
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Certifying delta-oriented programs

Published version:

DOI:10.1007/s10270-018-00704-x

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1710010 since 2019-08-19T13:44:53Z

SoSyM manuscript No.
(will be inserted by the editor)

Certifying Delta-Oriented Programs

Vítor Rodrigues · Simone Donetti ·
Ferruccio Damiani

Received: date / Accepted: date

Abstract A major design concern in modern software development frame-
works is to ensure that mechanisms for updating code running on remote
devices comply with given safety specifications. This paper presents a delta-
oriented approach for implementing product lines where software reuse is
achieved at the three levels of state-diagram modeling, C/C++ source code and
binary code. A safety specification is expressed on the properties of reusable
software libraries that can be dynamically loaded at run-time after an over-
the-air update. The compilation of delta-engineered code is certified using the
framework of proof-carrying code in order to guarantee safety of software up-
dates on remote devices. An empirical evaluation of the computational cost
associated with formal safety checks is done by means of experimentation.

Keywords model-driven development · delta-oriented programming · safety
properties · proof-carrying code · run-time systems

1 Introduction

Software-intensive systems, like those of modern automobiles, can include up
to one hundred small embedded microcontrollers [10, 46, 4, 4]. The trend in
such distributed embedded systems is to become increasing complex and, at
the same time, to be often subject to changes in functionality. Production en-
vironments, where over-the-air (OTA) software updates are required after the
initial deployment pose specific challenges in terms of integrity of the adaptive
system [81, 89]. In these kind of environments, formal verification techniques

This work was partially supported by the European Commission within the project HyVar
(http://www.hyvar-project.eu/), grant agreement H2020-644298.

University of Turin
E-mail: vitor.rodrigues@di.unito.it
E-mail: {ferruccio.damiani, simone.donetti}@unito.it

http://www.hyvar-project.eu/

2 Vítor Rodrigues et al.

are required to provide protection against code that violates safety specifica-
tions of the embedded system. Additionally, protection against untrusted code
suppliers require efficient on-board verification mechanisms.

The main obstacle to deploy verified embedded software is the amount of
computational effort necessary to perform formal analysis of OTA updates [11].
When formal verification is performed on the remote device, objective mea-
surements of the software system are required in several critical areas: number
of updates, static program size/execution metrics, data coupling/binding and
modularity [81, 7, 45]. Therefore, empirical evaluation of experimental data us-
ing descriptive statistics needs to be incorporated in the software development
process in order to guarantee consistency and ease maintenance [6].

A Software product line (SPL) [2, 23, 63] is a collection of programs, called
variants, that are developed from a common codebase and have well docu-
mented commonality and variability. Delta-oriented programming (DOP) [70]
(see also [2, 6.6.1]) is a flexible transformational approach to implement SPLs.
Model-driven development (MDD) [39, 46] exploits rich domain models (e.g.
statechart diagrams [42, 30]) to represent product specifications in terms of
abstract representations within a given domain knowledge [66]. Proof-carrying
code (PCC) [58] is a software technique that allows a host system, like a re-
mote embedded device, to verify properties about an application by exporting
a formal proof, called certificate, that is carried together with the executable
code. The remote device decides whether the supplied code is safe to execute
by checking the validity of the certificate.

This paper presents an exploratory study about using DOP in connection
with MDD and PCC to support safety of software updates on remote de-
vices. Experimental evaluation is used to aid software designers, developers
and maintainers in the process of developing the most effective SPL regarding
the use of variability in delta-modeling versus the cost of formal verification of
OTA updates. The first objective of this paper is to postulate the hypothesis
of using an iterative heuristic algorithm where the best trade-off between these
two conflicting factors can be found by experimentally-acquired evidence.

The second objective of this paper is to assess the flexibility of the proposed
software development methodology. The design choice to apply delta-oriented
techniques ubiquitously to the whole framework and the possibility given to
designers/developers/maintainers to simulate the PCC overhead on the remote
device, helps to define the modularity of the software system. In particular, the
process of delta-modeling of procedural models, enriched with delta-modeling
of the physical structure of the software system, is carried out in such a way
that the amount of transferred data during OTA updates is minimized, at
the same time that an efficient PCC-based formal verification mechanism is
devised by configuration.

The exploratory study presented in the paper makes simplifying assump-
tions on the pilot use-case scenario. The modeling/deploying framework is
described using a feature model inspired by the ECall/E112 Regulation sce-
nario [32], which is considered in the demonstrator of the HyVar project. The
integration of the proposed approach in a full-fledged tool chain, like the one

Certifying Delta-Oriented Programs 3

developed by the HyVar project [22, 68], is a major project that remains as
future work. Considering only two executable variants is sufficient to identify
which techniques can be used to provide a quantitative assessment of the con-
tribution. For this purpose, results about the computational cost of the formal
verification and the scalability of the proposed framework are guaranteed to
be correctly interpreted by means of statistical analysis.

The paper is structured as follows. Section 2 discusses related work, back-
ground and motivation. Section 3 presents the modeling/deploying framework
by means of a simple example to be used as a running example throughout
the paper. Examples of variability realization artifacts, such as finite-state ma-
chines and code-level models, are introduced. Section 4 gives an overview on
the engineering process of developing delta-oriented SPLs using different kinds
of models and Section 5 describes a formal verification mechanism to check
cross-consistency between those models. In Section 6, a PCC mechanism used
to validate OTA updates according to the safety policy is described. Section 7
presents the experimental context, the correspondent data evaluation, and
discusses threats to validity. Section 8 concludes the paper.

2 Related Work, Background and Motivation

2.1 Quantitative Evaluation of Software Quality

Extensive work is reported in the literature describing methodologies to plan
and carry out experimentation in software engineering [86, 81, 5, 6, 83, 7,
45, 16]. In particular, process-oriented experimental evaluation [16], focus on
assessing the impact of a technology push in order to understand how it can im-
prove performance or increase software quality. Referred examples are those of
new design methodologies, programming languages or software configuration
management techniques. The existence of a conceptual framework support-
ing rigorous data gathering and the use of quantitative software evaluation
techniques is signaled as fundamental [33, 79].

Experimental data helps to identify design decisions that can significantly
improve understanding of language design for reliable software and the main-
tenance process. Along these lines, flowcharts and program design languages
(PDL) were evaluated in [65]. With the objective to improve program composi-
tion, comprehension, debugging and modification, flowcharts are also evaluated
in [74]. The present paper applies delta-modeling to both state diagrams [64]
and source code [31] in order to identify which program functionalities have the
highest potential for reuse [9]. Additionally, the proposed modeling approach
identifies possibilities for reuse at binary level by integrating build-system
models [80, 13] into the DOP-SPL.

Contrary to the framework presented in [16], where descriptive models
used for domain analysis [47] are not intended to be formally validated, the
DOP approach presented in this paper is proved to facilitate cross-validation
between the collaborative models that are used to generate SPL variants.

4 Vítor Rodrigues et al.

Moreover, in contrast with [81], OTA updates by means of delta operations
allow “patches” to be frequently applied and this facilitates program analysis of
partial implementations. In this way, SPL variants are by-products resulting
from successive increments to an initial (skeletal) subproject, but with the
guarantee of consistency of the final software product.

One fundamental follow-up that contributes for the impact of an experi-
mental evaluation study is the guarantee of replication and the representative-
ness of the experimental data, hence allowing the extrapolation of the results to
other environments [6] and the refinement of the posed hypothesis [86, 83, 16].

In this way, the use of a statistical framework which validates the assump-
tions made during experimentation to obtain quantitative measures (obtained,
for example, using profiling techniques [48]), are independent from any prob-
lem domain and allow the confirmation or refutation of the hypothesis by
experimental evidence or by operational demonstration.

2.2 Implementation of Software Product Lines

Approaches in the literature to SPL implementation can be classified into three
main categories [71]: annotative approaches expressing negative variability;
compositional approaches expressing positive variability; and transformational
approaches expressing both positive and negative variability. In annotative
approaches all variants are included within the same model (often called a
150% model). An example of an SPL annotative approach is represented by
C preprocessor directives (#define FEATURE and #ifdef FEATURE). Feature-
Oriented Programming [8] (FOP) and DOP are examples of compositional and
transformational approaches, respectively.

FeatureIDE [78] is an open source framework of an Integrated Develop-
ment Environment (IDE) for SPL engineering. It supports the entire life-cycle
of a product line by providing comprehensive tools for variability modeling
with feature models using different variability realization mechanisms. Simi-
larly to our approach, FeatureIDE covers the design, implementation and
maintenance of software product line engineering, including domain analysis
and feature modeling. However, since FeatureIDE does not support delta
modeling at object-code level, it is not a practical solution to perform OTA
updates directly on binary code running on remote devices.

DeltaEcore [73] is a tool suite tailored for DOP using Eclipse Modeling
Framework (EMF)1 Ecore metamodels. Using DeltaEcore, it is possible to
semi-automatically create a delta language for a particular EMF-based target
language consisting of delta operations specific to that target language. More-
over, DeltaEcore provides comprehensive tools for variability modeling and
configuration as well as variant derivation using custom delta languages.

The main characteristic of DeltaEcore is that delta languages are re-
quired to be defined using Ecore metamodels. In this way, DeltaEcore

1 http://www.eclipse.org

http://www.eclipse.org

Certifying Delta-Oriented Programs 5

supports variant generation of behavior models such as YAKINDU state-
charts [38]. For a complete description of automatic code generation with
Yakindu statecharts and reuse of C/C++ implementation artifacts, the reader
is referred to [22]. The main limitations of the toolchain presented in [22] are
the absence of cross-validation between delta languages, formal verification
delta actions at object-level, and configurable compilation mechanisms.

The concept of Dynamic SPLs has been proposed in [41] to demonstrate
that dynamically adaptive systems exhibit degrees of variability that depend
on user needs and runtime fluctuations in their contexts. Although the work
presented in this paper is also concerned with the use variability at runtime,
the objective is not to create a self-adaptive product line. Rather, by employ-
ing DOP as the variability realization mechanism, we develop a solution that
provides OTA updates on already customized executable variants. The PCC
formal verification mechanism is used to check whether the update on the
production system is consistent with the safety policy of the remote device.

2.3 Formal Verification of Distributed Embedded Software

Even though the theoretical PCC framework [58] is well-accepted in the re-
search community, practical applications still exhibit size and performance is-
sues, e.g. memory consumption, which are sensitive to industry stakeholders. A
pilot project like the ECall/E122 regulation scenario [32], is an example where
quantitative assessment is fundamental for determining the applicability of the
verification mechanism. In fact, the use of Theorem Proving as the enabling
technology to prove software correctness raises questions about the feasibility
of using an all-inclusive demonstrator of PCC. The main difficulty found in
the existing literature is to present empirical evidence that can demonstrate
that computational requirements can be met.

In alternative, examples in the literature [44, 11, 67] tackle the computa-
tional resource problem use the theory of Abstract Interpretation [24]. In [44],
the Abstraction-Carrying Code (ACC) framework is proposed to replace a
costly verification process by an efficient checking procedure on the consumer
side. In particular, a methodology to reduce the size of certificates as much
as possible while at the same time not increasing checking time in proposed
in [1]. An experimental evaluation of formal verification of Java Bytecode us-
ing Abstract Interpretation is proposed in [11] in terms of memory usage. A
particular analysis of resource requirements using the worst-execution time
(WCET) as the safety criteria is presented in [67].

The present work is an approach to PCC for C/C++ object code where the
safety policy is based on the runtime consistency of the remote device [50, 21,
18]. Examples in the literature incur different kinds of runtime overhead: run-
time program monitoring [18], signatures of binaries verified at runtime [21]
and cryptography hashes complemented with processor-specific constraints
verified at runtime [50]. In this paper, formal verification of runtime integrity

6 Vítor Rodrigues et al.

is based on textual representations of binaries, i.e. their symbols-table, and on
the properties of interest that can be part of a safety specification.

To the best of our knowledge, our approach is the first to address the
problem of delta-(binary) updates using the theoretical framework of PCC.
An empirical evaluation is performed in order to determine if the cost of per-
forming formal verification is feasible to perform on embedded systems. The
objective is to provide system maintainers with empirical evidence such that
the trade-off between checking time and certificate size can be optimized using
conventional operating system technologies.

3 Modeling/Deploying Framework : Principles & Techniques

We consider a modeling framework based on state diagrams reusing exist-
ing C/C++ artifacts with the aid of code-level design models. State diagrams
are graphically represented by finite state-machines (FSMs), which are de-
sign models used for describing C/C++ procedures, i.e. a sequence of callable
C/C++ functions. Models at code-level are specific to the build system and
are used for describing the logical organization of compiled code. Section 3.1
gives an overview of the framework, Section 3.2 briefly recalls the considered
finite-state machines and Section 3.3 illustrates the adopted build system.

3.1 Overview

For the purpose of formal verification of the consistency between state dia-
grams and C/C++ artifacts, we focus on the formal semantics of Moore FSMs.
We define a two-letter input alphabet such that the sensible information pro-
duced by the FSM is computed by the labeling function. Hence, a string over
the output alphabet is used to specify the control-flow of a C/C++ program at
function-level. In this case, the state diagrams are called procedural, because
state transitions do not depend on external events [30]. C/C++ low-level state-
ments are not exposed at the level of the FSM and the input symbols represent
possible changes in the internal state of the program.

C/C++ programs, like in other procedure-oriented languages, are speci-
fied to execute in a step-by-step manner. Informally, the consistency between
state diagrams and C/C++ artifacts specifies that for each state labeled with
a C/C++ function declaration there must be a file on-disk containing the cor-
responding function definition. In this way, dangling state declarations are
guaranteed not to exist. Conversely, the compilation of the generated code
from the FSM against the existing C/C++ artifacts must be minimal in the
sense that only the strictly necessary implementation files are compiled.

Figure 1 illustrates a Moore state machine that specifies a simple program
inspired by the ECall/E112 Regulation scenario (on the left), and the corre-
spondent build-system model, at code level, that specifies how to compile an
executable program named “prog” (on the right).

Certifying Delta-Oriented Programs 7

(a) Moore state machine specifying the use of
GPS and GLONASS

bin PROGRAMS = prog
prog SOURCES = diall112.c
prog SOURCES += setGPS.c
prog SOURCES += setGLONASS.c
prog SOURCES += readECU.cpp

(b) Automake model

Fig. 1 Example of a state-machine model (on the left hand-side) and a GNU Build Sys-
tem model (on the right hand-side) required to compile the executable prog

The state diagram illustrates the sequence of actions when an emergency
call is made using a Global Navigation Satellite System (GNSS). This system
can be either the Global Positioning System (GPS) or the GLONASS navi-
gation system. Each state is labeled with function names that implement the
executable variants generated by the ECall/E112 DOP-SPL.

The naming convention for C/C++ functions is that for each C/C++ function
there is a file on-disk with the same name as the function. Then, the input
alphabet of the Moore finite-state machine presented in Section 3.2 is used to
redirect the control-flow to either the functions “setGPS” or “setGLONASS”.
The input symbols 0 and 1 of the FSM are used to specify the value of some
global (shared) variable denoting the GNSS being used. The value of such
variable is modified by the “readECU” function.

The novelty in the models presented in Figure 1 is that the structure of ob-
ject (embedded) code is lifted to the modeling space by writing GNU Build
System [19] models. By extending the modeling space in this way, the devel-
opment of embedded code, i.e. code that is deployed to remote devices, gains
in flexibility and modularity: for example, the code implementing each state
diagram can be compiled as a static library, a dynamic library, an executable,
or as a combination of the previous, albeit without changes in functionality.

These decisions have a significant impact on the efficiency of OTA updates.
When considering binary patches on mobile code, specially if a great amount
of code can be reused, a one-size-fits-all solution for compiling software is
inadequate because one needs to take into consideration the bandwidth and
the safety requirements of the remote device [18, 43]. In one hand, mobile code
compiled as a single executable is simple to design but makes OTA updates
very inefficient in terms of download time because to the size of the patch is
necessarily higher than when using shared libraries.

