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Abstract:  

Vascular endothelial growth factor (VEGF) represents one of the main factor involved not 

only in angiogenesis and vasculogenesis but also in neuritogenesis,  VEGF plays its function 

acting via different receptors: VEGF receptor1 (VEGFR-1), VEGF receptor2 (VEGFR-2), 

VEGF receptor3 (VEGFR-3) and co-receptors Neuropilin-1 (NRP1) and Neuropilin-2 

(NRP2). 

This study reports on the first in vivo analysis of the expression of VEGF and VEGF family 

molecules in peripheral nerve degeneration and regeneration: for this purpose, different model 

of nerve lesion in rat were adopted, the median nerve crush injury and the median nerve 

transaction followed or not by end-to end microsurgical repair. 

Results obtained by Real Time polymerase chain reaction showed that VEGF and VEGF 

family molecules are differentially expressed under regenerating and degenerating condition, 

furthermore,  in order to study the modulation and involvement of these factors in two 

different regenerative models, crush injury and end-to-end repair, protein expression analysis 

was evaluated. In addition, immunohistochemical analysis allowed to state a glial localization 

of VEGF and VEGFR-2 after peripheral nerve crush injury. 

Finally in vitro assay on Primary Schwann cells culture show that VEGF165 stimulation 

increases Schwann cells migration, a major process in the promotion of neurite outgrowth. 
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Introduction 

Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen that increases blood 

vessels permeability and promotes angiogenesis. For this reason VEGF is mainly expressed 

by endothelial cells but also by activated macrophages and during cancer pathogenesis (Berse, 

Brown et al. 1992). 

VEGF belongs to a family of homodimeric glycoproteins  structurally related  to the platelet-

derived growth factors (PDGF); in mammals, VEGF family consists of five members, VEGF-

A, B, C, D and placenta growth factor (PLGF).  

Through alternative RNA splicing, different VEGF-A isoforms are generated: VEGF121,145, 

165, 183, 189 and 206. VEGF121 is a freely diffusible molecule  that lacks the basic amino 

acid residues and does not bind the extracellular matrix (ECM), VEGF165 contains some 

basic residues and  it is partly diffusible while VEGF189 contains even more basic residues, 

showing a spatially restricted localization to the matrix around the VEGF-producing cell 

(Cohen, Gitay-Goren et al. 1995; Ruiz de Almodovar, Lambrechts et al. 2009; Grunewald, 

Prota et al. 2010). 

VEGF binds three tyrosine kinase receptor: VEGF receptor1 (VEGFR-1), VEGF receptor2 

(VEGFR-2), VEGF receptor3 (VEGFR-3) and also receptors of the neuropilin family, 

Neuropilin-1 (NRP1) and Neuropilin-2 (NRP2) considered co-receptor for VEGF (Neufeld, 

Cohen et al. 1999; Ferrara, Gerber et al. 2003; Takahashi and Shibuya 2005; Ruiz de 

Almodovar, Lambrechts et al. 2009; Rosenstein, Krum et al. 2010; Carmeliet and Ruiz de 

Almodovar 2013). 

Since the vascular and the nervous system show similar anatomical features and despite the 

main role of VEGF as a pro-angiogenetic factor, an increasing number of studies focus the 

attention on VEGF activity on different neural cell types and recent evidence shows a role for 

VEGF as a neurotrophic and neuroprotective factor for neurons and glial cells. In fact, VEGF 

stimulates the proliferation of neuronal precursors, increasing the BrdU labeling,  in in vitro 

and in vivo models of neurogenesis (Jin, Zhu et al. 2002). Yet, it supports the survival of 

mesencephalic neurons in explants cultures (Silverman, Krum et al. 1999). 

Furthermore it has been reported that VEGF administration enhances axonal outgrowth from 

dorsal root ganglia adult mice explants promoting the survival of neurons and satellite glial 
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cells (Sondell, Lundborg et al. 1999; Sondell, Lundborg et al. 1999; Hobson, Green et al. 

2000; Brockington, Lewis et al. 2004; Pereira Lopes, Lisboa et al. 2011). 

Evidence has also been provided that VEGF administration increases the functional recovery 

after peripheral nerve injury since it was shown that after end-to-end neurorraphy (ETE) and 

end-to-side neurorraphy (ETS) of transected muscolocutaneous rats nerves, plasmid VEGF 

transfection in the distal stumps resulted in a better axon regeneration in terms of fibers 

density, axons diameter and myelin sheath thickness of regenerated axons (Haninec, Kaiser et 

al. 2012). 

