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Abstract

We provide a command called plssem that fits partial least squares structural equation
models, which is often considered an alternative to the commonly known covariance-based
structural equation modeling. plssem is developed in line with the algorithm provided by
Wold (1975) and Lohmöller (1989). To demonstrate its features, we present an empirical
application on the relationship between perception of self-attractiveness and two specific
types of motivations for working out using a real-life data set. In the paper we also show
that, in line with other software performing structural equation modeling, plssem can
be used for putting in relation single-item observed variables too and not only for latent
variable modeling.

Keywords: factor analysis, latent variables, partial least squares, PLS, PLS-PM, PLS-SEM,
path models, Stata, structural equation modeling, SEM.

1. Introduction

The traditional statistical techniques (e.g., linear regression, logistic regression, multilevel
regression, etc.) are used to estimate models representing the relationship between one or
more than one independent variable and a single dependent variable. The independent and
dependent variables in these models are all measured using single items such as income,
height, weight, length of education and so on. Following this reasoning, we can refer to
these traditional statistical approaches as single-equation techniques containing single-item
variables both on the left-hand side (dependent) and right-hand side (independent) of the
equation. Typically, these methods are employed in the social sciences to explain and predict
quantities of interest.

Structural equation modeling (SEM) too can be used for explanation and prediction purposes
in the social sciences. The difference, and accordingly the advantage of SEM over single-

http://dx.doi.org/10.18637/jss.v000.i00
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equation techniques, is that SEM allows for estimating the relationship between a number
of independent variables and more than one dependent variable at the same time. Further-
more, while the traditional techniques such as regression analysis lets one only use single-item
variables, SEM allows for use of multi-item independent and dependent variables.

As such, in a broader sense, we can refer to SEM as a simultaneous multiple-equation tech-
nique estimating models including single or/and multi-item variables on the both sides of the
equations. This broader definition reflects also the reason why in the course of the past four
decades SEM has become probably the most popular statistical estimation technique in the
social sciences. The approach to incorporating the multi-item variables in SEM has basi-
cally led to the development of two different methods: covariance-based structural equation
modeling (COV-SEM) introduced by Jöreskog (1969), and variance-based structural equa-
tion modeling (VAR-SEM) proposed by Wold (1975). While in COV-SEM the paths between
common factors are examined, in VAR-SEM the paths between weighted composites (replac-
ing the common factors) are estimated. This implies that in COV-SEM, multi-item variables
are incorporated into the model using the factor analytic technique whereas in VAR-SEM
weighted composites are generated from multi-item variables.

In a nutshell, we can view COV-SEM as the factor-based and VAR-SEM as the component-
based structural equation modeling methods (Chin 1995). COV-SEM and VAR-SEM are
commonly referred to in the literature respectively as maximum likelihood SEM (ML-SEM;
see for example Bollen 1989; Kline 2016), which is typically associated with software packages
such as LISREL, EQS, AMOS or Mplus, and partial least squares (PLS-SEM or PLS-PM; see
for example Esposito Vinzi, Trinchera, and Amato 2010), which are instead associated with
SmartPLS or XLSTAT software packages.

Although there is an ongoing debate as to the strengths and weaknesses of COV-SEM and
PLS-SEM in the literature (see for example Rönkkö and Evermann 2013; Henseler, Dijkstra,
Sarstedt, Ringle, Diamantopoulos, Straub, Ketchen, Hair, Hult, and Calantone 2014), there
still appears to be a general consensus that these two approaches should be considered com-
plementary rather than alternatives to each other. In line with this observation, Hair, Hult,
Ringle, and Sarstedt (2017, p. 23) suggest PLS-SEM be used when:

• The goal is predicting key target constructs.

• Formatively measured constructs are part of the structural model.

• The structural model is complex including many indicators/constructs.

• The sample size is small.

• The plan is to use latent variable scores in further analyses.

For more details on the pros and cons of the PLS-SEM approach versus COV-SEM we en-
courage the reader to refer to Hair et al. (2017).

In this paper we present the plssem package for Stata. The aim of the package is to provide
an open-source implementation of the PLS-SEM methodology for Stata. To the best of our
knowledge, the only command currently available for fitting PLS-SEM models in Stata is the
user-contributed pls command developed by Rönkkö (2016b). However, as it is written in the
command’s documentation, pls is provided for educational purposes since it only calculates
composite variables, but it does not produce any other output as well as it does not allow
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for any further postestimation analysis of a PLS-SEM fitted model. Essentially, we started
from the pls code as a basis for the development of our plssem package, but then we fully
redesigned and enhanced it with numerous additional output and tools for postestimation.

At the time of writing, PLS-SEM is not supported by none of the most popular commercial
statistical software like SAS or SPSS, which only support PLS regression1. However, many
open-source and commercial software packages have been developed independently over the
years for fitting PLS-SEM models. Currently, the most widespread open-source implementa-
tions of the PLS-SEM methodology are all for the R software, in particular matrixpls, plspm
and semPLS. For what regards the commercial packages, the most popular ones are Smart-
PLS and XLSTAT-PLSPM2. We now provide a brief overview for each of them. A further
now dated comparison of PLS path modeling software is also available in Temme, Kreis, and
Hildebrandt (2010).

matrixpls in R: the matrixpls package (Rönkkö 2016a) implements a collection of PLS tech-
niques as well as the more recent generalized structured component analysis (GSCA)
introduced by Hwang and Takane (2004) (for a detailed presentation see Hwang and
Takane 2014) and consistent partial least squares (PLSc) techniques as discussed in Di-
jkstra and Henseler (2015a,b). The variance of the PLS results is estimated using the
bootstrap approach (Davison and Hinkley 1997) through the matrixpls.boot() func-
tion, which provides the integration with the boot package (Canty and Ripley 2016).
matrixpls is the most recent addition in the set of R packages for PLS-SEM and, in
contrast to all the other software for the same purpose which work with raw data, it
calculates the indicator weights and model estimates from data covariance matrices.
The main function, matrixpls(), requires that the model specification is performed by
providing the list of user-defined adjacency matrices specifying the association between
the different variables. Additional functions for postestimation (predictions, residual
analysis, model quality indices) are also provided. No method is provided in the pack-
age to deal with observed heterogeneity such as multigroup analysis (MGA).

plspm in R: this is an R package developed by Sanchez, Trinchera, and Russolillo (2015)
and dedicated to PLS-SEM analysis. The package comes with a number of functions
to perform a series of different types of analysis including bootstrapping. The main
function has the same name as the package, plspm(), which is designed for running a
full PLS-SEM analysis. The package includes also some accessory functions for plotting
and displaying results. Additionally, the function plspm.groups() allows to compare
two groups (multigroup analysis) and it offers two options for doing the comparison,
a bootstrap t test and a non-parametric permutation test. Finally, the package also
includes a set of functions for the detection of latent classes by using the REBUS-PLS
approach for uncovering unobserved heterogeneity in PLS-SEM models (Trinchera 2007;
Esposito Vinzi, Trinchera, Squillacciotti, and Tenenhaus 2008). As for matrixpls, model

1PLS regression should not be confused with PLS-SEM: the former is a multivariate regression method
that maximizes the covariance between dependent and independent variables, which is today most widely used
in chemometrics and related areas (Wehrens 2011; Mevik, Wehrens, and Liland 2016); the latter is a path
modeling approach which can be considered an alternative to more traditional covariance-based structural
equation modeling.

