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Abstract

We present the gravity dual to a class of three-dimensional N = 2 supersym-
metric gauge theories on a biaxially squashed three-sphere, with a non-trivial
background gauge field. This is described by a 1/2 BPS Euclidean solution of
four-dimensional N = 2 gauged supergravity, consisting of a Taub-NUT-AdS
metric with a non-trivial instanton for the graviphoton field. The holographic
free energy of this solution agrees precisely with the large N limit of the free
energy obtained from the localized partition function of a class of Chern-Simons
quiver gauge theories. We also discuss a different supersymmetric solution, whose
boundary is a biaxially squashed Lens space S3/Z2 with a topologically non-
trivial background gauge field. This metric is of Eguchi-Hanson-AdS type, al-
though it is not Einstein, and has a single unit of gauge field flux through the
S2 cycle.
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1 Introduction

Supersymmetric gauge theories on compact curved backgrounds are interesting for var-

ious reasons. For example, supersymmetry may be combined with localization tech-

niques, allowing one to perform a variety of exact computations in strongly coupled field

theories. The authors of [1] presented a construction of N = 2 supersymmetric gauge

theories in three dimensions in the background of a U(1) × U(1)-invariant squashed

three-sphere and R-symmetry gauge field. The gravity dual of this construction was

recently given in [2]. It consists of a 1/4 BPS Euclidean solution of four-dimensional

N = 2 gauged supergravity, which in turn may be uplifted to a supersymmetric solu-

tion of eleven-dimensional supergravity. In particular, the bulk metric in [2] is simply

AdS4, and the graviphoton field is an instanton with (anti)-self-dual field strength. The

asymptotic metric and gauge field then reduce to the background considered in [1].

The purpose of this letter is to present the gravity dual to a different field theory

construction, obtained recently in [3]. In this reference the authors have constructed

three-dimensional N = 2 supersymmetric gauge theories in the background of the

SU(2)×U(1)-invariant squashed three-sphere (which we refer to as biaxially squashed)

and a non-trivial background U(1) gauge field, and have computed the corresponding

partition functions using localization. Differently from a similar construction discussed

briefly in [1], this partition function depends non-trivially on the squashing parameter.

As we will see, the gravity dual to this set-up will have some distinct features with

respect to the solution in [2]. In particular, the metric is not simply AdS4, although it

will again be an Einstein metric, and there is a self-dual graviphoton.

The plan of the rest of this paper is as follows. In section 2 we review the construction

of [3]. In section 3 we discuss the gravity dual. In section 4 we describe a different

supersymmetric solution, consisting of a non-Einstein metric and a non-instantonic

graviphoton field. Section 5 concludes.

2 Supersymmetric gauge theories on the biaxially

squashed S3

In the construction of [3] the metric on the three-sphere is, up to an irrelevant overall

factor, given by

ds23 = σ2
1 + σ2

2 +
1

v2
σ2
3 , (2.1)
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where σi are the standard SU(2) left-invariant one-forms on S3, defined as iσiτi =

−2g−1dg, where τi denote the Pauli matrices and g ∈ SU(2). The background U(1)

gauge field reads

A(3) =

√
v2 − 1

2v2
σ3 , (2.2)

and the spinors in the supersymmetry transformations obey the equation (setting the

radius r = 2 in [3])

∇(3)
α χ− i

4v
γαχ− A

(3)
β γα

βχ = 0 , (2.3)

where ∇(3)
α , α = 1, 2, 3, is the spinor covariant derivative constructed from the metric

(2.1), and γα generate Cliff(3, 0). There are two linearly independent solutions to (2.3),

transforming as a doublet under SU(2), whose explicit form is given in [3]. This will

be important for identifying the gravity dual.

In [3] the authors constructed Chern-Simons, Yang-Mills, and matter Lagrangians for

the N = 2 vector multiplets V = (Aα, σ, λ,D) and chiral multiplets Φ = (φ, ψ, F ), in

the background of the metric (2.1) and R-symmetry gauge field (2.2). These are invari-

ant under a set of supersymmetry transformations, provided the spinorial parameters

obey the equation (2.3). The supersymmetric completion of the Chern-Simons La-

grangian contains new terms, in addition to those appearing in flat space, proportional

to σ2 and σA(3) ∧ dA (cf. eq. (32) of [3]). The Yang-Mills and matter Lagrangians

are total supersymmetry variations (cf. eq. (31) of [3]) and therefore can be used to

compute the partition function using localization. In particular, the partition function

localizes on supersymmetric configurations obeying

Aα = D = 0 , σ = u = constant , (2.4)

with the matter fields all being zero. Notice that although D = 0, the Chern-Simons

Lagrangian is non-zero because of the new term proportional to σ2, and therefore it

contributes classically to the localized partition function, as in previous constructions.