On the other hand, the use of dynamic shared libraries requires integrity
checks before installation and their use can delay the start-up time of the exe-
cutable [87]. For example, as opposed to a monolithic approach to executable
variant generation, the creation of a shared library for each source-code file
may appear a reasonable choice because it maximizes the freedom of the user
during the modeling phase. However, since each library is individually dynam-
ically loaded, the loading time increases significantly [17, 28].

When developing a DOP-SPL, this aspect is of particular interest because
designers/developers/maintainers are able to define the amount of internal

8 Vítor Rodrigues et al.

fragmentation of an executable variant. The overhead of shared libraries di-
rectly affects the efficiency of the formal checking mechanism because system
integrity on the embedded system must be enforced statically before runtime.
A typical example is the detection of the diamond problem when using dy-
namically linked libraries [40, 26, 27].

Consider the scenario where two fragments of the executable depend on
different incompatible versions of the same library. The problem is when shared
libraries are loaded, all the undefined symbols (cf. Section 3.3) are resolved
inside the same namespace. To ensure safety, two versions in use of the same
function with the same name, even if they are in different libraries, must not
co-exist because it is not possible for the dynamic linker/loader to choose
which version is exposed to the binary containing the dependency.

For this reason, possible conflicts and inconsistencies with pre-installed
software on the remote device must be checked before performing the OTA
update by using system-level tools, e.g., Linux commands. For instance, an up-
date could contain an executable that “conflicts” with the currently installed
version of the same executable. In this case, the reconstruction of binaries by
means of patches on the remote device uses a run-time system that is sub-
stantially different from the one used by the code supplier. Thus, verification
mechanisms are required to avoid compromising the integrity of the run-time
system and, consequently, jeopardize the ability to safely update the system.

3.2 A Brief Introduction to Finite-State Machines

The semantics of state diagrams is that of a finite-state machine, i.e. a finite
automata enhanced with an output alphabet [54, 29]. Because the class of
C/C++ programs under consideration are purely procedural where each state
specifies a sub-routine to be executed, we use finite-state transducers that have
a two-letter input alphabet and one final state [61]. When compared to finite
automata as language acceptors, the goal of the transducer is not simply to
accept or reject input strings over the input alphabet, but to generate a set of
output strings over Λ given a set of input strings over Σ. The set of output
strings correspond to valid C/C++ function specifications.

Since the purpose of the transducer is to model themain function C/C++ pro-
grams, we focus on a particular class of Moore machines that reject the input
string if the output string does not end with the letter return ∈ Λ. Formally,
the Moore (Finite) state-machine (FSM) is a 6-tuple (S, S0, Σ, Λ, T,G):

– S is a finite set (whose elements are think of as states)
– S0 ∈ S (the initial state)
– Σ is a finite alphabet of input symbols
– Γ is a finite alphabet of output symbols
– T is a function from S ×Σ to S (the transition function)
– G is an output function from S ×Σ to Λ (the state labeling function)

For any state s ∈ S and any symbol a ∈ Σ, T (s, a) is interpreted as the
state to which the FSM moves when the current state is s and the input is a.

Certifying Delta-Oriented Programs 9

A language is simply a set of strings involving symbols from some alphabet.
For instance, if the input alphabet is the singleton alphabet is defined as
Σ = {0, 1}, example strings over Σ are 〈1〉, 〈1.0〉, 〈1.0.1〉 and so forth.

The same reasoning applies to the output alphabet. Using the terminol-
ogy of the ECall/E122 Regulation scenario, the output alphabet is defined as
Λ = {readECU, setGPS, setGLONASS, dial112, return}, where “ECU” is the Elec-
tronic Control Unit, “GPS” is the global navigation satellite system in western
countries and “GLONASS” is the Russian satellite navigation system. Then, a
possible and valid string over Λ is 〈readECU . dial112 . return〉.

The identification of FSMs and formal-language terminology with the soft-
ware modeling counterparts is straightforward: the output alphabet corre-
sponds to the domain of discourse, i.e. the ECall/E122 Regulation scenario;
an output symbol represents a C/C++ function call; and an output scenario is
an output string that specifies the control-flow of a C/C++ program.

3.3 A Brief Introduction to the GNU Build System

The compilation and installation of software systems in distributed embed-
ded systems is a difficult task because of their dependencies on the run-time
system. In spite that the many Linux distributions lack a uniform software in-
stallation mechanism, this procedure often requires the user to manually edit
Makefiles and configuration headers [75]. The GNU Project2 is special in its
approach because it defines auto-configurable source packages, which means
that programs are compiled from source and installed automatically in many
different environments, without any user intervention.

The GNU Build System consists of three main tools: Autoconf, Au-
tomake and Libtool [82].The language of Automake is a logic language
where no explicit order of execution is pre-given. The logic relations declared
inside an Automake model specify the required make directives. The advan-
tage of using these models is that they abstract from the compilation envi-
ronment by means of a text-replacement mechanism provided by Autoconf
named macro expansion [49]. Libtool hides the complexity of using shared
libraries behind a consistent, portable interface.

In the environment of distributed embedded systems, the build-system tool
suite is not required to be installed on remote devices after configuration be-
cause cross-compilation is efficiently automated. Moreover, Makefile targets
can be added to make possible the creation of a binary distribution, usually
in the form of an RPM. The RPM packaging system3 is widely used in Linux
operating systems to manage the operations of installation, querying and dele-
tion of RPM packages on the system. DeltaRPM4 is a notable mechanism
to create delta binaries using directly RPMs. These binary distributions are
commonly referred to as delta-RPMs [3].

2 https://www.gnu.org/gnu/
3 https://www.rpm.org
4 https://fedoraproject.org/wiki/

https://www.gnu.org/gnu/
https://www.rpm.org
https://fedoraproject.org/wiki/

10 Vítor Rodrigues et al.

When a program is made of many source files and once the Makefile is
created, the best procedure is to compile each source file into a separate object
file. Object files contain definitions of variables and subroutines written out
in assembly. Most of these definitions will eventually be embedded in the final
executable at a specific address, i.e. each variable and subroutine will have
an assigned memory address, albeit relative to the program’s memory address
space. In fact, at compile time, the absolute memory addresses are not yet
known so they are referred symbolically. These symbolic references, which are
called symbols [28], are the means to link the object files together.

The translation of the symbol’s relative addresses to absolute memory ad-
dresses is not allowed inside the object file. Dynamic linking is accomplished
by giving to the program’s referring addresses the offset between the object
file and the executable. If a given symbol is undefined, this is, it is externally
defined in a shared object file, then the linker will dynamically map the whole
shared object into the address space of the program. Such an object is named
a Dynamic Shared Object (DSO). Memory addresses outside the DSO are
treated as inter-library dependencies.

This can be a difficult task because inter-library dependencies must be
correctly handled by the operating system in a uniform way. Libtool provides
compilation and linkage of portable shared libraries using a consistent and
portable interface. However, in order to build a dynamic shared library it is
necessary to remove position-dependent addresses from the object file archived
inside that library. This is the reason why the (relative) complexity of shared
libraries incur overhead.

4 Round-Trip Engineering using Delta-Oriented Programming

This section describes the process of building a delta-oriented product line
using round-trip engineering (RTE) as the technique to implement MDD. We
use ECall/E122 Regulation scenario considered by the HyVar project [22] to
illustrate how DOP can be made transversal to the design-time, compile-time
and deploy-time phases through the use of features. In the present section,
we focus on the features that specify which global navigation satellite systems
(GNSS) can be used: either the GPS system or the ERA-GLONASS system.

Section 4.1 introduces the fundamental concepts of DOP and the terminol-
ogy to be used throughout the paper. Section 4.2 provides a brief overview of
the RTE methodology for developing a DOP product line suitable to develop-
ment/compilation/deployment of embedded code. Section 4.3 and Section 4.4
describe DOP product lines for state diagrams and for build-system models,
respectively. The method for creating delta-RPMs is described in Section 4.5.

4.1 A Brief Introduction to Delta-Oriented Programming

A delta-oriented SPL [70] comprises a feature model, an artifact base, and
configuration knowledge. The Feature Model (FM) provides a description of

Certifying Delta-Oriented Programs 11

variants in terms of features: each variant is identified by a set of features,
called a product, where each feature φ is an abstract description of functionality.
The Artifact Base (AB) provides the language dependent reusable artifacts
that are used to build the variants.

The AB contains a (possibly empty) base artifact and a set of delta mod-
ules (deltas for short), δ, which are containers to express changes (additions,
removal or modifications artifact elements) on the base artifact. Deltas are
usually written using Domain-Specific Languages (DSLs) [60], where modifi-
cations on the core program are expressed through appropriate notations and
abstractions [51].

Configuration Knowledge (CK) connects the feature model and the artifact
base. It provides an activation condition for each delta (expressed by a proposi-
tion formula ψ over features) and an application ordering between deltas. DOP
supports automatic generation of variants: given a software product line, the
corresponding variants are generated by applying the activated deltas to the
base artifact according to the application ordering.

DOP is a generalization of Feature-oriented programming (FOP) (see [2,
6.1]), a previously proposed approach to implement SPLs where deltas corre-
spond one-to-one to features and do not contain remove operations. Both FOP
and DOP support validation at domain level using family-base type checking
mechanisms [56, 77].

4.2 A DOP Product Line With Multiple Artifact-Bases

The cornerstone of the RTE methodology is that conceptual models, such as
state diagrams, contribute to a better understanding of the software system.
These models can be created either before implementing the physical system,
or they can be derived from a system under development [72]. As explained in
Section 3.1, we consider procedural-state diagrams and a pre-existent source
code package implementing the sub-routines declared in the state diagrams.

As illustrated in Figure 2, RTE offers a bi-directional interaction between
behavioral models and source code. Using DOP terminology, behavioral mod-
els like procedural-state diagrams constitute one AB and the source code con-
stitute a second AB. Additionally, the delta-oriented approach to SPLs is also
used at object-code level in order to create a third AB of textual representa-
tions of binary distributions.

Typically, the workflow of the SPL can be described as follows. The devel-
opment cycle starts with the instantiation of design models in a many-to-many
manner: different valid products inside the FM can be associated with a series
of state diagrams. Then, a many-to-many first-pass implementation is per-
formed by applying model-to-code transformations to state diagrams and as-
sociating the resulting generated code, i.e. state-diagram code skeletons, with
existing C/C++ implementation artifacts.

Hereafter, iterations on the behavioral models, including formal validation
and refactoring, occur as illustrated in the lower feedback loops of Figure 2.

12 Vítor Rodrigues et al.

Fig. 2 The Delta-Oriented Software-Product Line for Mobile Code

In each iteration step, new variability realization artifacts can be added to
the artifacts bases in order to extend the solution space of the software system.
For example, procedural-state diagrams like the Moore FSM in Figure 1(a) can
be incrementally updated by applying delta operations on the artifact base of
FSMs. Likewise, build-system models like the Automake model presented in
Figure 1(b), can only be incrementally modified by activated delta modules.
Finally, as shown in the upper feedback loops in Figure 2, deltification is also
performed on RPMs to be updated on remote devices using delta-RPMs.

Considering the scenario of emergency call, there are several initiative to
implement this functionality such as the eCall/E112 program of the European
Union as well as the Russian ERA-GLONASS system. By means of a feature
diagram with cross tree constraints, Figure 3 describes the HyVar project
demonstrator. There are 4 products that can be generated.

Fig. 3 Feature Model for the SPL inspired by the ECall/E112 Regulation scenario

The EmergencyCall feature represents the core system that can be either
eCall or EraGlonass, the GNSS feature represents the position system to be
used that can be GPS (in Europe) or Glonass (in Russia), and the Language
feature represents the language to use, which can be either English or Russian.

The cross-tree constraints are presented at the bottom of the Figure 3. This
expression provides additional conditions on which features must be selected

Certifying Delta-Oriented Programs 13

together to create a valid product. For example, the EraGlonass system can
only work in Russia and require the Glonass positioning system, while the
European eCall system requires GPS positioning.

The AB comprises 4 deltas, named δbase, δgps, δglonass and δcombo, respec-
tively. The CK connecting the above FM to the AB specifies the following
activation rules:

– ECall/E112⇒ δbase
– eCall ∧ English ∧GPS⇒ δgps
– EraGlonass ∧ Russian ∧Glonass⇒ δglonass
– GPS ∧Glonass⇒ δcombo

In Section 7, empirical evaluation is focused on a subset consisting of two
significant products (executable variants) that can be generated by this SPL.
The first executable variant is named “GPS” and is generated upon the se-
lection of the following features: ECall/E112, GNSS, GPS, EmergencyCall,
eCall, Languages and English; the second is named “GLONASS” and is gener-
ated upon the selection of the following features: ECall/E112, GNSS, Glonass,
EmergencyCall, EraGlonass, Languages and Russian. The state diagrams cor-
responding to these two variants are presented in Figure 4(a) and Figure 4(b),
respectively.

(a) The “GPS” state machine

(b) The “GLONASS” state machine

Fig. 4 Example of products of a DOP-SPL for the ECall/E112 program

In accordance with the experimental setup, the deltas δbase and δgps are
the realization artifacts used to generate the “GPS” state machine, while the
deltas δbase and δglonass generate the “GLONASS” state machine. In this way
the “GPS” variant is generated by the application of 〈δbase ; δgps〉 and the
“GLONASS” variant is generated by the application of 〈δbase ; δglonass〉.

4.3 Software-Product Line for State Diagrams

State diagrams provide a high-level abstraction of the behavior of software
systems, where computations are abstracted by entities called states that are
traversed by means of transitions. The prominent notation for writing such
diagrams is the UML-based statechart metamodel [69]. Despite the existence
of tool support for state-diagram modeling, this paper defines a delta-oriented

14 Vítor Rodrigues et al.

SPL that uses the semantic model of a state-transition machine (STM). In
this way, a simple semantics is provided to incrementally create and validate
delta-oriented procedural-state diagrams.

Delta modules are containers for a domain language specific to STMs,
named State-Diagram DSL. The language constructs of this DSL are designed
to provide a simple notation and high-level abstractions to manipulate FSMs.
A detailed description of the language constructs of the State-Diagram DSL
is given in Table 1.

Table 1 Overview of the State-Diagram DSL for generating Finite State Machines

add(m, s, i, l, n): adds a new state.

– m is the FSM under design;
– s is the state to be added to the set of states S;
– i ∈ Σ is the input symbol being read;
– l ∈ Λ is the label of the added state given by labeling function: G(s, i) = l;
– n is the next state of the FSM after reading one symbol from Σ.

modify(m, s, i, t): modifies a state transition.

– m is the FSM under design;
– s ∈ S is the current state;
– i ∈ Σ is the input symbol being read;
– t is the new “next state” when a symbol from Σ is read: T (s, i) = t.

remove(m, s): removes an existent state:

– m is the FSM under design;
– s ∈ S is the state to be removed;
– all transitions from or to s are removed.

Figure 5 shows the delta modules and the correspondent generated FSMs,
starting from the base product “base st”. The delta module δbase, shown on the
left-hand side, contains the syntax construct add (M,D, ”dial112”, 1, E) which
meaning is the addition of a state D to an existing FSM called M , where
“dial112” is the label of that state, and E is the “next state”. The generated
STM, which is named “st1”, is shown in the right-hand side as the effect of
applying δbase to the empty product by means of “apply (δbase, base st)”, where
“apply” is the generic function for delta application. The formal definition of
the “apply” function will be presented later in Section 6 and Appendix B.

The generation of STMs illustrated in Figure 5 is done according to the
following reasoning. The first row defines the base program, which only con-
tains the C/C++ “return” (final) state. The second row shows how to generate
an intermediate program in response to the input scenario 〈1.1.1〉. Then, a
run of the FSM is defined as the sequence of states visited while traversing
transitions, as it reads symbols of the input scenario one-by-one [29], until the
output symbol return is generated.

