
SYMBIOSIS

Algae and fungi move from the
past to the future
The ability of photosynthetic algae to enter the hyphae of a soil fungus

could tell us more about the evolution of these species and their

potential for applications in the production of biofuel.

PAOLA BONFANTE

A
sk a biology student to describe an

association between algae and fungi

and they will surely explain to you how

fungal structures called hyphae can surround

algal cells to form a completely new organism

with its own metabolism called a lichen (Honeg-

ger, 1991; Figure 1A). Thanks to nutritional

exchanges between the alga and the fungus,

and adaptive mechanisms that date back some

415 million years, lichens can survive in the most

extreme environments.

In all known interactions between algae and

fungi, the algal cells remain outside the hyphae

of the fungus. Now, in eLife, Christoph Benning,

Gregory Bonito and co-workers – including Zhi-

Yan Du of Michigan State University as first

author – report how, under certain conditions,

algal cells can enter the fungus (Du et al., 2019).

The experiments were performed with Nanno-

chloropsis oceanica, an algal species that lives in

marine and fresh water, and Mortierella elon-

gata, a fungus that lives in soil. Isotope tracer

experiments revealed the exchange of nutrients,

including carbon and nitrogen, between the two

partners. Moreover, both remained physiologi-

cally active over two months of co-cultivation,

with the algal cells continuing to grow, divide

and remain photosynthetically active within the

hyphae (Figure 1B,C).

Symbioses between microbes and plants or

animals are often used as examples of trans-

kingdom co-evolution: fossils provide direct evi-

dence of symbiosis happening in the past, and

phylogenetic analyses can reveal when the sym-

biotic partners appeared (Lutzoni et al., 2018;

Kohler et al., 2015). For example, fossils that

have been dated to the Devonian era (about 450

million years ago) reveal fungal colonization pat-

terns that are very similar to those produced by

Glomeromycotina today (Remy et al., 1994):

these obligate symbionts (that is, symbionts that

rely on a host to survive) enter the root cells of

plants to form structures called arbuscules in a

widespread form of symbiosis that is now called

arbuscular mycorrhiza.

However, fossils and phylogenetics cannot

tell us how the various forms of symbiosis that

we see today were actually

formed. Phylogenetic analyses support the idea

that Glomeromycotina are members of the

Mucoromycota, an early diverging fungal phy-

lum (Spatafora et al., 2016), as is Mortierella.

However, it is not clear if the fungi that are

responsible for arbuscular mycorrhiza today

evolved from saprotrophic fungi (which feed on

dead or decaying matter), since there is no evi-

dence for such fungi evolving to become obli-

gate symbionts. By contrast, elegant

experiments on the evolution of nitrogen-fixing
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bacteria are available: the transfer of the sym

plasmid to a Ralstonia strain clearly demon-

strates that a pathogen can evolve into a symbi-

otic bacterium (Clerissi et al., 2018).

The study of Du et al. builds on previous

work which showed that the single-cell green

alga Chlamydomonas reinhardtii and yeasts can

interact under specific physiological conditions

(Hom and Murray, 2014). However, the fact

that N. oceanica and M. elongata mainly main-

tain their phenotype when they are co-cultivated

is rather surprising. By contrast, the fungi in

lichen aggregate and give rise to pseudotissues

in which algal cells (and also bacteria) become

embedded (Cardinale et al., 2008; Figure 1A).

The phenomenon observed by Du et al.

started with the N. oceanica flocculating (that is,

clumping together) around the fungus. An obvi-

ous question is: what signal causes the process

of flocculation to begin? In particular, does N.

oceanica detect and react to molecules released

by M. elongata? Since the genomes of both

partners have been sequenced, various tran-

scriptomic and metabolomics approaches should

help researchers to answer these questions.

It will also be interesting to explore if MEP a,

a gene that codes for a protein that transports

ammonia (NH3) in plants and bacteria, has a role

in the exchange of nitrogen between N. oce-

anica and M. elongata. It is known that the MEP

a gene was transferred from prokaryotes to the

Leotiomyceta, which are ancestors of the fungi

found in lichens, and also to the green plants

(Lutzoni et al., 2018), and it is still found in all

such fungi and plants. Mortierella and Glomero-

mycotina are both very rich in lipids (which con-

tain lots of carbon), but the latter cannot

synthesize lipids, relying instead on their plant

host to supply them. The type of lipid exchange

observed in N. oceanica and M. elongata could

have applications in biotechnology. Indeed, Du

et al. have shown previously that using genetic

techniques to overexpress a gene called DGTT5

leads to increased lipid accumulation in M. elon-

gata, which could increase the output of microal-

gal biofuels from this system (Du et al., 2018).

Finally, it is known that M. elongata is a host

for various types of endobacteria (Uehling et al.,

2017; Desirò et al., 2018). Since these bacteria

are distinctive evolutionary markers of the

ancient fungi Mucoromycota (Bonfante and

Desirò, 2017), learning more about M. elongata

may also help us to understand the biological

properties of Mucoromycota that make them

prone to invasion by both prokaryotes and

eukaryotes.
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Figure 1. Fungal-algal symbiosis. (A) In lichens the algal cells (green) are surrounded by

fungal hyphae (orange) to form a new organism with its own metabolism and

properties. Fungal hyphae aggregate to produce fungal pseudotissues. When the alga N.

oceanica grows in the presence of a soil fungus called M. elongata, the algae first aggregate

and make contact with the surface of a hypha (B). Eventually the algae enter the hypha,

which changes color to green due to the presence of the algae, which are photosynthetically

active, inside it (C).
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