2Other commercial packages are also available, such as ADANCO and WarpPLS, but these are less popular
than SmartPLS and XLSTAT-PLSPM.
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specification occurs through user-defined adjacency matrices. A book-length description
of the package is provided in Sanchez (2013).

semPLS in R: this is a further package developed by Monecke and Leisch (2012) for struc-
tural equation modeling with partial least squares in R. The plsm() function is used
to create a valid model specification (a so called plsm object), while sempls() fits
the model. Models can be specified by providing the user-defined adjacency matrices.
Bootstrapping is available too by leveraging the boot package (Canty and Ripley 2016)
and the calculation of quality indices (R2, Q2, Dillon-Goldstein’s ρ, etc.) is performed
via specific methods. However, no method is provided in the package for dealing with
observed (e.g., MGA) or unobserved heterogeneity (e.g., REBUS-PLS). A distinctive
feature of semPLS is that it is possible to export plsm objects for use with the popular
sem package (Fox, Nie, and Byrnes 2016). Similarly, it is possible to import model
specification created with SmartPLS with the function read.splsm().

SmartPLS: now in its third official release3, it is a stand-alone commercial software supported
by a community of scholars centered at the University of Hamburg (Germany), School
of Business (Hair et al. 2017), which currently represents by far the most popular and
comprehensive software implementation of the PLS-SEM methodology. Model speci-
fication is performed by drawing the structural model for the latent variables and by
assigning the indicators to the latent variables through an easy to use GUI. SmartPLS
provides state of the art PLS techniques for fitting PLS-SEM models including boot-
strapping and nonlinear relationships. Both observed and unobserved heterogeneity can
be accounted for using several approaches such as MGA and finite mixture (FIMIX)
segmentation (Hahn, Johnson, Herrmann, and Huber 2002; Sarstedt, Becker, Ringle,
and Schwaiger 2011). Finally, mediation and moderation (interaction effects) analysis
are also available, as well as hierarchical component models (second-order models) for
fitting more complex structural models.

XLSTAT-PLSPM: XLSTAT is a complete statistical add-in for Microsoft Excel developed by
Addinsoft4. It is structured in modules that provide specialized suites of commands
to analyze data in different fields (biomedical sciences, ecology, marketing, psychology,
quality control and sensory analysis). XLSTAT-PLSPM is the module that provides the
estimation of PLS path models. The package includes all the recent methodological fea-
tures of the PLS-SEM approach. In particular, it provides bootstrapping but also MGA
and REBUS-PLS for dealing with observed and unobserved heterogeneity respectively.

The plssem package for Stata presented in this manuscript includes the following features:

• Model specification using an equation-like style.

• Standard and bootstrap based estimation of PLS-SEM models.

• Mediation analysis through estimation and inference (including bootstrap) for up to five
indirect effects.

3http://www.smartpls.com.
4http://www.xlstat.com.

http://www.smartpls.com
http://www.xlstat.com
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• Moderation analysis through the inclusion of interactions among latent variables in the
structural model specification; this provides an implementation of the so called product
indicator approach (Sanchez 2013, Section 7.3).

• Possibility to fit models that include equations with binary dependent variables. To
the best of our knowledge, none of the existing PLS-SEM software facilitates binary
dependent variable estimation using maximum likelihood.

• Multigroup analysis of outer loadings and path coefficients for dealing with observed
heterogeneity; in particular, it allows the comparison of an arbitrary number of groups
using either normal-based, bootstrap or permutation tests.

• Potential to estimate higher-order construct models (sometimes also, maybe inappropri-
ately, called hierarchical models; see for example Lohmöller 1989, Section 3.5).

• A range of graphical and postestimation commands for representing and inspecting the
results of a fitted PLS-SEM model.

The plssem package is available through the Statistical Software Components (SSC) archive5,
often called the Boston College Archive, and it allows to fit various PLS-SEM models. To
install the package one needs to execute the command

. ssc install plssem

which will download and copy all the ado, help and data files for the commands discussed
here6.

The rest of the paper is organized as follows: in Section 2 we present the main technical aspects
of the PLS-SEM approach as well as the most common indicators discussed in the literature
for assessing the quality of a fitted model. Section 3 provides an introduction to the plssem
package. In particular, after discussing the general syntax, we provide a full description of
the available options. Moreover, we present the different postestimation commands one can
run after fitting a model and the objects that are saved during the estimation. These objects
can clearly be used in subsequent analyses. In Section 4 we show some empirical applications
of the PLS-SEM approach with the plssem package using two different data sets. Finally,
Section 5 provides some closing thoughts and our plans for the future releases of the package.
In the rest of the paper we adopt the same mathematical notation provided by Monecke and
Leisch (2012, pp. 9-13).

2. The PLS-SEM methodology

As PLS-SEM resembles ML-SEM in many ways, it can be explained and illustrated using a
slightly adjusted version of the LISREL terminology (Jöreskog, Olsson, and Wallentin 2016)
and graphical notation used originally for ML-SEM. As depicted in Figure 1, a typical PLS-
SEM model will consist of two parts: the measurement (or outer) and the structural (or inner)
models.

5The SSC archive is hosted by http://www.repec.org.
6Alternatively, the latest version of the package can be retrivied also from https://github.com/

sergioventurini/plssem.

http://www.repec.org
https://github.com/sergioventurini/plssem
https://github.com/sergioventurini/plssem
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The measurement model provides the relationships between latent variables (or constructs7)
and the indicators they are defined by. The measurement part is represented in Figure 1 by
all arrows apart from those included in the dashed box. The example includes two reflective
(i.e., y1 and y3) and one formative (i.e., y2) construct. The association between the reflective
constructs and the corresponding indicators (that is the arrows pointing from the constructs
to the indicators) is indicated in the picture by λ11, λ12, λ13, λ37, λ38 and λ39, which are also
called outer loadings. The relationship between the formative construct and the corresponding
indicators (i.e., the arrows pointing from indicators to constructs) are denoted with w24, w25

and w26 and are also referred to as outer weights. All indicators are congeneric in that none
of them loads on more than one construct decided a priori (Brown 2015). The measurement
model can be described by an adjacency matrix M whose entries mkj take value one if
indicator xk belongs to the block that defines latent variable yj , and zero otherwise, with
k = 1, . . . ,K and j = 1, . . . , J . The adjacency matrix of the measurement model for the
example shown in Figure 1 is provided in Table 1. Note that the matrix M does not convey
any information about whether a construct is measured in a reflective or formative way.

x1 

x2 

x3 

y1 

x4 

x5 

x6 

y2 

x7 

x8 

x9 

y3 

β13 

β23 

λ11 

λ12 

λ13 

w24 

w25 

w26 

λ37 

λ38 

λ39 

Figure 1: Graphical representation of a PLS-SEM model. Latent variables are displayed in
ellipses and indicators (i.e., manifest variables) are displayed in boxes. Arrows pointing to
indicators represent constructs measured in a reflective way (y1 and y3), while those going
from indicators to latent variables (y2) correspond to constructs measured in a formative way.
The dashed box highlights the structural part of the model.

The structural model shows the relationships between latent variables themselves. For the

7In the SEM literature latent variables or constructs are often related to multi-item variables used in factor-
based SEM. However, as explained by Henseler et al. (2014, p. 3), one can also use these terms to refer to
multi-item variables used in component-based SEM.
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y1 y2 y3
x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 1 0
x7 0 0 1
x8 0 0 1
x9 0 0 1

Table 1: Measurement model adjacency matrix M for the example shown in Figure 1. The
elements mkj of the matrix is set to one if indicator xk belongs to the block that defines latent
variable yj , and zero otherwise.

example shown in Figure 1 the structural model is represented by the arrows included in
the dashed-line box. Latent variables in the structural model that are used as predictors are
called exogenous, while those denoted as outcome variables are called endogenous. In our
example there are two exogenous (y1 and y2) and one endogenous (y3) latent variable. The
relationships among the latent variables are labeled using the corresponding path coefficients
(β13 and β23). The structural model can also be summarized by an adjacency matrix S whose
entries sij take value one if the latent variable yi is a predecessor of the latent variable yj in
the model, and zero otherwise, with i, j = 1, . . . , J . The adjacency matrix of the structural
model for the example shown in Figure 1 is reported in Table 2. Note that matrix S allows
to recover the information about whether a latent variable is exogenous or endogenous. More
specifically, if the column corresponding to the latent variable yj contains only zeros, that
indicates that yj is exogenous. In other words, contrary to the matrixM for the measurement
model, S accounts for the directionality of the relationships among the latent variables.

y1 y2 y3
y1 0 0 1
y2 0 0 1
y3 0 0 0

Table 2: Structural model adjacency matrix S for the example shown in Figure 1. The
elements sij of the matrix is set to one if the latent variable yi is a predecessor of the latent
variable yj in the model, and zero otherwise.