Consequently, 〈readECU . dial112 . return〉 is the output scenario produced
by the FSM generated by the application of δbase. For the generated FSM, the
transition functions are: T (A, 1) = D, T (D, 1) = E and T (E, 1) = E, where

Certifying Delta-Oriented Programs 15

base st =

δbase = {
add(M,D, ”dial112”, 1, E);

add(M,A, ”readECU”, 1, D);

}

st1 = apply (δbase, base st) =

δgps = {
add(M,B, ”setGPS”, 1, D);

modify(M,A, 0, B);

}

st2 = apply (δgps, st1) =

δglonass = {
add(M,C, ”setGLONASS”, 1, D);

modify(M,A, 1, C);

}

st3 = apply (δglonass, st1) =

Fig. 5 Example of the correspondence between applied deltas and generated FSMs

{A,D,E} ⊆ S and A is the initial state. The output of the FSM is given by
the following set of labeling functions: G(A, 1) = readECU, G(D, 1) = dial112
and G(E, 1) = return.

Next, consider the delta modules δgps and δglonass. Both deltas are applied
to the FSM generated by δbase by means of apply (δgps, st1) and apply (δglonass, st1),
respectively. The “GPS” generated FSM receives the input scenario 〈0.1.1〉 and
the “GLONASS” generated FSM receives the input scenario 〈1.1.1〉. The first
output scenario is 〈readECU . setGPS . dial112 . return〉 and the second output
scenario is 〈readECU . setGLONASS . dial112 . return〉.

From the observation of the CK, we see that the selection of the concrete
features eCall,English and GPS triggers the generation of a FSM declaring
the setGPS C/C++ function and that the selection of the concrete features
EraGlonass,RussianandGlonass triggers the generation of a FSM declaring
the setGLONASS C/C++ function. The C/C++ functions readECU and dial112
are used in both the variants.

4.4 Software-Product Line for the Build System

This section presents the artifact base that abstracts the C/C++ behavioral
implementation by considering only the physical realization of artifacts, i.e.
filenames. These artifacts are declared in a build-system model like the one
presented in Figure 1(b). The benefits of using DOP techniques is to intro-
duce variability in the source-code package and use the FM presented in Sec-
tion 4.2 in order to promote customized compilation and allow software re-
modularization. Similarly to Section 4.3, the manipulation of build-system
models is made by means of a specific DSL.

16 Vítor Rodrigues et al.

In order to build an SPL where the domain of discourse are filenames, the
contents of Makefile.am models are manipulated through a small DSL that
defines the source-code files that are to be compiled and the output format
of that compilation, i.e. a static library, a dynamic library or an executable.
For sake of simplicity, it is assumed that each variant contains only one source
directory containing a single Makefile.am.

The Build-System DSL defined two syntax constructs: addsource (. . .) and
removesource (. . .). The source directory may contain several files that are
incrementally added or removed to/from a Makefile.am model using the DOP
paradigm. The DSL constructs which provide the means to declare source-code
filenames is summarized in Table 2.

Table 2 Overview of the Build-System DSL for manipulating Automake models

addsource (f): adds a source file to the contents of some Makefile.am.

– f is the name of the file on-disk that implements the behavior specified
inside the state of a a given FSM.

removesource (f): removes a source file from the contents of the Makefile.am.

– f is the name of the file on-disk.

Base programs specify the output format of the compilation and linkage
processes. For example, assuming that the symbolic name of the compiled pro-
gram is ‘prog’, Table 3 describes the possible Automake base programs. The
three possible output formats of the compilation are discriminated by means
of Automake variables. Static libraries are specified by using the variable
‘lib LIBRARIES’ and dynamic libraries use ‘lib LTLIBRARIES’.

Table 3 Three possible ways to compile the program ‘prog’

Executable Static Library Dynamic Library
bin PROGRAMS = prog lib LIBRARIES = libprog.a lib LTLIBRARIES = libprog.la

Executables are compiled by means of ‘bin PROGRAMS’. Additionally, the set
of source code files to be compiled are specified inside a list that is mapped
by the Automake variable suffixed by ‘ SOURCES’. Figure 6 illustrates how to
incrementally modify this variable by means of delta actions.

After defining the Build-System DSL, the process of generating variants of
the Build-System DOP product line is straightforward. Using the FM previ-
ously presented in Figure 3, a set of delta modules is sketched in order to build
the two executable variants under consideration: “GPS” and “GLONASS”.

The delta actions addsource (. . .) and removesource (. . .) illustrated in Fig-
ure 6 are used inside delta containers which are named as δ̇base, δ̇gps and
δ̇glonass. Then, the configuration knowledge of the Build-System SPL is com-
posed of the following activation rules:

Certifying Delta-Oriented Programs 17

– ECall/E112⇒ δ̇base
– eCall ∧ English ∧GPS⇒ δ̇gps

– EraGlonass ∧ Russian ∧Glonass⇒ δ̇glonass

base am =

bin PROGRAMS = prog

δ̇base = { addsource(”dial112.c”);
addsource(”readECU.cpp”); }

am1 = apply(δ̇base, base am) =

bin PROGRAMS = prog
prog SOURCES = diall112.c
prog SOURCES += readECU.cpp

δ̇gps = { addsource(”setGPS.c”); }

am2 = apply(δ̇gps, am1) =

bin PROGRAMS = prog
prog SOURCES = diall112.c
prog SOURCES += readECU.cpp
prog SOURCES += setGPS.c

δ̇glonass = { addsource(”setGLONASS.c”); }

am3 = apply(δ̇glonass, am1) =

bin PROGRAMS = prog
prog SOURCES = diall112.c
prog SOURCES += readECU.cpp
prog SOURCES += setGLONASS.c

Fig. 6 Correspondence between deltas modules and generated Automake models

The opportunities for reuse in the Build-System SPL arise from the way
in which pieces of software are compiled. As in Section 4.3, the delta module
δ̇base indicates the possibility to compile the files dial112.c and readECU.cpp
as a shared library, i.e. a DSO (cf. Section 3.3). Then, each executable variant,
which name is always prog, is compiled using either setGPS.c or setGLONASS.c,
depending on which delta is applied, either δ̇gps or δ̇glonass.

The build-system models created using DOP techniques are used to config-
ure the compilation schemes of the source-code package attaching behavioral
implementation to state diagrams. However, despite this flexible methodology
to promote reuse and modularity of binary artifacts, it is necessary to correlate
each delta sequence defined in Section 4.3 with 〈δ̇base ; δ̇gps〉 and 〈δ̇base ; δ̇glonass〉.
To this end, a formal validation mechanism according to the semantics of DOP
is proposed in Section 5.

4.5 Generation of delta-RPMs using Linux Commands

In this section, we briefly describe the process of building and applying deltas
at object-level using Linux commands. Having defined two delta-oriented prod-
uct lines for state diagrams and the build system, delta actions can be per-
formed on the binary outputs, i.e. the RPMs containing executables and shared
libraries, in order to create a binary distribution in the form of a delta-RPM.

18 Vítor Rodrigues et al.

As previously mentioned in Section 3.3, delta-RPM packages are binary
“patches” to existing RPM packages that can have different names. In other
words, delta-RPMs contain only the binary difference [62] between an “old”
RPM and a “new” RPM. In order to create and reconstruct delta-RPMs, the
following commands are respectively used: makedeltarpm5 and applydeltarpm6.
A description of these two Linux commands is given in Table 4.

Table 4 Overview of the Linux Delta-RPM suite

makedeltarpm (oldrpm, newrpm, deltarpm); creates a delta-RPM from two
RPMs. The result is later used to reconstruct the new RPM from the old RPM.

applydeltarpm (oldrpm, deltarpm, newrpm); reconstructs a new RPM from a
delta-RPM by applying a binary “patch” to the old RPM.

Note that delta-RPM is an enabling technology for creating delta-binaries,
but this is accomplished using black-box utilities which output requires seman-
tic validation. Section 6 explains how to enforce DOP semantics on delta-RPMs
through the verification of the outputs of makedeltarpm on the provider side
and of applydeltarpm on the device side. The PCC verification mechanism uses
delta-table of symbols and defines an elucidating safety property.

5 Validation of Delta-Oriented Software Product Lines

The delta actions contained in each delta module can be the addition, mod-
ification or removal of elements of the artifact base (cf. Section 4.1). For
example, in the particular case of the build-system product line, the domain
of the artifact base is composed by on-disk filenames f , and the delta actions
are addsource (f) and removesource (f). However, as stated in Section 3, the
use of multiple kinds of models like state diagrams and build-system models
required cross-validation at delta-level.

More precisely, consistency means that, given a total order on delta mod-
ules, there are no dangling state declarations and the binary program is mini-
mal in the sense that only strictly necessary C/C++ files are compiled. Hence,
for each pair of deltas with the same index in the order, the following rules to
be satisfied: 1) a filename can only be added to an Automake model if some
state in the FSM specifies a compatible ouput; 2) a filename can be removed
from an Automake model only if it exists inside the correspondent FSM.

The perspective on consistency is that the typing rules must be valid for
all applicable sequences of delta modules. For this purpose, the family-based
specification [77] technique is used. In practice, for a particular DOP product
line, a specification is assumed to hold for all generated variants. Therefore,
the family-based analysis must decide if the specification holds for all possible

5 https://www.mankier.com/8/makedeltarpm
6 https://www.mankier.com/8/applydeltarpm

https://www.mankier.com/8/makedeltarpm
https://www.mankier.com/8/applydeltarpm

Certifying Delta-Oriented Programs 19

delta sequences that can be applied under a particular FM. In other words,
family-based specifications incorporates the knowledge about all possible valid
feature combinations and, consequently, all possible deltas that can be applied.
Consequently, the checking mechanism considers that all implementation ar-
tifacts of all features are merged into a single virtual product [77].

In this section, we present a formulation of the consistency criteria using
the mechanism of Satisfiability Modulo Theories (SMT) [57]. Given a set of
delta modules like the ones defined in Figure 5 and Figure 6, the correctness of
a delta-oriented product line is determined by checking the consistency of the
virtual product modulo a theory that encode the typing rules over the artifact
domains. We start by giving an overview of the SMT formalism in Section 5.1
and then we present a theory for specifying the consistency between State-
Diagram SPL and the Build-System SPL in Section 5.2.

5.1 Fundamentals of Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is about checking the satisfiability of log-
ical formulas over one or more theories. It combines the problem of Boolean
satisfiability with domains, and term-manipulating symbolic systems. In gen-
eral, satisfiability is the problem of determining whether a formula expressing a
constraint has a solution [15]. In one hand, the most well-know constraint prob-
lem is propositional satisfiability SAT, where the goal is to decide whether a
formula over Boolean variables, formed using logical connectives, can be made
true by choosing true/false values for its variables.

On the other hand, satisfiability modulo theories (SMT) combine SAT with
theories, e.g. of arithmetic, arrays and uninterpreted functions. It is a decision
problem that generalizes SAT by replacing sets of Booleans variables by predi-
cates from a variety of underlying theories. Formulas are given a meaning, that
is, a truth value from the set {true, false}, by means of first-order models
with signature Σ. The models of interest in SMT are Σ-models belonging to
a given Σ-theory T constraining the interpretation of the symbols of Σ [14].

Since Σ-theories are most generally just one or more (possibly infinitely
many) Σ-models, a Σ-formula ϕ is satisfiable in a Σ-theory T , or T -satisfiable,
iff there is an element of the set T that satisfies ϕ. A set Φ of Σ-formulas T -
entails ϕ, written Φ |=T ϕ, iff every model of T that satisfies all formulas in
Φ satisfies ϕ as well. Moreover, Φ is T -consistent iff Φ 6|=T ⊥, where ⊥ is the
empty clause which truth evaluation is always false.

In general, the satisfiability problem for the Σ-theory T is decidable if there
is a decision procedure for quantifier-free formulas. Nevertheless, it is possible
to find semi-decision procedures for formulas of the form ∀∗ϕ, where ϕ is a
quantifier-free formula [35]. Since it is infeasible to implement a semi-decision
procedure for every possible theory, SMT solvers normally implement meta-
procedures for classes of theories that can be described by a finite number of
closed formulas [57].

20 Vítor Rodrigues et al.

5.2 A Theory for Consistency Between DOP Product Lines

For the purpose of specifying a theory for cross-validation between the State-
Diagram SPL and the Build-System SPL and, consequently, check the satif-
isfiability of a particular against that theory, we simplify the domain of the
FSM artifact base and consider only the labels of states and abstract from
the remaining elements of the Moore FSM definition. Additionally, because
filenames are the single entities manipulated by the delta actions defined in
the Build-System SPL, the consistency theory is required to take into consid-
eration the index in the application order of pairs of deltas, δ and δ̇, and the
“states” and “filenames” that are added or removed inside each container.

The process of defining a theory specifying the notion of consistency starts
with the definition of a set of predicates, i.e. functions that return Boolean val-
ues, for each delta action. For example, the predicate add state (s, i) specifies
that the state-label s is added inside the delta module at index i in the appli-
cation order. Another example is the predicate remove filename (f, j), which
specifies that the filename f is removed inside the delta δ̇ at index j. These
kind of predicates are commonly referred to as presence conditions [77].

In order to check that all applicable sequences of delta modules satisfy the
above predicates, a family-based specification technique is used. Therefore, the
correctness specification according to the semantics of DOP must be checked
for all valid products in the FM and the correspondent activation rules as
defined in the CK. This is equivalent to prove the consistency of a single
virtual product. To this end, the predicate ck (f, i) is defined, where i is the
index of some delta module and f is some propositional formula.

As explained in Section 4.1, the CK maps each product (i.e. a set of fea-
tures) to a sequence of delta modules (AB). In other words, each product is
specified by a propositional formula over selected features that can activate
more than one delta module (i.e. a delta sequence). By means of SMT-typing
rules, a given virtual product is valid iff there exists a propositional formula
in the CK that activates every delta module and each delta module satisfies
the cross-validation constraints between SPLs.

Let T be aΣ-theory defined for the DOP-SPL combining the State-Diagram
and the Build-System SPLs by means of the Σ-formulas ϕ1, ϕ2 and ϕ3. The
sorts contained in the signature Σ are those of Bool, String, Index and For-
mula. The sort Index defines delta-module indexes in the total order of deltas.
The sort Formula is used to distinguish propositional formulas inside the CK.

The set of predicate symbols included in the signature Σ are delta state,
delta file, add state, remove state, add file and remove file. For sake of sim-
plicity, the correctness specification involving the DSL “removal” constructs
(Table 1 and Table 2) are omitted in the definition of Theory (1).

In the following, without loss of generality, we assume that activation con-
ditions are written in Conjunctive Normal Form (CNF). Hence, each proposi-
tional formula used in the CK to activate a delta module at a given index i,
is in the form ψ1 ∧ ψ2 . . . ψk. Each ψj(1 ≤ j ≤ k) is disjunction of the form
ψ1
j ∨ ψ2

j ∨ . . . ∨ ψh
j where each each ψl

j(1 ≤ l ≤ h) is either a feature φ the

Certifying Delta-Oriented Programs 21

negation of a feature ¬φ. Then, the required presence conditions are expressed
by the constraint in Eq. (1).

∀ (f : Formula) (i : Index) . ck (f, i)⇒
n∧

k=1

(ψk : Bool) (1)

Theory 1: Cross-consistency between “states” and “filenames”

(i) cross c ((i1 : Index) (i2 : Index)) : Bool := delta state (i1) ∧ delta file (i2))

(ii) bijection ((x : String) (i1 : Index) (i2 : Index)) : Bool :=
(i1 = i2)⇒ ¬(add state (x, i1)⊕ add file (x, i2))

(iii) ϕ1 := ∀ (i j : Index) (x : String) . (cross c (i, j)⇔ bijection (x, i, j))

Theory 2: Consistency of the combined DOP-SPL

(i) ϕ2 := ∀ (i : Index) . ∃(f : Formula) . ck (f, i)⇔ cross c (i, i)

(ii) ϕ3 := ϕ1 ∧ ϕ2 ⇔ true

Assume that delta-module instances of a combined delta-oriented SPL are
encoded in SMT producing the set of formulas Φ. In order to prove that Φ is
T -satisfiable, i.e., to prove the consistency between delta modules belonging
to the two different delta-oriented SPLs, it is sufficient to prove that Φ∪ {ϕ3}
is satisfiable, written Φ ∪ {ϕ3} 6|=T ⊥. In this way, correctness properties that
can be checked against theory T are: 1) there is one propositional formula
that must be satisfiable for all declared delta-module indexes; 2) there are no
dangling states and the program is minimal in the set of all delta modules.