The Yang-Mills and matter terms contribute one-loop determinants from the Gaussian

integration about the the classical solutions (2.4). The final partition function may be

expressed again in terms of double sine functions sb(z), and for a U(N) gauge theory

at Chern-Simons level k ∈ Z reads

Z =

∫

∏

Cartan

du exp

(

iπk

v2
Tr u2

)

∏

Rootsα sb

(

α(u)−i
v

)

∏

Chirals, repRa

∏

ρ∈Ra

sb

(

ρ(u)−i(1−∆a)
v

) , (2.5)
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where b = (1 + i
√
v2 − 1)/v. The exponential term is the classical contribution from

the Chern-Simons Lagrangian, evaluated on (2.4); the numerator is the one-loop vector

multiplet determinant and involves a product over the roots α of the gauge group G;

while the denominator is the one-loop matter determinant and involves a product over

chiral fields of R-charge ∆a in representations Ra, with ρ running over weights in the

weight-space decomposition of Ra. Following [4], one can easily extract the large N

behaviour of this partition function for a class of non-chiral N = 2 quiver Chern-

Simons-matter theories. The calculation was done in [3], and the result is that the

leading contribution to the free energy (defined as F = − logZ) is given by

Fv =
1

v2
Fv=1 , (2.6)

and thus depends very simply on the squashing parameter v. In the next section we

will present the supergravity dual to this construction, in particular showing that the

holographic free energy precisely agrees with the field theory result (2.6).

3 The gravity dual

As anticipated in [2], we will show that the gravity dual to the set-up described in the

previous section is a supersymmetric solution of d = 4, N = 2 gauged supergravity. In

Lorentzian signature, the bosonic part of the action is given by

SLorentzian =
1

16πG4

∫

d4x
√

− det gµν
[

R + 6g2 − (FL)2
]

. (3.1)

Here R denotes the Ricci scalar of the four-dimensional metric gµν , and the cosmo-

logical constant is given by Λ = −3g2. The graviphoton is an Abelian gauge field

AL with field strength FL = dAL; here the superscript L emphasizes that this is a

Lorentzian signature object. A solution to the equations of motion derived from (3.1)

is supersymmetric if there is a non-trivial spinor ǫ satisfying the Killing spinor equation

[

∇µ +
1
2
gΓµ − igALµ + i

4
FL
νρΓ

νρΓµ
]

ǫ = 0 . (3.2)

Here Γµ, µ = 0, 1, 2, 3, generate the Clifford algebra Cliff(1, 3), so {Γµ,Γν} = 2gµν .

Since the background of [3] preserves half of the maximal supersymmetry in three

dimensions, we should seek a 1/2 BPS Euclidean solution of d = 4, N = 2 gauged

supergravity, whose metric has as conformal boundary the biaxially squashed metric

on S3 (2.1), and whose background U(1) gauge field restricted to this asymptotic
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boundary reduces to (2.2). This very strongly suggests that the appropriate solution is

a Euclideanized version of the 1/2 BPS Reissner-Nordström-Taub-NUT-AdS solution

discussed in [5].

We will first present this Euclidean solution, and then discuss the Wick rotation that

leads to it. The metric reads

ds24 =
r2 − s2

Ω(r)
dr2 + (r2 − s2)(σ2

1 + σ2
2) +

4s2Ω(r)

r2 − s2
σ2
3 , (3.3)

where

Ω(r) = (s− r)2
[

1 + g2(r − s)(r + 3s)
]

, (3.4)

and s is the NUT parameter.1 The SU(2) left-invariant one-forms σi may be written

in terms of angular variables as

σ1 + iσ2 = e−iψ(dθ + i sin θdϕ) , σ3 = dψ + cos θdϕ . (3.5)

The graviphoton field is

A = s
r − s

r + s

√

1− 4g2s2 σ3 . (3.6)

In the orthonormal frame

e1 =
√
r2 − s2 σ1 , e2 =

√
r2 − s2 σ2 ,

e3 = 2s

√

Ω(r)

r2 − s2
σ3 , e4 =

√

r2 − s2

Ω(r)
dr , (3.7)

the curvature may be written as

F = dA = −s
√

1− 4g2s2

(r + s)2
(e12 + e34) . (3.8)

Thus the gauge field is an instanton, as in the solution discussed in [2]. In particular,

with our choice of orientation the curvature is self-dual, and the on-shell gauge field

action is finite. Since the stress-energy tensor of an instanton vanishes, the metric (3.3)

is accordingly an Einstein metric. However, differently from the solution in [2], one can

check that this metric is not locally AdS4. It is in fact a Euclidean version of the well-

known Taub-NUT-AdS metric, with a special value of the mass parameter. This metric

is locally asymptotically AdS4, and therefore it can be interpreted holographically [6].

