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1 Introduction and summary

In the past 16 years there has been quite a lot of progress in charting out the space of

possible solutions of the classical equations of motion of open string field theory (OSFT) [1]

by both numerical [2–12] as well as analytic tools [10, 13–23] by which new exact solutions

have been found or analyzed [15, 24–41]. See [42–47] for reviews.

The OSFT action

SOSFT = − 1

g2o

[
1

2
〈Ψ ∗QBΨ 〉+ 1

3
〈Ψ ∗Ψ ∗Ψ 〉

]
, (1.1)

can be formulated for an arbitrary system of “D-branes”, coincident or not, and described

by a generic Boundary Conformal Field Theory (BCFT, see [48–52] for reviews) for com-

posite or fundamental boundary conditions.

Obviously, to describe all solutions for the bewildering space of theories based on

arbitrary BCFT is a difficult task. But besides the intrinsic importance of the classification

of OSFT solutions, this program can potentially help in the discovery of new D-brane

systems, by encoding new world-sheet boundary conditions into the gauge invariant content

of OSFT solutions [10, 20, 21]. Numerical approaches are sometimes useful, especially

when one does not know what to expect, i.e. when the problem of classifying all conformal

boundary conditions for a given bulk CFT is unsolved. Analytic solutions are scarce and

until recently they essentially described only the universal tachyon vacuum or marginal

deformations. A notable progress has been achieved with the solution [38], by Erler and

one of the authors, which can be written down explicitly for any given pair of reference

and target BCFT’s. The existence of this solution gives evidence that OSFT can describe

the whole landscape of D-branes that are consistent with a given closed string background.

However since the solution requires the knowledge of the OPE for the boundary condition

changing operators relating the two BCFT’s, it does not directly help in the problem of

discovering new BCFT’s.

It would be nice to have an organizing principle by which we could simply relate

solutions in the same or possibly different theories. Solution generating techniques are

scarce and problematic [53–55]. It is well known however that symmetries can be used to

generate new solutions. Given a star algebra automorphism S

S(ψ ∗ χ) = S(ψ) ∗ S(χ), (1.2)

commuting with the BRST operator QB one can see that if Ψ is a solution of the equation

of motion, then so is SΨ. The operator S can correspond to a discrete symmetry, or a

continuous symmetry. In the latter case one has a family of such operators Sα which arise

by exponentiation of the infinitesimal generator, a star algebra derivative P

P (ψ ∗ χ) = (Pψ) ∗ χ+ ψ ∗ (Pχ). (1.3)

Indeed, assuming [QB, P ] = 0 and setting Sα = eαP , one finds that Sα maps solutions to

solutions. The symmetry generator P is often given by a contour integral of a spin one

current and upon exponentiation it can be interpreted as a topological defect operator.

– 1 –
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Even in the case of discrete symmetries, the operator S can be viewed as a so called

group-like topological defect operator [56, 57].1

The main goal of this paper is to extend this analogy further. For every topological

defect in a given BCFT we construct an operator D which maps the state space of one

BCFT into another, in such a way that

D(ψ ∗ χ) = D(ψ) ∗ D(χ). (1.4)

What makes a defect topological is that the defect operator commutes with the energy

momentum tensor, and hence also commutes with the BRST charge QB. Then it imme-

diately follows that if Ψ is a classical solution of OSFT for a given BCFT, then DΨ is a

solution of OSFT built upon another BCFT.

The explicit action of the defect operator D on the open string fields turns out to be

quite tricky. In general the string field algebra is not given by a single BCFT Hilbert space

with a single boundary condition but is given rather by a direct sum of A-B bimodules⊕
a,bH(ab), where a and b label the boundary conditions for the endpoints of open string

stretched by two D-branes. The algebras A and B represent a set of boundary fields on

a D-brane for the a and b boundary condition respectively, and are themselves bimodules

with the left and right multiplication provided by the operator product. As the defect

operator must commute with the Virasoro generators (single surviving copy on the upper

half-plane) it must act as

Ddφab
i =

∑

a′,b′

Xdab
ia′b′φ

a′b′

i . (1.5)

An important feature of D is that it maps boundary operators intertwining between two

given boundary conditions into a sum of operators intertwining between new boundary

conditions allowed by the fusion rules of the theory. It thus maps, in general, the original

star algebra into a bigger star algebra. This contrasts with the action of the defect operators

on the closed string Hilbert space where it maps the whole space into itself [58].

For the sake of simplicity and concreteness we limit our discussion in this paper to

topological defects of unitary Virasoro minimal models with diagonal partition function.

These have been fully classified [58] and they are in one-to-one correspondence with primary

operators. For these defects we find from the distributivity requirement (1.4), in a canonical

normalization for boundary fields (3.23), that the X-coefficients are given in terms of the

normalized g-functions g′ (2.22) and the normalized 6J-symbols (2.36)

Xdab
ia′b′ =

(
g′ag

′
bg

′
a′g

′
b′
) 1

4

[

a, a′, d

b′, b, i

]

. (1.6)

For the special case of a = b this reduces, up to a normalization, to the result of Graham

and Watts [60].

The action of the defect on boundary fields can be conveniently understood in terms

of defects attached onto the boundary as in figure 1. The defect endpoints can be freely

moved along the boundary without changing correlators as long as the defect does not

1Topological defects have played a prominent role in the recent development of two-dimensional CFT,

see also [58–62].
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d
























Dd
=

a ∈ d× a

b ∈ d× b

a φi b a i

Figure 1. Action of the topological defect on a boundary field φab
i can be described by enclosing it

with an open defect attached to the boundary. The result is a collection (direct sum) of boundary

fields φa′b′

i for all possible new boundary conditions allowed by fusion. The dots at the junctions

represent simple normalization factors determined in subsection 4.2.

cross any operator insertion. The junction point can be viewed as an insertion of the

identity operator (and not a traditional boundary condition changing operator) up to a

normalization factor which we determine in subsection 4.2.

Quite surprisingly however, the fusion rules of the open defect operators are twisted by

an orthogonal similarity transformation when multiple boundary conditions are generated

by the defect. So instead of

DdDc =
∑

e

N e
dc De, (1.7)

which holds for the defect action on bulk states, the action on boundary operators obeys

DdDc = Udc

(
⊕

e

N e
dc De

)
U−1
dc . (1.8)

Here U is a matrix, which for fixed c and d describes a discrete transformation in the space

of multiplicity labels, which for fixed initial and final boundary conditions has its rows

labeled by the intermediate boundary condition created by Dc, and columns labeled by e

the summation parameter of the direct sum on the right hand side. When we include also

the initial and the final boundary conditions as part of the multiindices, i.e. {a, a′, a′′} and

[e; a, a′′] respectively, the U matrix becomes orthogonal and it is surprisingly given by the

Racah symbol (2.40)

(Udc)
{a a′ a′′}[e; b, b′′] = δab δa′′ b′′

{

c, a, a′

a′′, d, e

}

. (1.9)

From the explicit formula [10] for the boundary state in terms of the OSFT classical

solution it follows that applying the defect operator to the open string field results in a

boundary state encircled by the defect operator which gives a new consistent boundary

state of the kind considered by Graham and Watts [60]. In formulas

||BDΨ〉〉 = D||BΨ〉〉. (1.10)

Therefore, assuming that a given solution ΨX→Y describes BCFTY in terms of BCFTX ,

upon action of the defect operator D, it will describe BCFTDY in terms of BCFTDX , i.e.

DΨX→Y = ΨDX→DY . (1.11)

– 3 –
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As a byproduct of our analysis we discover the interesting relation

Dd
j

(a)Bi
j ga =

∑

a′∈d×a

Xdaa
ia′a′

(a′)Bi
j ga′ , (1.12)

relating bulk-to-boundary structure constants for different boundary conditions, where Dd
j

is the eigenvalue of the defect operator Dd acting on a spinless bulk field labeled by j,

see (2.13).

In order to be as self-contained as possible the paper includes some review material

and it is organized as follows. In section 2 we review the basic definitions and properties

of defects and topological defect networks in two dimensional CFT. We also introduce the

duality matrices as generic solutions to the pentagon identity (which is a consequence of

the topological structure of the networks and the basic fusion rules of the defects) and the

related 6J and Racah symbols. In section 3 we review the basic construction of boundary

states in diagonal minimal models and explain how topological defects act on them. In

addition, we review Runkel’s derivation of the boundary OPE coefficients and identify a

particularly useful normalization for boundary fields. Section 4 is devoted to the main

results of our work, namely the construction of open topological defect operators as maps

between two boundary operator algebras which is compatible with the OPE. We present

two independent derivations of our results, one which is algebraic and which builds on

the initial analysis by Graham and Watts [60] and one which is geometric and uses the

properties of defect networks in presence of boundaries. Both our constructions clearly

show that the composition of open topological defect operators follows the fusion rules

only up to a similarity transformation whose precise structure is encoded in the Racah

symbols. In section 5 we consider open topological defects as new operators in OSFT

which map solutions to solutions. We show that the way OSFT observables are affected

by the action of defects is consistent with the BCFT description and the interpretation

of OSFT solutions as describing a new BCFT using the degrees of freedom of a reference

BCFT. In section 6 we illustrate our construction in the explicit example of the Ising model

BCFT. Three short appendices contain further results which are used in the main text.

2 Defects in conformal field theory

Consider two, generally distinct, 2d CFT’s glued along a one-dimensional interface. We

assume that energy is conserved across this interface. Let (x0, x1) be the coordinates of the

system and the interface is placed at x1 = 0. From the conservation law ∂0T
00+∂1T

10 = 0,

we see that if T 10 is continuous then the total energy is conserved

∂

∂x0

∫
dx1T 00 = −

∫
dx1

∂

∂x1
T 10 = 0. (2.1)

The requirement that the momentum density T 01 = T 10 is continuous across the interface

reads simply

T 01(x0, x1)
∣∣
x1→0+

= T 01(x0, x1)
∣∣
x1→0−. (2.2)

– 4 –
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Introducing the complex coordinates z = x0 + ix1 and z̄ = x0 − ix1, the above condition is

written as

lim
x1→0

(
T (z)− T̄ (z̄)

) ∣∣
z=x0+ix1 = lim

x1→0

(
T (z)− T̄ (z̄)

) ∣∣
z=x0−ix1 . (2.3)

This condition also means that the system has invariance under conformal transformations

which leave the shape of the defect line untouched, and the interface enjoying (2.3) is called

a conformal interface or a conformal defect. The gluing condition (2.3) should be supple-

mented by giving a rule for the behaviour of the other fields near the interface. The concept

of conformal defects comes from the study of one dimensional impurity systems [63, 64].

For a recent discussion of conformal defects see [65–68].

There are two special classes of conformal defects: the factorized defects and the

topological defects. The factorized defects are purely reflective,2 and the two CFTs do not

communicate at all. This condition is given by requiring the energy current T 01 to be zero

at the defect, or equivalently

lim
x1→0

T (z)
∣∣
z=x0+ix1 = lim

x1→0
T̄ (z̄)

∣∣
z=x0+ix1 , lim

x1→0
T (z)

∣∣
z̄=x0−ix1 = lim

x1→0
T̄ (z̄)

∣∣
z̄=x0−ix1 .

(2.4)

From (2.4) we see that the system is reduced to two separated BCFTs sharing the defect

line as their common boundary. Also note that a conformal boundary can be viewed as an

example of a factorized defect between a given bulk CFT and an empty c = 0 theory.

On the other hand, topological defects are purely transmissive with respect to the

energy, and this condition is expressed by the momentum conservation across the defect.

From the conservation law ∂0T
01 + ∂1T

11 = 0, we see that if T 11 is continuous across the

defect, the momentum is conserved. In complex coordinates, this condition is given by

lim
x1→0

T (z)
∣∣
z=x0+ix1 = lim

x1→0
T (z)

∣∣
z=x0−ix1 , lim

x1→0
T̄ (z̄)

∣∣
z̄=x0+ix1 = lim

x1→0
T̄ (z̄)

∣∣
z̄=x0−ix1 .