To sum up the description of a PLS-SEM model, the structural part is similar to a regression
model, while the measurement part resembles a factor or a principal component analysis. As
such, PLS-SEM can be viewed as an advanced multivariate technique facilitating these two
analyses at one go.

2.1. The PLS-SEM estimation algorithm
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The algorithm used to estimate a PLS-SEM model consists basically of three sequential stages8

(Lohmöller 1989). In the first stage, latent variable scores are iteratively estimated for each
case. Using these scores, in the second stage measurement model parameters (weights/load-
ings) are estimated. In the same manner, in the third stage structural model parameters
(path coefficients) are finally estimated. The first stage is what makes PLS-SEM a novel
method in that the second and third stages, as it will be shown below, are about conducting
a series of regression analysis using the ordinary least squares method. To help the reader
grasp the whole process, we summarize the procedure for PLS-SEM estimation in Algorithm
1. We provide now more details on each stage.

Stage I – Iterative estimation of latent variable scores

The first stage is an iterative process consisting of the following steps, which are carried out
to estimate the latent variable scores:

Step 0: Initialization of the latent variable scores

Step 1: Estimation of the inner weights

Step 2: Inner approximation of the latent variable scores

Step 3: Estimation of the outer loadings/weights

Step 4: Outer approximation of the latent variable scores

Step 5: Convergence checking

We now give a brief description of these steps. We will denote the data matrix including all
the indicators as X, and the block of indicators measuring the j-th latent variable yj as Xj .
Similarly, we indicate with Y the whole set of latent variables. As it is common in the SEM
and PLS-SEM literature, we assume that prior to starting the entire process all indicators are
standardized to have a mean zero and unit variance. Additionally, after each step the latent
variables are scaled likewise.

Step 0: Initialization of the latent variable scores. In general, we estimate latent variable
scores as a weighted sum of the indicators in the corresponding block. In the first step, each
latent variable is initialized setting all weights equal to one. In other terms, initially we
compute the scores as

Ŷ = XM , (1)

where M is the measurement model adjacency matrix presented in Section 2, such as that
reported in Table 1.

Step 1: Estimation of the inner weights. Inner weights are calculated for each latent variable
to reflect how strongly the other latent variables are connected to it. The three most common

8As it is common in the literature, we assume that both the latent variables and the indicators are stan-
dardized so that the location parameters can be discarded. If this is not the case, a fourth stage should be
added in the algorithm described here corresponding to the estimation of the location parameters.
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Algorithm 1 The PLS-SEM estimation algorithm.

1: Given data X on indicators, measurement and structural model adjacency matrices M
and S. Choose the latent variables measured in reflective (mode A) and formative (mode

B) way. Set the outer weights initial values Ŵ
old

to the zero matrix. Fix the tolerance
tol and the maximum number of iterations imax.

2: Scale the indicators to have zero mean and unit variance.
3: Set the scores initial value to

Ŷ = XM .

4: Scale the latent variables scores to have zero mean and unit variance.
5: Set the iteration counter to zero (i← 0) and the maximum relative difference of the outer

weights δ to 1 (δ ← 1).
6: while δ ≥ tol and i < imax do
7: Estimate the inner weights using either Equations 2, 3 or 4 forming matrix E.
8: Compute the inner approximation of the latent variable scores as

Ỹ = Ŷ E.

9: Scale the latent variables scores to have zero mean and unit variance.
10: for j ← 1, J do
11: if yj is in the set of mode A latent variables then
12: Compute the outer weights as

ŵ>j =
(
ỹ>j ỹj

)−1
ỹ>j Xj .

13: else if yj is in the set of mode B latent variables then
14: Compute the outer weights as

ŵj =
(
X>j Xj

)−1
X>j ỹj .

15: end if
16: end for
17: Compute the outer approximation of the latent variable scores as

Ŷ = XŴ ,

where Ŵ is a diagonal matrix collecting the estimated weights ŵj , for j = 1, . . . , J .
18: Scale the latent variables scores to have zero mean and unit variance.
19: Compute

δ = max
k=1,...,K

j=1,...,J

∣∣∣∣∣ ŵold
kj − ŵnew

kj

ŵnew
kj

∣∣∣∣∣ .
20: Increase the iteration counter (i← i+ 1).
21: end while
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22: for j ← 1, J do
23: if yj is in the set of mode A latent variables then
24: Compute the cross loadings as

λ̂
cross

j = COR(X, ŷj).

25: Compute the outer loadings as

λ̂outerkj =

{
λ̂crosskj if mkj = 1

0 otherwise
.

26: else if yj is in the set of mode B latent variables then
27: Compute the outer weights as

ŵj =
(
X>j Xj

)−1
X>j ŷj .

28: end if
29: Compute the structural model parameters (i.e., the path coefficients) as

β̂j =
(
ŷpred>j ŷpredj

)−1
ŷpred>j ŷj .

30: end for

schemes used for computing the inner model weights are the centroid scheme originally pro-
posed by Wold (1982), and the factorial and path schemes introduced by Lohmöller (1989).
We provide below a brief description of these schemes assuming that we collect all the inner
weights in a matrix denoted as E.

Centroid scheme: this scheme produces weights eij based on the sign of rij = COR(yi,yj),
the empirical linear correlation coefficient between the latent variables yi and yj re-
sulting from the outer approximation (Step 4 below9), assuming they are neighbors. In
particular, if yi and yj are adjacent, the weight eij is set to +1 if the correlation is
positive and to −1 if the correlation is negative. If yi and yj are nonadjacent, eij is set
to 0. More formally, for i, j = 1, . . . , J ,

eij =

{
sign (rij) if cij = 1
0 otherwise

, (2)

where cij is the (i, j)-th element of the matrix C = S + S>, with S the adjacency
matrix of the structural model introduced in Section 2. Thus, C is a symmetric matrix
whose element cij takes value one if the latent variables yi and yj are neighbors in the
structural model, and zero otherwise.

Note that, as implied by Equation 2, correlations very close to zero may cause the weights
to take a non-zero value during the iterative process, which may lead to instability. Thus,

9At the first iteration of the algorithm the outer proxies of the latent variable scores correspond to the
initial values computed in Step 0.
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the centroid scheme should be used when the indicators of a block (latent variable) are
strongly correlated to each other, otherwise the factorial scheme is usually recommended
(Esposito Vinzi et al. 2010).

Factorial scheme: in this scheme the correlation value between each pair of latent variables
is directly used as the weight, that is

eij =

{
rij if cij = 1
0 otherwise

, (3)

with the same interpretation of the notation as above.

Path scheme: in this scheme two types of weight values are produced depending on the re-
lationship between the latent variables. When a latent variable, say yi, is “causing”
another latent variable yj (so called successor), the weight value corresponds to the lin-
ear correlation coefficient rij = COR(yi,yj). If instead the latent variable yi is “caused”
by another latent variable yj (so called predecessor), the weight is determined using a
multiple regression model. In particular, the estimated linear regression coefficient on
the predecessor will then be used as the weight. More formally, according to the path
scheme the weights are computed as follows

eij =

 γ̂j for j ∈ ypredi

rij for j ∈ ysucci

0 otherwise

, (4)

where ypredi indicates the set of predecessors of yi and ysucci represents the corresponding
set of successors. The coefficient γ̂j corresponds to the estimate of the yj coefficient in
the linear regression model

yi = ypredi γ + εi,

assuming yj belongs to the predecessor set of yi.