1This is denoted N in [5].
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Notice that for |s| ≤ 1/(2g) the gauge field (3.6) is real, while for |s| > 1/(2g) it is

purely imaginary ; the intermediate case with |s| = 1/(2g) has vanishing gauge field

instanton and the metric reduces to Euclidean AdS4.

For large r the metric becomes

ds24 ≈ dr2

g2r2
+ r2

[

σ2
1 + σ2

2 + 4g2s2σ2
3

]

, (3.9)

while to leading order the gauge field reduces to

A ≈ A(3) ≡ s
√

1− 4g2s2 σ3 . (3.10)

We see that the conformal boundary may be identified precisely with the metric (2.1),

and the background gauge field with (2.2), by setting s = 1
2gv

. Recall here that in

order to uplift to eleven-dimensional supergravity one should also set g = 1 [2]. Notice

that when |v| = 1 the boundary metric reduces to the round metric on S3, and the

background gauge field vanishes. Correspondingly, in the bulk the instanton field

vanishes, and the metric becomes AdS4.

Wick rotation and regularity

Let us discuss briefly how this solution was obtained. The reader not interested in these

details may safely jump to the discussion of the Killing spinors and the holographic

free energy.

As we are interested in a 1/2 BPS solution, we may begin by appropriately Wick

rotating the solution (2.1), (2.4) of [5]. We take their parameter ℵ = +1, so as to

obtain a biaxially squashed S3 as constant r surface. The Wick rotation may then be

taken to be t → iτ , N → is, Q → iQ, together with a change in sign of the metric.

This leads to the following metric and gauge field

ds24 =
r2 − s2

Ω(r)
dr2 + (r2 − s2)(dθ2 + sin2 θdϕ2) +

Ω(r)

r2 − s2
(dτ + 2s cos θdϕ)2 ,

AL =
sP −Qr

r2 − s2
dτ +

P (r2 + s2)− 2sQr

r2 − s2
cos θdϕ , (3.11)

where

Ω(r) = g2(r2 − s2)2 + (1− 4g2s2)(r2 + s2)− 2Mr + (P 2 −Q2) . (3.12)

This depends on the parameters s, g,M, P,Q. Notice we have kept a Lorentzian su-

perscript on AL in (3.11) – the reason for this will become clear momentarily.
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For the 1/2 BPS solution of interest, the Euclideanized BPS equations of [5] imply

that

M2 = (1− 4g2s2)
[

s2(1− 4g2s2) + P 2 −Q2
]

,

s2P (1− 4g2s2) = sMQ− P (P 2 −Q2) , (3.13)

and the corresponding 1/2 BPS solution then depends on only two parameters. We

take these to be s and Q, with

P = is
√

1− 4g2s2 , M = −iQ
√

1− 4g2s2 , (3.14)

then solving (3.13). The factors of i in (3.14) may look problematic, but there are (at

least) two different ways of obtaining real solutions. We require s and M to be real

in order that the metric in (3.11) is real. If |s| ≤ 1/(2g) then P and Q will be purely

imaginary, and we may write P = ip, Q = −iq to obtain the real gauge field

A ≡ −iAL =
sp+ qr

r2 − s2
dτ +

p(r2 + s2) + 2sqr

r2 − s2
cos θdϕ . (3.15)

Redefining τ = 2sψ, in terms of standard Euler angles (θ, ϕ, ψ) notice that the metric

(3.11) takes the form presented in (3.3), albeit with a more general form of the function

Ω(r), given by (3.12) and (3.14). That (3.3) has only one free parameter s, and not

the two we have above, follows from imposing regularity of the Euclidean metric. At

any fixed r > s that is not a root of Ω(r), we obtain a smooth biaxially squashed S3

metric. In order to obtain a complete metric, the space must “close off” at the largest

root r0 of Ω(r), so that Ω(r0) = 0. More precisely, if r0 > s this should be a single

root, while if r0 = s the metric will be regular only if r0 = s is a double root of Ω(r).