(2.5)

The energy momentum tensor does not see the defect, since its components are continuous

across the defect line. Therefore, continuous deformations of topological defects do not

change the value of correlation functions.

Every CFT possesses a trivial “identity” defect that does not affect correlation func-

tions. A familiar example of a nontrivial topological defect appears in the Ising model CFT,

which is equivalent to the minimal model M(3, 4) with three primary fields {1, ε, σ}. In
addition, there exists also the disorder field µ which, however, is not mutually local with

the spin field σ. The correlation functions containing both spin fields and disorder fields

have branch cuts on their Riemann surface, and they are represented by disorder lines

which connect a pair of disorder fields. Clearly the value of such correlation functions does

not change by continuous deformations of disorder lines.

In the above example, topological defects are curve segments with both end-points

at disorder fields but, as we will review and discuss later, we can consider more generic

configurations in which defects form closed loops, networks, or are attached to a boundary.

2The notion of transmissivity and reflectivity has been introduced in [66] and further developed in [69, 70].
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2.1 Closed topological defects

A particularly interesting configuration of defects is given by closed loops associated to

homotopy classes of cycles on a punctured surface. These closed topological defects give

rise naturally to closed string operators D which act on bulk fields by encircling them.

Since both the holomorphic and antiholomorphic components of the energy momentum

are continuous across the defect, the encircling defect loop can be arbitrarily smoothly

deformed and the defect action should also commute with the Virasoro generators

[Ln, D] = [L̃n, D] = 0, ∀n. (2.6)

By Schur’s lemma the action of the defect operator on the bulk states must be constant

on every highest-weight representation. Then we can concentrate on the action of D on

the bulk primary operator φ(i,̄i,α,ᾱ)(z, z̄), where i and ī are labels for the Virasoro repre-

sentations of the holomorphic and antiholomorphic parts and α and ᾱ are corresponding

multiplicity labels. Let a be a label classifying the topological defects then, following

Petkova and Zuber [58], we can write

Daφ(i,̄i,α,ᾱ)(z, z̄) = Da
(i,̄i,α,ᾱ)φ(i,̄i,α,ᾱ)(z, z̄), (2.7)

with constant coefficients Da
(i,̄i,α,ᾱ)

. The operator Da can be written as

Da =
∑

(i,̄i,α,ᾱ)

Da
(i,̄i,α,ᾱ)P

(i,̄i,α,ᾱ), (2.8)

where P (i,̄i,α,ᾱ) is the projector on the highest-weight representation labeled by (i, ī, α, ᾱ).

To determine the coefficients Da
(i,̄i,α,ᾱ)

, let us consider the modular transformation of

the torus partition function with a pair of closed topological defects wrapped around the

same nontrivial cycle. There are two ways for evaluating this. One way is to consider time

slices parallel to the defect line, obtaining the following expression

Za|b = Tr
(
(Da)†Dbq̃L0− c

24 ¯̃qL̄0− c
24

)

=
∑

(j,j̄,α,ᾱ)

(
Da

(j,j̄,α,ᾱ)

)∗
Db

(j,j̄,α,ᾱ)χj(q̃)χj̄(¯̃q).
(2.9)

The other way is to consider time evolution along the defect line. Let Vīi;x
y denote the

multiplicity of the Virasoro representation (īi) appearing in the spectrum in this time slicing

Ha|b =
⊕

i,̄i

Vīi;a
bRi ⊗ R̄ī, (2.10)

then the partition function is written as

Za|b =
∑

i,̄i

Vīi;a
bχi(q)χī(q̄). (2.11)

– 6 –
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From modular transformation property of the Virasoro characters χj(q̃) =
∑

i Sjiχi(q), we

can connect (2.9) and (2.11), and obtain a bootstrap equation

Vīi;a
b =

∑

(j,j̄,α,ᾱ)

SjiSj̄ī

(
Da

(j,j̄,α,ᾱ)

)∗
Db

(j,j̄,α,ᾱ), (2.12)

which implies that the right hand side should be a nonnegative integer.

For the diagonal minimal models there is a simple solution to (2.12)

Da
(i,̄i,1,1) ≡ Da

i =
Sai

S1i
, Vīi;a

b =
∑

k

Nai
kNkī

b. (2.13)

We can check this result with double use of the Verlinde formula [71]

Nk
ij =

∑

l

SilSjlS
∗
kl

S1l
. (2.14)

On the right hand side of the first equation of (2.13), index a runs over the irreducible repre-

sentations of the Virasoro algebra, and from this expression, we see that there are as many

distinct topological defects as primary operators. Plugging back to (2.8), we obtain that

Da =
∑

i

Sai

S1i
P i. (2.15)

It then follows that these operators obey the fusion algebra

DaDb =
∑

N c
ab Dc, (2.16)

just like the conformal families of the primary fields

[φa]× [φb] =
∑

c

N c
ab [φc]. (2.17)

This follows by a simple computation

(
∑

i

Sai

S1i
P i

)
∑

j

Sbj

S1j
P j


 =

∑

i

Sai

S1i

Sbi

S1i
P i =

∑

i

∑

c

N c
ab

Sci

S1i
P i, (2.18)

where in the last equality we used the Verlinde formula (2.14).

2.2 Defect networks

To get a more conceptual understanding of topological defects, it is useful to consider

networks of topological defects, where the defects are allowed to join in trivalent vertices.

Let us state now some minimalistic assumptions: defects can either summed or fused.

Summation is naturally defined at the level of correlation functions. Two topological

depends can be brought close to each other so that the resulting configuration looks as a

single defect which in general might be given by a sum of elementary topological defects.

The labels of the elementary defects define naturally an associative algebra. For two

– 7 –
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a b

c d

p
=

a b

c d

=

a b

c d

non-elementary

topological

defect

Figure 2. The topological nature of defects implies that an“s-channel” configuration with an

elementary defect should be equivalent to a “t-channel” configuration with a composite, but still

topological defect.

a b

c d

p
q=

q

Fpq
a b

c d

a b

c d

Figure 3. Elementary defect network move.

elementary defects a and b we define the product of labels a× b as a free sum of labels of

the elementary defects which arise upon fusing defect a with defect b. The associativity

follows from the topological nature of defects.

Another important assumption is that there is always an identity defect, labeled as 1

or 1, which can be freely drawn or attached anywhere without changing anything.3

The most powerful property of topological defects, is that they can be freely deformed,

without changing the value of any correlator, as long as they do not cross the position of any

operator insertion or another defect. Therefore, a piece of defect network in the“s-channel”-

like configuration, shown on the left hand side of figure 2, composed of four defects joined

by an intermediate one, can be deformed into an alternate “t-channel”-like configuration

where the new defect will in general no longer be an elementary one. Decomposition into a

linear combination of elementary defects defines a set of a priori unconstrained coefficients

Fpq

[

a b

c d

]

, see figure 3. In many circumstances these coefficients are known, but in order to

be self-contained and perhaps more general, let us ignore this knowledge and proceed by

following the consequences of consistency.

The most important consistency condition comes from considering the defect network

shown in figure 4. By repeated use of the basic move of figure 3, from a given starting

configuration to the final one, along two different paths depicted by arrows in figure 4, one

3At this point our conventions differ from some of the literature on the subject e.g. [72].
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a b c d

a b c d a b c d

a b c d a b c d

e

e

e

e e

sp

p

q

q

r
r

s

Fps
b c

a q

t

t

Fsr
c d

b t
Fqr

c d

p e

Fpt
b r

a e

Fqt
s d

a e

Figure 4. Pentagon identity as a consistency condition for fusion of defects.

finds the celebrated pentagon identity4
∑

s

Fps

[

b c

a q

]

Fqt

[

s d

a e

]

Fsr

[

c d

b t

]

= Fqr

[

c d

p e

]

Fpt

[

b r

a e

]

. (2.19)

By the MacLane coherence theorem, this equation is enough to guarantee the consistency

of the fusion rule in figure 3 for any possible defect network. This is not to say that other

identities are not of interest, but that those required for consistency are implied by the

pentagon identity.

A simple property of the F following from our definition and the natural normalization

for the trivial identity defect is that

Fpq

[

a b

c d

]

= 1 whenever 1 ∈ {a, b, c, d}. (2.20)

Using this in the pentagon identity by setting e = 1 (which requires also q = d, a = t and

p = r) one finds the orthogonality relation
∑

s

Fps

[

b c

a d

]

Fsr

[

c d

b a

]

= δpr. (2.21)

4This identity differs from the one given in [75] by transposition of columns in every F . For unoriented

defects this difference is immaterial as Fpq

[

a b

c d

]

= Fpq

[

b a

d c

]

. For oriented defects one has to specify carefully

an orientation. Our implicit orientation (always downwards in figure 4) is the same as in [73, 74] and others,

but differs from the one required to match the formulas of Moore and Seiberg [75, 76].

– 9 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
7

i j

a

b

=
i j

a

b

1
i j

a

b

a

b

i j

a

b

i i
=

δij

F1i
a b

a b

=
k

F1k
a b

a b

⇓

k

Figure 5. Defect bubble network. When no operators are present inside, the topological bubble can

be shrunk to zero size, yielding a numerical factor symmetric under the exchange of a and b labels.

For p 6= r the left hand side of (2.19) still makes sense, but the right hand side would

contain fusion matrix elements with non-admissible label, so the only consistent value for

the left hand side is zero. Alternatively, one can of course apply the elementary move again

to the right hand side of figure 3 viewed sideways.

Let us now consider defect networks containing closed loops. An arbitrary such network

can be reduced via the elementary move of figure 3 to a network without any closed loops.

The simplest defect network with a loop is of course a single loop, but let us start with

a slightly more general configuration shown in figure 5 consisting of a bubble with two

external defect lines attached. As long as there are no operator insertions inside the

bubble, one can shrink it leaving behind a pure number. This already tells us that the

two external lines must carry the same label otherwise, upon shrinking, one would expect

a defect changing operator insertion. These operators carry nontrivial conformal weight

and thus the correlator scaling properties would contradict those expected for a network

of topological defects. Attaching an auxiliary line of identity defect, see figure 5, allows us

to find a simple expression for the bubble in terms of the F -matrix. In rotation invariant

theories for unoriented defects the numerical factor F1i

[

a b

a b

]

must be symmetric in a and b,

as follows by considering the 180◦ rotation.

As a corollary we find that a bubble with no defects attached, which is the same thing

as if two external identity defects were attached, is equivalent to an overall factor

g′a =
1

F11

[

a a

a a

] , (2.22)

which we identify with the normalized g-function of the defect.5

5In the context of the minimal models this is equal to S1a

S11

, where S is the modular S-matrix. It is thus the

value of the g-function of the boundary condition associated to the defect via the folding trick, normalized

by the g-function of the trivial defect. In non-unitary theories (e.g. for the Lee-Yang model) or theories

with oriented defects this quantity may coincide with the usual normalized g-function only up to a sign.
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a

b

c =
1

F11
a a

a a
F1a

b c

b c

= θ(a,b,c)

Figure 6. Defect sunset network gives rise to an S3 symmetric factor θ(a, b, c).

⇓

=
c∈a×b

F1c
a b

a b

a ab b

c =
c∈a×b

c

1

1

F11
a a

a a

×
1

F11
b b

b b

=
c

N c
ab

1

F11
c c

c c

Figure 7. Derivation of the Verlinde-like formula. In the second step we use the S3 symmetry of

the bubble factor θ(a, b, c).

Another corollary is an expression for the sunset diagram in figure 6. Since it can be

viewed as a symmetric bubble on a loop in two possible ways, it follows that

θ(a, b, c) = θ(a, c, b) = θ(c, b, a), (2.23)

and hence it enjoys the full S3 permutation symmetry. Analogously, we can introduce

θ̃(a, b, c) =
1

F11

[

a a

a a

]

Fa1

[

b b

c c

] , (2.24)

which, as a consequence of the pentagon identity (2.19), in which we set t = q = 1 together

with s = e = d = a, r = b and p = c, satisfies

g′ag
′
bg

′
c = θ(a, b, c)θ̃(a, b, c), (2.25)

and hence θ̃(a, b, c) also possesses the S3 permutation symmetry.