The main advantage of using the proposed SMT theory is to express con-
sistency as the composition of each of the properties (ϕ1 and ϕ2). An encoding
of the satisfiability decision problem modulo Theory 1 and Theory 2 using the
Z3 [25] SMT solver is given in Appendix A together with a set of examples.

6 Safety Assurance on Over-the-air Updates using delta-RPMs

As illustrated in Figure 2, OTA updates are typically required when the mobile
code needs to execute as efficiently as possible in order to make the best use
of network bandwidth and the scarce supply of computational power on the
remote device. This suggests that whatever technique is used to check the
desired code safety properties, e.g. type safety on untrusted agents [37, 53, 59],
must not penalize the performance the uploaded code over resident programs.

22 Vítor Rodrigues et al.

The proof-carrying code (PCC) [58] infrastructure provides a communica-
tion model where code produces upload mobile code into code receivers, which
then install and execute the code in their own environment. Furthermore, the
code producer sends along with the mobile code a representation of a formal
proof that the code meets certain safety and correctness requirements. The
main advantages of proof-carrying code are the following: 1) reduced commu-
nication between suppliers and remote devices; 2) the attached proof can be
validated using a small trusted infrastructure; and 3) the verification pass does
not impose run-time penalties for the purpose of ensuring safety.

The evidence of code safety takes the form of a formal proof according to
a safety specification. This is conceptually different from traditional solutions
that judge the safety of the mobile code by the identity of code producer.
Despite the fact personal authority techniques, such as Pretty Good Privacy
(PGP) [34], which is used in the RPM package management system, allow the
remote device to verify not only the identity of the producer, but also that
the integrity of the uploaded code is maintained, they fail to prevent trusted
producers from creating an uploading erroneous code. In such cases, the OTA
update can eventually break the integrity of the device’s runtime system.

Alternatively, PCC allows safety assurance through programming language
semantics using, for example, type safety approaches [53]. In these cases, type
safety is accomplished through data abstraction in order to efficiently perform
the static checking. In this way, the execution of the mobile code is not even
started unless it is guaranteed to be safe.

Next, a step-by-step description of the interaction between the code pro-
ducer and the code receiver is presented. In each iteration step of the protocol
there is a particular software component with a well-defined functional be-
havior. The software components of the PCC infrastructure are depicted in
Figure 7, where the right-hand side contains components of the code producer
and left-hand side contains the components of the code receiver.

Fig. 7 Overview on PCC protocol

The component Create Delta-RPM creates an RPM that contains the pro-
gram binaries plus a proof produced by the COQ theorem prover [12] that

Certifying Delta-Oriented Programs 23

asserts the type safety of the binaries using their table-of-symbols (cf. Sec-
tion 3.3 and Section 4.5).

The proof that is carried with the code is called a certificate. In order to
validate a delta-RPM upgrade, the code receiver establishes a safety policy
by means of a Specification, which defines in which circumstances the existent
RPM can be updated. For this purpose, the verification condition generator
(VCG) component computes a verification-condition (VC) predicate that needs
to be proven using the COQ theorem prover.

To prove that the VC predicate holds under the chosen Logic is sufficient
to guarantee the safety of the OTA update. For this purpose, the code receiver
relies on the Proof Checker to use the producer-provided certificate attesting
the properties of interest of the table-of-symbols of the uploaded code. Finally,
if an evidence of the safety specification is obtained, the component Update
RPM performs the code patch by upgrading the RPM on the target device. In
the following sections, each of the above steps are described in detail.

6.1 Defining the Safety Policy on the Remote Device

The safety policy is defined in advance according to the properties of the
mobile code that can be certified. In general, a safety policy can be seen as a
set of action preconditions. Therefore, it is defined in the context of a given
language or data structure. When analyzing the contents of an RPM, the
table of symbols is a data structure used by runtime system programs called
the linker and the loader [28].

The information about the symbols table of an object file is essential for
linking purposes at compile-time, when a linker is required to identify and
resolve symbol references. However, when using shared libraries, the symbol
table is required by the dynamic linker, which loads and links the shared
libraries needed by an executable at run-time. When performing OTA updates,
the table of symbols is at the foundation of the safety policy because it is
required both at compile-time and run-time. Through a proper analysis of the
table of symbols, it is possible to check if the update breaks the integrity of
the run-time system before executing the dynamic loader.

The table of symbols provide valuable information to answer relevant ques-
tions that affect safety and occurrence of runtime errors [88]. The need to
answer these question by means of formal checking mechanism is an essential
task because substantial differences may exist between the embedded system
and the runtime system of the code provider. Examples of such questions are:

1. How does the linker/loader resolve undefined symbols defined in multiple
versions of the same shared library?

2. How does the linker resolve global symbols defined in multiple libraries?

The problem posed in the 1st question is that if some C/C++ function with
the same name is present in more than one installed shared library, it is not
possible to choose which version of the function is seen by the invoking code.

24 Vítor Rodrigues et al.

This scenario is commonly referred as the “diamond problem” (cf. Section 3.1).
In order to ensure safety, it is required to check that all undefined symbols can
be resolved before running the program because the overlapping of two shared
libraries force one of them to be a hidden dependency.

The problem raised by the 2nd question is concerned with the fact that,
at compile time, global symbols can be exported as either strong or weak in
order to potentially be overridden at link-time by other symbols. A particular
threat to safety is when multiply-defined symbols are weak symbols, the linker
chooses an arbitrary one. In this case, runtime errors are difficult to track,
especially if duplicate symbols definitions have different C/C++ types.

In this paper, we focus on ensuring that an OTA update is allowed if and
only if all the symbols table of an executable or shared-library that are un-
defined, according to their ELF (Executable and Linking Format) [28] symbol
type, can be proven to be resolved by the run-time system before execution.
The symbols-table is obtained by means of the GNU nm7 Linux command.

The safety policy is embodied in the PCC infrastructure using three dif-
ferent components. First, a mathematical logic that is required to describe
preconditions under which a given update is allowed. The logic is the language
used to describe and verify preconditions. The same logic is the language used
to encode the verification conditions and the proofs. For the purpose of verifi-
cation of properties on the symbols table, a first-order predicate logic is used.

The ELF standard is common standard for executable files and shared
objects that provides a set of binary interface definitions that extend across
multiple operating environments. This reduces the number of different binary
interface implementations, thereby reducing the need for recoding and recom-
piling code. Each ELF file is made up of one ELF header, followed by file data.
The table of symbols is data located in the section header table. This infor-
mation is obtained using the nm command, which textual output is parsed by
the verification-condition generator (VCG).

Secondly, a safety policy must specify the Linux commands that must
be used to inspect meta-information contained in the delta-RPM in order to
create the “new” RPM that is to be installed. In fact, the reconstruction of the
“old” RPM is essential to extract the carrying proofs that might be contained
in the delta-RPM. In spite of the fact that only the RPM update needs to be
safe according to the safety policy, it is required to provide with a precondition
for such action. This precondition establishes that all symbols are well-typed
in the sense that they can be resolved by the loader prior to installation.

Thirdly, the safety policy contains methods to extract and inspect the
contents of delta-RPMs. This task is accomplished by the VCG, which output
is a VC, i.e. a predicate in the logic. The advantage of using delta-RPMs is
that, instead of verifying the entire symbols table of the reconstructed RPM,
only the difference between the symbols tables of the “old” and “new” RPMs
needs to be considered. This significantly reduces the size of the VC and,
consequently, the CPU cycles required to statically resolve undefined symbols.

7 https://www.mankier.com/1/nm

https://www.mankier.com/1/nm

Certifying Delta-Oriented Programs 25

6.2 Defining the Safety Specification Language

The language under consideration contains expressions that perform the re-
quired delta actions to create a symbols table, such as adding or removing
table entries. The logic is an extension of first-order predicate logic with four
predicates. The first is a typing predicate written in infix notation as e : τ ,
where e is an expression and τ is a type.

Symbols are also typed by retaining an abstraction of their value, i.e. their
ELF type. The container of the delta is defined as a list of symbols denoted by
π. Hence, the predicate In specifies if a given ELF symbol belongs the typing
abstraction of a table of symbols.

The DOP “apply” mechanism is encoded by the predicate apply (e, π), where
e is a delta and π is a variant (table of symbols). This predicate denotes the
evaluation of a set of delta actions to a final symbols table assuming an empty
base program. The third predicate resolve (list t) denotes that a given set of
symbols which have the ELF native type U (meaning that they are undefined),
can be successfully resolved at run-time. Last but not the least, the predicate
safe (π) denotes the type-safety condition of the symbol tables.

The logic also defines a set of inference rules required to prove the verifica-
tion condition. A fragment of the set of inference rules is shown at the bottom
of Table 5. The reader is referred to Appendix B for a description of the re-
maining semantic rules. A single symbol has the type ty symbol (t), where t
is the implicit (machine-level) EFL type of that symbol. The three following
rules refer to the (e : τ) typing predicate.

Besides the typing predicates, which assigns the type ty delta(. . .) to deltas,
the addition and removal of symbols to/from table assumes that these sym-
bols are well-typed. Finally, the expression containing delta actions that build
a table of symbols must agree on the corresponding ty delta(. . .) types.

Table 5 also give examples of the evaluation rule apply (e, π), which reduces
an expression to a final table of symbols. Since the container of a delta is
defined as a list of symbols, the add (s, e) expression evaluates to a list of
symbols using functional concatenation (· ++ ·) of symbols. Conversely, the
remove (s, e) expression evaluates to a list of symbols where the state s is
deleted from a table of symbols using the deletion infix operator (· \\ ·).

The last two rules in Table 5 specify how to classify a given table of symbols
as safe. The base case for induction considers a single symbol with ELF type
t, such that the predicate safe (t :: nil) holds. For a single symbol to be safe, it
is required the predicate resolved (t :: nil) to hold. Using this assumption, the
safety of an arbitrary table of symbols can be proven by induction of the apply
evaluation predicate, by considering all valid expressions in the language.

The objective of formalizing the safety specification in this way is that the
property of interest for safety is isolated by the predicate resolved, making the
proof of any verification condition an efficient process by means of a dedicated
COQ tactic. In the same way, the evaluation predicate, apply (e, π), and the
typed-expression predicates, s : τ and e : τ , can be automatically proven by
means of COQ tactics.

26 Vítor Rodrigues et al.

Table 5 Logic used for (delta-) type safety of an abstract table of symbols

ELF Types: t ::= A | B | C | D | G | N | R | S | T | U | u | V | W | ?
Symbols: s ::= symbol (v, t, n)

Expressions: e ::= add (s, e) | remove (s, e) | delta (list e)
Symbols Table: π ::= list s

Types: τ ::= ty symbol (t) | ty delta (list t)

Predicates: P ::= P1 → P2 | ¬P | ∀x.Px | s : τ | e : τ | In s π
apply (e, π) | resolved (list t) | safe (π, τ)

Semantic rules
s : τ

symbol (v, t, n) : ty symbol (t)

e : τ

s : ty symbol (t) e : ty delta (ts)
add (s, e) : ty delta (t :: ts)

s : ty symbol (t)
e : ty delta (ts) resolved (t :: ts)

remove (s, e) : ty delta (ts \\ t)
e : ty delta (ts1) delta (es) : ty delta (ts2)

delta (e :: es) : ty delta (ts1++ ts2)

apply (e, π)

apply (e, π1++ s :: π2)
apply (remove (s, e), π1++ π2)

apply (e, π1) apply (delta es, π2)
apply (delta (e :: es), π1++ π2)

safe (π, τ)

s : ty symbol (t) safe (π, ty delta (ts))
safe (s :: π, ty delta (t :: ts))

s : ty symbol (t)
safe (π1++ (t :: π2), ty delta (syms))
safe (π1++ π2, ty delta (syms \\ t)

The safety specification formalized in COQ in presented in Theorem 1. The
proof of the Safety proposition and the required COQ tactics are given in full
detail in Appendix B.

Theorem 1: Safety Specification for Delta Application in COQ

Inductive resolved : (list ascii) → Prop :=
| DS : ∀ t, ¬ In "U" t → resolved t.

Definition Safety :=
∀ (e : Expr) (v : Table) (t : list ascii),

apply (e, v) → e : (ty delta t) → resolved t → safe (v, ty delta t).

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdl ib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
ascii.html#http://coq.inr ia.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.5pl 1/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
ascii.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes

Certifying Delta-Oriented Programs 27

If the assumptions given in the definition of Safety in Theorem 1 can be
automatically proven, then the proof image of Safety included in the delta-
RPM package, is sufficient to prove the safety of a particular (binary) delta
application using one single system call to the theorem prover. This amounts to
prove a verification condition in the of safe (v, ty delta(t)), for some final value
v with type t. In this sense, we implement a formal mechanism to implement
proof-carrying code that certifies the safety of an OTA update.

The advantage of defining a logic to express safety properties is the new
properties are encoded as predicates using the information contained in the
table of symbols. For example, for the 2nd property of interest identified in
Section 6.1, the absence of runtime errors due to multiply-defined global vari-
ables explicitly tagged as weak symbols is enforced by means of a predicate
that forbids the existence of (user-defined) symbols with the ELF type “V”.

Note that the described syntax is able to express the safety specification
for the update of an RPM, but it does not include the actions related to
the reconstruction of RPM from a delta-RPM. These actions include reading
meta-information from the delta-RPM in order to have to access to the table
of symbols of the binary to be checked against the safety specification. These
actions are described in the following section.

6.3 Generating the Verification Condition

The fact that delta-RPMs can be manipulated by Linux commands only in-
creases the complexity of the implementation of these two components. For
example, the invocation of commands like applydeltarpm, makedeltarpm, etc.,
which are normally done using directly the command line, need to be included
in shell scripts, which semantics are difficult to formalize (cf. Section 4.5).

Therefore, some level of abstraction is required to specify the behavior of
the components on the receiver side. This is achieved by defining a workflow
of abstract actions, as shown on Figure 8. The program accomplishing these
set of abstract actions is referred to as the PCC agent. The main goal of the
PCC agent is to discharge and prove a COQ verification condition (VC) for
the logic presented in Table 5 as a precondition to apply the delta-RPM.

Compared to Figure 7, where the two main components are the VCG and
the proof checker, the workflow described in Figure 8, shows that the VCG
input depends on the results of previous computational steps, such as:

1. Parse the contents of the incoming delta-RPM in order to read the names
of the RPMs used on the producer side to create the that delta-RPM;

2. Reconstruct the RPM by invoking the applydeltarpm Linux command;
3. Extract the contents of the reconstructed RPM by means of the Linux

command rpm2cpio8. This includes both the carrying proofs, which are
binary images of the produced COQ proofs and the patched binary files.

8 https://www.mankier.com/8/rpm2cpio

https://www.mankier.com/8/rpm2cpio

28 Vítor Rodrigues et al.

Fig. 8 Detailed overview of the PCC-agent workflow on the receive side

After building a representation for the textual output the nm Linux com-
mand, it is necessary to take into account the computational cost of computing
and analyzing tables of symbols. For instance, consider that the “new” RPM
includes a shared library (DSO) that needs to be verified against the software
already installed on the remote device.

At run-time, the execution of the dynamic linker is required to load all
the shared libraries that might be needed by the object files contained in the
re-constructed RPM. In most implementations, this process does not scale
linearly as it is asymptotically at least O(R+nrlog s), where R is the number
relative relocations, r is the number of named relocations, n is the number of
participating DSOs (plus the executable), and s is the number of symbols [28].