The aim of our work is to investigate the expression of VEGF, VEGF receptors and VEGF 

co-receptors after nerve injury and regeneration. In the present study we carried out a 

biomolecular and immunohistochemical analysis on rat median nerve experimental models. In 

particular three different nerve injuries models will be used (crush injury, end-to-end repair 

and degenerating nerve) in order to analyze mRNA expression and protein expression and 

localization. 
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Materials and methods 

Animals 

All experiments were carried out on adult female Wistar rats (Charles River Laboratories, 

Milan, Italy) weighing approximately 190-220g.  

 

Surgery 

All procedures were performed in accordance with the Ethics Committee and the European 

Communities Council Directive of 24 November 1986 (86/609/ EEC).  

Animal well-being assessment was carried out using careful animal surveillance to check for 

passive and active movement, auto-mutilation, skin ulcers, and joint contracture, especially 

during early post-operative times.  

Adequate measures were taken to minimize pain and discomfort taking into account human 

endpoints for animal suffering and distress. 

For mRNA expression a total of 48 rats were used and three different surgeries were applied: 

crush injury, end to-end repair and degenerating nerve.  

For the crush injury group (n=3), the median nerve of both forelimb were crushed with a non-

serrated clamp at mid-humerus level according to the procedure described (Ronchi, Raimondo 

et al. 2010). For the end-to-end repair (n=3), median nerve was bilaterally transected at the 

same position described for the crush injury, proximal and distal stumps were immediately 

sutured using 9/0 epineurial sutures. In the degenerating group, median nerve was bilaterally 

transected and unrepaired. 

For the animals belonging to the control groups (CTRL) nerve was exposed and the skin was 

closed immediately after (n=3).  

For protein analysis, only rats resulting from crush injury and end-to-end repair were used, 

whereas uninjured rats were used as control (see Total Protein Extraction and Western Blot 

Analysis section).  

For morphological evaluation (see Immunofluorescence section) a total of 6 animals were 

used,  n=3 for crush injury and n=3  for control groups.  

All surgical procedures were carried out under deep anaesthesia obtained with Tiletamine + 

Zolazepam (Zoletil) i.m. (3 mg/kg). 
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For mRNA and protein analysys, median nerves were harvested 1d, 3d, 7d, 15d and 30d after 

the different surgeries, for morphological analysis rats were sacrified 7 days after crush 

injury. 

RNA isolation, cDNA preparation. 

Samples were frozen at -80° C and processed for RNA extraction. Total RNA was extract 

with the TRIzol reagent (Invitrogen) according to the manufacturer's instructions. 0.5 µg total 

RNA were subjected to a reverse transcriptase (RT) reaction in 25 µL reaction volume 

containing: 1X RT-Buffer (Fermentas); 0.1 µg/µL bovine serum albumin (BSA, Sigma); 

0.05% Triton X-100; 1 mM dNTPs; 7.5 µM random exanucleotide primers (Fermentas); 1 

U/µl RIBOlock (Fermentas) and 200 U RevertAid™ M-MuLV reverse transcriptase 

(Fermentas). The reaction was performed for 10 min at 25°C, 90 min at 42°C, 10 min at 

90°C. Control reaction “RT-” (without the enzyme RT) and “H2O”, without RNA, was also 

carried out. RNA concentration was quantified using the Nanodrop® ND-1000 

spectrophotometer (Celbio, Milano, Italy).  cDNA was stocked at -20°C until used as a 

template for the real-time RT-PCR analysis.  

Quantitative real-time polymerase chain reaction (qRT-PCR). 

cDNA was diluted 5 times before analyses and 1 µl was analyzed in a total volume of 10 µl 

using 1X SYBR Green Supermix (Applied Biosystems) and 300 nM forward and reverse 

primers. Quantitative real-time PCR analysis was performed using chemistry with the 

StepOne Sequence Detection System (Applied Biosystems), dissociation curves were 

routinely performed to check the presence of a single peak in agreement to the required 

amplicon. Reactions were performed in technical and biological triplicate. 

Data were analyzed by ΔΔCt relative quantification method normalizing to the housekeeping 

gene ANKRD (Ankyrin repeat domain 27) and RICTOR (RPTOR Indipendent Companion of 

MTOR) (Gambarotta, Ronchi et al. 2014).  

Primers were designed using ANNHYB software (http://www.bioinformatics.org/annhyb/) 

and synthesized by Invitrogen (Life Technologies Europe BV, Monza, Italy).  

Primers sequences are reported in Table1. Relative expression levels were calculated by 

(ΔΔCt) method. The normalized relative quantity (NRQ) was determined using the formula: 

NRQ = 2−(ΔΔCt). Results were expressed as mean + S.D. 
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Total Protein Extraction and Western Blot Analysis. 