Another peculiar identity which can be obtained by the sequence of moves shown in

figure 7 is
1

F11

[

a a

a a

]

1

F11

[

b b

b b

] =
∑

c

N c
ab

1

F11

[

c c

c c

] . (2.26)

It might come as a surprise that this equation is a consequence of the polynomial pentagon

identity (2.19). To see that it is indeed the case, one may proceed in two steps. Starting

with the orthogonality relation (2.21), setting p = r = 1 while adjusting accordingly the

other indices, and using the relation (2.25) one derives easily (2.26).
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ab

i j

k

c
j

k

i

= Fck
j i

a b
× F1k

a b

a b

−1

Figure 8. Triangular defect network. When no operators are present inside, the topological triangle

can be shrunk to zero size, yielding a numerical factor with S3 permutation symmetry under the

exchange of (i, a), (j, b) and (k, c) labels.

For the minimal models, the relation (2.26) is nothing but the Verlinde formula for the

first row (or column) of the S-matrix

S1aS1b

S11

=
∑

c

N c
ab S1c. (2.27)

This is due to the relation between the modular S-matrix and the F -matrices

Sij

S11

=
∑

k∈i×j

e2πi(hi+hj−hk)
1

F11

[

k k

k k

] , (2.28)

which follows from the formulas in [76], see also e.g. (E.9) in [85], and which for i = 1

simplifies to g′j =
S1j

S11
=

(
F11

[

j j

j j

]

)−1

.

The next natural step is to consider a defect loop with three external defect lines at-

tached, as in figure 8. Applying the elementary defect network move to any pair of vertices

connected by an internal defect line, we find the elementary vertex with a bubble on one

of the external lines, and as before we can replace the bubble by the corresponding factor.

The expected Z3 symmetry of the resulting factor follows directly from the pentagon iden-

tity (2.19) by setting t = 1 together with s = d, r = b and e = a using (2.25). For unoriented

parity-invariant defects in parity invariant CFT’s the symmetry is enhanced to S3.

The symmetries of the F -matrices are actually much larger and can be nicely mani-

fested by considering a defect network in the shape of tetrahedron, see figure 9. It can be

naturally drawn on a Riemann sphere, but the resulting identities should have universal

validity. Let us now choose any triangular face, e.g. (abc), and shrink it to a point picking

up the triangle factor as in figure 8. This results in the sunset diagram, see figure 6, which

we have already evaluated. Combining the factors, one quickly arrives at

[

i, j, k

a, b, c

]TET
≡

Fck

[

j i

a b

]

F1k

[

a b

a b

]

F1k

[

i j

i j

]

F11

[

k k

k k

]

=
1

g′k
θ(a, b, k)θ(i, j, k)Fck

[

j i

a b

]

. (2.29)

The notation is such that the labels in the upper row always form an admissible triplet,

i.e. i ∈ j × k.
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a

bc

i

j
k

Figure 9. Tetrahedral defect network. When no operators are present inside the faces, the topo-

logical tetrahedron can be shrunk to zero size, yielding a numerical factor with S4 permutation

symmetry under the exchange of the faces with (a, b, c), (a, j, k), (b, k, i) and (c, i, j) labels.

We could have chosen an arbitrary face of the tetrahedron for reducing the triangle

and due to the Z3 cyclicity of the defect triangle in figure 8, we would have obtained one

out of three possible expressions. Altogether we get 12 different expressions which must

be equal to each other, and which correspond to the orientation preserving subgroup A4 of

the tetrahedral group S4. The Z3 subgroup cyclically permutes the columns
[

i, j, k

a, b, c

]TET
=

[

j, k, i

b, c, a

]TET
=

[

k, i, j

c, a, b

]TET
, (2.30)

while the Z2 × Z2 subgroup is switching upper and lower labels simultaneously in two

different columns
[

i, j, k

a, b, c

]TET
=

[

i, b, c

a, j, k

]TET
=

[

a, b, k

i, j, c

]TET
=

[

a, j, c

i, b, k

]TET
. (2.31)

The equality of the three expressions (2.30) follows already from the pentagon identity,

but (2.31) does not. The reason is that in deriving (2.31) we have assumed that all defects

were unoriented. For oriented defects some labels in the identity (2.31) must be replaced

by the conjugate labels to account for the change of orientation.

In the special case of parity invariant defects in parity invariant theories the tetrahe-

dral defect network is invariant under the full tetrahedral group S4 which in addition to

the generators of A4 contains also 12 transformations combining rotations with a single

reflection. The additional identities can be generated with the help of
[

i, j, k

a, b, c

]TET
=

[

j, i, k

b, a, c

]TET
. (2.32)

These are the symmetries of both the classical and quantum Wigner’s 6J symbols. This

object however differs from the 6J symbol by a tetrahedral invariant normalization factor

(see discussion in section 2.2.2), and resembles thus an object often called TET in the

literature, see e.g. [77, 78]. Another difference would arise in the case of oriented defects,

where the tetrahedral invariance of the defect network is broken.6

2.2.1 Specular symmetries

As follows from the definition of the F -matrix, see figure 3, invariance under 180◦ rotation

for unoriented defects implies

Fpq

[

a b

c d

]

= Fpq

[

d c

b a

]

. (2.33)

6Also because of the fact, that up to a normalization factor, this object obeys the pentagon identity

without signs, it is more reminiscent of the classical Racah W-coefficient.
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Similarly, parity invariance of both the theory and the defect (with respect to any axis)

implies a stronger condition

Fpq

[

a b

c d

]

= Fpq

[

c d

a b

]

= Fpq

[

b a

d c

]

. (2.34)

Of course, the two identities (2.34) together imply (2.33). All these identities are true in

the Virasoro minimal models.

Mathematically, the symmetry of the F -matrix (2.33) is equivalent to the con-

dition (2.31) under the assumption of the pentagon identity, or in particular (2.30).

Analogously, under the same assumption, the symmetries (2.34) are equivalent to
[

i, j, k

a, b, c

]TET
=

[

b, a, k

j, i, c

]TET
and

[

i, j, k

a, b, c

]TET
=

[

j, i, k

b, a, c

]TET
respectively.

2.2.2 6J symbols, Racah symbols and their identities

From the defect network manipulations we have seen that
[

i, j, k

a, b, c

]TET
obeys the same

tetrahedral symmetries as classical or quantum Wigner symbol. Such an object is by no

means unique, since a product over the four tetrahedron vertices of an S3 invariant function

of the three corresponding edges will always have the tetrahedral symmetry. A particularly

useful combination is what we call the normalized 6J symbol

[

i, j, k

a, b, c

]

=
1√

θ(i, j, k)θ(i, b, c)θ(a, j, c)θ(a, b, k)

[

i, j, k

a, b, c

]TET
(2.35)

=
1

g′k

√
θ(a, b, k)θ(i, j, k)

θ(i, b, c)θ(a, j, c)
Fck

[

j i

a b

]

, (2.36)

which enjoys also the full tetrahedral symmetry for unoriented defects. If it were not for

the prefactor 1/g′k it would have obeyed the pentagon identity, since

Fpq

[

a b

c d

]

→ Λ(a, b, q)Λ(c, q, d)

Λ(c, a, p)Λ(p, b, d)
Fpq

[

a b

c d

]

, (2.37)

is an exact symmetry of the pentagon identity (2.19) called “gauge symmetry” by Moore

and Seiberg [76].7 Here Λ(i, j, k) is an arbitrary function of an admissible triplet. Due to

the cyclicity of θ’s, one can arrange their arguments, so that the full prefactor under the

square root in (2.36) can be viewed as the above gauge transformation. Consequently the

6J symbol obeys the following pentagon-like identity

∑

s

g′s
[

c, b, s

a, q, p

][

d, s, t

a, e, q

][

d, c, r

b, t, s

]

=
[

d, c, r

p, e, q

][

r, b, t

a, e, p

]

. (2.38)

This new symbol is normalized so that when any of the entries equals 1 it simplifies to

[

i, c, b

1, b, c

]

=
1√
g′bg

′
c

. (2.39)

7Further discussion of this “gauge symmetry” is postponed to appendix A.
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A fundamental property of the normalized 6J symbol (2.36) is gauge invariance under

the symmetry (2.37) holding for any S3-invariant Λ subject to the additional condition

Λ(1, a, a) = 1.

At this point, let us note, that the pentagon identity (2.38) for the tetrahedral invariant

object with this simple normalization is much more amenable to brute-force solutions than

the original pentagon identity (2.19). In general, given the fusion rules, we may first solve

the much simpler system g′ag
′
b =

∑
cN

c
ab g′c. This system of equations in rational CFT’s

has as many solutions as there are labels. Every solution corresponds to a single column

of the modular S-matrix normalized by its first element. Then we can solve the pentagon

identities (2.38) by imposing the symmetries on the 6J symbol. We have checked that

indeed for Lee-Yang model, Ising model and tricritical Ising model these over-determined

polynomial systems have a unique solution.

Another very useful object which will play an important role in the following sections

of this paper is what we call Racah symbol following the terminology of Coquearaux8

{

i, j, k

a, b, c

}

≡
√
g′kg

′
c

[

i, j, k

a, b, c

]

. (2.40)

It obeys the full pentagon identity,

∑

s

{

c, b, s

a, q, p

}{

d, s, t

a, e, q

}{

d, c, r

b, t, s

}

=
{

d, c, r

p, e, q

}{

r, b, t

a, e, p

}

, (2.41)

and can be therefore identified with the F -matrix in a given special gauge

{

c, b, s

a, q, p

}

= FRac
ps

[

b c

a q

]

. (2.42)

The defining property of this gauge is that

FRac
1i

[

a b

a b

]

= FRac
i1

[

a a

b b

]

=

√
g′i

g′ag
′
b

. (2.43)

When one of the entries of the first two columns equal 1, the Racah symbol simplifies

{

i, c, b

1, b, c

}

= 1 (2.44)

which is necessary for its interpretation as an F -matrix. Just like a generic solution to the

pentagon identity, the Racah symbols obey the orthogonality condition

∑

q

{

b, a, q

c, d, p

}{

c, a, s

b, d, q

}

= δps. (2.45)

The Racah symbol, just like the normalized 6J symbol, is also invariant under the

gauge transformation (2.37). For the type of computations that we will present in the

sequel only Racah symbols will appear in the final results, independently of the gauge

8What Coquearaux [78] calls geometrical Racah symbols, or Carter et al. [77] call the 6j symbol are our

F -matrices.
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chosen for the F -matrix used for the defect manipulations. On the other hand the F -

matrices arising from the transformations of the conformal blocks are uniquely determined

once the conformal blocks are normalized, by giving the coefficient of their leading term.

It would be interesting to know whether there is a specific normalization choice which also

fixes the gauge for the defect networks. This may involve a careful study of defect changing

fields, which goes beyond the scope of this paper.

3 Boundaries in conformal field theory

Conformal boundary conditions in 2D CFT’s have to satisfy a number of consistency condi-

tions spelled out explicitly in [79, 80]. This section is a review of some of these consistency

conditions in diagonal minimal models and of the action of topological defects on the

fundamental boundary states.

3.1 Boundary conditions in minimal models

From the bulk perspective, conformal boundary conditions in 2D CFT’s are encoded in the

conformal boundary states which are required to obey a number of necessary conditions.

The most elementary requirement of preserving the conformal symmetry forbids the two-

dimensional energy and momentum to flow through the boundary, which leads to the gluing

condition (
Ln − L̄−n

)
||B〉〉 = 0. (3.1)

The set of linearly independent solutions was written down by Ishibashi [81]. The Ishibashi

states are in one-to-one correspondence with spinless bulk primaries V α

|Vα〉〉 =
∑

IJ

M IJ(hα)L−I L̄−J |Vα〉 (3.2)

=
∑

n

|n, α〉 ⊗ |n, α〉 (3.3)

=

[
1 +

1

2hα
L−1L̄−1 + · · ·

]
|Vα〉. (3.4)

The multi-indices I,J, with I={i1, . . . , in} appearing in the first line label the non-degenerate

descendants in the conformal family of Vα, and M IJ(hα) is the inverse of the Gram matrix

〈V α|LIL−J |Vα〉. We denoted LI = Li1Li2 . . . Lin and L−I = L−inL−in−1 . . . L−i1 . The

Ishibashi states, see the second line, are given by a sum over an orthonormal basis of states

in the irreducible quotient of the Verma module over the chiral part of the primary Vα.