Therefore, the static checking of the symbols table of the executable is
asymptotically O(ns2) because it is necessary to compare the symbols of each
dependency with the symbols of the executable and verify if they can be re-
locatable at run-time. This is equivalent to three nested for-loops, where the
outer for-loop iterates O(s) times, the inner for-loops iterate O(n) times for
each dependency, and each dependency iterates again O(s) times.

Since the static symbol resolution is a very time-consuming task, the use
of abstractions for checking the type safety of symbols tables is crucial. Be-
sides the type abstraction presented in Section 6.2, another design solution to
efficiently check the safety policy is to consider only the table of symbols that
results from the lexical comparison between the “old” and “new” RPMs. Then,
the COQ tactic that is used to prove the predicate resolved takes as input
a table of symbols that is, in general, small in terms of size. This technique
contributes for the minimization of the proof effort on the receiver side.

The number of symbol comparisons performed by the VCG can also be
reduced using the ELF concept of symbol visibility [28]. Symbol visibility in-
dicates if the symbol is visible outside the file being built. In one hand, the
opportunity to export symbols as needed does not only benefit library security,
but also reduces dynamic linking time. On the other hand, a small number of
exported symbols has a negative impact on modularity and chances for reuse
of shared libraries.

Certifying Delta-Oriented Programs 29

6.4 Proving the Verification Condition

The following step is to verify the VC using the proof-carrying images. In this
phase, an instance of COQ is used to check the validity of the delta-update
using the certificate reconstructed from the delta-RPM. As illustrated on the
right-hand side of Figure 8, the result of the proof checker is either success
or failure. In the first case, if the VC is provable within the logic, then the
contents of the delta-RPM do not violate the safety policy and the precondition
for updating the reconstructed RPM is guaranteed. On the second case, the
binary patch cannot be proven safe and the operation is simply aborted.

Next, we present in Table 6 the high-level syntax required in to express the
behavior of the components of the PCC agent. More precisely, for each of the
component participating in the PCC workflow described in Figure 8, there is
a syntax phrase abstracting the corresponding low-level operations.

Table 6 Syntax of the PCC agent on the reciver side

Variables v ::= x

Internals i ::= y

AbstActions a ::= ParseDeltaRPM x | ApplyDeltaRPM x | GetSymTable x

| GenerateVC x | ProveVC x | updateRPM x

ConcActions f ::= Function x (y1 → y2)

BoolExprs b ::= Verify a

Commands c ::= abort | x := a | c1 ; c2 | if b then c1 else c2

Semantic rules
ψ, σ ` v ⇓v i

ψ, σ ` x ⇓v σ(x)

ψ, σ ` a ⇓a i

ψ, σ ` ψ(e) = Function x g ψ, σ ` x ⇓v y
ψ, σ ` e ⇓a (g y)

ψ, σ ` c ⇓c σ′

ψ, σ ` e =⇓s y
ψ, σ ` Assign x e ⇓c [x 7→ y]σ

ψ, σ ` c0 =⇓c σ′ ψ, σ′ ` c1 =⇓c σ′′

ψ, σ ` c0 ; c1 ⇓c σ′′

ψ, σ ` v =⇓b true ψ, σ ` c1 ⇓c σ′

ψ, σ ` if b then c1 else c2 ⇓c σ′
ψ, σ ` v =⇓b false ψ, σ ` c2 ⇓c σ′

ψ, σ ` if b then c1 else c2 ⇓c σ′

The abstract actions are defined in the syntax category a ∈ AbstActions,
where the constructs ParseDeltaRPM, ApplyDeltaRPM, GetSymTable, GenerateVC,
ProveVC and updateRPM represent functions on values which are internal to
the implementation and defined in the syntax category f ∈ ConcActions. The
mapping between an abstract action and a concrete action is given by the
function Ψ :: (AbstActions→ ConcActions).

30 Vítor Rodrigues et al.

Both abstract and concrete actions depend on variables v ∈ Variables,
which are associated with low-level implementation values denoted by i ∈
Internals inside a store. The set of all stores is denoted Σ. Because internal
values are specific to the Haskell implementation of the PCC agent, they are
simply denoted by y1, y2, Examples of internal values are datatypes for
the file-system, lists, exit codes, etc. Like other simple imperative languages,
PCC agent programs are constructed using elements c ∈ Commands.

The big-step operational semantics for the agent language is given at the
bottom of Table 6. The meaning of an agent program is expressed by semantic
rules that specify the entire transition from an initial configuration, i.e. a pair
(Ψ × Σ), to a final (internal) value or store. Intuitively, any configuration
(ψ, σ) represents the dynamic instances of the two maps during a computation,
containing the current value for variables.

There are three types of semantic rules, denoted by three different relational
operators: ⇓v, ⇓a and ⇓c. For abstract actions, the final value is an value
internal to the low-level implementation; for Boolean expressions, the final
value is t ∈ {true, false}; and for commands, the final values is a store. We also
assume that [x 7→ y]σ denotes the update of σ on the variable x with value y.

The Haskell interpreter for the language of the PCC Agent presented in
Table 6 is given in Appendix C and available from https://github.com/
esmifro/CertifiedDOP.

7 Data Analysis and Evaluation

In this section, we present and analyze experimental results that insight on the
trade-off between fast download times of OTA updates and efficient checking
mechanisms when features are dynamically selected upon a reconfiguration
requests (cf. Figure 2). The objectives of this empirical evaluation are: 1) to
establish a rationale, using a small pilot project, in order to conclude if the hy-
pothesis posed in Section 1, i.e. the existence of a trade-off, can be extrapolated
to more complex examples by means of statistical significance; 2) to evaluate
the feasibility of the modeling/development/deployment methodology using
the execution time of the PCC agent as a process-oriented metric.

The experiments are done in the context of the Hyvar European project,
which considers the use of the Autonomous Telematics Box ATB2 (developed
by Magneti Marelli) as the Electronic Control Unit (ECU). This ECU inte-
grates a telephone module for inter-connection with cellular communication
networks, a multi-constellation satellite localization module and a remote up-
date mechanism suitable for the ECall/E112 Regulation case study. The pro-
duction scenario being tested is OTA update that needs to be deployed upon
a reconfiguration request, depending on Global Navigation Satellite System
(GNSS) that is currently locating the vehicle. Using DOP-SPL terminology,
the deployed code depends on the selected features (cf. Section 4.2).

https://github.com/esmifro/CertifiedDOP
https://github.com/esmifro/CertifiedDOP

Certifying Delta-Oriented Programs 31

7.1 Experimental Overview

The results presented in this section correspond to the executable variants
that are generated using the source code specifically developed for the Hyvar
project. Experimental data is measured with respect to factors such as the size
of the OTA update, modeling/developing methodology, available hardware and
support software. By setting the goal of the experiment in the process of finding
the best trade-off between the size of the OTA update and the execution time
of the PCC agent, we are able to identify questions of interest that permit
quantitative analysis.

Questions of interest define the objective measurements to be performed,
the way experimental data is presented and the statistical framework that is
used to validate the use of the selected metric. The addressed questions are:

– What are benefits of modeling data/control coupling at binary level?
– How much bandwidth can be saved by using the delta-RPM technology?
– Is the execution of the PCC agent fast enough to meet the computational

resources of embedded system?
– Can the DOP-SPL increase the flexibility and adaptability of a self-check

framework supporting OTA updates?

Answers to these questions are obtained by applying an iterative heuristic
algorithm that carries out the empirical validation process. The steps of such
algorithm are briefly described by the following:

1. Available compilation schemes are analyzed according to the selected fea-
tures (cf. Figure 3) and the two variants involved in the OTA update;

2. These schemes are then checked against the distributed embedded system
requirements (e.g. Worst-Case Execution Time of the PCC agent);

3. The hypothesis of performing the OTA update is confirmed or refuted de-
pending whether there is a trade-off that satisfies the previous requirements;

4. If the hypothesis is refuted, start a new iteration at the level of build-system
modeling (cf. Figure 2) to increase or decrease data/control coupling;

5. Repeat the previous steps until the best trade-off is found.

The above algorithm follows from the round-trip methodology presented
in Section 4.2, which considers a SPL with multiple artifacts bases. The use
of multiple artifact bases introduces binary re-modularization into the SPL
development process. In the following, we refer the two different variants by
the names “GPS” and “GLONASS” introduced in Section 4.2.

The screening of experimental data is done using histograms and the sta-
tistical framework ensures the representativeness of the sampling by using a
(univariate) linear regression model, where the goodness-of-fit statistical mea-
sure, r2, is required to be equal to 1. This means the regression line must
perfectly fit the data and that errors are normally distributed [5, 85].

The series of experiments consider the available set software by-products,
without taking into consideration the correlation between the delta-oriented
baseline and the derived products. Scalability is addressed by demonstrating

32 Vítor Rodrigues et al.

that experimental results are correctly interpreted, so that experiments can
be replicated on more complex case studies.

7.2 Experimental Design

The purpose of using execution time as a process-oriented metric instead of
code-level metrics such as lines of code or Cyclomatic complexity [55, 84], is
to give the metric a prescriptive nature. In particular, the execution time of
the PCC agent provides an insight, on a test-first basis, on the trade-offs that
are intrinsic to the modeling/developing/deployment process.

This testing strategy aid software engineers to evaluate and validate the
product using a systematic methodology based on empirical evidence. Depend-
ing on the distributed embedded system where the product is deployed, the
execution time metric is a factor that decides if the posed hypothesis is either
refutable or confirmed.

In the context of the Hyvar European project, the ECU that managed
the ECall/E112 services was based on an ARM9 core with 256KB of RAM
and 2MB of flash memory. With the current technological developments of the
control units, the ECUs that will manage the OTA updates will be increasingly
performing: e.g. currently we can talk about 4xARM-R52 cores in lockstep (8
cores total) and up to 4GB of memory.

To make the experiment reproducible without the need for specific hard-
ware and more flexible for future works, it was decided to use a virtual machine
for the empirical evaluations that will follow. The experimental results were
obtained using the Criterion benchmarking library9 on a Linux Fedora vir-
tual machine, configured to use a maximum of 4GB of memory, running on a
4x Intel(R) Core(TM) i7 CPU@2.70Ghz, 8GB memory, hardware machine. The
virtual machine is available at http://cdop.di.unito.it/.

7.3 Empirical Evaluation

As previously explained in Section 4.4 in Table 3, there are three possibilities
to compile a DOP executable variant using the GNU Build System. For the
ECall/E112 Regulation case study, software packages can be compiled either as:
1) a single executable file; 2) an executable distributed with an internal shared
library ; 3) as an executable that uses a pre-installed shared library.

Next, we describe a set of experiments that focus on the measurement of the
size of binary distributions, i.e. RPMs and delta-RPMs, and the static checking
time required to ensure the safety policy described in Section 6.2. These two
experiments support empirical evaluation of the cost of performing formal
verification during OTA updates when the logical structure of binary code
is subject to delta-modeling. Although the decision of accepting or rejecting
a particular product is ultimately dictated by the operational requirements

9 http://www.serpentine.com/criterion/

http://cdop.di.unito.it/
http://www.serpentine.com/criterion/

Certifying Delta-Oriented Programs 33

of the embedded system, empirical analysis allows to anticipate which design
choices are the most adequate.

7.3.1 Evaluating the Size of OTA Update

The first set of measurements corresponds to the size of RPMs before the
creation of delta-RPMs. The histogram presented in Figure 9 discriminates
six possibilities to customize ECall/E112 programs with Automake models:
the “GPS” variant compiled as a single executable, an executable distributed
with an internal DSO or as an executable using a pre-installed DSO and the
same for the “GLONASS” variant. The values displayed in blue background
represent the size in KBytes of the executables, the values displayed in red
background represent the size of DSOs and the values displayed in yellow
background represent the size of the correspondent RPM.

The analysis of Figure 9 shows that the size of the “GPS” variant is smaller
than that of the “GLONASS” variant. For the cases where no DSOs are used,
the size of the RPMs are approximately equal (GPS – 60KB / GLONASS –
65KB). As expected, when the executable is distributed with an internal shared
library, the size of the RPM is significantly bigger because shared libraries
include a relocation entry on the DSO header (cf. Section 3.3).

Fig. 9 Size of Executables, Shared Libraries and RPMs

For example, compared with the “GPS” single executable, the reduction of
the “GPS” variant using DSOs is of 50KB, but the size of the entire program
(containing the DSO) increases to 82KB + 51KB = 133KB (a greater value

34 Vítor Rodrigues et al.

than the initial 101KB). For this reason, DSOs incur overhead and are effective
only when linked with at least a few programs.

As a side effect, the size of the RPMs also increases greatly (90KB / 93KB).
However, the size of RPMs can be reduced when the DSOs are compiled in a
single (external) pre-installed DSO (46KB / 48KB). This is the best trade-off
is terms of RPM size and the cost of installing a common DSO is negligible
(85KB− 82KB = 3KB / 85KB− 84KB = 1KB).

After compiling the several RPMs, it is possible to evaluate the efficiency
of the makedeltarpm command in terms of the delta-RPM size (KB) and the
time required to verify the safety properties as a pre-condition to install the
delta-RPM. The results for the sizes of delta-RPMs are displayed in Figure 10
for all the possible compilation schemes (nine) when applying delta-RPMS.
Table 7 describes these schemes in terms of the arguments that are passed to
makedeltarpm, i.e. the “old” and the “new” RPM. Please note that, for each of
the compilation schemes, the output depends on the order of the arguments.

Table 7 Description of all possible delta-RPM compilation schemes using makedeltarpm

delta-RPM
Compilation Scheme Combinations of “new/old” RPMs (and vice-versa) used

by the makedeltarpm Linux command

1 GPS (executable) / GLONASS (executable)

2 GPS (executable) / GLONASS (+shared)

3 GPS (executable) / GLONASS (+external DSO)

4 GLONASS (executable) / GPS (+shared)

5 GLONASS (executable) / GPS (+external DSO)

6 GLONASS (+shared) / GPS (+shared)

7 GLONASS (+shared) / GPS (+external DSO)

8 GLONASS (+external DSO) / GPS (+shared)

9 GLONASS (+external DSO) / GPS (+external DSO)

Scheme 1 defines two delta-RPMs that can be built using single executables
for the “GPS” and “GLONASS” variants. The first is obtained when “GPS” is
the “new” RPM and the second is obtained when “GPS” is the “old” RPM.
The size of these two delta-RPMs is different because the symbols that need
to be patched in the “old” RPM depends on the selected executable variant.

For example, when the “new” RPM is built when the “GPS” executable
variant is selected, there are no symbols to be added (only to be removed).
Conversely, when “GLONASS” is selected, the executable contains additional
symbols exclusive to the “GLONASS” variant. In Scheme 1, all additional
symbols have the ELF types T or D (Section 5) and they belong to the text-
code and initialized ELF sections, respectively.

As Fig. 10 illustrates, the order of the arguments of makedeltarpm is not
symmetrical. This fact is more visible when DSOs are used. In Scheme 2, for

Certifying Delta-Oriented Programs 35

example, when “GPS” is the “new” variant, a restricted set of symbols are
added to the ELF text-code (T), uninitialized (B) and initialized (D) sections.
However, when the “GLONASS” (using an internal DSO) is the new variant,
several undefined symbols (U) need to be patched because position-dependent
memory addresses need to be removed. For this reason, the “GLONASS/GPS”
delta-RPM is significantly bigger than the “GPS/GLONASS” version.

Fig. 10 Comparison Between the size (KB) of delta-RPMS

The choice between the inclusion the DSO inside the binary package of the
executable or the installation of the DSO as a separate package also has a sig-
nificant impact in the number of symbols that need to be patched. For example,
in Scheme 7, is visible a great asymmetry between the size of the delta-RPMs.
The reason for this fact is that when the DSO is pre-installed, the size of the
GPS executable (+ external DSO) is very small (51KB). Consequently, the
corresponding delta-RPM shown in Figure 10 is also small (17KB).

Conversely, if the reconstructed RPM includes the GLONASS executable
(+ shared), it requires patches for undefined and text-code symbols because
it contains both the internal DSO and the executable. Consequently, the size
of the delta-RPM is necessarily bigger (65KB). In summary, the more effi-
cient compilation scheme in terms of the delta-RPMs sizes are obtained when
reusing pre-installed DSOs. This is the case of Scheme 9, where the size of
delta-RPMs sizes are approximately the same (17KB / 19KB).