We shall return to the former case in section 4, here focussing on the case r0 = s. The

condition Ω(r0 = s) = 0 immediately fixes

q = −s
√

1− 4g2s2 , (3.16)

so that now (see also [7])

p = s
√

1− 4g2s2 = −q , M = s(1− 4g2s2) . (3.17)

It is then in fact automatic that r = s is a double root of Ω.

In conclusion, we end up with the metric (3.3), with Ω(r) given in (3.4), and gauge

field (3.6). The gauge field is manifestly non-singular and one can check that the metric

indeed smoothly closes off at r = s, giving the topology M4 = R
4.
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Killing spinors

In this subsection we briefly discuss the supersymmetry of the Euclidean solution (3.3),

(3.6), in particular reproducing the three-dimensional spinor equation (2.3) asymptot-

ically.

In Lorentzian signature the Killing spinor equation is (3.2). However, in Wick ro-

tating we have introduced a factor of i into the gauge field in (3.15), so that AL = iA.

Thus the appropriate Killing spinor equation to solve in this case is

[

∇µ +
1
2
gΓµ + gAµ − 1

4
FνρΓ

νρΓµ
]

ǫ = 0 . (3.18)

This possibility of Wick rotating the gauge field (or not) was also discussed in [8]. In

particular, the authors of [8] pointed out that any Euclidean solution with a real gauge

field that solves (3.18) will automatically be 1/2 BPS. The reason is simple: if ǫ solves

(3.18), then so does its conjugate ǫc. We shall see this explicitly below.

We introduce the following representation for the generators of Cliff(4, 0)

Γ̂4 =

(

0 iI2

−iI2 0

)

, Γ̂α =

(

0 τα

τα 0

)

, (3.19)

where α ∈ 1, 2, 3, τα are the Pauli matrices, and hats denote tangent space quantities.

Decomposing the Dirac spinor ǫ into positive and negative chirality parts as

ǫ =

(

ǫ+

ǫ−

)

, (3.20)

where ǫ± are two-component spinors, it is then straightforward, but tedious, to verify

that in the orthonormal frame (3.7)

ǫ+ =

(

λ(r)χ+

λ∗(r)χ−

)

, ǫ− = i

√

r − s

r + s

(

λ∗(r)χ+

λ(r)χ−

)

, (3.21)

is the general solution to the µ = r component of (3.18), where χ± are independent of

r and we have defined

λ(r) ≡
(

g(r + s)− i
√

1− 4g2s2
)1/2

. (3.22)

If we now define the charge conjugate spinor ǫc ≡ Bǫ∗, where B is the charge conjuga-

tion matrix defined in [2], then it is straightforward to see that taking the conjugate

ǫ→ ǫc simply maps χ+ → −χ∗
−, χ− → χ∗

+.
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Let us analyze the large r asymptotics of the Killing spinor equation (3.18), and its

solutions (3.21). We begin by expanding

ǫ+ =
√
gr1/2

[

I2 +

(

s

2
I2 −

i

2g

√

1− 4g2s2τ3

)

r−1 +O(r−2)

]

χ ,

ǫ− = i
√
gr1/2

[

I2 −
(

s

2
I2 −

i

2g

√

1− 4g2s2τ3

)

r−1 +O(r−2)

]

χ , (3.23)

where we have defined the r-independent two-component spinor

χ ≡
(

χ+

χ−

)

. (3.24)

We then write the asymptotic expansion of the metric as

ds24 =
dr2

g2r2
[

1 +O(r−2)
]

+
r2

g2
[

ds23 +O(r−2)
]

, (3.25)

ds23 ≡ g2
[

σ2
1 + σ2

2 + 4g2s2σ2
3

]

. (3.26)

It is then straightforward to extract the coefficient of r1/2 in the Killing spinor equation

(3.18). One finds that the positive and negative chirality projections lead to the same

equation for χ, namely

∇(3)
α χ+ gA(3)

α χ− is

2
γαχ− 1

2g

√

1− 4g2s2γατ3χ = 0 , (3.27)

where ∇(3) denotes the spin connection for the three-metric (3.26), and A(3) is defined

in (3.10). Using the explicit form for A(3) in (3.10), the identity γαγβ = γαβ + g
(3)
αβ ,

and recalling that s = 1/(2gv), g = 1, we precisely obtain the spinor equation (2.3).

Finally, one can verify that the d = 4 spinors (3.21), with χ satisfying (3.27), do indeed

solve (3.18).

