I (p11, p21|t), t =1, . . . ,20}, turns out to be min1�t�20 P(M0|y, t)=0.53, max1�t�20 P(M0|y, t)=0.55.
Therefore, the optimal decision when using the intrinsic priors is to accept HWE, and this decision is robust in the class
of intrinsic priors.

3.5. The general case of r alleles

Consider models (7) and (8). Using (10), the intrinsic prior for the parameter p1 is

�I (p1|t)= (t + R−1)!(r −1)!t!

(2t + R−1)!

∑
xi j ∈Cr (t)

2t−
∑r

i=1 xii

∏r
i=1(zi +di )!(∏

i� j xi j !
)2

× ∏
i� j

p
xi j
i j , (16)

where Cr (t)={xi j : xi j�0,1� j�i�r,
∑

xi j = t,} and R =r (r +1)/2.
For the observed sample y={yi j ,1� j�i�r,

∑
yi j =n}, the marginal under model M0 becomes

m0(y)= (r −1)!n!

(2n+r −1)!
2n−

∑r
i=1 yii

∏r
i=1(ri +ci )!∏

i� j yi j !
, (17)

where ri =
∑i

j=1 yi j , and ci =
∑r

k=i yki , the sum of the i th row and i th column of the triangular data array. The marginal

data distribution under the intrinsic Bayesian model M I
1 turns out to be

m I
1(y|t)= t!(t + R−1)!(r −1)!

(2t +r −1)!(n+ t + R−1)!

n!∏
i� j yi j !

∑
xi j ∈Cr (t)

⎡
⎢⎣2t−

∑r
i=1 xii

∏r
i=1(zi +di )!(∏

i� j xi j !
)2

∏
i� j

(xi j + yi j )!

⎤
⎥⎦ , (18)

where zi =
∑i

j=1 xi j and di =
∑r

k=1 xki .

The ratio m0(y)/m I
1(y|t) provides the Bayes factor B I

01(y|t) to compare M0 and M I
1 based on the intrinsic prior. Using

(12) we obtain the posterior probability of model M0 and M I
1 for the given training sample size t .

3.6. Computation of the Bayes factor

From the structure of m I
1(y|t) given in (18) it is clear that the computation of B I

01(y|t) can become rapidly infeasible if
the training sample size t is large (this may easily be the case if n is large because we would like to let t range over the
grid 1, . . . ,n to evaluate robustness). To overcome this difficulty, we calculate B I

01(y, t) using a Monte Carlo method,
following the approach outlined in [19]. In particular, we use an important sampling strategy to speed up convergence.
We choose as candidate distribution a specific R-dimensional multinomial

x∼Multinomial(t, p̂1) (19)

with probabilities p̂1 = ( p̂11, p̂21, . . . , p̂rr ) equal to

p̂i j = yi j +1

n+ R
, i =1, . . . ,r, j =1, . . . , i. (20)

We then generate M random deviates x(k), k =1, . . . , M , from (19) and approximate the Bayes factor using a Monte
Carlo average; specifically we evaluate

B̂ I
10(y|t) = 1

M

t!(t + R−1)!(2n+r −1)!

(2t +r −1)!2n−
∑r

i=1 yii
∏r

i=1 (ri +ci )!
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×
M∑

k=1

⎡
⎢⎢⎢⎢⎣

2t−
∑r

i=1 x (k)
i i

∏r
i=1 (zi +di )!(∏

i� j x (k)
i j !

)2

∏
i� j

(x (k)
i j + yi j )!

1

t!∏
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Apart from M (the number of Monte Carlo iterations), convergence achievement appears to depend critically on the data
sparseness, (more sparse observations lead to slower convergence), and the training sample size t (higher values of t
typically require a higher number of Monte Carlo iterations M to reach convergence). However, even with a considerable
number of iterations (in most of the applications presented in the next section M is fixed at 300 000), the computational
burden of the algorithm is still very reasonable.

4. Examples

In this section, we illustrate some features of the testing procedure developed in Section 3 through some examples which
for illustration purposes are confined to the case of two alleles; next we analyze two data sets for the case of multiple
alleles also discussed in [3].

4.1. Two alleles

We consider four different data sets each referring to n =20 artificial observations, and the corresponding counts for the
genotypes (A1 A1, A2 A1, A2 A2) are:

• Data set 1: (3,9,8),
• Data set 2: (8,2,10),
• Data set 3: (12,5,3),
• Data set 4: (2,13,5).