7.3.2 Evaluating the Execution Time of the PCC Agent

Next, for each of the delta-RPM compilation schemes presented in Table 7,
we present the corresponding execution time of the PCC agent. The execution

36 Vítor Rodrigues et al.

time is a statistical estimation that is computed via Least-Ordinary Squares
(OLS) [5, 85] by running the Criterion profiler on the PCC agent a certain num-
ber of times. The conditions for statistical significance are evaluated through
the application of the heuristic algorithm that, iteratively, run the experiments
until the criteria for using OLS regression is satisfied. Next, we briefly describe
the observations made during the application of such algorithm.

The first observation was that the goodness-of-fit coefficient, r2, increases
towards 1 when we increase the number of runs of the PCC agent, hence
increasing the sample population. The second observation is that a relatively
small number of samples, 10 runs in this case, is found to be sufficient to assure
the soundness of the OLS predictor because the condition r2 = 1 applies to
all the compilation schemes described in Table 7.

The main reasons for this fact are: 1) the elimination of correlation between
the initial DOP-SPL baseline and the derived variants, and the consideration
of individual variants independently; and 2) the avoidance of measurement
bias by using a virtual machine without a running graphical interface. The
third observation is a substantive measure of how much the “outliers” affect
the regression model, which is 19% in all experiments that consider 10 samples.

Comparative analysis between the available compilation schemes takes into
consideration the number of symbols contained in all object files inside each
delta-RPM. The corresponding histogram is presented in Figure 11, where
the number of updated symbols from the “GPS” variant to the “GLONASS”
variant is displayed in green background, and the number of updated symbols
from the “GLONASS” variant to the “GPS” variant is displayed in yellow
background. Likewise, the histogram showing the estimation for the execution-
time of the PCC agent is presented in Figure 12.

Fig. 11 Number of symbols for “new” and “old” RPMs per compilation scheme

Certifying Delta-Oriented Programs 37

The first conclusion is that execution time strongly depends on the number
of symbols that need to be checked against the safety specification. Secondly,
we conclude that the type of symbol has influence not only on the performance
of the proof-checker, but also on the verification-condition generator (VCG)
(see Figure 7). For example, in Scheme 1, where the variants are compiled
as single executable files (absence of undefined symbols), there are 3 patched
symbols on the “GLONASS” RPM when the “GPS” variant is being deployed.

Fig. 12 Checking time for “new” and “old” RPMs per compilation scheme

Conversely, there are 20 patched symbols when the the “GLONASS” variant
is deployed. The histogram of Fig. 12 shows that the update of the “GLONASS”
RPM over of the “GPS” RPM takes 16.9 seconds, whereas when the update
over the “GLONASS” RPM only takes 5.016 seconds. Hence, we conclude that
the choice to compile variants as single executables files is potentially expensive
from the checking-time point of view, even though the size of the delta-RPMs
are relatively small (31KB / 36KB).

In this particular case, the proof effort for checking the VC generated by
the PCC agent can be non-negligible when the number of patched symbols is
high. Therefore, the scenario that uses only executables refutes the hypothesis
of finding the best trade-off between the size of delta-RPMs and the PCC agent
checking time because feature selection give rise to very disparate execution
times. This fact makes impossible to extrapolate results to other scenarios and
makes scalability difficult to assess.

Whenever DSOs are included in the binary distributions, the number of
patched symbols in the executable decreases significantly. Nevertheless, since
the table of symbols of the “GLONASS” variant is bigger than that of the
“GPS” variant, the number of patched symbols is always higher when perform-

38 Vítor Rodrigues et al.

ing an update of the “GLONASS” RPM over of the “GPS” RPM. However, the
variation of the PCC agent execution time is not caused only by the number
of patched symbols, but also by the ELF type of each symbol. In particular,
the former has an impact on the execution of the COQ tactics used by the
proof-checker and the latter has an impact on the VCG execution time.

As previously explained in Section 6.3, only the symbols that are undefined,
i.e. with the ELF type U , need to be statically resolved in order to guaran-
tee run-time integrity using a O(ns2) algorithm, where n is the number of
participating DSOs and s is the number of symbols. Independently of either
using a DSO distributed along with the executable or using an external DSO
pre-installed in the system, the increase of the execution time of the VCG
is caused by the number of comparisons that need to be performed between
undefined symbols contained in the executable and all its dependencies.

With respect to the number of dependencies of the executable module,
our observation is that the increase of the total execution time of the PCC
agent is non-negligible, even if the number of patched symbols is the same when
compared to the other compilation schemes. For example, when the delta-RPM
compilation scheme defines that both “new” and “old” RPMs include DSOs,
like Table 7 shows for Schemes 6, 7, 8 and 9, the additional computational
cost is above 2 seconds. Nevertheless, the execution time is less dependent on
the selected features.

7.3.3 Empirical Validation of the Best Compilation Scheme

Experiments demonstrate the absence of an all-purpose solution when com-
piling software for the purpose of performing efficient OTA updates by means
of binary patches. Factors that contribute for this facts are bandwidth con-
straints and computational constrains on the distributed embedded system.
In one hand, to design embedded code as a single executable file is simple,
but very inefficient in terms of bandwidth usage due to the amount of code
that needs to be transferred to apply the patch. This fact can be extrapolated
to other environments, suggesting that a monolithic approach to the logical
organization of binary code is not appropriate.

On the other hand, the compilation of shared libraries installed separately
incur on non-negligible computational overhead when performing the integrity
check against the safety policy. The first conclusion is that increasing modular-
ity is not necessarily the best direction when developing a DOP-SPL support-
ing OTA updates. This fact alone can be sufficient to make the OTA update
impossible to perform when the embedded system has, for example, real-time
constrains that need to be preserved. Therefore, the negative effect excessive
dynamic linkage can also be extrapolated to other environments.

This heuristic analysis suggests the existing of trade-offs between fast
downloads of OTA updates and efficient static verification on the remote de-
vice. The rationale for validating the best trade-off hypothesis is the following:
given a certain available bandwidth and a specification of the resource capa-
bilities of the remote device, if a given binary patch can be formally verified

Certifying Delta-Oriented Programs 39

by the PCC agent by empirical evidence, the hypothesis of performing the
OTA update is confirmed. When a given binary fails the test, the hypothesis
of performing the OTA update is, therefore, refuted.

Considering the ECall/E112 case study, we conclude that Scheme 9 is the
optimal compilation scheme (trade-off) because: 1) the of size of the delta-
RPM is the smaller among all schemes, i.e. 17KB or 19KB (cf. Figure 10),
for the “GPS” or the “GLONASS” update, respectively; 2) the estimation for
execution time of the PCC agent is 11.18 or 12.72 seconds (cf. Figure 12), for
the “GPS” or the “GLONASS” update, respectively. However, as previously
mentioned, this fact should not be extrapolated to other environments because
we are considering a relatively small number of patched symbols (cf. Figure 11).

The scalability of this pilot use-case scenario requires precise knowledge
about the available computational resources on the remote device. As pre-
viously mentioned in Section 7.1, upper-bound estimates on the execution
time of the PCC agent (e.g. WCET) can be an essential aid to the decision
process of confirming or refuting the posed hypothesis. Despite this fact, the
experimental evaluation given in Section 7.3.1 suggest that scalability can be
achieved using round-trip engineering, making use of build-system models to
assist variant re-modularization.

7.4 Threats to validity

We will use the terminology of [20]. Scalability is an external validity infer-
ence and the empirical evaluation described in this paper lacks deductible
conclusions. However, the empirical assessment strongly relies on statistical
conclusion validity, which never undermines internal validity. In fact, and de-
spite the use of regression and a virtual machine to simulate the computational
resources of the embedded system, the causal relationship between the num-
ber of symbols inside binaries and the execution time of the PCC agent is
demonstrated by empirical evidence.

The integration of WCET estimation [67] is proposed to maximize con-
struct validity. The use of formal techniques such as Abstract Interpretation
in order to determine if predictions are supported across contexts, for ex-
ample, if the theoretical hypothesis can be proven with respect to real-time
constraints, would improve the assessment of threats to external validity.

Outside the scope of this study are threats to external validity caused by
the non-inclusion of background variables, e.g. available downlink bandwidth.
Since the interaction of these variables might modify the observed effects,
external validity is very difficult to obtain due to the impossibility to anticipate
all the background variables implied in OTA updates.

8 Conclusions

This paper presents a SPL that integrates MDD in order to provide flexi-
ble OTA updates for a simplified ECall/E122 Regulation scenario. The DOP

40 Vítor Rodrigues et al.

paradigm is used as the variability realization mechanism. The DOP product
line uses delta actions at the three levels of state-diagram modeling, customized
compilation of C/C++ code and deployment of delta binaries on remote devices.

A formal verification mechanism ensures the correctness of the realization
artifacts, i.e. state-diagram and build-system models, according to the seman-
tics of DOP. The safety property of interest when performing self-check OTA
updates on the distributed embedded system is the run-time integrity on the
remote device. For this purpose, a particular PCC framework was developed.

Empirical validation shows that the physical realization of executable vari-
ants has a deep impact on the size and performance of OTA updates. Empirical
evidence demonstrates that the generation of executable variants does not scale
if the structure of the binary code is not taken in consideration. We provide a
solution for this problem through an heuristic algorithm that facilitates empiri-
cal validation in each iteration of the DOP-SPL round-trip development. Such
algorithm provides experimentally-acquired evidence that the size of binary
patches can be significantly reduced, hence capable of improving download
efficiency, but also reveals that the cost of performing self-check OTA updates
on remote devices may preclude the entire operation.

The observation of a trade-off between the size of binary patches and the
computational effort required to guarantee the integrity of the runtime system
after deployment requires the evaluation of the software system and the simu-
lation of the environment in which the OTA update is to be performed before
taking action. The hypothesis to find the best trade-off between the conflicting
characteristics of the software system is confirmed or refuted by applying the
iterative heuristic algorithm on individual products. A statistical framework
supports this process by means of a process-oriented metric.

The evaluation of the pilot use-case shows that the scalability of the soft-
ware system can only be achieved by performing incremental OTA updates,
where the trend is to minimize program size and data/control coupling in each
of such individual binary updates. The hypothesis of using the best available
compilation scheme in the DOP-SPL is order to certify OTA updates is real-
istic only when the cost of formal verification is empirically validated, in each
iteration separately, on a test-first basis, and considering the computational
resources of the remote device. The design choice to apply DOP techniques
ubiquitously in the distributed embedded system provides additional flexibility
to define the appropriate modularity of the software system by configuration.

The pilot use-case described in this paper is an idealized version of a demon-
strator developed in the HyVar project. The approach to MDD makes strong
simplifying assumptions by not considering tool-support for state diagrams.
Hence, the processes of code-generation and analysis of C/C++ source code are
not included in the proposed methodology. Without imposing limitation on
the proposed DOP-SPL methodology, the analysis of different kinds of de-
sign models use the semantics of abstract machines and the cost analysis of
self-check OTA updates is performed directly on binary files.

The integration of the proposed approach in a full-fledged tool chain, like
the one developed by the HyVar project [22, 52], is a major project that re-

41

mains as future work. This integration should incorporate tool-support for
data and control coupling analysis at the level of C source code [36] (as done,
e.g., in the context of RTCA DO-178 projects [76]), the use of code-level met-
rics [55, 84] and static analysis of embedded code (e.g. Worst-Case Execution
Time (WCET) analysis in distributed embedded systems [67]).

In addition to the process-oriented metric used presented in this paper, i.e.
the total execution time of the PCC agent on the remote device, the referred
analyses can assist the heuristic algorithm in the process of finding the optimal
trade-off in the presence of more complex use-cases and more detailed specifi-
cations about the available computational resources on the remote device.

Acknowledgements We thank the anonymous SoSyM referees for comments and sugges-
tions for improving the paper.

Appendices
Appendix A Consistency Check Using the Z3 SMT Solver

This appendix shows the Z3 [25] SMT solver scripts that check the satisfiability
and validity of the consistency specification established between the State-
Diagram and Build-System DOP product lines. The consistency Σ-theory [57]
is formalized using constraints between pairs of deltas that share the same
index in the application order. Further, the Configuration Knowledge (CK) of
the DOP-SPL is consistent only if there is an activation rule for every delta
index. The activation rules are defined in conjunctive normal form (CNF) and
implicitly determine the application order.

In order to demonstrate the use of Z3 encoding of the Σ-theory presented
in Section 5.2 considers two delta indexes and, correspondingly, two activation
rules. Next, we present the CKs of the two DOP-SPLs under consideration.
The delta sequences under consideration are 〈δ1 ; δ1〉 and 〈δ̇1 ; δ̇1〉, respectively.
1. Configuration Knowledge of the State Diagram DOP-SPL:

F1 δ1

F1 ∧ F2 δ2

2. Configuration Knowledge of the Filenames DOP-SPL:

F1 δ̇1

F1 ∧ F2 δ̇2

The Z3 definitions are given in Listing 1. The encoding of theory spec-
ifying the cross-consistency between the State-Diagram DOP-SPL and the
Build-System DOP-SPL is presented in Listing 2 and the encoding of the
DOP semantics with respect to cross-consistency between SPLs in given in
Listing 2. The source script is available at https://github.com/esmifro/
CertifiedDOP/tree/master/z3.

https://github.com/esmifro/CertifiedDOP/tree/master/z3
https://github.com/esmifro/CertifiedDOP/tree/master/z3

42 APPENDIX A CONSISTENCY CHECK USING THE Z3 SMT SOLVER

Examples of valid and unsatisfiable instances of product lines are described
in Listing 4, Listing 5 and Listing 6.

Listing 1: Z3 Script – Definitions

;; defined predictates
(declare-datatypes () ((Index I1 I2)))
(declare-datatypes () ((Formula F1 F2)))

(declare-const name String)

(declare-fun delta_state (Index) Bool)
(declare-fun delta_file (Index) Bool)
(declare-fun state (String Index) Bool)
(declare-fun filename (String Index) Bool)
(declare-fun ck (Formula Index) Bool)

Listing 2: Z3 Script – Theory 1

(define-fun cross_c ((i1 Index) (i2 Index)) Bool
(and (delta_state i1) (delta_file i2)))

(define-fun bijection ((x String) (i1 Index) (i2 Index)) Bool
(=> (= i1 i2) (not (xor (state x i1) (filename x i2)))))

(define-fun prop1 () Bool
(forall ((x String) (i1 Index) (i2 Index))
(= (cross_c i1 i2) (bijection x i1 i2))))

Listing 3: Z3 Script – Theory 2

(define-fun prop2 () Bool
(forall ((i Index)) (exists ((f Formula)) (= (ck f i) (cross_c i i)))))

(assert (= true (and prop1 prop2)))

The following encoding SPL shows that both deltas have the same position
in the order and both declare the functions named name 1 and name 2 and
the corresponding filenames (which must have the same name). Further, the
predicate ck is satisfiable for every formula and delta index. This instance
corresponds to a single virtual product (cf. Section 5) that is satisfiable.

The constraints (assert (=> (ck formula 1 index 2) false)) and
(assert (=> (ck formula 1 index 2) false)) are necessary to properly
encode CK (1) and CK (2).

43

Listing 4: Z3 Script – Consistent Configuration Knowledge

(declare-const index_1 Index)
(declare-const index_2 Index)
(assert (distinct index_1 index_2))

(declare-const formula_1 Formula)
(declare-const formula_2 Formula)
(assert (distinct formula_1 formula_2))

(declare-const feature_1 Bool)
(declare-const feature_2 Bool)

;; both features are selected
(assert (= true feature_1))
(assert (= true feature_2))

;; encoding of the 1st entry in the CK
(assert (=> (ck formula_1 index_1) feature_1))
(assert (=> (ck formula_1 index_2) false))

;; encoding of the 2nd entry in the CK
(assert (=> (ck formula_2 index_1) false))
(assert (=> (ck formula_2 index_2) (and feature_1 feature_2)))

;; define cross-consistent functions and filenames
(assert (=(state "name_1" index_1) true))
(assert (=(filename "name_1" index_1) true))

(assert (=(state "name_2" index_2) true))
(assert (=(filename "name_2" index_2) true))

;;(assert consistency)
(echo "-is it satisfiable?")
(check-sat)

Now consider Configuration Knowledge that is inconsistent, where F2 is
disabled by writing (assert (= false feature 2)). In this case, the acti-
vation rule for index 2 is not satisfiable. Therefore, the answer from the SMT
solver is going to be “unsat”.