A highly non-trivial consistency requirement is given by Cardy’s condition. Consider

the partition function on a finite cylinder with two boundary conditions a and b. Viewed

in the “closed string” channel, the diagram can be interpreted as a matrix element between

two boundary states ||a〉〉 and ||b〉〉. In the “open string” channel it becomes a trace over

the Hilbert space of the CFT with the two boundary conditions a and b

〈〈a||q̃ 1
2
(L0+L̄0− c

12
)||b〉〉 = TrHopen

ab

(
qL0− c

24

)
, (3.5)
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where

q = e2πiτ , q̃ = e−2πi/τ , (3.6)

and τ = R/L is given by the radius and length of the cylinder.

It is well known that for minimal models with diagonal partition function Cardy’s

condition is solved by a set of fundamental boundary states, explicitly given by [82]

||Bi〉〉 =
∑

j

S j
i√
S j
1

|j〉〉, (3.7)

where S j
i are the entries of the modular matrix and i and j denote the Virasoro represen-

tation which are present in the minimal model. Therefore in this case there is a one-to-one

correspondence between chiral primaries and fundamental boundary conditions. In the

case of diagonal minimal models, the most general boundary condition consistent with

Cardy’s condition is obtained by taking positive integer linear combinations of the above

fundamental boundary states.

3.2 Runkel’s solution for boundary structure constants

Boundary operators generally change the boundary conditions. The multiplicity of a

boundary operator in the Virasoro representation k, changing the boundary conditions

from i to j is the integer coefficient N k
ij appearing in the fusion rules of the theory

φi × φj =
∑

k

N k
ij φk. (3.8)

While one could extract the spectrum of boundary operators from the cylinder am-

plitude between two boundary states, to compute their OPE structure constants one has

to resort to the 4-pt conformal bootstrap. To this end, let us consider a 4-pt boundary

function

G(abcd)
ijkl (ξ) ≡

〈
I ◦ φab

i (0)φbc
j (1)φ

cd
k (ξ)φda

l (0)
〉
UHP

, (3.9)

where I(z) = −1
z . We can compute it in two ways using different OPE channels

G(abcd)
ijkl (ξ) =

〈
I ◦ φab

i (0)φbc
j (1)φ

cd
k (ξ)φda

l (0)
〉

=
〈
h ◦ φda

l (0)h ◦ I ◦ φab
i (0)h ◦ φbc

j (1)h ◦ φcd
k (ξ)

〉

= ξhi+hj−hl−hk

〈
I ◦ φda

l (0)φab
i (1)φbc

j (1− ξ)φcd
k (0)

〉

= ξhi+hj−hl−hkG(dabc)
lijk (1− ξ), (3.10)

where h(z) = z−ξ
z . We now express the four-point functions in terms of the structure

constants and the four-point conformal blocks

G(abcd)
ijkl (ξ) =

∑

p

C
(abc) p
ij C

(cda) p
kl G(aca)

pp F(i, j, k, l; p)(ξ), (3.11)
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where the conformal blocks are given by the formula

F(i, j, k, l; p)(ξ) =
∑

I,J

βI(hi, hj , hp)βJ(hk, hl, hp)G
IJ(hp)ξ

hp+|J |−hk−hl , (3.12)

where I is a Virasoro multiindex, GIJ is the matrix of inner products in a highest weight

representation of Virasoro algebra, and the β coefficients are defined via

φab
i (x)φbc

j (y) =
∑

p,I

C
(abc) p
ij

βI(hi, hj , hk)

(x− y)hi+hj−hk−|I|L−Iφ
ac
p (y). (3.13)

Notice that F does not depend on any normalization of boundary operators.

The conformal blocks in ξ can be linearly related to the conformal blocks in 1− ξ via

uniquely fixed F -matrices

F(k, l, i, j; p)(ξ) =
∑

q

F blocks
pq

[

l i

k j

]

F(i, l, k, j; q)(1− ξ). (3.14)

Then, using (3.11) and (3.14), we find from (3.10)

C
(dab) p
li C

(bcd) p
jk G(dbd)

pp =
∑

q

F blocks
qp

[

l i

k j

]

C
(abc) q
ij C

(cda) q
kl G(aca)

qq , (3.15)

where the two-point functions are given in terms of the three-point functions as

G(aca)
pp = C(aca) 1

pp ga. (3.16)

This can be further simplified to9

C
(abd) l
ip C

(bcd) p
jk =

∑

q

F blocks
qp

[

l i

k j

]

C
(abc) q
ij C

(acd) l
qk . (3.17)

Runkel [84] has observed10 that this equation can be exactly solved by setting

C
(abc) k
ij = F blocks

bk

[

a c

i j

]

, (3.18)

thanks to the pentagon identity.

We can find a more convenient expression for the structure constants by changing the

normalization of the boundary operators. To this end, let us express F blocks
pq

[

a b

c d

]

in terms

of the normalized 6J symbols

F blocks
pq

[

a b

c d

]

= g′q

√
θ(b, d, p)θ(c, a, p)

θ(c, d, q)θ(b, a, q)

[

b, a, q

c, d, p

]

. (3.19)

9Use C
(cda) q
kl C

(aca) 1
qq = C

(acd) l
qk C

(ada) 1
ll and C

(aba) 1
ii ga = C

(bab) 1
ii gb.

10Generalizations have been studied in [85–87].
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Runkel’s solution then becomes

C
(abc) k
ij = F blocks

bk

[

a c

i j

]

= g′k

√
θ(c, j, b)θ(i, a, b)

θ(i, j, k)θ(c, a, k)

[

c, a, k

i, j, b

]

(3.20)

=

√
g′k
g′b

√
θ(c, j, b)θ(i, a, b)

θ(i, j, k)θ(c, a, k)

{

c, a, k

i, j, b

}

(3.21)

=

√√√√√√

θ(c,j,b)√
g′cg

′

jg
′

b

θ(i,a,b)√
g′ig

′
ag

′

b

θ(i,j,k)√
g′ig

′

jg
′

k

θ(c,a,k)√
g′cg

′
ag

′

k

{

c, a, k

i, j, b

}

. (3.22)

From here we see that there is a special choice of normalization of the boundary fields, in

which11

Ĉ
(abc) k
ij =

√√√√
√
g′ig

′
jg

′
k

θ(i, j, k)

{

c, a, k

i, j, b

}

. (3.23)

The Racah symbol is gauge invariant, but the object θ(i, j, k) has to be computed from

F blocks
pq

[

a b

c d

]

, i.e.

θ(i, j, k) =
g′i

F blocks
1i

[

j k

j k

] . (3.24)

3.3 Defect action on boundary states

As we have seen in section 2.1, defects act naturally on bulk operators by encircling them.

Cardy boundary states are (non-normalizable) states in the space of bulk operators

||Ba〉〉 =
∑

i

Sai√
S1i

|i〉〉, (3.25)

so, analogously, the action of the defect operator is given by [60]

Da||Bb〉〉 =
∑

c

N c
ab ||Bc〉〉, (3.26)

as follows by a computation almost identical to the one presented in section 2.1, using

again the Verlinde formula and the fact that the projectors obey P i|j〉〉 = δij |j〉〉.
Now we can easily offer an alternative proof for the observation of [11] that OSFT

makes predictions for the coefficients of the boundary states ||BX 〉〉 = ∑
β B

β
X |β〉〉

Bβ
XBβ

Y

Bβ
R

=
∑

Z

N Z
XY Bβ

Z , (3.27)

11This expression for the boundary structure constants is particularly interesting since the square of the

prefactor coincides with the bulk structure constants, Cbulk
ijk =

√
g′
i
g′
j
g′
k

θ(i,j,k)
in a canonical normalization for

bulk operators where the coefficients of the two-point functions are set universally to one times the sphere

partition function.
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under the assumption that the reference D-brane ||R〉〉 allowed an OSFT solution describing

||X 〉〉 and that such a solution could have been re-interpreted on a D-brane ||Y 〉〉. This

assumption is in fact quite strong, so that (3.27) does not generally hold for arbitrary

triples R,X, Y . To reinterpret a solution found on the ||R〉〉 D-brane on another D-brane

||Y 〉〉 it is necessary that the subalgebra of boundary operators ‘turned on’ in the first

solution is present also on the ||Y 〉〉 D-brane. This is trivially satisfied if the string field

theory solution on the ||R〉〉 D-brane lives only in (irreducible quotient of) the identity

Verma module.

Assuming that the defect operator acts as a multiple of the identity on each highest-

weight representation and that as an operator it is selfconjugate (or possibly antiselfcon-

jugate) under BPZ conjugation then the coefficients of the boundary states satisfy

〈V β |D||R〉〉
〈V β ||R〉〉 =

〈V β |D||X 〉〉
〈V β ||X 〉〉 , (3.28)

and hence
Bβ

DR

Bβ
R

=
Bβ

DX

Bβ
X

, (3.29)

where DR and DX stand for D-branes obtained by fusing defect D onto R or X branes.

The new DX brane itself is either fundamental or should be an integer linear combination

of such and therefore
Bβ

XBβ
DR

Bβ
R

= Bβ
DX =

∑

Z

N Z
DX Bβ

Z , (3.30)

which matches the formula (3.27) derived from OSFT by reinterpreting a solution ΨR→X

on the DR brane. It is one of the goals of this paper to explain this coincidence.

4 Attaching defects to boundaries

In this section we define and study the action of topological defects on boundary fields. This

was partially done by Graham and Watts [60] for boundary operators which do not change

the boundary conditions. We will generalize their algebraic approach to the full open

string spectrum, including the important case of boundary condition changing operators.

In addition, we will provide an independent geometric derivation using defect networks.

We determine first how an open string defect acts as an operator, mapping the bound-

ary operator algebra of a system of boundary conditions to a closed subset of the operator

algebra of a new system of boundary conditions. Then we study the composition of such

operators and we show how is this related to the fusion rules of the theory. We first proceed

in a completely algebraic way, imposing the condition that the OPE must commute with

the action of an open topological defect. This is a non-trivial constraint that can be solved

for the coefficients defining the open string defect operator and, together with an appro-

priate twist-invariance condition, allows to uniquely determine such coefficients, thanks to

the pentagon identity. Then we show that the composition of open topological defects

is governed by the fusion rules of the theory but, differently from the closed string case,
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there is a non-trivial rotation in the Chan-Paton’s labels corresponding to coincident final

boundary conditions. This rotation is in fact a similarity transformation. In the second

subsection we show that our algebraic results can be independently obtained in a purely

geometric way by manipulating the involved defect networks with boundary.

Our goal is to define an action of defects on the open string Hilbert space

D : Hopen → Hopen. (4.1)

This general action is further specified by decomposing Hopen into fundamental boundary

conditions

Hopen =
⊕

a,b

H(ab), (4.2)

where, when a 6= b, the corresponding states are boundary condition changing fields. Let

d be a label for a topological defect, then the open string topological defect is a linear map

Dd : H(ab) →
⊕

a′ ∈ d× a

b′ ∈ d× b

H(a′b′). (4.3)

This map is injective but in general is not surjective (the defect maps from a given open

string Hilbert space, onto a “bigger” one). This is how open strings feel the fact that a

topological defect, in general, maps a single D-brane into a system of multiple D-branes,

according to the fusion rules of the underlying bulk CFT. As in the bulk case, Schur’s

lemma implies that the operator D restricted to H(a,b) → H(a′,b′) should be a multiple of

the identity on every highest-weight irreducible module Viri in H(a,b). Assuming that all

states can be obtained by acting Virasoro operators on primary states, which is true in

unitary CFT’s, the open string defect action is fully specified by

Dd φab
i =

∑

a′ ∈ d× a

b′ ∈ d× b

Xdab
ia′b′ φ

a′b′

i , (4.4)

where the φ’s are the boundary primary fields, allowed by the involved boundary conditions.