Step 2: Inner approximation of the latent variable scores. Here, we update the latent variable
scores ŷ1, . . . , ŷJ obtained in the previous iteration with new ones, ỹ1, . . . , ỹJ , which are
computed as a weighted sum of their respective adjacent latent variables. More specifically,
the inner approximation of the latent variable scores are computed as

Ỹ = Ŷ E, (5)

where the matrix E contains the inner weights as obtained from Step 1.

Step 3: Estimation of the outer loadings/weights. So far we did not make any distinction
between reflective and formative measures. On the contrary, we now need to take this dif-
ference into account to properly estimate the weights/loadings of the measurement model.
That is, we need to recalculate the latent variables scores obtained from Step 2 using yet
another weighting update. The new weights are called loadings when the latent variables are
modeled as reflective and just weights when the latent variables are modeled as formative. In
the classical algorithm, there are two possible choices for updating the outer weights, which
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are usually referred to as mode A and mode B. In the marketing literature, mode A refers to
a reflective, while mode B refers to a formative measure.

In mode A, we regress each of the indicators onto the corresponding latent variable scores (i.e.,
using the latent variables included in the indicator block as the predictors of the regression
model). Since the latent variables from Step 2 are standardized, the regression coefficients do
correspond to linear correlation coefficients, that is

ŵ>j =
(
ỹ>j ỹj

)−1
ỹ>j Xj

= COR(ỹj ,Xj). (6)

In mode B, we regress each latent variable against the indicators in its block. The weights
will then correspond to the partial coefficients, that is

ŵj =
(
X>j Xj

)−1
X>j ỹj

= VAR(Xj)
−1COR(Xj , ỹj). (7)

Step 4: Outer approximation of the latent variable scores. In this step, we estimate the latent
variable scores using the weights ŵj obtained from Step 3 above by computing

Ŷ = XŴ , (8)

where Ŵ is the matrix that collects all the weights ŵj , that is

Ŵ =


ŵ1 0 · · · 0
0 ŵ2 · · · 0
...

...
. . .

...
0 0 · · · ŵJ

 . (9)

Step 5: Convergence checking. The process from Step 1 through Step 4 is then repeated until
the maximum relative difference between the outer weights from one iteration to the next falls
below a given tolerance value chosen by the analyst (e.g., 10−5). More formally, the algorithm
stops when

max
k=1,...,K

j=1,...,J

∣∣∣∣∣ ŵold
kj − ŵnew

kj

ŵnew
kj

∣∣∣∣∣ < tolerance. (10)

Stage II – Estimation of measurement model parameters

Having estimated the latent variable scores, in the second stage of the PLS-SEM algorithm the
loadings for reflective constructs and weights for formative constructs are calculated. These
are actually those weights (equations 6 and 7) at the final iteration. Alternatively, we can
use the final latent variables scores (Ŷ ) predicted after the PLS-SEM estimation to directly
compute the loadings, as well as the cross loadings, as the linear correlation between X and
Ŷ , and the weights by regressing Ŷ on X.
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Stage III – Estimation of structural model parameters

In this stage, using the final latent variable scores, we estimate the structural model parame-
ters (i.e., the path coefficients) for each endogenous latent variable using ordinary least squares
according to the PLS-SEM model specified by the researcher. In particular, for each latent
variable (ŷj) in the model, the path coefficients are obtained as the regression coefficients on

its set of predecessors, denoted below as ŷpredj , that is

β̂j =
(
ŷpred>j ŷpredj

)−1
ŷpred>j ŷj

= COR
(
ŷpredj , ŷpredj

)−1
COR

(
ŷpredj , ŷj

)
. (11)

2.2. Bootstrap-based inference

Since PLS-SEM is a distribution-free method, it is not possible in general to get p values and
confidence intervals for the model’s parameters. For this reason, inference in PLS-SEM is
usually conducted by relying on (nonparametric) bootstrap (Davison and Hinkley 1997). In
the literature on PLS-SEM (see for example Hair et al. 2017), the bootstrap is typically used
to estimate the standard errors of the estimated parameters. For example, if one needs to
test the null hypothesis that a certain outer weight w is equal to zero in the population versus
a two-sided alternative, it is possible to calculate the corresponding test statistic by dividing
the weight estimate ŵ based on the original full sample by its standard error estimated using
bootstrap. The test statistic value is then compared with the appropriate t distribution
percentile to decide upon the rejection of the null hypothesis.

Bootstrap confidence intervals can be computed as well. Among the many approaches avail-
able for finding these intervals, it is usually suggested to use bias-corrected and accelerated
bootstrap confidence intervals which adjust for biases and skewness in the bootstrap distri-
bution (Henseler, Dijkstra, Sarstedt, Ringle, Diamantopoulos, Straub, Ketchen, Hair, Hult,
and Calantone 2009; for a recent survey of the bootstrap methods see Efron and Hastie 2016,
Chapter 11).

2.3. Communality, redundancy, goodness-of-fit, reliability coefficients

Assessment of the model goodness for a PLS-SEM model is rather complicated and not yet
properly defined. However, many criteria have been proposed some of which will be briefly
presented below.

In addition to R-squared values (R2), the quality of a PLS-SEM model can be assessed using
the redundancy and goodness-of-fit (GoF) indices (Tenenhaus, Esposito Vinzi, Chatelin, and
Lauro 2005, pp. 172-173).

To compute the average redundancy, we first need to estimate the average communality, which
measures the quality of the measurement model for each latent variable yj , with j = 1, . . . , J .
The communality for block j is computed as the average of the squared correlations between
the indicators in the block and the corresponding latent variable,

communalityj =
1

pj

pj∑
h=1

COR(xhj ,yj)
2, (12)
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where pj denotes the number of indicators in the j-th block and xhj is the h-th indicator in
the j-th block10.

The average communality is the average of all COR(xhj ,yj)
2, that is

communality =
1

p

J∑
j=1

pj × communalityj =
1

p

J∑
j=1

pj

pj∑
h=1

COR(xhj ,yj)
2. (13)

For each endogenous latent variable, redundancy measures the amount of variance in the
indicators measuring the variable that is explained by the exogenous latent variables that
predict the endogenous variable. For an endogenous block j, it is computed as

redundancyj = communalityj ×R2
(
yj ,y

pred
j

)
. (14)

If more than one endogenous variable is available in the model, then one can also calculate
the average redundancy indices for all of the endogenous variables.

Finally, the goodness-of-fit (GoF) index, which takes into account both the measurement and
structural model performance, is used for judging the quality of a PLS-SEM model as a whole.
GoF is calculated as the geometric mean of the average communality and the average R2:

GoF =

√
communality×R2

, (15)

where the average R2 is computed using only the endogenous latent variables in the model.

A well known theoretical deficiency of PLS-SEM is that it lacks an overall optimization
criterion (such as for example the sum of squared residuals in linear regression or the likelihood
function in COV-SEM). Therefore, no index for the assessment of the global validation of the
model is available. The GoF index represents an operational solution to this problem which
is very often used in the practical application of PLS-SEM11.

In PLS-SEM it is assumed that the block of indicators for a reflective measure is unidimen-
sional in the same sense of factor analysis. To check the unidimensionality of a reflective
block, some reliability indexes are typically computed, the most popular ones being the Cron-
bach’s alpha (αj) and the Dillon-Goldstein’s coefficient (ρj). When standardized indicators
and latent variables are used, these indicies are defined respectively12 as

αj =

∑
h6=k COR(xhj ,xkj)

pj +
∑

h6=k COR(xhj ,xkj)
× pj
pj − 1

, (16)

and

ρj =

(∑pj
h=1 λ̂

outer
hj

)2
(∑pj

h=1 λ̂
outer
hj

)2
+
∑pj

h=1

{
1−

(
λ̂outerhj

)2} , (17)

10A common measure to establish convergent validity on the construct level, that is the extent to which a
measure correlates positively with alternative measures of the same construct, is the average variance extracted
(AVE). The AVE is equivalent to the communality of a construct.