Listing 5: Z3 Script – Inconsistent Configuration Knowledge

(declare-const index_1 Index)
(declare-const index_2 Index)
(assert (distinct index_1 index_2))

(declare-const formula_1 Formula)
(declare-const formula_2 Formula)
(assert (distinct formula_1 formula_2))

44 APPENDIX A CONSISTENCY CHECK USING THE Z3 SMT SOLVER

(declare-const feature_1 Bool)
(declare-const feature_2 Bool)

(assert (= true feature_1))
;; disable F2

(assert (= false feature_2))

(assert (=> (ck formula_1 index_1) feature_1))
(assert (=> (ck formula_1 index_2) false))

(assert (=> (ck formula_2 index_1) false))
(assert (=> (ck formula_2 index_2) (and feature_1 feature_2)))

(assert (=(state "name_1" index_1) true))
(assert (=(filename "name_1" index_1) true))

(assert (=(state "name_2" index_2) true))
(assert (=(filename "name_2" index_2) true))

;;(assert consistency)
(echo "-is it satisfiable?")
(check-sat)

Now consider the case of inconsistency between deltas, δ1 and δ̇1, written
(assert (=(state "name 1" index 1) false)). The answer from the SMT
solver is again going to be “unsat”.

Listing 6: Z3 Script – Inconsistency between “state” and “file-
name” deltas at index 1

(declare-const index_1 Index)
(declare-const index_2 Index)
(assert (distinct index_1 index_2))

(declare-const formula_1 Formula)
(declare-const formula_2 Formula)
(assert (distinct formula_1 formula_2))

(declare-const feature_1 Bool)
(declare-const feature_2 Bool)

(assert (= true feature_1))
(assert (= true feature_2))

(assert (=> (ck formula_1 index_1) feature_1))
(assert (=> (ck formula_1 index_2) false))

(assert (=> (ck formula_2 index_1) false))
(assert (=> (ck formula_2 index_2) (and feature_1 feature_2)))

45

;; introduce a wrong state name
(assert (=(state "name_1" index_1) false))
(assert (=(filename "name_1" index_1) true))

(assert (=(state "name_2" index_2) true))
(assert (=(filename "name_2" index_2) true))

;;(assert consistency)
(echo "-is it satisfiable?")
(check-sat)

Appendix B The COQ Proof System

This appendix shows the COQ definitions required to define the safety spec-
ification presented in Section 6. Listing 1 shows the inductive definitions for
symbols, where the ELF-type is an "ascii", table of symbols and delta actions.
The dynamic semantics of the delta-oriented “apply” function is encoded by
predicate Apply in Listing 2. The definitions for types of symbols and table of
symbols is shown in Listing 3.

Listing 1: Delta Definition

Inductive Symbol :=
| Sym : ascii → string → Symbol.

Inductive Table :=
| List : list Symbol → Table.

Inductive Expr :=
| Add operation : Symbol → Expr → Expr
| Rem operation : Symbol → Expr → Expr
| Delta : list Expr → Expr.

Listing 2: Delta-Oriented Programming Semantics

Inductive Apply : Expr × Table → Type :=
| EMPTY
: Apply (Delta nil, List nil)
| ADD object
: ∀ core sym l,

Apply (core, List l) →
Apply (Add operation sym core, List (sym::l))

| REMOVE object
: ∀ core sym l l’,

Apply (core, List (l++sym::l’)) →
Apply (Rem operation sym core, List (l++l’))

| APPLY delta
: ∀ expr actions v1 v2,

ascii.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
string.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.String
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes

46 APPENDIX B THE COQ PROOF SYSTEM

Apply (expr, List v1) →
Apply (Delta actions, List v2) →
Apply (Delta (expr::actions), List (v1 ++ v2)).

Listing 3: Delta Types

Inductive DialectType :=
| Type Base : ascii → DialectType
| Type Delta : list ascii → DialectType.

Listing 4 shows the encoding of typed symbols and delta-actions (e :τ), and
the safety predicate Resolved. Finally, the inductive defintions for well-typed
values (table of symbols) is shown in Listing 5. The proof of the safety theorem,
which was presented in Section 6, is shown in Listing 6 and the required tactics
to solve the verification conditions are given in Listing 7.

Listing 4: Well-Typed Delta Expressions

Inductive TypedSymbol : (Symbol × DialectType) → Type :=
| TE Symbol :
∀ f n, TypedSymbol (Sym f n, Type Base f).

Inductive Resolved : (list ascii) → Prop :=
| DS : ∀ t, ¬ In "U" t → Resolved t.

Inductive TypedExpression : (Expr × DialectType) → Type :=
| TE Empty :

Delta nil : Type Delta nil
| TE Symbols Add :
∀ core op s syms,

TypedSymbol (op, Type Base s) →
(Delta core) : (Type Delta syms) →
(Add operation op (Delta core)) : (Type Delta (s::syms))

| TE Symbols Rem :
∀ core op s syms,

Resolved (s::syms) →
TypedSymbol (op, Type Base s) →
(Delta core) : (Type Delta syms) →
(Rem operation op (Delta core)) : (Type Delta (remove ascii dec s syms))

| TE Delta :
∀ expr actions syms a syms b,
expr : (Type Delta syms a) →
(Delta actions) : (Type Delta syms b) →
(Delta (expr::actions)) : (Type Delta (syms a ++ syms b))

:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
ascii.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
ascii.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
ascii.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
remove.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
ascii dec.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes

47

Listing 5: Well-Typed Variants

Inductive SafeTable : (Table × DialectType) → Type :=
| TC Empty : SafeTable (List nil, Type Delta nil)
| TC Delta Rem : ∀ s syms (sym : Symbol) l l’,

TypedSymbol (sym, Type Base s) →
SafeTable (List (l++sym::l’), Type Delta syms) →
SafeTable (List (l++l’), Type Delta (remove ascii dec s syms))

| TC Delta App : ∀ l1 s1 l2 s2,
SafeTable (List l1, Type Delta s1) →
SafeTable (List l2, Type Delta s2) →
SafeTable (List (l1 ++ l2), Type Delta (s1 ++ s2))

| TC Delta Add : ∀ s syms sym l,
TypedSymbol (sym, Type Base s) →
SafeTable (List l, Type Delta syms) →
SafeTable (List (sym::l), Type Delta (s::syms)).

Listing 6: Proof of the Safety Theorem

Theorem TypeLemma :
∀ expr v t,
Apply (expr, v) →
expr : (Type Delta t) →
Resolved t →
SafeTable (v, Type Delta t).

Proof.
intros expr v t HEv HTy HWf.
generalize dependent t.
dependent induction HEv ;
intros t HExp HDef ;
inversion HExp; subst.
- apply TC Empty.
- apply TC Delta Add; auto.

eapply IHHEv ; eauto.
constructor.
inversion HDef ; subst. intro. apply H.
apply in cons; assumption.

- eapply TC Delta Rem; eauto.
eapply IHHEv ; eauto.
constructor.
inversion H2 ; subst. intro. apply H.
apply in cons; assumption.

- apply TC Delta App; [eapply IHHEv1 | eapply IHHEv2]; eauto;
inversion HDef ; subst;
constructor; intro; apply H ;
apply in or app; [left | right]; auto.

Qed.

:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
remove.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
ascii dec.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Strings.Ascii
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '++' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:list scope:x '::' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:type scope:x '->' x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
in cons.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
in cons.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
in or app.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List

48 APPENDIX C HASKELL INTERPRETER FOR THE PCC AGENT

Listing 7: Tactic to prove the Resolved and the Apply predicates

Ltac solve consistency :=
repeat match goal with

| [` Resolved] ⇒ constructor
| [` ¬ In] ⇒ apply not in cons; intuition
| [H : = ` False] ⇒ discriminate H
| [H : In ` False] ⇒ apply in inv in H ; intuition

end.

Ltac solve apply :=
repeat match goal with

| [` Apply (,)] ⇒
repeat (apply APPLY delta || apply ADD object || apply EMPTY)

end.

Ltac solve typed expr :=
repeat match goal with

| [` TypedExpression (,)] ⇒
repeat (apply TE Delta || apply TE Symbols Add ||

apply TE Empty || apply TE Symbol)
end.

Appendix C Haskell Interpreter for the PCC Agent

This appendix shows the Haskell source code that implements an interpreter
for the big-step semantics of the PCC Agent presented in Table 6, Section 6.
The complete source code project is available at https://github.com/esmifro/
CertifiedDOP.

Listing 1 shows the algebraic datatypes used to represent tables of symbols,
the verification condition proof result and other type constructors for files and
directories. The internal function signatures shown in Listing 4 are defined
exclusively over the Internal domain. Listing 2 shows the algebraic datatypes
and types used by the interpreter using Monad transformers (runCheck). The
correspondence between high-level syntax and system-(Linux)level syntax is
stored inside the map MetaMap. Abstract programs are created using Command.

Listing 1: Internal Definitons

data Atom = Symbol Char String | Flag Char

data Internal = Table [Atom]
| RelDir (Path Rel Dir)
| RelFile (Path Rel File)
| ProofChecker ExitCode
| ValueList [Internal]

:type scope:'x7E'x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
not in cons.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
:type scope:x '='x.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
False.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
False.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Logic
in inv.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Lists.List
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
:core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/8.5pl1/stdlib/Coq.Init.Datatypes
https://github.com/esmifro/CertifiedDOP
https://github.com/esmifro/CertifiedDOP

49

Listing 2: Interpreter Definitons

type Var = String
data AbstExpr = ParseDeltaRPM Var

| ApplyDeltaRPM Var
| MakeDeltaRPM Var
| GetSymbolsTable Var
| CheckProof Var
| InstallRPM Var
deriving (Eq,Show ,Ord)

data ConcExpr = F String (Internal → Internal)

data BoolExpr = Check AbstExpr

data Command = Assign Var AbstExpr
| Seq Command Command
| Cond BoolExpr Command Command
| Abort

type Env = Map String Internal
type MetaMap = Map AbstExpr ConcExpr

type Checker a = ReaderT MetaMap (StateT Env (IO)) a

runCheck :: Checker a → MetaMap → Env → IO (a,Env)

The interpreter shown in Listing 3 implements the big-step semantics of the
PCC Agent. For each of the big-step relations, that is, for variables, expressions
and commands, there is a correspondent interpretation function. The map
between abstract functions and internal functions is defined in Listing 4.

Listing 3: PCC Agent Interpreter

evalVar :: Var → Checker Internal
evalVar v = flip (!) v <$> get

>>= λval → return val

evalExp :: AbstExpr → Checker Internal
evalExp e = flip (!) e <$> ask

>>= λ(F var fun)→ evalVar var
>>= λarg → return (fun arg)

evalBool :: BoolExpr → Checker Bool
evalBool (Check e) = evalExp e

>>= λv → if v ≡ ProofChecker (ExitSuccess)
then return True
else return False

evalComm :: Command → Checker ()
evalComm (Assign v e) = evalExp e

>>= λval → put =<< insert v val <$> get

50 APPENDIX C HASKELL INTERPRETER FOR THE PCC AGENT

evalComm (Seq a b) = evalComm a >> evalComm b

evalComm (Cond b c1 c2) = evalBool b
>>= λchecked → if checked

then evalComm c1
else evalComm c2

evalComm (Abort) = liftIO $ putStrLn ("Abort")>> exitFailure

Listing 4: Meta-Functions and Internal Function Signatures

metaFunctions :: [(AbstExpr ,ConcExpr)]
metaFunctions = [(ParseDeltaRPM "a",F "a" readDeltaRPM),

(ApplyDeltaRPM "x",F "x" applyDeltaRPM),
(MakeDeltaRPM "m",F "m" makeDeltaRPM),
(GetSymbolsTable "y",F "y" getSymbolsTable),
(CheckProof "z",F "z" runChecker),
(InstallRPM "x",F "x" installRPM)]

with the follwoing internal function signatures:
readDeltaRPM :: Internal → Internal
applyDeltaRPM :: Internal → Internal
makeDeltaRPM :: Internal → Internal
getSymbolsTable :: Internal → Internal
runChecker :: Internal → Internal
installRPM :: Internal → Internal

Finally, the function that runs the interpreter with a given set of arguments
is shown in Listing 5.

Listing 5: Entry Function of the PCC Agent

runApply
:: Internal → IO ((),Env)

runApply args
= do

let a = Assign "x" (ParseDeltaRPM "a")
b = Assign "y" (ApplyDeltaRPM "x")
c = Assign "z" (GetSymbolsTable "y")
i = Assign "i" (InstallRPM "x")
prog = Seq a (Seq b (Seq c (Cond (Check (CheckProof "z")) i Abort)))

runCheck (evalComm prog) (fromList metaFunctions)
(insert "a" args empty)

References

1. Albert E, Arenas P, Puebla G, Hermenegildo M (2006) Reduced Certifi-
cates for Abstraction-Carrying Code, Springer Berlin Heidelberg, Berlin,

51

Heidelberg, pp 163–178. DOI 10.1007/11799573_14
2. Apel S, Batory D, Kstner C, Saake G (2013) Feature-Oriented Software

Product Lines: Concepts and Implementation. Springer Publishing Com-
pany, Incorporated

3. Arndt J, Behlert S, et al (2006) SUSE Linux. Tech. rep., Novel Inc.
4. Ayavoo D, Pont MJ, Parker S (2005) Observing the development of a

reliable embedded system. In: Proceedings of the 10th Ada-Europe Inter-
national Conference on Reliable Software Technologies, Springer-Verlag,
Berlin, Heidelberg, Ada-Europe’05, pp 167–179, DOI 10.1007/11499909_
14

5. Bailey JW, Basili VR (1981) A meta-model for software development re-
source expenditures. In: Proceedings of the 5th International Conference
on Software Engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’81, pp
107–116

6. Basili VR, Weiss DM (1984) A methodology for collecting valid software
engineering data. IEEE Trans Softw Eng 10(6):728–738, DOI 10.1109/
TSE.1984.5010301

7. Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software
engineering. IEEE Trans Softw Eng 12(7):733–743

8. Batory D, Sarvela J, Rauschmayer A (2004) Scaling Step-Wise Refine-
ment. IEEE TSE 30(6):355–371

9. Bavota G (2012) Using structural and semantic information to support
software refactoring. In: 2012 34th International Conference on Software
Engineering (ICSE), pp 1479–1482, DOI 10.1109/ICSE.2012.6227057

10. Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wąsowski
A (2013) A survey of variability modeling in industrial practice. In: Pro-
ceedings of the Seventh International Workshop on Variability Modelling
of Software-intensive Systems, ACM, New York, NY, USA, VaMoS ’13,
pp 7:1–7:8, DOI 10.1145/2430502.2430513

11. Bernardeschi C, Francesco ND, Lettieri G, Martini L, Masci P (2008)
Decomposing bytecode verification by abstract interpretation. ACM Trans
Program Lang Syst 31(1):3:1–3:63, DOI 10.1145/1452044.1452047

12. Bertot Y, Castran P (2010) Interactive Theorem Proving and Program
Development: Coq’Art The Calculus of Inductive Constructions, 1st edn.
Springer Publishing Company, Incorporated

13. Bezemer CP, Mcintosh S, Adams B, German DM, Hassan AE (2017) An
empirical study of unspecified dependencies in make-based build systems.
Empirical Softw Engg 22(6):3117–3148, DOI 10.1007/s10664-017-9510-8