4.1 Algebraic construction

In this subsection we will determine the above-defined X-coefficient in an algebraic way.

Then we will inspect how the composition of open topological defects is related to the

fusion of defects in the bulk and to the fusion rules of the theory.

4.1.1 Defect coefficients from OPE

A simple consistency condition for the action of open-string defects has been introduced

by Graham and Watts [60]

Dd
(
φab
i (x)φbc

j (y)
)
=

(
Ddφab

i (x)
)(

Ddφbc
j (y)

)
. (4.5)
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Using the general ansatz (4.4) as well as the operator product expansion, the constraint (4.5)

takes the explicit form

Xdac
ka′c′C

(abc)k
ij =

∑

b′∈d×b

C
(a′b′c′)k
ij Xdab

ka′b′X
dbc
kb′c′ , (4.6)

where C
(abc)k
ij are the boundary structure constants. Restricting ourselves to the An series

of the minimal models, see section 3.2, the boundary structure constants can be written as

C
(abc)k
ij =

nab
i nbc

j

nac
k

√√√√
√

g′ig
′
jg

′
k

θ(i, j, k)blocks

{

c, a, k

i, j, b

}

, (4.7)

where nab
i are generic normalizations of boundary fields with the convention that nab

i = 1

for the canonical normalization (3.23). With this explicit form of the structure constants

it immediately follows that (4.6) admits a general solution

Xdab
ia′b′ =

nab
i

na′b′
i

{

b′, i, a

d, a′, b

}N(d, a, a′)
N(d, b, b′)

(4.8)

thanks to the pentagon identity (2.41). The pentagon identity does not fix the N -constants,

but they are in fact fixed by imposing the parity condition12

Xdab
ia′b′ = Xdba

ib′a′ , (4.9)

which, using the properties of the Racah symbol discussed in section 2.2.2, gives

(
N(d, a, a′)
N(d, b, b′)

)2

=

√
g′a′g

′
b

g′ag
′
b′
, (4.10)

so that we can set

N(x, y, z) =

√
{

x, x, 1

z, z, y

}

=

(
g′y
g′xg′z

) 1
4

. (4.11)

The X-coefficients take the explicit form

Xdab
ia′b′ =

nab
i

na′b′
i

FRac
di

[

a b

a′ b′

]

√
FRac
1a′

[

a d

a d

]

FRac
1b′

[

b d

b d

]

FRac
1i

[

a b

a b

] (4.12)

=
nab
i

na′b′
i

(
g′ag

′
bg

′
a′g

′
b′
) 1

4

[

a, a′, d

b′, b, i

]

. (4.13)

Notice that, differently from the boundary structure constants, the defect coefficients X

do not depend on the crossing symmetry properties of the conformal blocks, since only the

Racah symbols are involved in their definitions.

12In this work we consider only 2D CFT’s which are separately invariant under C, P and T discrete

symmetries. The parity symmetry P is related to the twist symmetry in the corresponding SFT [88].
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4.1.2 Fusion of open string defects

Let us now consider the fusion of topological defects acting on general boundary fields.

To this end, we need to calculate the subsequent action of Dc and Dd on φab
i . As we saw

in (4.4), after the first action of Dc there are multiple boundary conditions in general, and

it is natural to arrange the r.h.s. of (4.4) into a matrix regarding a′ and b′ as matrix indices.

That is

Dcφab
i =




b′1 . . . b′n

a′1 Xcab
ia′1b

′

1
φ
a′1b

′

1
i . . . Xcab

ia′1b
′
n
φ
a′1b

′
n

i

...
... . . .

...

a′m Xcab
ia′mb′1

φ
a′mb′1
i . . . Xcab

ia′mb′n
φ
a′mb′n
i


, (4.14)

where a′i ∈ c× a and b′j ∈ c× b. The number of labels a′i is given by the number of nonzero

Nca
is, and the number of labels b′j is that of Ncb

js. The right hand side is a m× n matrix,

and m and n are given by

m =
∑

i

Nca
a′i , n =

∑

j

Ncb
b′j , (4.15)

respectively. We also write this equivalently as (Dcφab
i )a

′b′ = Xcab
ia′b′φ

a′b′
i . Similarly, after

the subsequent action of Dd, we have

DdDcφab
i =




b′1 . . . b′n

a′1 Ma′1b
′

1
. . . Ma′1b

′
n

...
... . . .

...

a′m Ma′mb′1
. . . Ma′mb′n


, (4.16)

where the submatrix Ma′pb
′
q
is given by

Ma′pb
′
q
≡Dd

(
Xcab

ia′pb
′
q
φ
a′pb

′
q

i

)
=




b′′1 . . . b′′t

a′′1 Xcab
ia′pb

′
q
X

da′pb
′
q

ia′′1 b
′′

1
φ
a′′1 b

′′

1
i . . . Xcab

ia′pb
′
q
X

da′pb
′
q

ia′′1 b
′′

t
φ
a′′1 b

′′

t
i

...
... . . .

...

a′′s Xcab
ia′pb

′
q
X

da′pb
′
q

ia′′s b
′′

1
φ
a′′s b

′′

1
i . . . Xcab

ia′pb
′
q
X

da′pb
′
q

ia′′s b
′′

t
φ
a′′s b

′′

t
i


. (4.17)

This is an s× t matrix, and s and t are given by

s =
∑

i

Ndap′
a′′i , t =

∑

j

Ndb′q
b′′j , (4.18)

and the size of the matrix DdDcφab
i is given by


 ∑

a′p∈c×a

s


×


 ∑

b′q∈c×b

t


 =


∑

i, p

Nda′p
a′′i Nca

a′p


×


∑

j, q

Ndb′q
b′′j Ncb

b′q


 . (4.19)
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From (4.16) and (4.17) we see that to identify the position of components in (DdDcφab
i ),

we need to refer to both the intermediate boundary condition (a′b′) and the final boundary

condition (a′′b′′). We then introduce a composite label {a a′ a′′} and express the above

result as

(
DdDcφi

){a a′ a′′}{b b′ b′′}
≡

(
Dd

(
Dcφab

i

)a′b′
)a′′b′′

= Xcab
ia′b′X

da′b′

ia′′b′′φ
a′′b′′

i . (4.20)

For the defect action on the bulk space we have DdDc =
∑

eN
e

dc De. For the action

on the boundary operators we have to replace the ordinary sum by a direct sum, since

different defects map to different Hilbert spaces

⊕

e∈d×c

(
Deφab

i

)a′′b′′

=



M̃e1

. . .

M̃ek


 , (4.21)

where

M̃ej ≡ Dejφab
i =




X
ejab

ia′′1 b
′′

1
φ
a′′1 b

′′

1
i . . . X

ejab

ia′′1 b
′′

h
φ
a′′1 b

′′

h
i

... . . .
...

X
ejab

ia′′g b
′′

1
φ
a′′g b

′′

1

i . . . X
ejab

ia′′g b
′′

h
φ
a′′g b

′′

h
i


 . (4.22)

Now we introduce the labels [e; a, a′′] to represent

(
⊕

e∈d×c

Deφi

)[e; a, a′′][f ; b, b′′]

≡
(
Deφab

i

)a′′b′′

δef = Xeab
ia′′b′′φ

a′′b′′

i δef . (4.23)

Clearly the two expressions (4.20) and (4.23) are different, but notice that they have the

same range of indices thanks to the identity
∑

k

Nij
kNkl

m =
∑

k

Nim
kNkl

j . (4.24)

That is, as explained in (4.19), the number of the labels {a a′ a′′} is given

by
∑

a′′

(∑
a′ Nac

a′Na′d
a′′
)
, while the number of the labels [e; a, a′′] is given by

∑
a′′

(∑
eNcd

eNae
a′′
)
. These two numbers are equal, as explained e.g. in [76]. Similarly,

we also conclude that the number of the labels {b b′ b′′} and that of the labels [e; b, b′′] are
the same.

This suggests that there might be a similarity transformation linking the two matrices,

(
DdDcφi

){a a′ a′′}{b b′ b′′}
=

[
Udc

(
⊕

e∈d×c

Deφi

)
U−1
dc

]{a a′ a′′}{b b′, b′′}

, (4.25)

where Udc is a real invertible matrix with matrix indices {a a′ a′′} and [e; ã, ã′′]. Substitut-
ing (4.20) for (DdDcφi) and (4.23) for

(⊕
e∈d×cDeφi

)
, this equation is expressed as

Xda′b′

ia′′b′′X
cab
ia′b′ =

∑

[e; ã ã′′]

∑

[f ; b̃, b̃′′]

U
{a a′ a′′}[e; ã ã′′]
dc Xeãb̃

iã′′b̃′′
δef (U−1

dc )[f ; b̃, b̃
′′]{b b′ b′′}. (4.26)
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Since Xdab
ia′b′ is the Racah symbol with some extra factors (4.8), the equation (4.26) is again

reminiscent of the pentagon identity (2.41). In fact, we find that the following Udc is

a solution

(Udc)
{a a′ a′′}[e; ã, ã′′] =





N(c, a, a′)N(d, a′, a′′)
M(d, e, c)N(e, a, a′′)

{

c, a, a′

a′′, d, e

}

(a = ã) and (a′′ = ã′′),

0 (a 6= ã) or (a′′ 6= ã′′),

(4.27)

where the factor N(x, y, z) is the same as that appearing in (4.8), and M(x, y, z) is a

nonzero arbitrary real number. To check (4.26), notice that the inverse matrix U−1
dc is

given by

(U−1
dc )[e; a, a

′′]{a a′ a′′} =
M(d, e, c)N(e, a, a′′)
N(c, a, a′)N(d, a′, a′′)

{

a′′, a, e

c, d, a′

}

, (4.28)

as can be checked from the orthogonality relation (2.45). A natural choice for M(x, y, z) is

M(x, y, z) = N(x, y, z) =

√
FRac
y1

[

z z

x x

]

=

(
g′y
g′zg′x

) 1
4

, (4.29)

which makes Udc an orthogonal matrix

(Udc)
{a a′ a′′}[e; ã, ã′′] = (U−1

dc )[e; ã, ã
′′]{a a′ a′′}. (4.30)

This can be easily checked by substituting (4.29) into (4.27) and (4.28), obtaining

(Udc)
{a a′ a′′}[e; a, a′′] =

{

c, a, a′

a′′, d, e

}

, (4.31)

and, using the tetrahedral symmetry of the Racah symbol we get

(U−1
dc )[e; a, a

′′]{a a′ a′′} =
{

a′′, a, e

c, d, a′

}

=
{

c, a, a′

a′′, d, e

}

= (Udc)
{a a′ a′′}[e; a, a′′]. (4.32)

A comment on the appearance of the matrix structures in the above discussion: we

have arranged the elements of the matrices in a particular way as in (4.16), (4.17) and (4.21)

for illustrative purpose, but we do not have to necessarily adhere to this ordering of rows

and columns. Indeed, from (4.27) we see that the mixing only occurs when (a, b) = (ã, b̃)

and (a′′, b′′) = (ã′′, b̃′′), and with a suitable ordering of the columns and the rows we can

bring Udc into a block-diagonal form. The net mixing is therefore given by

Xda′b′

ia′′b′′X
cab
ia′b′ =

∑

e, f

Ua′e

[

d c

a′′ a

]

Xeab
ia′′b′′δ

efUb′f

[

d c

b′′ b

]

, (4.33)

where

Ua′e

[

d c

a′′ a

]

= U
{a a′ a′′}[e; a a′′]
dc =

{

c, d, e

a′′, a, a′

}

. (4.34)

In section 4, we will explicitly work out this block-diagonalization in the example of the

Ising model CFT.
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4.2 Geometric construction

Imagine a disk correlator with a number of bulk operator insertions. Placing a topological

defect parallel to the boundary and sufficiently close to it, so that there are no bulk oper-

ators between the defect and the boundary, one can smoothly deform the defect so that it

fuses onto the boundary without affecting any correlator. From the bulk perspective, as we

reviewed in section 2, these correlators can be viewed as overlaps of the new boundary state

D||B〉〉 with the vacuum excited by the vertex operators. Already by considering disk am-

plitudes without operator insertions, we find a number of interesting relations, illustrated

in figure 10

gb =
∑

b′∈d×b

F11

[

d d

d d

]

gb′ =
∑

b′∈d×b

gb′

g′d
, (4.35)

from which it follows (assuming the existence of the identity boundary condition) that the

normalized g-function of the defect is in fact the g-function of the corresponding boundary

condition, normalized by the g-function of the identity boundary condition

g′d ≡ 1

F11

[

d d

d d

] =
gd
g1

. (4.36)

Similarly, considering the “sunset” disk diagrams we find

gb

F1b

[

d b′

d b′

] =
gb′

F1b′

[

d b

d b

] , (4.37)

whose actual numerical value depends on the chosen gauge for the F -matrices. We stress

again that consistency of defect network manipulations only implies that the involved F -

matrices obey the pentagon identity and therefore the gauge for the F -matrices used for

defect manipulations is not fixed. This has to be constrasted with the F blocks matrices

entering the boundary structure constants which, as we have reviewed in section 3.2, imply

a very specific gauge choice once the conformal blocks are canonically normalized.