Total proteins were extracted using TRIzol Reagent (Invitrogen) according to the 

manufacturer's instructions. Protein pellets were resuspended in boiling Laemli buffer (2.5% 

SDS, 0.125 M Tris-HCl pH6.8) and followed by 3 min at 100°C. Protein concentration was 

determined using the Bicinchoninic Acid assay kit (BCA, Sigma), and equal amounts of 

proteins (40 µg, denaturated at 100°C in 240 mM 2-mercaptoethanol and 18% glycerol) were 

loaded onto each lane, separated by SDS-PAGE, transferred to iBlot® Transfer Stacks 

nitrocellulose membrane using the iBlot® Dry blotting Transfer Device (Invitrogen). 

Primary antibody used were: mouse monoclonal anti-VEGF-A (1:500, ab171828 Abcam),  

rabbit polyclonal anti-VEGFR-1 (1:1000, #2893 Cell-Signalling Technology), rabbit 

polyclonal anti-VEGFR-2 (1:1000, #2479 Cell-Signalling Technology), rabbit polyclonal 

anti-NRP1 (1:1000, #3725 Cell-Signalling Technology), rabbit polyclonal anti-NRP2 

(1:1000, #3366 Cell-Signalling Technology), mouse monoclonal anti-β-actin (1:4000 #A5316 

Sigma).  

Secondary used antibodies were horse-radish peroxidase-linked anti-rabbit (#NA934), and 

anti-mouse (#NA931) both used 1:20000 (GE Healthcare Life Science, Europe). 

Immunoflurescence and confocal laser microscopy. 

Nerve samples were fixed by immediate immersion in 4% paraformaldehyde for 2 h, washed 

in a solution of 0.2% glycine in 0.1 M phosphate buffer (pH 7.2), and embedded in OCT. 

Specimens were cut 10µm thick by a Leica CM3050S cryostat (Leica Microsystems, Wetzlar, 

Germany). Sections were permeabilized, blocked [0.1% triton X-100, 10% normal goat serum 

(NGS)/0.1% NaN3, 1h] and processed for an immunohistochemical protocol. See Table 2 for 

the list of primary antibodies used. Samples were incubated overnight in primary antibody or 

in case of double-immunofluorescence experiments, in a mixture of primary antibody and 

visualized using a solution containing the appropriate secondary antibodies: goat anti-mouse 

IgG Alexa-Fluor-488-conjugated (1:200, Molecular Probes, Eugene, Oregon), CY3-

conjugated anti-rabbit IgG (dilution 1:400, Dako, Milano, Italy). Nuclei were stained with 

4,6-diamidino-2-phenylindole (DAPI, Sigma) diluted 1:1000 in PBS. 

The samples were finally mounted with a Dako fluorescent mounting medium (DAKO) and 

analyzed by a LSM 510 confocal laser microscopy system (Zeiss, Jena, Germany).  
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Primary Schwann Cells (SC) Cultures. 

Primary Schwann cells (SC) cultures were obtained from fresh adult rat sciatic nerves. 

The sciatic nerves were collected and immediately kept in cold DMEM plus glutamax 

(Invitrogen, UK) containing 100 U/mL penicillin and 100 g/mL streptomycin. Nerves were 

dissected and the epineurium was stripped off. Nerve fragments were plated in a Petri dish in 

SC growth medium (DMEM plus glutamax containing 100U/mL penicillin, 100 g/mL 

streptomycin, 14 M forskolin, and 100 ng/mLNRG11, R&D Systems, UK) and incubated for 

2 weeks at 37∘C with fresh medium added approximately every 72h.  

Nerve fragments were incubated with 0.125% (w/v) collagenase type IV and 117 u/mg 

dispase for 24 hours and mechanically dissociated using a sterile Pasteur glass pipette in order 

to obtain a cell suspension. Cell suspension was filtered using a 70µm cell strainer (Falcon; 

BD Biosciences Discovery Labware, Bedford, MA) and centrifuged at 100×g for 5min to 

obtain the cell pellet. Finally, the cell pellet was resuspended in SC growth medium, seeded 

into a Petri dish pre-coated with poly-D-lysine (Sigma, St Louis, MO, USA), and incubated in 

the same conditions. SC were purified by an antibody complement method to roll out the 

remaining fibroblasts (Tohill, Mann et al. 2004; Kaewkhaw, Scutt et al. 2012; Pascal, 

Giovannelli et al. 2014) 

 

Proliferation Assay. 

Primary Schwann cells were seeded at a concentration of 1000 cells/cm2 on poly-D-lysine 

coverslips in complete DMEM containing 2%FBS as the control condition, or medium added 

with VEGF (50 ng/ml) (human VEGF-A165, R&D). After 1, 3, and 7 days, cells were fixed, 

stained, photographed and counted.  