14. Biere A, Biere A, Heule M, van Maaren H, Walsh T (2009) Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applica-
tions. IOS Press, Amsterdam, The Netherlands

15. Bordeaux L, Hamadi Y, Zhang L (2006) Propositional satisfiability and
constraint programming: A comparative survey. ACM Comput Surv 38(4),
DOI 10.1145/1177352.1177354

16. Brown AW, Wallnau KC (1996) A framework for evaluating software tech-
nology. IEEE Software 13(5):39–49, DOI 10.1109/52.536457

52 APPENDIX C HASKELL INTERPRETER FOR THE PCC AGENT

17. Bryant RE, O’Hallaron DR (2010) Computer Systems: A Programmer’s
Perspective, 2nd edn. Addison-Wesley Publishing Company, USA

18. Burow N, Carr SA, Brunthaler S, Payer M, Nash J, Larsen P, Franz M
(2017) Control-flow integrity: Precision, security, and performance. ACM
Comput Surv 50:16:1–16:33, DOI 10.1145/3054924

19. Calcote J (2010) Autotools: A Practitioner’s Guide to GNU Autoconf,
Automake, and Libtool. No Starch Press

20. Calder B, W Phillips L, Tybout A (1982) The concept of external validity.
Journal of Consumer Research 9:240–244

21. Catuogno L, Visconti I (2003) A format-independent architecture for run-
time integrity checking of executable code. In: Cimato S, Persiano G, Galdi
C (eds) Security in Communication Networks, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 219–233

22. Chesta C, Damiani F, Dobriakova L, Guernieri M, Martini S, Nieke
M, Rodrigues V, Schuster S (2016) A toolchain for delta-oriented mod-
eling of software product lines. In: Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination, Appli-
cations - 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part II, pp 497–511, DOI
10.1007/978-3-319-47169-3_40

23. Clements P, Northrop L (2001) Software Product Lines: Practices and
Patterns. Addison Wesley Longman

24. Cousot P, Cousot R (1977) Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, ACM, New York, NY, USA,
POPL ’77, pp 238–252, DOI 10.1145/512950.512973

25. De Moura L, Bjørner N (2008) Z3: An efficient smt solver. In: Proceedings
of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
Springer-Verlag, Berlin, Heidelberg, TACAS’08/ETAPS’08, pp 337–340

26. DeTreville J, Leijen D, Swierstra W (2006) Dependable software deploy-
ment. Tech. rep., Microsoft Research

27. Donald J (2003) Improved portability of shared libraries. Tech. rep.,
Princeton University

28. Drepper U (2011) How to Write Shared Libraries. Tech. rep., Red Hat Inc.
29. Drusinsky D (2006) Chapter 1 - Formal Requirements and Finite Au-

tomata Overview. In: Drusinsky D (ed) Modeling and Verification Us-
ing UML Statecharts, Newnes, Burlington, pp 1 – 41, DOI 10.1016/
B978-075067949-7/50003-9

30. Drusinsky D (2006) Chapter 2 - Statecharts. In: Drusinsky D (ed) Model-
ing and Verification Using UML Statecharts, Newnes, Burlington, pp 43
– 102, DOI 10.1016/B978-075067949-7/50004-0

31. Ducasse S, Nierstrasz O, Schärli N, Wuyts R, Black AP (2006) Traits:
A mechanism for fine-grained reuse. ACM Trans Program Lang Syst
28(2):331–388, DOI 10.1145/1119479.1119483

53

32. European Commission (2017) eCall: Time saved = lives
saved. https://ec.europa.eu/digital-single-market/en/
ecall-time-saved-lives-saved

33. Fenton NE (1991) Software Metrics: A Rigorous Approach. Chapman &
Hall, Ltd., London, UK, UK

34. Garfinkel S (1996) PGP: Pretty Good Privacy, 1st edn. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA

35. Ge Y, de Moura L (2009) Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In: Bouajjani A, Maler O (eds) Computer
Aided Verification: 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 306–320, DOI 10.1007/978-3-642-02658-4_25

36. GmbH VSI (2018) RTT-DCC: Data & Control Coupling Analyser. https:
//www.verified.de/products/rtt-dcc/

37. Gosling J, Joy B, Steele GL, Bracha G, Buckley A (2014) The Java Lan-
guage Specification, Java SE 8 Edition, 1st edn. Addison-Wesley Profes-
sional

38. Guo C, Ren S, Jiang Y, Wu PL, Sha L, Berlin RB Jr (2016) Transforming
medical best practice guidelines to executable and verifiable statechart
models. In: Proceedings of the 7th International Conference on Cyber-
Physical Systems, IEEE Press, Piscataway, NJ, USA, ICCPS ’16, pp 34:1–
34:10

39. Haber A, Rendel H, Rumpe B, Schaefer I, van der Linden F (2011) Hier-
archical Variability Modeling for Software Architectures. In: Proceedings
of the 15th International Software Product Line Conference, IEEE, pp
150–159, DOI 10.1109/SPLC.2011.28

40. Habets T (2012) Shared libraries diamond problem. https://blog.
habets.se/2012/05/Shared-libraries-diamond-problem.html

41. Hallsteinsen S, Hinchey M, Park S, Schmid K (2008) Dynamic software
product lines. Computer 41(4):93–95, DOI 10.1109/MC.2008.123

42. Harel D, Politi M (1998) Modeling Reactive Systems with Statecharts: The
Statemate Approach, 1st edn. McGraw-Hill, Inc., New York, NY, USA

43. Hawkins RD, Kelly TP (2009) Software safety assurance - what is suffi-
cient? In: 4th IET International Conference on Systems Safety 2009. Incor-
porating the SaRS Annual Conference, pp 1–6, DOI 10.1049/cp.2009.1542

44. Hermenegildo MV, Albert E, López-García P, Puebla G (2005) Abstrac-
tion carrying code and resource-awareness. In: Proceedings of the 7th ACM
SIGPLAN International Conference on Principles and Practice of Declar-
ative Programming, ACM, New York, NY, USA, PPDP ’05, pp 1–11,
DOI 10.1145/1069774.1069775

45. Hutchens DH, Basili VR (1985) System structure analysis: Clustering with
data bindings. IEEE Trans Softw Eng 11(8):749–757, DOI 10.1109/TSE.
1985.232524

46. Hutchinson J, Rouncefield M, Whittle J (2011) Model-driven engineering
practices in industry. In: Proceedings of the 33rd International Conference
on Software Engineering, ACM, New York, NY, USA, ICSE ’11, pp 633–

https://ec.europa.eu/digital-single-market/en/ecall-time-saved-lives-saved
https://ec.europa.eu/digital-single-market/en/ecall-time-saved-lives-saved
https://www.verified.de/products/rtt-dcc/
https://www.verified.de/products/rtt-dcc/
https://blog.habets.se/2012/05/Shared-libraries-diamond-problem.html
https://blog.habets.se/2012/05/Shared-libraries-diamond-problem.html

54 APPENDIX C HASKELL INTERPRETER FOR THE PCC AGENT

642, DOI 10.1145/1985793.1985882
47. Iscoe N, Williams GB, Arango G (1991) Domain modeling for software

engineering. In: [1991 Proceedings] 13th International Conference on Soft-
ware Engineering, pp 340–343, DOI 10.1109/ICSE.1991.130660

48. Jiang L, Su Z (2008) Profile-guided program simplification for effective
testing and analysis. In: Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ACM, New
York, NY, USA, SIGSOFT ’08/FSE-16, pp 48–58, DOI 10.1145/1453101.
1453110

49. Kernighan BW, Ritchie DM (1977) The M4 Macro Processor. Tech. rep.,
Bell Laboratories

50. Kirovski D, Drinić M, Potkonjak M (2002) Enabling trusted software in-
tegrity. SIGPLAN Not 37(10):108–120, DOI 10.1145/605432.605409

51. Krueger CW (1992) Software reuse. ACM Comput Surv 24(2):131–183,
DOI 10.1145/130844.130856

52. Lienhardt M, Damiani F, Testa L, Turin G (2018) On checking delta-
oriented product lines of statecharts. Science of Computer Programming
166:3 – 34, DOI 10.1016/j.scico.2018.05.007

53. Lindholm T, Yellin F (1999) Java Virtual Machine Specification, 2nd edn.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

54. Martin JC (1997) Introduction to Languages and the Theory of Compu-
tation, 2nd edn. McGraw-Hill Higher Education

55. McCabe TJ (1976) A complexity measure. In: Proceedings of the 2Nd In-
ternational Conference on Software Engineering, IEEE Computer Society
Press, Los Alamitos, CA, USA, ICSE ’76, pp 407–

56. Menon V, Pingali K (1999) A case for source-level transformations in
matlab. SIGPLAN Not 35(1):53–65, DOI 10.1145/331963.331972

57. Moura L, Bjørner N (2009) Satisfiability modulo theories: An appetizer.
In: Oliveira MV, Woodcock J (eds) Formal Methods: Foundations and
Applications, Springer-Verlag, Berlin, Heidelberg, pp 23–36, DOI 10.1007/
978-3-642-10452-7_3

58. Necula GC (1997) Proof-carrying code. In: Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ACM, New York, NY, USA, POPL ’97, pp 106–119, DOI
10.1145/263699.263712

59. Nelson G (ed) (1991) Systems Programming with Modula-3. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA

60. Oliveira N, ao Varanda Pereira MJ, Henriques PR, da Cruz D (2009)
Domain-Specific Languages - A Theoretical Survey. In: Proceedings of
the 3rd Compilers, Programming Languages, Related Technologies and
Applications (CoRTA’2009), pp 35–46

61. Parkes AP (2008) Finite State Transducers, Springer London, London, pp
189–207. DOI 10.1007/978-1-84800-121-3_8

62. Percival C (2006) Matching with mismatches and assorted applications.
PhD thesis, University of Oxford, UK

55

63. Pohl K, Böckle G, Linden FJvd (2005) Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA

64. Raistrick C, Francis P, Wright J (2004) Model Driven Architecture with
Executable UML(TM). Cambridge University Press, New York, NY, USA

65. Ramsey HR, Atwood ME, Van Doren JR (1983) Flowcharts versus pro-
gram design languages: An experimental comparison. Commun ACM
26(6):445–449, DOI 10.1145/358141.358149

66. Rodrigues V, Lopes JC, Moreira A (2008) An hybrid design solution for
spacecraft simulators. In: Proceedings of the Forum at the CAiSE’08 Con-
ference, Montpellier, France, June 18-20, 2008, pp 29–32

67. Rodrigues V, Akesson B, Florido M, de Sousa SaM, Pedroso JaP, Vas-
concelos P (2015) Certifying execution time in multicores. Sci Comput
Program 111(P3):505–534, DOI 10.1016/j.scico.2015.06.006

68. Røst TB, Seidl C, Yu IC, Damiani F, Johnsen EB, Chesta C (2018)
Hyvar. In: Mann ZÁ, Stolz V (eds) Advances in Service-Oriented and
Cloud Computing, Springer International Publishing, Cham, Communi-
cations in Computer and Information Science, vol 824, pp 159–163, DOI
10.1007/978-3-319-79090-9_12

69. Rumbaugh J, Jacobson I, Booch G (2004) Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education

70. Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-
Oriented Programming of Software Product Lines. In: Bosch J, Lee J
(eds) Software Product Lines: Going Beyond (SPLC 2010), Springer,
Lecture Notes in Computer Science, vol 6287, pp 77–91, DOI 10.1007/
978-3-642-15579-6_6

71. Schaefer I, Rabiser R, Clarke D, Bettini L, Benavides D, Botterweck G,
Pathak A, Trujillo S, Villela K (2012) Software diversity: state of the art
and perspectives. International Journal on Software Tools for Technology
Transfer 14(5):477–495, DOI 10.1007/s10009-012-0253-y

72. Schürr A, Selic B (eds) (2009) Model Driven Engineering Languages and
Systems, 12th International Conference, MODELS 2009, Denver, CO,
USA, October 4-9, 2009. Proceedings, Lecture Notes in Computer Sci-
ence, vol 5795, Springer, DOI 10.1007/978-3-642-04425-0

73. Seidl C, Schaefer I, Aßmann U (2014) Deltaecore - A model-based delta
language generation framework. In: Modellierung 2014, 19.-21. März 2014,
Wien, Österreich, pp 81–96

74. Shneiderman B, Mayer R, McKay D, Heller P (1977) Experimental inves-
tigations of the utility of detailed flowcharts in programming. Commun
ACM 20(6):373–381, DOI 10.1145/359605.359610

75. Stallman RM, McGrath R (2002) GNU Make: A Program for Directed
Compilation. Free Software Foundation

76. Team CAS (2004) Clarification of Structural Coverage Analyses of Data
Coupling and Control Coupling. https://www.faa.gov/aircraft/air_
cert/design_approvals/air_software/cast/cast_papers/archive/

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/archive/
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/archive/

56 APPENDIX C HASKELL INTERPRETER FOR THE PCC AGENT

77. Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014) A classification
and survey of analysis strategies for software product lines. ACM Comput
Surv 47(1):6:1–6:45, DOI 10.1145/2580950

78. Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T (2014)
Featureide: An extensible framework for feature-oriented software devel-
opment. Sci Comput Program 79:70–85, DOI 10.1016/j.scico.2012.06.002

79. Tichy WF, Lukowicz P, Prechelt L, Heinz EA (1995) Experimental evalu-
ation in computer science: A quantitative study. J Syst Softw 28(1):9–18,
DOI 10.1016/0164-1212(94)00111-Y

80. Tu Q, Godfrey MW (2001) The build-time software architecture view.
In: Proceedings IEEE International Conference on Software Maintenance.
ICSM 2001, pp 398–407, DOI 10.1109/ICSM.2001.972753

81. Turner AJ (1975) Iterative enhancement: A practical technique for soft-
ware development. IEEE Trans Softw Eng 1(1):390–396, DOI 10.1109/
TSE.1975.6312870

82. Vaughan GV, Elliston B, Tromey T, Taylor IL, Mac Kenzie D (2001)
GNU Autoconf, Automake and Libtool. Expert Insight into Porting Soft-
ware and Building Large Projects using GNU Autotools. New Riders,
Indianapolis, IN

83. Weiss DM, Basili VR (1985) Evaluating software development by analysis
of changes: Some data from the software engineering laboratory. IEEE
Transactions on Software Engineering SE-11(2):157–168, DOI 10.1109/
TSE.1985.232190

84. Weyuker EJ (1988) Evaluating software complexity measures. IEEE Trans
Softw Eng 14(9):1357–1365, DOI 10.1109/32.6178

85. Williams M, Grajales C, Kurkiewicz D (2013) Assumptions of multiple
regression: Correcting two misconceptions. Practical Assessment, Research
& Evaluation

86. Wolverton RW (1974) The cost of developing large-scale software. IEEE
Transactions on Computers C-23(6):615–636, DOI 10.1109/T-C.1974.
224002

87. Wong B, Czajkowski G, Daynes L (2003) Dynamically loaded classes as
shared libraries: an approach to improving virtual machine scalability.
In: Proceedings International Parallel and Distributed Processing Sympo-
sium, DOI 10.1109/IPDPS.2003.1213123

88. Yourdon E (1986) Techniques of Program Structure and Design, 1st edn.
Prentice Hall PTR, Upper Saddle River, NJ, USA

89. Yu D, Hamid NA, Shao Z (2004) Building certified libraries for PCC: dy-
namic storage allocation. Science of Computer Programming 50(1):101 –
127, DOI 10.1016/j.scico.2004.01.003, 12th European Symposium on Pro-
gramming (ESOP 2003)

	Introduction
	Related Work, Background and Motivation
	Modeling/Deploying Framework : Principles & Techniques
	Round-Trip Engineering using Delta-Oriented Programming
	Validation of Delta-Oriented Software Product Lines
	Safety Assurance on Over-the-air Updates using delta-RPMs
	Data Analysis and Evaluation
	Conclusions
	Appendix Consistency Check Using the Z3 SMT Solver
	Appendix The COQ Proof System
	Appendix Haskell Interpreter for the PCC Agent