Now, what happens upon fusing a defect to a boundary, when there are boundary

operators present? The conformal weight of such operators cannot change, so they must

become new boundary operators in the same Virasoro representation, but interpolating

between new boundary conditions, and possibly modified by a new normalization constant.

To understand what happens to the boundary operators it is convenient to proceed in

steps. First, imagine to partially fuse a defect d on a boundary segment b. Such a fusion

brings in a nontrivial factor F1b′

[

d b

d b

]

, see figure 11.

This factor can be assigned to the left and right junctions between the defect and the

boundary, and it is natural to distribute it evenly between the two junctions. This implies

that when a defect d fuses on a boundary a to give a superposition of boundary conditions

a′ = d × a, the involved junction must be accompanied by a factor of

√
F1a′

[

d a

d a

]

. This

factor will be represented by a boldface dot at the junction, see figure 12. The action of a

defect on an open string state is explicitly defined in figure 13.
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bb
d

b

d

b

b
b b

=
S11

S1d

=

=
1

F1b
d b

d b

=
1

F1b
d b

d b

b ∈d×b

S11

S1d

Figure 10. Defects can be used to derive a relation between the g-functions of different boundary

conditions. Defect attached to the boundary can be shrunk in two different directions, producing

consistent answer thanks to the identities for the fusion matrix F .

1

d

b

=
b ∈d×b

F1b
d b

d b

d

bb b

d

Figure 11. Partial fusing of a defect d onto a boundary b.

a a a aa

d
d d

=
∑

a′∈d×a

√

F1a′

[

d a

d a

]

=
∑

a′∈d×a

Figure 12. A defect fusing onto a boundary. Every produced fundamental boundary condition is

accompanied by a junction factor which is graphically represented as a thick dot.

Once the above geometrical definition is given, defect distributivity

Dd
(
φab
i (x)φbc

j (y)
)
=

(
Ddφab

i (x)
)(

Ddφbc
j (y)

)
, (4.38)

follows rather naturally. Since the defect can be partially fused onto the boundary as

in figure 14 (using the rule of figure 11), the only issue one has to take care of is the

normalization factor F1b′

[

d b

d b

]

which is accounted by the non-trivial normalization of the

junctions.
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Ddφab
i =

=

a ∈ d× a

b ∈ d× b

F1b
d b

d b
=

a ∈ d× a

b ∈ d× b

F1a
d a

d a

d
d

d

a bφi a a bφi b

a a bφi b

Figure 13. The geometric description of a defect action on a boundary field. Notice the
√
F

factors at the junctions.

d

a a bφi

dd

ba φi b c cb cφjcφj

=
b ∈d×b

F1b
d b

d b
a

1

d

a a bφi

d

b cb cφj

=
b ∈d×b

Figure 14. Defect distributivity. In the second line the factor F1b′

[

d b

d b

]

has been absorbed into the

two c-number insertions at the junction points denoted by thick dots.

4.2.1 Defect action on a boundary field from network manipulations

It remains to compute the explicit X-coefficients of the defect action

Dd φab
i =

∑

a′ ∈ d× a

b′ ∈ d× b

Xdab
ia′b′ φ

a′b′

i . (4.39)

In order to make use of the needed defect network manipulations, we uplift the boundary

conditions and the boundary insertions into a defect network with a line carrying the i

representation and ending on a chiral defect-ending field, placed at the boundary with

identity boundary conditions. This is explained in detail in appendix B. In our setting

this move is essentially equivalent to a corresponding three-dimensional manipulation in

the topological field theory description of defects in RCFT [57], see in particular [72],

but it has its own two-dimensional description given in appendix B. After this topological

move, the defect coefficient X can be easily computed as in figure 15. The α-coefficients

appearing there explicitly depend on the chosen normalization for boundary fields (with

the convention that nab
i =1 for the canonical (3.23) choice) and on the chosen gauge for

– 28 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
7

a a bφi

d

b
Ddφab

i

a b
= = αab

i

a a b

φi

d

b

1 1

= αab
i F1a

d a

d a

a a b

φi

d

b

1 1

F1b
d b

d b

= αab
i F1a

d a

d a

Fdi
a b

a b

F1i
a b

a b

F1b
d b

d b

a

φi

b

1 1

i

i

=
αab
i

αa b
i

F1a
d a

d a

Fdi
a b

a b

F1i
a b

a b

F1b
d b

d b

a φi b

Xdab
ia b φa b

i

Figure 15. Defect network manipulations determining the defect coefficients Xdab
ia′b′ . Notice that

the boundary insertion i is traded for a defect ending on the boundary. Along such a defect an

ab-bubble is collapsed, after F -crossing on the original defect line d. The two junctions at which

the defect d joins the boundary corresponds to square roots of F -matrix elements.

defect networks, see (B.7), giving in total

Xdab
ia′b′ =

nab
i

na′b′
i

√
γ(i, a′, b′)
γ(i, a, b)

√
F1a′

[

d a

d a

]

Fdi

[

a b

a′ b′

]

F1i

[

a b

a b

]

√
F1b′

[

d b

d b

]

=
nab
i

na′b′
i

√
FRac
1a′

[

d a

d a

]

FRac
di

[

a b

a′ b′

]

FRac
1i

[

a b

a b

]

√
FRac
1b′

[

d b

d b

]

=
nab
i

na′b′
i

(
g′ag

′
bg

′
a′g

′
b′
) 1

4

[

b′, a′, i

a, b, d

]

. (4.40)

Notice in particular that the gauge dependent factors γ introduced in (B.6) conspire with

the gauge dependent F -matrices to give an overall gauge invariant result which only de-

pends on the normalization choice for the boundary fields, as it should: acting a defect on

a boundary field does not depend on the defect’s gauge.
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DdDcφab
i

a, a , a b, b , b
=

{ }{}

a a bφi

d

ba b

c

a bφi

d

a b

c

a ba b

e

(Udc)
aa a  [e;aa ] UT

dc

[e;bb ] bb b

f∈d×c

Dfφ
(ab)
i

[e;aa ][e;bb ]

}{{ }

φi

Fb e
c d

b b
F1b

c b

c b
F1b

d b

d b

=
e∈c×d

F1a
d a

d a
F1a

c a

c a

F1e
d c

d c
F1a

e a

e a

Fa e
d c

a a
Fb e

c d

b b

F1b
c b

c b
F1b

d b

d b

F1e
d c

d c
F1b

e b

e b

=
e∈c×d

F1a
d a

d a
F1a

c a

c a
Fa e

d c

a a

e

Figure 16. Defect network manipulations determining the fusion rules of open string defects.

4.2.2 Defect fusion from network manipulations

Let us now see how we can use similar manipulations to reduce the composition of two

defects c and d to a direct sum of defects e, appearing in the fusion of c and d. We start

with a general boundary field Φ and act with the defects on it

DdDcΦ =
∑

a,b

∑

i

∑

a′,b′

∑

a′′,b′′

(
Dd

(
Dcφab

i

)a′b′
)a′′b′′

=
∑

{a,a′,a′′}

∑

{b,b′,b′′}

(
DdDcΦ

){a,a′,a′′},{b,b′,b′′}
. (4.41)

Then we can perform the manipulations shown in figure 16 giving us the result

(Udc)
{aa′a′′}[e;a,a′′] =

√√√√√√
F1a′′

[

d a′

d a′

]

F1a′

[

c a

c a

]

F1a′′

[

e a

e a

]

F1e

[

d c

d c

] Fa′e

[

d c

a′′ a

]

=
{

c, d, e

a′′, a, a′

}

, (4.42)

which coincides with (4.31). Notice that in the geometric approach there naturally appears

the transpose of the U matrix on the right

DdDcΦ = Udc

(
⊕

e∈d×c

DeΦ

)
UT
dc. (4.43)

Before closing this section, let us comment on one particularly surprising aspect of

the relation (4.43). It is a bit reminiscent of some sort of generalized non-abelian projec-
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tive representation13 of the closed string defect algebra DdDc =
∑

e∈d×cD
e and one may

ask whether the corresponding 2-cocycle condition is satisfied. This is equivalent to the

condition of associativity of the defect algebra on the open string fields
(
DeDd

)
Dc = De

(
DdDc

)
. (4.44)

To prove associativity, following the steps in figure 17, one has to show that

∑

f

Ua′′f

[

e d

a′′′ a′

]

Ub′′f

[

d e

b′ b′′′

]

Ua′h

[

f c

a′′′ a

]

Ub′h

[

c f

b b′′′

]

=
∑

g

Ua′g

[

d c

a′′ a

]

Ub′g

[

c d

b b′′

]

Ua′′h

[

e g

a′′′ a

]

Ub′′h

[

g e

b b′′′

]

.

(4.45)

To see that, let us start by writing the pentagon identity for the Racah symbols (2.41) in

a more convenient form

{

p, e, r

d, c, q

}{

r, e, p

a, b, t

}

=
∑

s

{

c, b, s

a, q, p

}{

d, s, t

a, e, q

}{

d, t, s

b, c, r

}

. (4.46)

Using this identity we can express the product of the two factors on the left hand side

depending on the a-type labels (any of the labels a, a′, a′′ and a′′′)

Ua′′f

[

e d

a′′′ a′

]

Ua′h

[

f c

a′′′ a

]

=
{

d, e, f

a′′′, a′, a′′

}{

c, f, h

a′′′, a, a′

}

=
{

a′, a′′′, f

e, d, a′′

}{

f, a′′′, a′

a, c, h

}

=
∑

g

{

d, c, g

a, a′′, a′

}{

e, g, h

a, a′′′, a′′

}{

e, h, g

c, d, f

}

. (4.47)

After multiplication by the remaining b-type label dependent U -matrices present in the

left hand side of (4.45) the last expression can now be easily summed over the label f

using (4.46), and one ends up precisely with the right hand side of (4.45). This concludes

the proof of associativity.

5 Topological defects in open string field theory

In this section we would like to study how topological defects act on OSFT solutions.