The holographic free energy

The holographic free energy of the Taub-NUT-AdS solution was discussed in [7], but

of course in this latter reference there was no instanton field, which is crucial for

supersymmetry. The calculation proceeds essentially as in section 2.5 of [2], except for

the following caveat. The integrability condition for the Killing spinor equation (3.18)

gives the equations of motion following from the action

SEuclidean = − 1

16πG4

∫

d4x
√

det gµν
(

R + 6g2 + F 2
)

, (3.28)
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which has opposite (relative) sign for the gauge field term compared with (3.1) (see

also [8]). This is clear from the fact that our equation (3.18) was obtained from the

Lorentzian form of the equation by sending A → iA. It is therefore natural to expect

that in the computation of the holographic free energy we have to evaluate the action

SEuclidean on shell.

Setting g = 1 and cutting off the space at r = R, the bulk gravity contribution is

given by

Igravbulk =
3

8πG4

∫

d4x
√

det gµν =
4πsR3

G4
− 12πs3R

G4
+

8πs4

G4
. (3.29)

Denoting by R[γ] the scalar curvature of the boundary metric, and by K the trace of

its second fundamental form, the combined gravitational boundary terms

Igravct + Igravbdry =
1

8πG4

∫

d3x
√

det γαβ

(

2 +
1

2
R[γ]−K

)

(3.30)

have the following asymptotic expansion

Igravct + Igravbdry = −4πsR3

G4
+

12πs3R

G4
+

4πs2(1− 4s2)

G4
+O(1/R) , (3.31)

where in particular notice there is a non-zero finite contribution. The instanton action

is2

IFbulk = − 1

16πG4

∫

d4x
√

det gµνFµνF
µν = −2πs2(1− 4s2)

G4

. (3.32)

Therefore the total on-shell action SEuclidean, obtained after removing the cut-off (R →
∞), is given by

I = Igravbulk + Igravct + Igravbdry + IFbulk =
2πs2

G4
. (3.33)

Since the round sphere result3 is s = 1/2, we thus see that

Is =
2πs2

G4
= (2s)2Is=1/2 , (3.34)

which since v = 1/(2s) precisely agrees with the field theory result (2.6).

2Notice that when 1 − 4s2 ≥ 0 this term becomes negative. The calculation is however valid for
any value of s > 0.

3To recover the result for S2×S1 boundary, one should first change coordinates back to the form in
(3.11), and then set s = 0 there. In these coordinates, with τ ∈ [0, 2π] the gravitational contribution
to the free energy is half that of the round sphere.
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4 A supersymmetric Eguchi-Hanson-AdS solution

In the previous section the Taub-NUT-AdS solution existed for both 1 − 4g2s2 ≥ 0

and 1− 4g2s2 ≤ 0, with the sign determining whether the gauge field is real or purely

imaginary, in a fixed choice of Wick rotation. However, in this section we consider a

different solution which exists only when 1−4g2s2 ≤ 0, or equivalently |s| ≥ 1/(2g). In

this case the Euclidean supersymmetry equation takes the same form as the Lorentzian

equation (3.2), namely

[

∇µ +
1
2
gΓµ − igAµ +

i
4
FνρΓ

νρΓµ
]

ǫ = 0 . (4.1)

We will show that there is a one-parameter family of regular solutions in this class, of

topology M4 = T ∗S2, for which there are Killing spinors solving (4.1).

When |s| ≥ 1/(2g) we may rewrite (3.14) as

P = −s
√

4g2s2 − 1 , M = Q
√

4g2s2 − 1 , (4.2)

which are now real. Again setting τ = 2sψ, the metric takes the form given in (3.3)

where now

Ω(r) = g2(r2 − s2)2 −
[

r
√

4g2s2 − 1 +Q
]2

. (4.3)

It will be useful to note that the four roots of Ω(r) in (4.3) are

{

r4

r3

}

=
1

2g

[

√

4g2s2 − 1±
√

8g2s2 + 4gQ− 1
]

,

{

r2

r1

}

=
1

2g

[

−
√

4g2s2 − 1±
√

8g2s2 − 4gQ− 1
]

. (4.4)

Notice that these are all complex if |s| < 1/(2g). The gauge field is given by (after a

suitable gauge transformation)

A = − s

r2 − s2

[

2Qr + (r2 + s2)
√

4g2s2 − 1
]

σ3 . (4.5)