Culture medium was removed, substrates with attached cells were rinsed with PBS with Ca2+ 

and Mg2+ and fixed by the addition of 4% paraformaldehyde solution. After 20 min, samples 

were rinsed with PBS with Ca2+ and Mg2 + and then stained with 4, 6-diamidino-2-

phenylindole (DAPI) diluted 1:1000 in PBS. Cells were photographed using an optical video-

confocal microscope (Nikon Eclipse 80i) and the supporting software Image ProPlus (Media 

Cybernetics USA). For each sample, four images were taken with at low magnification. The 

number of proliferated cells were counted by using Image J Software. All conditions were 
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performed in triplicate. The counts obtained from assays were analyzed, averaged, and 

expressed as the number of proliferated cell number/mm2 ± standard deviation.  

 

Three-dimensional migration: transwell assay.  

The Transwell migration assay was used to measure three-dimensional movement. Primary 

Schwann Cells (105) resuspended in 200 μl of DMEM containing 2% FBS were seeded in the 

upper chamber of a Transwell (cell culture insert, no. 353097, BD Biosciences) on a porous 

transparent polyethylene terephthalate membrane (8.0-μm pore size, 1 × 105 pores/cm2). The 

lower chamber (a 24-well plate well) was filled with DMEM containing 2% FBS with or 

without VEGF165 (50 ng/ml, R&D). The 24-well plates containing cell culture inserts were 

incubated at 33°C in a 5% CO2 atmosphere saturated with H2O. After 18 h of incubation, cells 

attached to the upper side of the membrane were mechanically removed using a cotton-tipped 

applicator. Cells that migrated to the lower side of the membrane were rinsed with PBS, fixed 

with 2% glutaraldehyde in PBS for 15 min at room temperature, washed five times with 

water, stained with 0.1% crystal violet and 20% methanol for 20 min at room temperature, 

washed five times with water, air-dried, and photographed using a Nikon ECLIPSE TS100 

inverted microscope equipped with a Nikon Digital Sight DSL1 camera; the images were 

analysed with ImageJ software. The experiments were repeated three times independently 

(biological triplicate). Each set included three control condition transwells and three 

transwells stimulated with VEGF165. Cell counts were expressed as percentage of migrated 

cells/total number of cells ± standard deviation. All conditions were performed three times 

independently (technical triplicate). Five images were analyzed for each transwell using the 

ImageJ software. Cell counts were expressed as percentage of migrated cells/total number of 

cells ± standard deviation.  

Statistical analysis. 

For in vivo experiments, statistical analysis was performed using one-way analysis of variance 

(ANOVA) and post hoc LSD. Two-way analysis of variance (ANOVA) and post-hoc 

Bonferroni was performed using the Prism Software Package (GraphPad, La Jolla, CA, USA) 

and SPSS.  For in vitro proliferation experiments, statistical analysis was performed using 

one-way analysis of variance (ANOVA) and post-hoc Bonferroni using the Prism Software.  

For in vitro migration assay, statistical analysis was performed using Two-Sample t-Test. The 
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level of significance was set at p ≤ 0.05 (*), p ≤ 0.01 (**), and p≤ 0.001 (***). Values are 

expressed as mean ± standard deviation (SD). 
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Results 

The expression of VEGF, VEGFR-1, VEGFR-2, VEGFR-3, NRP1 and NRP2 mRNAs were 

assessed in crush injury, end-to-end repair and degenerating conditions. 

The relative quantification (RQ) was determined using the control sample that better 

represents the mean of the control samples Ct; therefore, the relative (and not absolute) gene 

expression shown in the graphs cannot be compared among different genes. 

 

VEGF mRNA expression is differentially regulated in regenerating and degenerating 

condition. 

VEGF mRNA expression significantly increases in crush group at day 1 (p ≤ 0.01 (**)), day 3 

(p ≤ 0.05 (*)) and day 7 (p ≤ 0.01 (**)) after injury.  Whereas VEGF mRNA expression is 

significantly down regulated in degenerating condition at day 3(p ≤ 0.05 (*)), day 7 (p ≤ 0.01 

(**)) and day 30 (p ≤ 0.05 (*)). In end-to-end repair group  no significant differences are 

observed (Figure1).  

 

VEGFR-1 is strongly upregulated after crush injury.  

In crush injury group the mRNA level of VEGFR-1 is significantly upregulated peaking at 

day 1 after injury (p ≤ 0.001 (***)). The expression significantly decreases starting from day 

3 (p ≤ 0.05 (*)) and a significant downregulation is also detectable at day 30. In the end-to-

end repair and degenerating condition, mRNA expression of VEGFR-1 does not show 

significant variations (Figure 2). 

 

VEGFR-2 mRNA expression is strongly down regulated in regenerating and degenerating 

condition.  

Results on mRNA expression of VEGFR-2 in crush injury group showed that expression is 

significantly decreased 30 days after crush injury (p ≤ 0.05 (*)). In the end-to-end repair 

group a significant down regulation of VEGFR-2 is detectable at day 1 (p ≤ 0.05 (*)) and 30 

(p ≤ 0.05 (*)) after surgery.  