11The lack of an explicit optimization criterion is a critical drawback of the PLS-SEM approach, which has
some unpleasant consequences. The most serious is the impossibility to statistically test the relative superiority
of a PLS-SEM model over any other. However, we also notice that in recent years successful attempts to derive
the criteria optimized by PLS-SEM have been made (for a review see Esposito Vinzi and Russolillo 2013).

12Without loss of generality, in the calculation of the Cronbach’s alpha it is usually assumed that all the
indicators in the block are positively correlated. This is not really a big issue, since the indicators can always
be built in this way.
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where λhj is the outer loading for indicator h in block j. Since Cronbach’s alpha tends to
underestimate the internal consistency reliability, the Dillon-Goldstein’s coefficient is often
preferred in practice (Chin 1998, p. 320).

For more details on the assessment of PLS-SEM results and rules of thumb for evaluating the
quality of a fitted model, we refer the reader to the literature (an updated and comprehensive
survey is available in Hair et al. 2017).

3. The plssem package

3.1. Syntax

The syntax of plssem reflects the measurement and structural part of a PLS-SEM model, and
accordingly requires the user to specify both of these parts simultaneously. Since a full PLS-
SEM model would include a structural model, i.e., the relationship between latent variables
(LV), we need to have at least two latent variables specified in the measurement part. Each
latent variable will be defined by a block of indicators (say, indblock). For example, if we
have two latent variables in our PLS-SEM model, the plssem syntax requires to specify the
measurement part by typing

plssem (LV1 > indblock1) (LV2 > indblock2).

Clearly, one can specify as many LVs as it is needed in the model. The specification of
reflective measures in the measurement model require to use the greater-than sign between a
latent variable and its associated indicators (e.g., LV1 > indblock1), while the less-than sign
needs to be provided when one needs to include latent variables measured in a formative way
(e.g., LV1 < indblock1).

To specify the structural part13, one needs to provide the endogenous/dependent latent vari-
able (say, LV2) first followed by the exogenous latent variables (say, LV1) by typing

plssem (LV1 > indblock1) (LV2 > indblock2), structural(LV2 LV1).

One can specify further structural relationships following the same approach. For example,
suppose one has two further latent variables in the model, LV3 and LV4, still measured in a
reflective way, with LV4 endogenous and LV3 exogenous. Then, the syntax for the structural
part should be

plssem (LV1 > indblock1) (LV2 > indblock2) (LV3 > indblock3) ///

(LV4 > indblock4), structural(LV2 LV1, LV4 LV3).

In addition, in line with most of the Stata commands, we can fit a full PLS-PM model by
sub-setting the data directly in the syntax using the if and in qualifiers.

More generally, the syntax for the plssem command is provided by14

13While the measurement part is mandatory, the plssem package allows to fit models that do not include the
structural part.

14The plssem package is compatible with Stata version 10 and above.
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[by groupvar :] plssem (LV1 > indblock1) (LV2 > indblock2) (... ...) ///

[if exp ] [in range ] [, structural(LV2 LV1, ... ...) options ],

where square brackets distinguish optional qualifiers and options from required ones, groupvar
denotes a variable name in the data set, exp denotes an algebraic expression, range denotes
an observation range, and options denotes a list of available options. The optional by

prefix causes Stata to repeat a command for each subset of the data for which the values
of the groupvar variable are equal. In other words, when prefixed with by, the result of
the command will be the same as if one had formed separate datasets for each group of
observations, saved them, and then gave the command on each data set separately. The list
of available options for the plssem command are illustrated in the next section.

3.2. Options

The options allowed by the plssem command are detailed below:

wscheme(weighting_scheme) provides the choice of the weighting scheme. The default is
path for the path scheme as given in equation 4. Alternative choices are factorial or
centroid for the corresponding scheme.

binary(LV) indicates the latent variables that are defined by a single binary variable. This
allows essentially for estimating a model with a binary dependent variable using a logistic
regression model. The latent variable LV needs to be specified in the measurement part
of the syntax at the same time (e.g., LV > binaryvar)15.

boot(#) sets the number of bootstrap replications.

seed(#) sets the seed number for the bootstrap calculations. This option may be useful if
reproducibility is one of the analyst’s concerns.

tol(#) sets the tolerance value used for checking convergence attainment (see Step 5 in Stage
I described in Section 2.1). The default tolerance value is 1e-7.

maxiter(#) indicates the maximum number iterations the algorithm runs. The default is 100
iterations. Note that usually the algorithm requires a very limited number of iterations
to reach convergence, typically less than 10.

missing(imputation_method) provides the choice of the imputation method for the indica-
tor missing values. Possible choices are mean (i.e., the mean of the available indicators)
or knn (i.e., the k-th nearest neighbor method).

k(#) sets the number of nearest neighbors to use with missing(knn). The default number
of nearest neighbors is 5.

15This is in fact showing how we can work with single indicators using the plssem command. We can
include both continuous and dichotomous single indicators in the model by linking them to latent variables
in the measurement part of the syntax. Unless any of these latent variables is specified as binary using the
binary() option, the structural part will apply linear (regress), otherwise logistic (logit) regression will be
used. However, we stress that the same algorithm is used for the measurement part regardless of the nature
of the indicators.
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init(init_method) lets the user choose between two options for initialization. These are
indsum16 (default) and eigen17. The eigen option is required if the user wants to
estimate only the measurement part of the model18.

digits(#) sets the number of decimals to display the model estimates. The default is 3.

noheader suppresses the output header.

nodiscrimtable suppresses discriminant validity assessment section of the output.

nomeastable suppresses measurement model section of the output.

nostructtable suppresses structural model section of the output.

loadpval shows the table of loadings’ p-values.

stats displays some summary statistics (mean, standard deviations, etc.) for each indicator.

group(grouping variable, [suboptions]) provides both the structural and the measure-
ment part of the estimation results for each category of the grouping variable as well
as the comparison between the categories based on normal-theory (default). As an al-
ternative to normal-based theory estimations, the user can choose between two resam-
pling techniques. More specifically, by adding the suboptions method(permutation)

or method(bootstrap) one can get the results based on permutation or bootstrap re-
sampling. The default number of replications for both permutation and bootstrap is
100. However, this can be changed by adding the suboption reps(#). Further, with the
suboption groupseed(#) one can also set a certain seed number to be able reproduce
the bootstrap or permutation results. Finally, by using the suboption plot one can
get a graphical output showing the estimates differences between the groups based on
alpha level of 0.05 (default). The significance level can also be changed by adding the
suboption alpha(#).

correlate(mv lv cross, cutoff()) lets the user ask for correlations among the indicators
or manifest variables (mv), latent variables (lv) as well as cross-loadings (cross) between
the indicators and latent variables19. When doing so, the user can also set a certain
cut-off value for the correlations to be displayed by using the suboption cutoff(). For
instance, cutoff(0.3) will display the correlations above 0.3 in absolute terms.

rawsum uses the sum of the raw indicators and the resulting aggregated scores (also called
summated scales) are used directly for estimating the structural part. In this sense,
rawsum is an alternative procedure to the PLS-algorithm for estimating the latent vari-
able scores.

noscale if chosen, the manifest variables are not standardized before running the algorithm.

16The initial values in this option are 1s for all of the indicators.
17The initial values (i.e., the weights) in this option are the values associated with the first eigenvector in

factor extraction’s iterative process.
18What this initialization does is essentially running separate factor analyses with principal component

extraction method (factor, pcf) for each latent variable in Stata. Thus, plssem command can conveniently
be used as an alternative to the factor, pcf command as plssem would provide the user with some further
estimations (i.e., reliability coefficients and discriminant validity assessment).