As r → ∞ this tends to

A ≈ A(3) ≡ −s
√

4g2s2 − 1σ3 , (4.6)

which is (up to analytic continuation) what we had in the previous example (3.10).
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Killing spinors

Taking the same Clifford algebra and spinor conventions as the previous section, and

again using the orthonormal frame (3.7), one can verify that the integrability condition

for the Killing spinor equation (4.1) leads to the algebraic relation

ǫ− = i

√

r − s

r + s





√

(r−r3)(r−r4)
(r−r1)(r−r2)

0

0
√

(r−r1)(r−r2)
(r−r3)(r−r4)



 ǫ+ . (4.7)

Here recall that ǫ± are two-component spinors, and ri, i = 1, 2, 3, 4, are the four roots

of Ω in (4.4). Substituting into the µ = r component of (4.1) then leads to decoupled

first order ODEs, which may be solved to give

ǫ+ =





√

(r−r1)(r−r2)
(r−s)

χ+
√

(r−r3)(r−r4)
(r−s)

χ−



 , ǫ− = i





√

(r−r3)(r−r4)
(r+s)

χ+
√

(r−r1)(r−r2)
(r+s)

χ−



 , (4.8)

where χ± are independent of r. The large r expansion of these is given by

ǫ+ = r1/2
[

I2 +

(

s

2
I2 +

1

2g

√

4g2s2 − 1τ3

)

r−1 +O(r−2)

]

χ , (4.9)

ǫ− = ir1/2
[

I2 −
(

s

2
I2 +

1

2g

√

4g2s2 − 1τ3

)

r−1 +O(r−2)

]

χ , (4.10)

where the two-component spinor χ is again given by (3.24). Notice this is the same as

(3.23), up to analytic continuation. Again using the metric expansion and three-metric

in (3.26), we may extract the coefficient of r1/2 in (4.1). A very similar computation to

that in the previous section then leads to the three-dimensional Killing spinor equation

∇(3)
α χ− is

2
γαχ+ igA

(3)
β γ β

α χ = 0 . (4.11)

Setting g = 1 and again identifying the squashing parameter v = 1/(2s), notice this

is identical to our original equation (2.3), but where we have replaced A(3) → −iA(3).

Of course, given the relative difference in Wick rotations of the gauge field in two the

cases, this was precisely to be expected. In fact, comparing the A(3) (4.6) in this section

with its counterpart (3.10) in the previous section, we see that equation (4.11) is in

fact identical to (2.3), due to the factor of i difference in (4.6), (3.10).

The solution to (4.11) is therefore given by an appropriate analytic continuation of

the solution presented in [3], and reads

χ = eητ3/2g−1χ0 , (4.12)

11



where g ∈ SU(2), χ0 is a constant two-component spinor, and

v =
1

cosh η
, (4.13)

where v = 1/(2s). In terms of Euler angles (ψ, θ, ϕ), recall that

g =

(

cos θ
2
ei(ψ+ϕ)/2 sin θ

2
e−i(ψ−ϕ)/2

− sin θ
2
ei(ψ−ϕ)/2 cos θ

2
e−i(ψ+ϕ)/2

)

. (4.14)

Regularity of the metric

We must again consider regularity of the metric (3.3). A complete metric will neces-

sarily close off at the largest root r0 of Ω(r), which must satisfy r0 ≥ s. From (4.4) we

see that either r0 = r+ or r0 = r−, where it is convenient to define

r+ ≡ r4 , r− ≡ r2 . (4.15)

A priori the coordinate ψ must have period 2π/n, for some positive integer n, so that

the surfaces of constant r are Lens spaces S3/Zn. Assuming that r0 > s is strict, then

the metric (3.3) will have the topology of a complex line bundle M4 = O(−n) → S2

over S2, where r − r0 is the radial direction away from the zero section.

Regularity of the metric near to the S2 zero section at r = r0 requires
∣

∣

∣

∣

r20 − s2

sΩ′(r0)

∣

∣

∣

∣

=
2

n
. (4.16)

This conditon ensures that near to r = r0 the metric (3.3) takes the form

ds24 ≈ dρ2 + ρ2
[

d

(

nψ

2

)

+
n

2
cos θdϕ

]2

+ (r20 − s2)(dθ2 + sin2 θdϕ2) , (4.17)

near to ρ = 0. Here note that nψ/2 has period 2π. Imposing (4.16) at r0 = r± gives

Q = Q±(s) ≡ ∓128g4s4 − 16g2s2 − n2

64g3s2
. (4.18)