VEGFR-2 mRNA expression goes back to control condition level from day 3 up to day 7. 

Under degenerating condition mRNA VEGFR-2 expression levels did not change compared 

to control condition (Figure 3).   
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VEGFR-3 mRNA expression decreases in regenerating and degenerating condition.  

mRNA expression of VEGFR-3 significantly decreases starting from day 1 (p ≤ 0.01 (**)) in 

crush injury group. Decrement is also detectable at day 3 (p ≤ 0.01 (**)), day 7 (p ≤ 0.01 (**)) 

day 15 (p ≤ 0.001 (***)) lasting until day 30 (p ≤ 0.001 (***)) after injury. In degenerating 

nerve and end-to-end repair groups no regulation occurs (Figure 4). 

 

VEGF co-receptors NRP1 and NRP2 are significantly upregulated in degenerating condition. 

The mRNA expression of VEGF co-receptors NRP1 and NRP2 are both upregulated under 

degenerating condition. NRP1 is significantly upregulated (p ≤ 0.05 (*)) at day 3 and 15 (p ≤ 

0.05 (*)) and a higher upregulation is detectable at day 30 (p ≤ 0.01 (**)) in degenerating 

nerve.  The mRNA expression of NRP2 in degenerating condition is strongly upregulated 30 

days after injury (p ≤ 0.05 (*)) (Figure 5). 

 

Comparison between surgery: two-way ANOVA analysis 

Through two-way ANOVA analysis several relevant mRNA expression changes have been 

detected. The most relevant data to us is the VEGFR-3 expression since it is involved in 

inflammatory response. Its mRNA expression in degenerating nerve is higher compared to 

degenerating control condition, end-to-end repair and crush injury p-value ranging from p ≤ 

0.05 (*) to p ≤ 0.01 (***). (See Figure 6 for details). 

 

VEGF, VEGFR-2, NRP1 and NRP2 proteins are differentially expressed after crush injury. 

In order to focus the attention on nerve regeneration process, western blot analysis was 

performed only on crush injury and end-to-end repair group to confirm protein expression of 

some of genes analyzed by qRT-PCR. 

Western blot analysis showed that VEGF expression is detectable in both crush and end-to-

end nerves. The 43-kDa band is strongly detectable in control condition, 1 day, 3 days and 

day 7 after crush injury while a weak band is detectable at day 15 and 30 after injury. In end-

to-end nerves a high VEGF protein expression is observed in all time points post repair.  

Interestingly VEGFR-2 protein appears in end-to-end nerves starting from day 3 until 30 

days. In crushed nerves, high protein expression is found between day 1 and 15 after injury. 

No band appears in healthy nerves.  
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NRP1 antibody detects endogenous levels of total NRP1 protein through a 120-kDa band. 

This antibody also recognizes an 80-kDa protein of unknown origin.                     

Protein expression of NRP1 results with a very small band detectable in healthy control 

nerves although protein expression level increases in crushed nerves starting from day 1 until 

day 7 and then decreases until day 30. However the expression is higher compared to control 

condition. In end-to-end-nerves NRP1 protein expression is higher between day 3 and day 30.                             

Finally, NRP2 antibody detects endogenous levels of total NRP2 protein recognizing a 130-

kDa band. The protein expression level of NRP2 is barely detectable especially in crushed 

nerves in which a weak band appears starting from day 7 up to day 30 after injury. In end-to-

end repair group protein expression of NRP2 appears between day 1 and day 15 with a 

stronger band detectable at day 3 after surgery (Figure 7). 

 

VEGF, VEGFR-2 have a glial localization. 

Since Real Time PCR and western blot analysis do not allow to obtain a morphological 

evaluation, different immunohistochemical reactions were carried out using VEGF, VEGFR- 

2, NRP1 and NRP2 as markers. In order to study the localization of the different markers, 

double immunostaining with glial marker (S-100B) and neuronal marker (β-tubulin) were 

performed on crushed nerves. The employment of the crush injury, which interrupts nerve 

fibers without severing the connective tissue of the nerve trunk represents a suitable model for 

the study of the regenerative process providing an optimal regeneration pathway. Furthermore 

the crush lesion was applied  using a standardized and reproducible method, in terms of force, 

pressure and duration of the compression represented by the use of the not-serrate clump 

(Ronchi, Nicolino et al. 2009).  For this reason,  transversal sections of 10 µm of thickness 

were used to perform immunofluorescence staining only on crushed nerves harvested 7days 

after injury.  

According to Western blot analysis an immunoreactivity for VEGF was found around axons 

of healthy control nerves (Figure 8A). 

Interesting, the same VEGF immunoreactivity was found in nerves 7 days after crush injury, 

suggesting a glial expression of this marker  (Figure 8A-B). 