19These correlations are computed using the original indicators and estimated latent variable scores.
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convcrit(convergence_criterion) the convergence criterion to use. Alternative choices
are relative or square. The former corresponds to

max
k=1,...,K

j=1,...,J

∣∣∣∣∣ ŵold
kj − ŵnew

kj

ŵnew
kj

∣∣∣∣∣ ,
while the latter to

max
k=1,...,K

j=1,...,J

(
ŵold
kj − ŵnew

kj

)2
.

The default is relative.

3.3. Postestimation commands

The following are the postestimation commands that can be used after fitting a PLS-SEM
model with the plssem command. These commands can basically be categorized under two
rubrics, estat and plssemplot.

estat indirect, effects(dep med ind, ...) estimates the specified (standardized) in-
direct effects and tests the significance of these effects using either the Sobel’s z statistic
(default) as well as the bootstrap approach20 (Sobel 1982; Baron and Kenny 1986; Van-
derWeele 2015). The command can estimate up to five different indirect effects at a
time. Each of these should specified by sequentially typing the dependent (dep), medi-
ator (med) and independent (ind) variable from any PLS-SEM model. By adding the
suboption boot(#), you can obtain the results based on bootstrap. To facilitate the
reproducibility of results, the suboption seed(#) can further be added to set the seed
for the bootstrap calculations. Confidence intervals for the estimated indirect effects
are also provided. The default confidence level is 95%, but one can change it by adding
the suboption level(#). To change the number of decimals used to display the esti-
mates, one can change the default (3 digits) to another value by adding the suboption
digits(#).

estat total produces the decomposition of the total effects in (standardized) direct and in-
direct21. Adding the suboption plot will generate a bar plot of the effect decomposition.
You can here too change the decimals by making use of the suboption digits(#).

estat vif computes the variance inflation factors (VIFs) for the independent variables spec-
ified in the structural part of a PLS-SEM model. With the digit(#) suboption, one
can change the decimal display.

estat unobshet assesses the presence of unobserved heterogeneity. Currently, the command
implements only the REBUS-PLS approach proposed by Trinchera (2007) and Espos-
ito Vinzi et al. (2008).

plssemplot, loadings provides a bar plot of the loadings of indicators for their respective
latent variables.

20estat indirect provides the indirect effects mediated by only one latent variable.
21In particular, the overall indirect effects via more than one mediator variable is provided.
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plssemplot, crossloadings provides bar plots of the loadings of indicators for not only
their respective but all the other latent variables (i.e., the cross loadings; see line 24 of
Algorithm 1).

plssemplot, scores provides the scatterplot matrix of the scores for the latent variables
defined in the PLS-SEM model.

plssemplot, stats(LV) provides the scatterplot matrix for the indicators in the block defin-
ing the latent variable LV.

plssemplot, innermodel produces a graphical representation of the structural (inner) part
of the PLS-SEM model. This command requires the installation of the nwcommands

suite22.

plssemplot, outermodel produces a visualized version of the measurement (outer) part of
the PLS-SEM model. This feature is still under development, but will be available soon.

predict, xb residuals creates new variables containing linear predictions (option xb, the
default) and residuals (option residuals). These quantities are provided only for reflec-
tive blocks of manifest variables in the measurement/outer model and for endogenous
latent variables in the structural/inner model.

3.4. Stored results

Since plssem is built as a Stata estimation command, many of the results are stored after
fitting a model. These objects might be used for further analyses after a model has been
fitted. In particular, plssem stores the following objects accessible through the Stata’s e()

function:

• the stored scalar objects are given by

e(N): number of observations

e(reps): number of bootstrap replications

e(iterations): number of iterations to reach convergence

e(tolerance): chosen tolerance value

e(maxiter): maximum number of iterations allowed

e(converged): scalar equal to 1 if convergence is achieved; 0 otherwise

• the stored macros are

e(cmd): this is just the command name, i.e., plssem

e(cmdline): the command as typed

e(estat_cmd): the name of the program used to implement estat

e(predict): program used to implement predict

e(title): title in estimation output

22This can be achieved by executing the code net install nwcommands-ado.pkg.
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e(mvs): list of manifest variables (indicators) used

e(lvs): list of latent variables used

e(binarylvs): sublist of binary latent variables only

e(datasignaturevars): variables used in calculation of checksum

e(datasignature): the checksum

e(reflective): list of latent variables measured in a reflective way

e(formative): list of latent variables measured in a formative way

e(struct_eqs): equations defining the structural model

e(properties): choices of initialization, weighting scheme, imputation method, whether
the bootstrap has been used, whether the model has a structural part, whether the
rawsum option has been used, and whether the manifest variables have been scaled
or not

• the matrix objects saved for later use are

e(loadings): outer loadings matrix

e(loadings_bs): bootstrap-based outer loadings matrix (available only if the boot()

is chosen)

e(loadings_se): matrix of the outer loadings standard errors

e(cross_loadings): cross loadings matrix

e(cross_loadings_bs): bootstrap-based cross loadings matrix (available only if the
boot() option is chosen)

e(cross_loadings_se): matrix of the cross loadings standard errors

e(adj_meas): adjacency matrix for the measurement (outer) model

e(outerweights): matrix of outer weights

e(ow_history): matrix of outer weights evolution

e(relcoef): matrix of reliability coefficients

e(sqcorr): matrix of squared correlations among the latent variables

e(ave): vector of average variances extracted

e(struct_b): path coefficients matrix (short form)

e(struct_se): matrix of path coefficients’ standard errors (in short form)

e(struct_table): table combining estimation results for the structural (inner) model

e(pathcoef): path coefficients matrix (in extended form)

e(pathcoef_bs): bootstrap-based path coefficients matrix (available only if the boot()
is chosen)

e(adj_struct): adjacency matrix for the structural (inner) model

e(rsquared): vector of R-squared for reflective latent variables

e(redundancy): vector of redundancy indices

e(assessment): vector of model quality indices, that is the average R-squared, the
average communality, the average redundancy and the goodness-of-fit as discussed
in Section 2.3
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e(reldiff): vector containing the history of weights’ relative differences

e(imputed_data): matrix of imputed indicators; available only if the missing option
has been used

• finally, plssem saves a function returning an indicator that marks the observations used
for fitting the model; this function is accessible through

e(sample): marks estimation sample

Together with the above objects, the plssem command also saves the latent variable scores
as new columns in the active data set. These columns are labeled as the latent variables
specified in the model syntax.

3.5. Additional features

The plssem command is also able to deal with binary latent variables, even when these are
used as endogenous in the structural part of the model. This can be achieved by specifying
the binary latent variables with the binary() option. In this case, plssem uses the logit

command for fitting the logistic regression models having the binary latents as the dependent
variable. Even if the corresponding path coefficients cannot be directly compared with those
obtained using a linear regression model, for completeness we decided to collect and report
all the coefficients in a single table.

The package also has the potential to estimate higher-order construct models entailing higher-
order structure (usually second-order) that contains several layers of constructs(Lohmöller
1989, Section 3.5). In particular, one can use the so called repeated indicators approach
(Sanchez 2013, Chapter 8) according to which one simply uses the estimated latent variable
scores added to the current data set as indicators for the higher-order latent variables. This
approach can be easily accomplished with the plssem package.

As a final note, we mention that the current release of the package provides two different
approaches to deal with missing values imputation, that is mean and k-nearest neighbors
imputation, through the missing() option. Clearly, as most Stata statistical commands
do, if the missing() is not specified, plssem treats missing values by simply disregarding
observations with one or more missing. This trivial approach to missing values is generally
known as listwise deletion. We remind that listwise deletion provides unbiased estimates of
means, variances and regression coefficients only under the restrictive assumption that the
data are missing completely at random (see for example van Buuren 2012).

4. Empirical application

In this section we illustrate the use of the plssem package through an example taken from
our research agenda. More specifically, we use a real-life data set collected from members of
a training/fitness centre in 2014 in a medium-sized city in Norway. The members were asked
to indicate how well having an attractive face and being sexy described them as a person
using an ordinal scale (1 = very badly to 6 = very well). Using a similar scale (1 = not at all
important to 6 = very important), the members were also asked to indicate how important
each of the following measures was for working out:
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• to have a good body,

• to improve my appearance,

• to look more attractive,

• to develop my muscles,

• to get stronger,

• to increase my endurance,

• to lose weight,

• to burn calories,

• to control my weight.