These data sets have been selected to highlight and better appreciate some features of our methodology. The results
are summarized in Figure 4, wherein each row represents a specific data set ordered from top to bottom as above. The
first three columns refer to the selected intrinsic priors indexed by the fractions f =0.1,0.5,1, where f = t/n and n is
the actual sample size. Each panel in these three columns report the contour lines of the intrinsic prior (solid black) and
those of the (normalized) likelihood (solid gray), together with the null parameter space �0 (represented by the dashed
curve). Every individual panel in the last column reports the posterior probability of M0 using the Monte Carlo approach
described in (21) with M =300000 iterations together with the corresponding exact curve obtained from (14) and (15)
(dashed gray): the latter is mostly barely visible because of the excellent approximation provided by our Monte Carlo
method. The horizontal dotted line represents the posterior probability of the null model derived from the standard Bayes
factor computed using the uniform prior both under the full and the null models. Note that this value is actually a special
case of the Bayes factor based on the intrinsic prior because it can be formally obtained by setting t =0. Focus now on
the first data set, i.e. row one of Figure 4. The observations are in very good agreement with the null hypothesis, as one
can gather from the fact that the null parameter space intersects the highest likelihood contours. As f increases, panels
(a)–(c), the highest contour lines of the intrinsic prior move toward the center of the likelihood surface, thus increasing
the marginal data distribution under M1, m I

1(y|t), and hence taking away evidence from M0. This explains the monotone
decreasing behavior of the null posterior probability in panel (d). Despite the very good agreement of the likelihood with
the null hypothesis, the posterior probability of HWE does not exceed 67 per cent: this is due to the fairly moderate
sample size. Finally, the small range of variation of the posterior probability of M0, always well above the conventional
0.5-threshold, provides a robust conclusion in favor of the null hypothesis. Consider now the second data set, i.e. row
two of Figure 4. It is evident that the null hypothesis is not supported by the data, because the likelihood contours are
not crossed by the �0-curve, see panels (e)–(g). This is reflected in the very small values of the posterior probability of
M0 which never exceeds 1.2 per cent, see panel (h). The monotone increasing behavior of the curve in the latter panel is
easily explained as follows: by increasing f the intrinsic prior is pulled toward �0 and thus away from the high peaks of
the likelihood surface as it is apparent from the sequence of panels (e), (f) and (g). In this way, m I

1(y|t) decreases, thus
taking away evidence from M I

1 , equivalently adding strength to M0. Note that the support for the HWE model remains
negligible throughout the range 0� f �1, so that a highly robust conclusion against M0 can be drawn in this case, too.
The third data set, which is represented in the third row of the same figure, presents a non-monotone null posterior
probability curve, see panel (l). Here the data are in some accord with the null, because the �0-curve is somewhat
tangential to the likelihood contours. Moving from f =0.1—panel (i)—to f =0.5—panel (j), the intrinsic prior starts
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4. Posterior probability of the Hardy–Weinberg equilibrium. First three columns: each panel reports the intrinsic
prior (solid black) and the normalized likelihood (solid gray) contours together with the null parameter space �0
(dashed black). Last column: Posterior probability of Hardy–Weinberg equilibrium and comparison between Monte
Carlo averages based on M =300000 iterations (solid black) and exact values (dashed gray) for 0� f = t/n�1. The
horizontal dashed lines in these panels are derived from the standard Bayes factors based on uniform priors. Each row

regards a different data set described in Section 4.1.

peaking around �0, and in so doing it hits some high likelihood levels, thus producing a reduction in the evidence for
M0. However, by further increasing f the curve further shrinks on �0 but this makes it capture only some peripheral
likelihood levels—panel (k) for f =1, thus removing evidence from M1 and making the posterior probability of M0
increase again. The final answer is again robust, because the posterior probability of the Hardy–Weinberg equilibrium
is always inside the (0.33,0.35) interval. Finally, let us turn to the fourth row that analyzes the last data set. Similar
to the previous case, the data are in some accordance with the null, because there is some overlapping between the
null-curve and the likelihood surface, although this occurs only for low-level contours. As we move from panel (m) and
(n) some evidence in favor of M1 is lost because high-level prior contours retract toward �0, thus making the posterior
probability of M0 increase, albeit very slightly. A further increase in f makes M1 more competitive because some high
prior contours make their way inside the likelihood surface. The actual changes to the posterior probability of M0, panel
(p), are however very small, and thus the conclusion is still robust, although evidence for M0 is not markedly below the
conventional 50 per cent-threshold.
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Table I. Simulated data from [3, Example 2].

A1 A2 A3 A4 A5 A6 A7 A8

A1 3
A2 4 2
A3 2 2 2
A4 3 3 2 1
A5 0 1 0 0 0
A6 0 0 0 0 0 1
A7 0 0 1 0 0 0 0
A8 0 0 0 2 1 0 0 0
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Figure 5. Guo and Thompson [3]; r =8 alleles; n =30; data simulated under Hardy–Weinberg equilibrium. Posterior probability
of Hardy–Weinberg equilibrium: Monte Carlo averages based on M =300000 iterations as a function of the ratio f = t/n. The

horizontal dashed line is derived from the standard Bayes factor based on uniform priors.