Immunofluorescence analysis was performed with other markers, VEGFR-2, NRP1, NRP2. 

As shown in Figure 8C, double immunostaining for VEGFR-2 and β-tubulin that represent a 
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typical neuronal marker showed absence of co-localization of these markers suggesting a glial 

expression of VEGFR-2.  

Finally, a double labeling for NRP1/β-tubulin and NRP2/β-tubulin was performed in order to 

identify co-receptors localization. A co-localization of NRP1 and β-tubulin was detected at 

nerve axons level (Figure 8D); absence of co-localization was found in case of double 

labeling NRP1/S-100b (Figure 8E). Co-localization of NRP2 and β-tubulin suggest the same 

expression pattern found for NRP1 (Figure 8F) with an axonal expression of NPR2.  

 

Administration of VEGF165 do not increase Primary Schwann cells proliferation. 

Proliferation assay was performed on Primary Schwann cells (SC) cultures seeded in 

complete DMEM containing 2%FBS as control condition, or in complete DMEM containing 

2%FBS added with VEGF165 (50 ng/ml) (human VEGF-A165, R&D). The number of 

proliferating cells was then counted quantifying the number of fluorescence labeled nuclei at 

different time points 1, 2 and 3 DIV after seeding. Schwann cells seeded with complete 

DMEM containing 2%FBS added with VEGF165 showed a proliferation rate comparable to 

control conditions, no significant differences have been observed between the two different 

conditions(Figure 9). Therefore, primary Schwann cell stimulation with VEGF165 did not 

affect cell proliferation. 

Three-dimensional migration assay on Primary Schwann cells culture showed a higher 

migration rate after VEGF165 stimulation. 

To determine whether VEGF165 stimulation on Primary Schwann cell cultures increases the 

migration of these cells a three-dimensional migration assay was performed.   

Primary Schwann cells (105) were seeded in the upper chamber of a transwell. In the lower 

chamber DMEM containing 2% FBS was supplemented with 50 ng/ml of VEGF165 as 

treatment (see three-dimensional migration: transwell assay section for details).  

After 18 h of incubation Primary Schwann cells added with 50 ng/ml of VEGF165 showed a 

significant higher migration rate (p ≤ 0.05 (*)) compared to Primary Schwann cells cultured 

in DMEM-2% FBS (Figure 10). 
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Discussion 

Peripheral nerve injury represents a very complex process that involves different 

morphological and molecular changes occurring to both proximal and distal stumps (Geuna, 

Raimondo et al. 2009; Allodi, Udina et al. 2012; Muratori, Ronchi et al. 2012).  

After injury, axons distal to regeneration site are interrupted, myelin sheath is degradated and 

Wallerian degeneration occurs leading to a series of phenotypic changes that promote axonal 

regeneration. It is well accepted that during the regenerative process various molecular factors 

are involved in order to form a favorable microenvironment for axonal outgrowth (Navarro, 

Vivo et al. 2007). 

For this reason, various molecules have been investigated in experimental models of neural 

repair in order to study promising strategies to improve very important aspects of the 

regenerative process such as axonal regrowth and target reinnervation (Raimondo, Fornaro et 

al. 2011; Kang, Kim et al. 2014; Chang, Quan et al. 2016).  

 

Vascular and nervous systems share common molecular pathways during development and 

regeneration, furthermore the anatomical parallelism between vessel and nerve patterning is 

well documented (Ruiz de Almodovar, Lambrechts et al. 2009).  

Anatomically, both systems are composed of afferent and efferent networks, arteries and 

veins, motor and sensory nerves and share similar patterning, with vessels running in parallel 

alongside nerve fibers as a mutual guidance alignment. 

Furthermore evidences show that axon guidance and vessel navigation are regulated by 

similar classes of molecules (Slits, Semaphorins, Netrins,and Ephrins) (Carmeliet and 

Tessier-Lavigne 2005; Carmeliet and Ruiz de Almodovar 2013).  

 

Even if it was demonstrated that VEGF plays a role during the development of the Central 

Nervous System (CNS), little is known about its presence and role in Peripheral Nervous 

System (PNS) (Rosenstein, Krum et al. 2010). This study focuses the attention on VEGF and 

its receptors and co-receptors expression in three different surgical models used to study 

peripheral nerve regeneration: the crush injury and the end-to-end repair represent  

regenerating conditions, while complete nerve transaction reflects a condition in which no 

signs of axonal regrowth are found (Ronchi, Haastert-Talini et al. 2016). 
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mRNA expression level for VEGFR-3 after crush injury showed a very low expression in all 

time points examined compared to control condition. Concerning end-to-end and 

degenerating nerve, no mRNA expression difference is detectable in all time points. This is 

probably due, as well reported, to restricted expression of the VEGFR-3 for lymphatic 

epithelium  (Kaipainen, Korhonen et al. 1995; Jussila and Alitalo 2002; Le Bras, 

Chatzopoulou et al. 2005). However if we consider the two-way ANOVA comparison, we 

observed higher VEGFR-3 expression from day 1 until day 30 in degenerating condition 

compared to crush and end-to-end repair. Crush and end-to-end represents regenerative 

models, so the immune response may be slow down from day 1 up to 30. In degenerating 

condition there is no regeneration thus the inflammatory condition may persists over time. 