Table 3 reports the list of indicators, the variable name in the data set and the corresponding
latent construct they measure.

Indicator Variable name Latent variable

Attractive face face Attractive

Sexy sexy

To have a good body body Appearance

To improve my appearance appear

To look more attractive attract

To develop my muscles muscle Muscle

To get stronger strength

To increase my endurance endur

To lose weight lweight Weight

To burn calories calories

To control my weight cweight

Table 3: List of indicators collected and latent variables they measure for the empirical
application described in Section 4.

Specification of the PLS-SEM model

Based on relevant evolutionary psychology literature (see for example Markland and Ingledew
1997 and Kirsner, Figueredo, and Jacobs 2003), we propose the following hypotheses:

H1: The more attractive one perceives herself/himself, the more the person wants to work
out to improve her/his physical appearance (i.e., Attractive → Appearance)

H2: The more the person wants to work out to improve her/his physical appearance, the
more s/he wants to work out to build up muscles (i.e., Appearance → Muscle)

H3: The more the person wants to work out to improve her/his physical appearance, the
more s/he wants to work out to lose weight (i.e., Appearance → Weight)
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H4: The more attractive one perceives herself/himself will indirectly influence the person to
work out more to build up muscles (i.e., Attractive → Appearance → Muscle)

H5: The more attractive one perceives herself/himself will indirectly influence the person to
work out more to lose weight (i.e., Attractive → Appearance → Weight)

It is usual in SEM-based publications to represent these hypotheses using a path diagram to
ease the understanding of the relationships (see for example Jöreskog et al. 2016; Kline 2016).
We do this for our set of hypothesis in Figure 2.

face sexy 

Attractive 

body appear attract 

Appearance 

muscle strength endur 

Muscle 

lweight calories cweight 

Weight 

Figure 2: The hypothesized PLS-SEM model according to the hypotheses described in Section
4. Attractive, Appearance, Muscle and Weight are the latent variables defined in the model,
with Attractive being the only exogenous variable. All the latent variables are measured in
a reflective way.

Model estimation

Following the syntax and options described in Section 3, we specify and estimate our research
model represented in Figure 2 with the following code:

. use workout2.dta,clear

. plssem (Attractive > face sexy) ///

(Appearance > body appear attract) ///

(Muscle > muscle strength endur) ///

(Weight > lweight calories cweight), ///
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structural(Appearance Attractive, ///

Muscle Appearance, ///

Weight Appearance) ///

boot(200) seed(123) stats correlate(lv)

The above lines of code produce the following results23:

Bootstrap replications (200)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Iteration 1: outer weights rel. diff. = 6.31e-01

Iteration 2: outer weights rel. diff. = 1.49e-02

Iteration 3: outer weights rel. diff. = 1.34e-03

Iteration 4: outer weights rel. diff. = 7.76e-05

Iteration 5: outer weights rel. diff. = 6.80e-06

Iteration 6: outer weights rel. diff. = 4.00e-07

Iteration 7: outer weights rel. diff. = 3.49e-08

Partial least squares path modeling Number of obs = 187

Average R-squared = 0.15795

Weighting scheme: path Average communality = 0.79165

Tolerance: 1.00e-07 GoF = 0.35361

Initialization: indsum Average redundancy = 0.11941

Table of summary statistics for indicator variables

---------------------------------------------------------------------------------------------------------

Indicator | mean sd median min max N missing

--------------+------------------------------------------------------------------------------------------

face | 3.290 1.005 3.000 1.000 6.000 200 46

sexy | 2.592 1.113 3.000 1.000 6.000 196 50

body | 4.034 1.470 4.000 1.000 6.000 205 41

appear | 3.365 1.672 3.000 1.000 6.000 203 43

attract | 3.059 1.707 3.000 1.000 6.000 204 42

muscle | 3.853 1.587 4.000 1.000 6.000 204 42

strength | 4.779 1.159 5.000 1.000 6.000 208 38

endur | 4.976 1.111 5.000 1.000 6.000 209 37

lweight | 3.604 1.759 4.000 1.000 6.000 207 39

calories | 4.053 1.638 4.000 1.000 6.000 207 39

cweight | 4.048 1.666 4.000 1.000 6.000 207 39

---------------------------------------------------------------------------------------------------------

Measurement model - Standardized loadings

--------------------------------------------------------------------------

| Reflective: Reflective: Reflective: Reflective:

| Attractive Appearance Muscle Weight

--------------+-----------------------------------------------------------

face | 0.908

sexy | 0.919

body | 0.899

appear | 0.949

attract | 0.923

muscle | 0.886

strength | 0.873

endur | 0.623

lweight | 0.916

calories | 0.937

23We compared the results for the example shown here, as well as the results for many other examples not
reported in this paper, with those provided by the software mentioned in Section 1. In all cases we found an
agreement in the order of at least 10−6. However, we note that a perfect agreement is never possibile because
of minor implementation differences of the PLS-SEM algorithm in the different software.
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cweight | 0.911

--------------+-----------------------------------------------------------

Cronbach | 0.801 0.914 0.734 0.912

DG | 0.909 0.946 0.842 0.944

--------------------------------------------------------------------------

Discriminant validity - Squared interfactor correlation vs. Average variance extracted (AVE)

--------------------------------------------------------------------------

| Attractive Appearance Muscle Weight

--------------+-----------------------------------------------------------

Attractive | 1.000 0.080 0.021 0.002

Appearance | 0.080 1.000 0.217 0.177

Muscle | 0.021 0.217 1.000 0.041

Weight | 0.002 0.177 0.041 1.000

--------------+-----------------------------------------------------------

AVE | 0.834 0.854 0.645 0.849

--------------------------------------------------------------------------

Structural model - Standardized path coefficients (Bootstrap)

-----------------------------------------------------------

Variable | Appearance Muscle Weight

--------------+--------------------------------------------

Attractive | 0.283

| (0.000)

Appearance | 0.466 0.420

| (0.000) (0.000)

--------------+--------------------------------------------

r2_a | 0.075 0.213 0.172

-----------------------------------------------------------

p-values in parentheses

Correlation of latent variables

--------------------------------------------------

| Attrac~e Appear~e Muscle Weight

-------------+------------------------------------

Attractive | 1.0000

Appearance | 0.2830 1.0000

Muscle | 0.1435 0.4658 1.0000

Weight | -0.0414 0.4204 0.2032 1.0000

--------------------------------------------------

As one can see, the output commences with some summary statistics followed by the measure-
ment part of the estimation results including the bootstrap standardized loadings. We then
see a table showing the discriminant validity assessment24 before displaying the structural
part of the estimation results including bootstrap standardized path coefficients. Finally, we
get a table showing the correlations among the latent variables of our model.

The output provided gives us the necessary information to test the first three hypotheses,
namely H1, H2 and H3. To be able to test mediational hypotheses (H4 and H5), we make
further use of the following code to estimate the indirect effects and test their statistical
significance using the bootstrap method.

. estat indirect, effects(Muscle Appearance Attractive, ///

Weight Appearance Attractive) ///

boot(200) seed(456)

Computing indirect effects bootstrap distribution...

24To be able to demonstrate discriminant validity, the average variance extracted (AVE) values should be
larger than the squared correlations among the latent variables.