In turn, substituting Q = Q±(s) into (4.15) one then finds

r±(Q±(s)) =
1

8g

[

n

gs
± 4
√

4g2s2 − 1

]

. (4.19)

Recall that in order to have a smooth metric, we require r0 > s. Imposing this for

r0 = r±(Q±(s)) gives

r±(Q±(s))− s =
1

2g
f±

n (2gs) , (4.20)
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where the function

f±

n (x) ≡ n

2x
− x±

√
x2 − 1 (4.21)

is required to be positive for a smooth metric with s = x/(2g). Notice here that

s ≥ 1/(2g) implies x ≥ 1. It is straightforward to show that f−
n (x) is monotonic

decreasing on x ∈ [1,∞). For simplicity here we will restrict our attention to n ≤ 2.4

The analysis then splits into the cases {n = 1}, {n = 2}, which have a qualitatively

different behaviour:

n = 1

It is easy to see that f±

1 (x) < 0 on x ∈ [1,∞), and thus the metric (3.3) cannot

be made regular in this case. Specifically, f±

1 (1) = −1/2: since f−

1 (x) is monotonic

decreasing, this rules out taking r0 = r−(Q−(s)) given by (4.19); on the other hand

f+
1 (x) monotonically increases to zero from below as x→ ∞, and we thus also rule out

r0 = r+(Q+(s)) in (4.19).

n = 2

It is easy to see that f−

2 (x) < 0 for x ∈ (1,∞), while f+
2 (x) > 0 on the same domain,

which means we must set

Q ≡ Q+(s) = −(4g2s2 − 1)(1 + 8g2s2)

16g3s2
, (4.22)

and

r0(s) =
1

4g

[

1

gs
+ 2
√

4g2s2 − 1

]

, (4.23)

may then be shown to be the largest root of Ω(r), for all s ≥ 1/(2g). In particular,

this involves showing that r0(s)− r−(Q+(s)) > 0 for all s ≥ 1/(2g), which follows since

r0(s)− r−(Q+(s)) =
1

2g
h(2gs) , (4.24)

where we have defined

h(x) ≡ 1

x
+ 2

√
x2 − 1−

√

4x2 − 2− 1

x2
. (4.25)

4In the first version of this paper it was argued that n > 2 breaks supersymmetry; however, this is
incorrect.

13



It is a simple exercise to prove that h(x) > 0 on x ∈ (1,∞).

After this slightly involved analysis, for n = 2 we end up with a smooth complete

metric on M4 = T ∗S2, given by (3.3), (4.3) with Q = Q+(s) given by (4.22), for all

s > 1/(2g). The S2 zero section is at r = r0(s) given by (4.23). The metric is thus of

Eguchi-Hanson-AdS type, although we stress that it is not Einstein for any s > 1/(2g).

The large r behaviour is again given by (3.9), so that the conformal boundary is a

squashed S3/Z2. The s = 1/2g limit gives a round S3/Z2 at infinity with the bulk

metric being the singular AdS4/Z2, albeit with a non-trivial torsion gauge field, as we

shall see momentarily.

It follows that another interesting difference to the Taub-NUT-AdS solution of the

previous section is that the gauge field (4.5) no longer has (anti)-self-dual field strength

F = dA; moreover, the latter has a non-trivial flux. Indeed, although the gauge

potential in (4.5) is singular on the S2 at r = r0, one can easily see that the field

strength F = dA is a globally defined smooth two-form on our manifold. One computes

the period of this through the S2 at r0(s) to be

g

2π

∫

S2

F = − 2gs

r0(s)2 − s2

[

−2Q+(s)r0(s)− (r0(s)
2 + s2)

√

4g2s2 − 1
]

= 1 , (4.26)

the last line simply being a remarkable identity satisfied by the largest root r0(s).

Setting g = 1, we thus see that we have precisely one unit of flux through the S2! It

follows that the gauge field A is a connection on the non-trivial line bundle O(1) →
T ∗S2. The corresponding first Chern class c1 = [F/2π] ∈ H2(T ∗S2;Z) ∼= Z is the

generator of this group. Moreover, the map H2(T ∗S2;Z) → H2(S3/Z2;Z) ∼= Z2 that

restricts the gauge field to the conformal boundary is reduction modulo 2. Hence at

infinity the background gauge field is more precisely given by the global one-form (4.6)

plus the flat non-trivial Wilson line that represents the element 1 ∈ H2(S3/Z2;Z) ∼=
H1(S