This can explain why the VEGFR-3 expression is maintained at high level. 

NRP1 and NRP2 are a single pass transmembrane glycoproteins, originally identified as 

semaphorin receptors mediating axon growth cone collapse. Although, many study reported 

that NRP1 is involved in neuronal migration, dendritic guidance and repair of the adult 

nervous system (He, Wang et al. 2002). 

NRP2, can bind VEGF165 thus, in addition to neuronal guidance, plays a role in angiogenesis 

and cardiovascular functions (Favier, Alam et al. 2006). 

Our study showed that mRNA expression levels for NRP1 and 2 display a significant increase 

in degenerating condition. Since NRP1 and NRP2 are involved in several regenerative 

mechanisms as described above we suppose that in our degenerative model regeneration will 

not occur, explaining why their expression is manteined. 

mRNA and protein expression levels were evaluated by Real Time and western blot analysis 

respectively. NRP1 and NRP2 display similar mRNA and protein expression levels in both 

regenerative models (crush injury and end-to-end repair). Finally, double labeling for β-

tubulin/NRP1 and β-tubulin/NRP2 performed only on crush injury nerve, the surgical 

technique that provides clearest regeneration process, shows a co-localization for β-

tubulin/NRP1 and β-tubulin/ NRP2 allowing to state an axonal localization of these co-

receptors. 

VEGF mRNA expression is significantly upregulated during the early phases after peripheral 

nerve crush injury whereas a strong down-regulation occurs in degenerating nerve suggesting 

a possible role during the regenerative process.  
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Furthermore, mRNA expression levels of VEGFR-2, the most implicated in migration and 

survival of neural and glial cell types of both CNS and PNS (Sondell, Lundborg et al. 1999a; 

Sondell, Lundborg et al. 1999b; Jin, Mao et al. 2000; Jin, Zhu et al. 2002; Ogunshola, Antic et 

al. 2002), is highly expressed over time in crush injury; a significant decrease is detectable at 

30 days after injury allowing to suppose that the involvement of VEGFR-2 is restricted to the 

early phases of the regenerative process.  

In order to better characterize the expression of VEGF and VEGFR-2 under regenerating 

condition, protein expression levels were investigated after crush injury and end-to-end repair. 

Data obtained from western blot analysis showed a strong VEGF protein expression in control 

condition and following time points (1 day, 3 days and 7 days after crush injury). VEGF 

protein expression is also observed in end-to-end repair suggesting a similar expression 

pattern in the early phase of the regeneration process. Although further in vitro experiments 

need to be done in order to better characterize the molecular pathway involved in these 

mechanisms. 

Concerning VEGFR-2 protein results show that is expressed starting from day 3 until day 30 

in end-to-repair. To better characterize protein expression and localization, morphological 

analysis on crushed nerves were performed showing an intense immunoreactivity for VEGF 

around axons suggesting a glial expression of this marker.  

Furthermore, a double labelling for VEGFR-2 and β-tubulin show absence of co-localization 

between these two markers suggesting a glial expression also for VEGFR-2.  

Interestingly, data are supported by in vitro analysis on Primary Schwann cells cultures that 

significantly increases their migration after VEG165 stimulation compared to control 

condition suggesting a positive effect of VEGF on glial cells migration which represents a 

very important process during the peripheral nerve regeneration. 
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Conclusion 

Findings of the present study showed a modulation for VEGF and its family members 

including VEGFR-1, VEGFR-2, VEGFR-3, NRP1 and NRP2 under degenerating and 

regenerating conditions. Furthermore, morphological analysis allowed to understand the 

localization of the VEGF and the VEGFR-2 to Schwann cells after crush injury, used in this 

study as a suitable model for the study of the regenerative process (Ronchi, Nicolino et al. 

2009; Ronchi, Raimondo et al. 2010).  

Immunohistochemical results on VEGFR-2 showed also in this case a glial localization of this 

marker suggesting a potential autocrine VEGF/ VEGFR-2 pathway on Schwann cells. 