26 plssem: A Stata Package for PLS-SEM

Significance testing of (standardized) indirect effects (Bootstrap)

--------------------------------------------------------------

| Muscle <- | Weight <-

Statistics | Appearance <- | Appearance <-

| Attractive | Attractive

------------------------+------------------+------------------

Indirect effect | 0.132 | 0.119

Standard error | 0.040 | 0.033

Z statistic | 3.285 | 3.564

P-value | 0.001 | 0.000

Conf. interval (N) | (0.053, 0.210) | (0.054, 0.184)

Conf. interval (P) | (0.066, 0.228) | (0.067, 0.197)

Conf. interval (BC) | (0.071, 0.240) | (0.068, 0.198)

--------------------------------------------------------------

confidence level: 95%

(N) normal confidence interval

(P) percentile confidence interval

(BC) bias-corrected confidence interval

We can further ask for a graphical output showing the size of the outer loadings for each
latent variable using the following code, which yields the graph shown in Figure 3:

. plssemplot, loadings

Stored results

plssem stores the following objects in e() after estimating our proposed model.

. ereturn list

. ereturn list

scalars:

e(converged) = 1

e(tolerance) = 1.00000000000e-07

e(iterations) = 7

e(maxiter) = 100

e(reps) = 200

e(N) = 187

macros:

e(cmd) : "plssem"

e(cmdline) : "plssem (Attractive > face sexy) (Appearance > body appear ..."

e(estat_cmd) : "plssem_estat"

e(predict) : "plssem_p"

e(title) : "Partial least squares structural equation modeling"

e(datasignaturevars) : "face sexy body appear attract muscle strength endur lweight ..."

e(datasignature) : "187:15:2197803537:1706307640"

e(mvs) : "face sexy body appear attract muscle strength endur lweight ..."

e(lvs) : "Attractive Appearance Muscle Weight"



Journal of Statistical Software 27

0
.2

.4
.6

.8
1

fa
ce

se
xy

bo
dy

ap
pe
ar

at
tra
ct

m
us
cl
e

st
re
ng
th

en
du
r

lw
ei
gh
t

ca
lo
rie
s

cw
ei
gh
t

Loadings
Attractive Appearance Muscle Weight

Figure 3: Bar chart reporting the outer loadings by blocks. Colors denote different indicator
blocks. The dashed line provides a value (i.e., 0.7) frequently used in the literature to assess
the quality of the fit.

e(reflective) : "Attractive Appearance Muscle Weight"

e(struct_eqs) : "(Appearance Attractive) (Muscle Appearance) (Weight Appearance)"

e(properties) : "indsum path bootstrap structural scaled relative"

matrices:

e(indstats) : 11 x 7

e(loadings) : 11 x 4

e(loadings_bs) : 11 x 4

e(loadings_se) : 11 x 4

e(cross_loadings) : 11 x 4

e(cross_loadings_bs) : 11 x 4

e(cross_loadings_se) : 11 x 4

e(adj_meas) : 11 x 4

e(relcoef) : 2 x 4

e(sqcorr) : 4 x 4

e(ave) : 1 x 4

e(struct_b) : 2 x 3

e(struct_se) : 2 x 3

e(struct_table) : 5 x 3

e(pathcoef) : 4 x 4

e(pathcoef_bs) : 4 x 4

e(adj_struct) : 4 x 4
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e(total_effects) : 4 x 4

e(rsquared) : 1 x 4

e(redundancy) : 1 x 4

e(assessment) : 1 x 4

e(ow_history) : 8 x 11

e(outerweights) : 11 x 4

e(reldiff) : 1 x 7

functions:

e(sample)

Multigroup analysis

To demonstrate a further feature of the plssem package, in this section we perform a multi-
group analysis based on the model depicted in Figure 2. More specifically, we now check
whether the model estimates (path coefficients and loadings) differ between men and women
respondents in our sample. As described earlier in the paper, plssem offers two approaches
for comparing model estimates across groups: permutation and bootstrap (as well as the
standard one based on normal-theory). Here, we show the results using the bootstrap option
with 200 replications. For reproducibility purposes, we set an arbitrary seed. We also set
a significance level (alpha) of 0.1 to display significant path coefficients or loadings in the
resulting plot. The grouping variable, women, is a dummy-coded variable in which men are
coded as 0.

. plssem (Attractive > face sexy) ///

(Appearance > body appear attract) ///

(Muscle > muscle strength endur) ///

(Weight > lweight calories cweight), ///

structural(Appearance Attractive, ///

Muscle Appearance, ///

Weight Appearance) ///

group(women, reps(200) groupseed(123) method(bootstrap) alpha(.1)

plot)

The code above produces the following results:

Bootstrap replications (200)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

Partial least squares path modeling

Weighting scheme: path

Tolerance: 1.00e-07

Initialization: indsum

Multigroup comparison (women) - Bootstrap t-test

-----------------------------------------------------------------------------------------------

Measurement effect | Global Group 1 Group 2 Abs Diff Statistic P-value

-----------------------+-----------------------------------------------------------------------

Attractive -> face | 0.908 0.816 0.943 0.127 1.573 0.117
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Attractive -> sexy | 0.919 0.936 0.910 0.026 0.355 0.723

Appearance -> body | 0.899 0.883 0.909 0.026 1.103 0.272

Appearance -> appear | 0.949 0.950 0.954 0.004 0.166 0.869

Appearance -> attract | 0.923 0.946 0.911 0.035 1.239 0.217

Muscle -> muscle | 0.886 0.887 0.882 0.004 0.070 0.945

Muscle -> strength | 0.873 0.860 0.883 0.022 0.295 0.769

Muscle -> endur | 0.623 0.616 0.640 0.025 0.060 0.953

Weight -> lweight | 0.916 0.941 0.911 0.030 0.000 1.000

Weight -> calories | 0.937 0.924 0.938 0.014 0.534 0.594

Weight -> cweight | 0.911 0.866 0.924 0.058 0.751 0.454

-----------------------------------------------------------------------------------------------

number of replications: 200

group labels:

Group 1: men

Group 2: women

group sizes:

Group 1: 71

Group 2: 116

Multigroup comparison (women) - Bootstrap t-test

--------------------------------------------------------------------------------------------------

Structural effect | Global Group 1 Group 2 Abs Diff Statistic P-value

--------------------------+-----------------------------------------------------------------------

Attractive -> Appearance | 0.283 0.339 0.265 0.074 0.618 0.537

Appearance -> Muscle | 0.466 0.554 0.417 0.137 1.362 0.175

Appearance -> Weight | 0.420 0.257 0.533 0.276 1.799 0.074

--------------------------------------------------------------------------------------------------

number of replications: 200

group labels:

Group 1: men

Group 2: women

group sizes:

Group 1: 71

Group 2: 116

The results show the path coefficients for the whole sample (Global) as well as those for the
men (Group 1) and women (Group 2) samples. More importantly, a bootstrapped t test is
run based on these estimates. We can conclude that the effect of Appearance on Weight

is larger among women than to men. This difference is significant at the 0.1 significance
level though. The remaining path coefficients are not significantly different between the two
groups. Figure 4 reports the plot produced by the above code showing the magnitudes of
the differences among the path coefficients. The plot also shows the path coefficients (if any)
that are significantly different between groups according to the chosen alpha level by marking
them with a star.

The same command also provides the comparison of the model’s loadings between men and
women represented in Figure 5. None of the loadings is significantly different between men
and women. Equality of loadings is indeed an important condition that must be met for
establishing measurement invariance before comparing path coefficients of different models.
Thus, ideally and as done in real-life research practice, the comparison of the measurement
model parameters should precede the comparison of the structural model parameters.

5. Conclusion

In this article, we introduced the plssem package for estimation of partial least squares struc-
tural equation modeling (PLS-SEM). We demonstrated the capabilities of the package using
a common and multi-featured empirical application. plssem can as easily be used to estimate
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Figure 4: Comparison of path coefficients using multigroup analysis. The statistically signif-
icant differences at the given alpha level are highlighted with (*).

more complex PLS-SEM models such as higher-order latent variable models. Future releases
of the command will include further more advanced features, in particular we plan to add
capabilities for multilevel modeling, more options for missing values imputation and more
elaborate approaches for dealing with observed and unobserved heterogeneity.
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