3/Z2;Z) ∼= Z2. One would be able to see this explicitly by writing the gauge

field A as a one-form that is locally well-defined in coordinate patches, and undergoes

appropriate gauge transformations between these coordinate patches. It follows that

the gauge field at infinity is more precisely a connection on the non-trivial torsion line

bundle over S3/Z2.
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The holographic free energy

Although we will not pursue the holographic interpretation of this solution in the

present paper, below we will compute its holographic free energy using standard for-

mulas. Since the gauge field here is real, the relevant action is the Euclidean action

with standard signs

SEuclidean = − 1

16πG4

∫

d4x
√

det gµν
(

R + 6g2 − F 2
)

. (4.27)

Notice that upon taking the trace of the Einstein equation, we see that all solutions

(supersymmetric or not) of d = 4 gauged supergravity are metrics with constant scalar

curvature R = −12g2. Using this, a straightforward calculation then gives for the total

(bulk plus boundary) gravity part a finite result, after sending the cut-off r = R→ ∞.

Namely, after setting g = 1 we get

Igravtot = Igravbulk + Igravbdry + Igravct =
(1− 12s2)π

32G4s2

−
√
4s2 − 1 (1 + 4s2 (−3 + 8s2))π

16G4s
, (4.28)

where we note that the contribution on the second line comes entirely from the bound-

ary terms. Although the gauge field is not (anti-)-self-dual, it is straightforward to

compute its on-shell action, which is still finite, namely we get

IFbulk =
(1 + 4s2)π

32G4s2
−

√
4s2 − 1 (1 + 4s2 (1− 8s2)) π

16G4s
. (4.29)

Therefore for the total on-shell action we obtain

I =
π

2G4
+
(

s2 − 1
4

)3/2 π

G4s
. (4.30)

Notice this makes sense for any s > 1/2. Moreover, in the s → 1/2 limit the second

term vanishes and we are left with a result that is the same as that for the round

three-sphere S3. This might seem a contradiction, but in fact if we look back at where

this result comes from, we see that in this limit

lim
s→1/2

Igravtot =
π

4G4
, (4.31)

which is the correct contribution expected from the (singular) AdS4/Z2 solution with

round S3/Z2 boundary. However, we get an equal non-zero contribution from the gauge

field action

lim
s→1/2

IFbulk =
π

4G4
, (4.32)
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despite the fact that the gauge field curvature F → 0 in this limit. The calculation

captures correctly the contribution from the flat torsion gauge field, which indeed

cannot be turned off continuously since in the bulk has one unit of flux through the

vanishing S2 at the Z2 singularity. More precisely, the complement of the singular

point has toplogy R+ × S3/Z2, and the gauge field is a flat connection on the non-

trivial torsion line bundle over this.

5 Discussion

In this letter we have extended the results of [2], discussing a new class of super-

symmetric solutions of d = 4, N = 2 gauged supergravity, which in turn uplift to

solutions of eleven-dimensional supergravity. The solutions in section 3 provide the

holographic duals to N = 2 supersymmetric gauge theories on the background of

a biaxially squashed three-sphere and a U(1) gauge field, whose localized partition

function was recently computed in [3]. In particular, as in [2], we have shown that

the bulk metric, gauge field, and Killing spinors reduce precisely to their field theory

counterparts on the boundary. Moreover, the holographic free energy is identical to

the leading large N contribution to the field theoretic free energy computed from the

quiver matrix model. The solution is a special case of the general class of supersym-

metric Plebanski-Demianski solutions [5], but it differs from the solution discussed in

[2] in various respects. The graviphoton field is again an instanton, hence the bulk

metric is Einstein, but it is not now diffeomorphic to AdS4. The results of [2], and of

this letter, suggest that the AdS/CFT correspondence is a useful setting for studying

supersymmetric gauge theories on curved backgrounds.

We conclude noting that although the results presented here share a number of

similarities with those in [6, 9], there are some crucial differences that are worth sum-

marizing. In contrast to the solutions we have discussed, the AdS-Taub-NUT and

AdS-Taub-Bolt solutions in [6, 9] are not supersymmetric, and moreover no gauge field

was turned on. In addition, while those solutions have the same biaxially squashed S3

boundary, the boundary of our Eguchi-Hanson-AdS solution has the different topology

S3/Z2. Therefore, although we have computed the free energy for both families, it does

not make sense to compare them along the lines of [6, 9]. It would be very interesting

to understand the precise field theory dual interpretation of the Eguchi-Hanson-AdS

solution discussed here.
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