Morphological evaluation performed by immunofluorescence allowed to identify the glial 

localization for both factors. Furthermore in vitro experiments on primary Schwann cells 

culture let evaluate the effect of VEGF on the migratory property of the Schwann cells 

suggesting that VEGF could influence the migration of Schwann cells that represents an 

important step during the regeneration process. 
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Figure Legends 

Figure 1: VEGF mRNA expression significantly increases in crush group starting from day 1 

(p ≤ 0.01 (**)), day 3 (p ≤ 0.05 (*)) and day 7 (p ≤ 0.01 (**)) after injury.  A downregulation 

is detectable in degenerating condition at day 3(p ≤ 0.05 (*)), day 7 (p ≤ 0.01 (**)) and day 30 

(p ≤ 0.05 (*)). In end-to-end repair group a weak increase in VEGF mRNA expression level is 

detectable at day 30. N=3 in each time point condition. 

Figure 2: mRNA level of VEGFR1 is significantly upregulated in crush injury group the 

peaking at day 1 after injury (p ≤ 0.001 (***)). The expression significantly decreases starting 

from day 3 (p ≤ 0.05 (*)) and a significant downregulation is also detectable at day 30. In the 

end-to-end repair group mRNA expression of VEGFR-1 decrease at day 1, at day 3 

expression level increase while a strong reduction is detectable at day 30. VEGFR-1 mRNA 

expression level increase at day 1 and 3 decreasing gradually in degenerating nerve from day 

7. N=3 in each time point condition. 

Figure 3: mRNA expression of VEGFR-2 significantly decreased 30 days after crush injury 

(p ≤ 0.05 (*)).  In the End-to-end repair group a significant down regulation of VEGFR-2 is 

detectable at day 1 after surgery. mRNA expression of VEGFR-2 remains low from day 1 

after injury until day 30 with a very weak increase at day 30 in degenerating nerve. N=3 in 

each time point condition. 

Figure 4: mRNA expression of VEGFR-3 significantly decreases starting from day 1(p ≤ 

0.01 (**)) until day 30 (p ≤ 0.001 (***)) in crush injury group. In degenerating condition a 

strong down regulation occurs starting from day 1 until day 30. In end-to-end repair group 

mRNA expression of VEGFR-3 increases at day 1 and decreases from day 3 to day 30 after 

surgery. N=3 in each time point condition. 

Figure 5: Two-way analysis of variance (ANOVA) and post-hoc Bonferroni showed mRNA 

expression in degenerating nerve is higher compared to degenerating control condition, end-

to-end repair and crush injury p-value ranging from p ≤ 0.05 (*) to p ≤ 0.01 (***). 

Figure 6: NRP1 and NRP2 are significantly upregulated in degenerating condition. NRP1 is 

significantly upregulated (p ≤ 0.05 (*)) at day 3 and 15 (p ≤ 0.05 (*)) and a higher 
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upregulation is detectable at day 30 (p ≤ 0.01 (**)) in degenerating nerve.  The mRNA 

expression of NRP2 is strongly upregulated 30 days in degenerating condition (p ≤ 0.05 

(*)).N=3 in each time point condition. 

Figure 7: VEGF expression is detectable in both crush and end-to-end nerves. The band is 

strongly detectable in control condition, 1 day, 3 days, 7 days and 30 days after crush injury. 

In end-to-end nerves a high VEGF protein expression is observed in all day points post repair. 

VEGFR-2 band appears in end-to-end nerves starting from day 3 until 30 days. In crushed 

nerves high protein expression is found between day 1 and day 30 after injury. Protein 

expression of NRP1 results with a very small band detectable in control nerves although 

protein expression level increases in crushed nerves starting from day 1 until day 30. In end-

to-end-nerves NRP1 protein expression is higher between day 3 and day 30. Protein 

expression of NRP2 is barely detectable in crushed nerves; in end-to-end repair NRP2 appears 

between day 3 and day 30 after surgery. 

Figure 8: immunofluorescence staining for VEGF (red) in healthy control nerve (A) and 

crushed nerve 7 days after injury (B); double immunostaining for VEGFR-2 (red) and β-

tubulin (green) showed absence of co-localization of these markers (C). Co-localization of 

NRP1 (red) and β-tubulin (green) is detected at nerve axons level (D); absence of co-

localization is found in case of double labeling NRP1 (red) S-100b (green) (E). Co-

localization of NRP2 and β-tubulin suggest the same expression pattern of NRP1 (F). Scale 

bar =100 µm. Nuclei are stained with DAPI (blue). Panel A 63X, panel B-F 40X. 

Figure 9: Proliferation assay on Primary Schwann cell culture in control condition and 

after VEGF165 (50 ng/ml) stimulation. 

Figure 10: Three-dimensional migration assay on Primary Schwann cells culture in 

control condition (DMEM/ 2% FBS) and after stimulation with (50 ng/ml) of VEGF165. 

Data show a higher migration rate after VEGF165 stimulation (p ≤ 0.05 (*)). 

Table1: Primers used for qRT-PCR.  

Table2: Primary antibodies used for immunofluorescence. 
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