As we have already stated, OSFT provides a new way to explore the possible conformal

boundary conditions of a bulk CFT, by solving the equations of motion. Let us then

briefly review how can we use OSFT to analyze BCFT’s with central charge c different

from 26 [10, 11]. The open string star algebra is factorized in the Hilbert space of the

c = −26 ghosts’ BCFT, with standard boundary conditions, and in the matter c = 26

BCFT, whose boundary conditions can be generic. In our application of OSFT to BCFT

we will further assume that the matter BCFT is the tensor product of a BCFTc (whose

properties we wish to study) times a compensating “spectator” BCFT26−c

BCFTtotal = BCFTc ⊗ BCFT26−c ⊗ BCFTghost. (5.1)

In the total corresponding star algebra we restrict to the subalgebra where only descendants

of the identity in the spectator sector are excited. Then we can search for classical solutions

13Instead of the usual representation on vectors up to a phase, this behaves as a representation on matrices

up to a similarity transformation.
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a a bφi

d

cDeDdDcφab
i

a, a , a b, b , b
=

e

a ba bb

a a bφi

c

a bb a bφi

e

a ba b

a bφia b

Ua f
e d

a a
Ub f

d e

b b
Ua g

d c

a a
Ub g

c d

b b

f

g

h

Ua h
f c

a a
Ub h

c f

b b

{ {} }

Ua h
e g

a a
Ub h

g e

b b

Figure 17. Proof of associativity. Fusing together three defects attached to a boundary in two

different ways results in a consistency condition (4.45) for the U matrix. The resulting condition

follows from the pentagon identity for the Racah symbol (2.41).

with the most general ansatz at ghost number one

Ψ =
∑

a,b

∑

i

∑

I,J,K

a
i(ab)
IJK Lc

−I |φab
i 〉 ⊗ LR

−J |0〉 ⊗ Lgh
−K c1|0〉, (5.2)

where Lc
−I = L−inL−in−1 · · ·L−i1 for 0 ≤ i1 ≤ i2 ≤ · · · in, and J,K are defined in the same

way. The label i runs over all Virasoro representations of BCFTc that are allowed by the

pair of boundary conditions a, b (with, possibly, non-trivial multiplicities). In the case of

diagonal minimal models we have that i ∈ a× b. If some fundamental boundary condition

appears multiple times (trivial multiplicities), then the coefficients a
i(ab)
IJK are matrices in

the degeneracy labels (Chan-Paton factors).
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A possible approach to search for new boundary conditions in the CFTc factor (5.1)

is to solve the OSFT equation of motion with the ansatz (5.2). In particular the boundary

state corresponding to these new boundary conditions can be computed from OSFT gauge

invariant observables [10].

In the previous section we have defined the action of topological defects on generic

boundary operators including those which change the boundary conditions. This then

naturally defines an action of a topological defect on open string fields

DdΨ =
∑

a,b

∑

i

∑

I,J,K

a
i(ab)
IJKLc

−I

(
Dd|φab

i 〉
)
⊗ LR

−J |0〉 ⊗ Lgh
−K c1|0〉, (5.3)

because

[Lmatter
n ,D] = 0. (5.4)

It follows that, noticing that [bn,D] = 0 and [cn,D] = 0,

[Q,D] = 0. (5.5)

It is also not difficult to establish that

Dd(φ ∗ χ) = (Ddφ) ∗ (Ddχ) ∀φ, χ. (5.6)

Indeed, assuming the BFCT of interest is unitary and therefore its total Hilbert space is

spanned by the direct sum of the irreducible quotients of Verma modules over the primaries,

this condition just follows from the compatibility with the OPE (4.5) and the conservation

laws of the star product [13–15]. Concretely, given two descendant string fields L−Iφ
ab
i (0)|0〉

and L−Jφ
bc
j (0)|0〉, we can express their star product schematically as

L−Iφ
ab
i (0)|0〉 ∗ L−Jφ

bc
j (0)|0〉 =

∑

K

V K
IJ (hi, hj)L−Ke

∑

vkL−kφab
i (x)φbc

j (y)|0〉, (5.7)

where the coefficients V K
IJ , vk as well as the insertion points x and y are explicitly known

or calculable. Acting with Dd, one can bring it through all the Virasoro generators, use

formula (4.5) and use again formula (5.7) to reassemble the left hand side.

Therefore open topological defects map solutions to solutions in OSFT

QΨ+Ψ ∗Ψ = 0 → Q(DΨ) + (DΨ) ∗ (DΨ) = 0. (5.8)

The main issue is now the physical interpretation of these new solutions.

5.1 Defect action on string field theory solutions

In this subsection we will derive the following key result: given a solution ΨX→Y which

shifts the open string background from BCFTX to BCFTY , we will show that the solution

DΨX→Y shifts from BCFTDX to BCFTDY , where the subscript denotes the boundary con-

ditions obtained by fusing the defect D on the X and Y boundary conditions respectively.

In formulas

DΨX→Y = ΨDX→DY . (5.9)
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To do so we will evaluate the OSFT observables of DΨX→Y and show that they fully agree

with the observables of the r.h.s. of (5.9). In particular we will show that the boundary

state of DΨX→Y is just the result of the defect action on the boundary state of ΨX→Y

||BDΨ〉〉 = D||BΨ〉〉. (5.10)

Notice that in OSFT there appears a natural interplay between the open string defect

operator D and its closed string counterpart D.

5.1.1 Computation of S [DΨ]

Before studying the full boundary state, it is instructive to look at the simpler case of the

OSFT action. Carrying out the summation on I, J and K in (5.2) we can write the string

field as

Ψ =
∑

a,b

∑

i

Ψab
i , (5.11)

where the label i and ab denote the Virasoro representation and boundary conditions of

BCFTc. In order to treat both the quadratic and cubic terms in the action (1.1) at the

same time, it is useful to prove the more general statement

Tr[(DdΨ1) ∗ · · · ∗ (DdΨn)] =
gd
g1

Tr[Ψ1 ∗ · · · ∗Ψn], (5.12)

where Tr is the usual Witten integral, combined with trace over Chan-Paton factors. By

defect distributivity

(DdΨ1) ∗ · · · ∗ (DdΨn) = Dd(Ψ1 ∗ · · · ∗Ψn), (5.13)

it is enough to show that

Tr[DdΨ] =
gd
g1

Tr[Ψ]. (5.14)

Using the results of previous sub-sections the l.h.s. can be easily evaluated as

Tr[DdΨ] =
∑

a

∑

i

∑

a′∈d×a

Xdaa
ia′a′ Tr

[
Ψ

{a,a′},{a,a′}
i

]

=
∑

a

∑

i

δi1
∑

a′∈d×a

Tr
[
Ψ

{a,a′},{a,a′}
1

]
, (5.15)

since only the boundary Virasoro representation i = 1 can contribute to the Witten integral.

Moreover, on general grounds, Xdaa
1a′a′ = 1 since a defect always maps the identity to the

identity, as can be easily checked in the explicit example (4.8). To continue we simply

notice that

Tr
[
Ψ

{a,a′},{a,a′}
1

]
=

ga′

ga
Tr[Ψaa

1
], (5.16)

since the two traces involve the same operator algebra and only differ in the normalization

of the vacuum amplitudes ga ≡ 〈 1 〉(a)disk, and similarly for a′. We therefore have

Tr[DdΨ] =
∑

a

Tr[Ψaa
1
]

(
∑

a′∈d×a

ga′

ga

)
. (5.17)

– 34 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
7

Using the Pasquier algebra for the g-functions, see equation (2.26) and (4.36)
∑

a′∈d×a

ga′ =
gdga
g1

, (5.18)

concludes the proof of (5.12).

In the next section we will see an alternative geometric approach making use of defect-

network manipulations, see figure 19.

What we derived holds at the level of the Witten integral therefore, remembering that

the defect trivially commutes with the BRST charge, it is immediate to see that for any

open string field Ψ we have

SOSFT[DdΨ] =
gd
g1

SOSFT[Ψ]. (5.19)

Suppose now we have a solution ΨX→Y which describes BCFTY as a state in BCFTX .

This means in particular that we have a solution whose action is given by

SOSFT[ΨX→Y ] =
1

2π2
(gX − gY ) . (5.20)

It follows that the defect-acted solution will have an action given by

SOSFT[DdΨX→Y ] =
gd
g1

SOSFT[ΨX→Y ] =
1

2π2

(
gd gX

g1
− gd gY

g1

)
. (5.21)

The difference entering into the above equation is nothing but the difference in the identity-

coefficients (g-functions) of the two boundary states obtained by acting the closed string

defect Dd on the source and target boundary states ||BX 〉〉, ||BY 〉〉, connected by the

solution ΨX→Y

Dd||BX 〉〉 = Dd (gX |1〉〉+ · · · ) = gd gX

g1
|1〉〉+ · · · , (5.22)

Dd||BY 〉〉 = Dd (gY |1〉〉+ · · · ) = gd gY

g1
|1〉〉+ · · · . (5.23)

This is the first non-trivial check that (5.9) indeed holds.

5.1.2 Computation of the Ellwood invariant

Let us now see how the Ellwood invariant is affected by the defect action. To start with,

it is useful to derive an identity involving the bulk-boundary structure constants (a)Bi
j , the

g-functions and the open and closed defect coefficients. The required identity is obtained

by computing a disk amplitude with a spinless bulk field V j(z, z̄), a boundary field φaa
i (x)

and a defect loop d encircling the bulk field. See figure 18.

The correlator can be computed by acting the closed string defect on the closed string

field V j , or by partially attaching the defect to the boundary, producing an open string

defect acting on the boundary field φi(x). Calling, in generality, Dd
i the defect coefficient,

i.e. D =
∑

iD
d
i Pi, where Pi projects onto the highest-weight irreducible representation Viri

in the bulk, we get the identity

Dd
j

(a)Bi
j ga =

∑

a′∈d×a

Xdaa
ia′a′

(a′)Bi
j ga′ , (5.24)
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b

=φiV jDd
j

b
d

φiV j

b

φi φiV j V j
=

b ∈d×b

=
b ∈d×b

Xdbb
ib b

b b

d

=
b ∈d×b

V j
d

b

φib

Figure 18. Two equivalent ways of computing a bulk-boundary correlator in presence of a closed

string defect d.

which in the case of diagonal minimal models reads14

Sdj

S1j

(a)Bi
j ga =

∑

a′∈d×a

FRac
aa′

[

a d

i a′

]

(a′)Bi
j ga′ . (5.25)

Thanks to this relation it is easy to algebraically show that

TrV j [DdΨ] =
∑

a

∑

i

∑

a′∈d×a

Xdaa
ia′a′ TrV j

[
Ψ

{a,a′},{a,a′}
i

]

=
∑

a

∑

i

∑

a′∈d×a

FRac
aa′

[

a d

i a′

]

(a′)Bi
j ga′

(a)Bi
j ga

TrV j [Ψaa
i ]

=
∑

a

∑

i

Sdj

S1j
TrV j [Ψaa

i ] =
∑

a

∑

i

TrDdV j [Ψaa
i ]

= TrDdV j [Ψ], (5.26)

where in the second line we have used that the two involved open/closed couplings (carrying

the same Virasoro labels but different boundary conditions) only differ by the overall bulk-

boundary structure-constant B and the g-functions, due to the identical operator algebra

involved in their calculation. Again, this can be shown geometrically manipulating defect

networks, as shown in figure 19, and the result is correctly independent of the gauge used

for defect manipulations.

14Boundary fields are here canonically normalized (3.23). In the special case where the boundary field

carries the identity representation it coincides with (4.42) of [85]. In this case we have (a)B1
j ga =

Saj√
S1j

and

analogously for the new boundary conditions a′, and so the relation reduces to the Verlinde formula

Sdj

S1j
Saj =

∑

a′∈d×a

Sa′j .
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TrV DdΨ =
a a ∈d×a

f (1) ◦Ψaa

V

d

a

a

=
a a ∈d×a

F1a
d a

d a
f (1) ◦Ψaa

V

d

a

f (1) ◦Ψaa

V

d

a

p
=

a

f (1) ◦Ψaa

V

d

a

= TrDdV [Ψ]

=
a,p a ∈d×a

p∈d×d

F1a
d a

d a
Fa p

a a

d d

Figure 19. Defect networks manipulations for the Ellwood invariant of a defect-acted open string-

field. The dashed line corresponds to the identification of the left and right part of the open

string, via the identity conformal map f (1)(z) =
(

1+iz
1−iz

)2

. Notice that thanks to the junction

normalizations and the consequent F -matrix orthogonality relation, only the identity defect p = 1

stretches between the boundary and the defect d, making d a genuine closed string defect. When

V = 1 this also gives a geometric proof of (5.14).