4.2. Multiple alleles

Example 2
This example is concerned with a population of r =8 alleles and the data given in Table I represent a sample of size
n =30 of genotype frequencies simulated under the Hardy–Weinberg equilibrium when the underlying gene frequencies
are (0.2,0.2,0.2,0.2,0.05,0.05,0.05,0.05); see [3, Example 2]. Figure 5 reports the intrinsic posterior probabilities of
the Hardy–Weinberg equilibrium calculated using the Monte Carlo approach (21) with M =300000 iterations together
with the value derived from the standard Bayes factor using uniform priors. Note that the curve is (essentially) monotone
decreasing. The rationale for this behavior is analogous to that described for data set 1 in Section 4.1, because the data
clearly support the Hardy–Weinberg equilibrium model M0. The intrinsic testing approach provides a strong evidence
in favor of the null model. The null posterior probabilities, in fact, range from 0.80 to 0.97.

Example 3
These data concern the antigen class of 45 French type 1 diabetes patients, with the classes being DR1, DR3, DR4,
and Y, a fourth class corresponding to all other antigens. The counts (r =4,n =45) are given in Table II. These data
are discussed in [3, Example 1] and [4]; the latter in particular, reported an exact p-value of 0.01744, which under
conventional levels would indicate some evidence against the Hardy–Weinberg model. Interest here centers in the mode
of inheritance of type 1 diabetes, with a hypothesized recessive model being equivalent to the HWE model; see [14,
Section 4.1]. This example is interesting because it reveals how the HWE model can be usefully adapted to a specific
scientific context.

The null posterior probabilities using the intrinsic prior methodology, as well as the standard approach, are reported
in Figure 6. The behavior of the curve, and its explication, is analogous to that described for Data set 2 in Section 4.1.
The posterior probabilities of the null range from 0.07 to 0.10, thus providing robust substantial evidence against HWE;
see [31] for a description of the scale of evidence against the null hypothesis in line with Jeffreys’ recommendations.
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Table II. Genotype frequency data from [4].

A1 A2 A3 A4

A1 0
A2 3 1
A3 5 18 1
A4 3 7 5 2
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Figure 6. Guo and Thompson [3, Example 1]; r =4; n =45. Posterior probability of the Hardy–Weinberg equilibrium: Monte
Carlo averages based on M =300000 iterations as a function of the ratio f = t/n. The horizontal dashed line is derived from the

standard Bayes factor based on uniform priors.

[14, Section 4.1] also analyzed these data using an informative prior; he obtains a Bayes factor in favor of HWE equal
to 0.074 which, with prior odds equal to one, translates to a posterior probability of HWE of 0.07: this coincides with
our lower bound. We are thus able to replicate his findings within our objective framework without any prior elicitation.

We also analyzed a more elaborate data set consisting of nine alleles and 8297 individuals (see [3]), thus showing
that our method scales up nicely. We do not report the results here because they are wholly comparable with those
obtained by Wakefield [14, Section 4.2], showing that for these data there is overwhelming evidence in favor of the
HWE hypothesis. The interested reader can find all the routines and the examples (including the nine alleles one) used
to prepare this paper in the R package called HWEintrinsic available from the Comprehensive R Archive Network
(www.r-project.org).

5. Concluding remarks

The Hardy–Weinberg equilibrium law has received considerable attention in the recent years, thanks to the increasing
availability of genetic data. For instance, Schaid et al. [32] claim that detecting departures from the Hardy–Weinberg
equilibrium of marker-genotype frequencies is a crucial first step in almost all human genetic analyzes; for a related
viewpoint see also [33]. It seems therefore appropriate to apply recently developed testing procedures to this problem.

The Bayesian approach to hypothesis testing and model comparison has been adversely affected over the years because
of its high sensitivity to prior specification. This feature can be problematic, especially for scientific communication,
where objective, or at least benchmark, analyzes are preferred. Unfortunately standard default reference priors do not
work for Bayesian hypothesis testing (for instance, the Bayes factor is not even well defined when the priors are
improper). However, it is by now recognized that the methodology based on intrinsic priors represents a sound and
viable alternative, especially for nested models. Intrinsic priors are suitably tailored to the hypothesis under investigation
and produce sensible Bayes factors. One important reason for this highly satisfactory behavior is that parameter values
close to the null receive higher probability mass under the intrinsic prior, a natural desideratum as recognized by several
authors.
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In this paper, we have developed an objective Bayesian testing procedure making systematic use of the notion of
intrinsic priors. It turns out that a whole class of intrinsic priors, governed by a single scalar quantity (the training sample
size t) is a natural class of priors for assessing robustness of the test. The quantity t naturally acts as a concentration
parameter (around the null subspace) for the prior under the full model. Making t vary between 1 and the observed
sample size n, we are able to obtain a whole range of posterior probabilities for the null model that provides a natural
sensitivity analysis. The smaller the range of such probabilities, the more robust is the analysis. A separate issue concerns
whether the curve does, or does not, cross the 0.5 threshold (or whatever other level is deemed appropriate, depending
on the loss function, to make a decision in favor of either hypothesis). If the threshold is crossed, then the experimental
evidence does not allow to choose between the two hypotheses, signaling that more data are needed.
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