5.1.3 KMS and KOZ boundary state

Having obtained in generality how an Ellwood invariant is affected by the action of an open

string defect, let us see how the OSFT boundary state constructed in [10] (KMS from now

on) behaves under the defect action. The KMS approach gives a simple recipe to directly

compute the coefficients of the matter Ishibashi states of the boundary state associated

to a given solution Ψ in terms of a minimal generalization of the Ellwood invariant. In

the setting of this paper, where we are assuming that the matter BCFT is the tensor

product of a diagonal rational BCFT of central charge c and a “spectator” sector of central

charge (26 − c), the required generalization of the Ellwood invariant is simply achieved

by assuming that the spectator sector contains a free boson (call it Y ) with Dirichlet

boundary conditions, see [10, 11] for further details. Then the KMS construction is usefully

summarized as

||BΨ〉〉KMS =


∑

j

nj
Ψ|V j〉〉




(c)

⊗ ||B0〉〉(26−c) ⊗ ||B0〉〉ghost, (5.27)

nj
Ψ = (2πi) TrṼj [Ψ−Ψtv], (5.28)

Ṽj(z, z̄) = cc̄ V j e
2i
√

1−h2
jY (z, z̄), (5.29)

where Ψtv is the tachyon vacuum solution in an arbitrary gauge. Since we have shown that

TrV [DΨ] = TrDV [Ψ] for any string field, the KMS construction applied to the solution DΨ

– 37 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
7

will obviously give15

||BDΨ〉〉KMS = D||BΨ〉〉KMS. (5.30)

Finally, let us also consider the other available construction of the boundary state in

OSFT, given by Kiermaier, Okawa and Zwiebach (KOZ) [21]. KOZ geometrically construct

a BRST-invariant ghost number three closed string state obeying the level matching b−0 =

L−
0 = 0. This closed string state is conjectured to be BRST equivalent to the BCFT

boundary state and in fact the two coincide for many known analytic solutions. The main

ingredient of this construction is a choice of half-propagator strip in the background of a

classical solution Ψ, whose left edge and right edge are glued together, to form an annulus-

like surface, which is used to build the closed string state

||BΨ〉〉KOZ = e
π2

s
(L0+L̄0)

∮

s
Pexp

[
−
∫ s

0
dt [LR(t) + {BR(t),Ψ}]

]
. (5.31)

The various objects entering the above definition are defined in [21], but for us it is sufficient

to recall that the quantity Pexp[. . .] represents a half-propagator strip of length s, in the

background of the classical solution Ψ, and that the symbol
∮
s identifies the initial left

edge of the strip with the final right edge. The internal boundary of this annulus-like

surface (corresponding to the propagation of the open string midpoint) defines a closed

string state, the KOZ boundary state.

If, instead of the original classical solution Ψ on BCFTX we replace the defect-acted

solutionDΨ on BCFTDX , then by defect distributivity on the star product (and the obvious

commutativity with the b-ghost insertions) we will recover a closed string defect extending

along the midpoint line, which is nothing but a closed-string defect operator acting on the

original KOZ boundary state, see figure 20

||BDΨ〉〉KOZ = e
π2

s
(L0+L̄0)

∮

s
Pexp

[
−
∫ s

0
dt [LR(t) + {BR(t),DΨ}]

]

= D||BΨ〉〉KOZ. (5.32)

6 Ising OSFT example

In this section we would like to illustrate our general findings on the concrete example of

open string field theory for the Ising model CFT [11]. This is the simplest unitary diagonal

minimal model with c = 1
2 . It has three irreducible Virasoro representations, denoted as

1, ε and σ with well-known fusion rules

ε× ε = 1

ε× σ = σ (6.1)

σ × σ = 1+ ε.

15A simple consequence of this is that acting with a topological defect on a tachyon vacuum solution,

the new solution will still be the tachyon vacuum (the boundary state will still vanish), although expressed

with the degrees of freedom of the new BCFTDX .
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=
∞

n=0

BDΨ
KOZ ∼

∞

n=0

BR, Ψ
(1)

BR, Ψ
(2)

BR, Ψ
(n)

BR, Ψ
(n)

closed
string
patch

closed
string
patch

BR, Ψ
(2)BR, Ψ

(1)
d×X

d
×
X

d
×
X

dd

d

d

= D BΨ
KOZ

X

X
X

Figure 20. Pictorial representation of the KOZ boundary state for a defect-acted solution (the

boundary integrals in the “Pexp” operation, as well as other details, are not shown, as they are not

important for our argument). Thanks to the defect distributivity, the various open string defects

result in a single defect-loop encircling the closed string coordinate patch.

The bulk fields, also labeled by 1, ε and σ, are all spinless. There are three possible

fundamental boundary conditions also denoted as 1, ε and σ which describe the fixed (±)

and free boundary conditions for the spins in the underlying lattice model. We will refer

to the conformal boundary conditions of the Ising model as the Ising “D-branes”.

6.1 Defect action on Ising boundary fields

In the Ising model there are three (fundamental) topological defects. They can act on bulk

fields via closed-string defect operators, with the following composition rules

D2
ε = D1, (6.2)

DσDε = DεDσ = Dσ, (6.3)

D2
σ = D1 +Dε, (6.4)

which realize the fusion rules (6.1).

Now we would like to construct the open string defect operators and study their compo-

sition rules according to section 4. The general boundary field on a system of N1 1-branes,

Nε ε-branes, and Nσ σ-branes has the form

Ψ =




1 ε σ

1 L
(11)
1

P
(1ε)
ε Q

(1σ)
σ

ε P̄
(ε1)
ε M

(εε)
1

R
(εσ)
σ

σ Q̄
(σ1)
σ R̄

(σε)
σ N

(σσ)
1

+N
(σσ)
ε


, (6.5)

where the (a, b) component is a Na × Nb matrix with respect to the Chan-Paton indices.

We have chosen this presentation since topological defect operators are blind to Chan-

Paton factors. The upper indices inside the parenthesis represent the left and the right
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boundary conditions, which are also indicated outside the matrix for later convenience, and

the lower index is the Virasoro label. Each entry of (6.5) is a generic matrix-valued state

in the irreducible quotient of a Verma module indicated by the corresponding subscript,

and allowed by the boundary conditions. This expression can also represent an open string

field of the form (5.2), (5.11).

As a useful example, let us study the fusion of two σ defect operators, D2
σ, on a

boundary field (or open string field) of the general form (6.5). From (4.4) and the concrete

value of the defect coefficients X for the Ising model BCFT (see appendix C), applying the

Dσ on the open string field (6.5) results in a matrix with a larger size

DσΨ =




{1σ} {εσ} {σ1} {σε}

{1σ} L
(σσ)
1

1√
2
P

(σσ)
ε

1
21/4

Q
(σ1)
σ

1
23/4

Q
(σε)
σ

{εσ} 1√
2
P̄

(σσ)
ε M

(σσ)
1

21/4R
(σ1)
σ − 1

21/4
R

(σε)
σ

{σ1} 1
21/4

Q̄
(1σ)
σ 21/4R̄

(1σ)
σ N

(11)
1

√
2N

(1ε)
ε

{σε} 1
23/4

Q̄
(εσ)
σ − 1

21/4
R̄

(εσ)
σ

√
2N

(ε1)
ε N

(εε)
1



. (6.6)

Here indices {ab} (a, b = 1, ε, σ) outside the matrix keep track of changes of the left and the

right boundary conditions; for example, the (1,1) component of the matrix has the indices

{1σ}{1σ}, and the boundary condition of the corresponding entry has been changed as

Dσ : L
(11)
1

7→ L
(σσ)
1

. (6.7)

The (1,2) component of the matrix has the indices {1σ}{εσ}, and correspondingly,

Dσ : P (1ε)
ε 7→ Xσ1ε

εσσP
(σσ)
ε , (6.8)

where Xσ1ε
εσσ = 1√

2
, and so on. Note that the action of Dσ increases the number of branes

in general, because it changes the σ-brane into a 1-brane and an ε-brane. Now the system

has Nσ 1-branes, Nσ ε-branes and (N1 +Nε) σ-branes.

Applying Dσ again we obtain

D2
σΨ =




{1σ1} {1σε} {εσ1} {εσε} {σ1σ} {σεσ}

{1σ1} L
(11)
1

0 0 P
(1ε)
ε

1√
2
Q

(1σ)
σ

1√
2
Q

(1σ)
σ

{1σε} 0 L
(εε)
1

P
(ε1)
ε 0 1

2Q
(εσ)
σ −1

2Q
(εσ)
σ

{εσ1} 0 P̄
(1ε)
ε M

(11)
1

0 R
(1σ)
σ −R

(1σ)
σ

{εσε} P̄
(ε1)
ε 0 0 M

(εε)
1

1√
2
R

(εσ)
σ

1√
2
R

(εσ)
σ

{σ1σ} 1√
2
Q̄

(σ1)
σ

1
2Q̄

(σε)
σ R̄

(σ1)
σ

1√
2
R̄

(σε)
σ N

(σσ)
1

N
(σσ)
ε

{σεσ} 1√
2
Q̄

(σ1)
σ −1

2Q̄
(σε)
σ −R̄

(σ1)
σ

1√
2
R̄

(σε)
σ N

(σσ)
ε N

(σσ)
1




, (6.9)

which has an equal number of rows and columns given by 2(N1 +Nε +Nσ).
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On the other hand, (D1 ⊕Dε)Ψ is given by




[1;11] [1;εε] [1;σσ] [ε;1ε] [ε;ε1] [ε;σσ]

[1;11] L
(11)
1

P
(1ε)
ε Q

(1σ)
σ 0 0 0

[1;εε] P̄
(ε1)
ε M

(εε)
1

R
(εσ)
σ 0 0 0

[1;σσ] Q̄
(σ1)
σ R̄

(σε)
σ N

(σσ)
1

+N
(σσ)
ε 0 0 0

[ε;1ε] 0 0 0 L
(εε)
1

P
(ε1)
ε

1√
2
Q

(εσ)
σ

[ε;ε1] 0 0 0 P̄
(1ε)
ε M

(11)
1

√
2R

(1σ)
σ

[ε;σσ] 0 0 0 1√
2
Q̄

(σε)
σ

√
2R̄

(σ1)
σ N

(σσ)
1

−N
(σσ)
ε




. (6.10)

This is clearly not equal to (6.9). While the closed defect operators Dd obey the defect

algebra (6.4) which is strictly isomorphic to the Verlinde fusion algebra, this is not the

case for the open string defect operators Dd. As discussed in section 4, we need to take

into account the similarity transformation (4.31) and (4.32) in order to connect (6.10)

with (6.9). In this case, the similarity transformation is given by

Uσσ =




[1;11] [1;εε] [1;σσ] [ε;1ε] [ε;ε1] [ε;σσ]

{1σ1} 1 0 0 0 0 0

{1σε} 0 0 0 1 0 0

{εσ1} 0 0 0 0 1 0

{εσε} 0 1 0 0 0 0

{σ1σ} 0 0 1√
2

0 0 1√
2

{σεσ} 0 0 1√
2

0 0 − 1√
2




(6.11)

=




[1;11] [ε;1ε] [ε;ε1] [1;εε] [1;σσ] [ε;σσ]

{1σ1} 1

{1σε} 1

{εσ1} 1

{εσε} 1

{σ1σ} 1√
2

1√
2

{σεσ} 1√
2

− 1√
2




=
(
U−1
σσ

)T
. (6.12)

The reader can easily check that

D2
σΨ = Uσσ [(D1 ⊕Dε)Ψ]U−1

σσ . (6.13)

Similarly, to investigate the relation (6.3), we calculate DσDεΨ

DσDεΨ =




{1εσ} {ε1σ} {σσ1} {σσε}

{1εσ} L
(σσ)
1

1√
2
P

(σσ)
ε

1
21/4

Q
(σ1)
σ − 1

23/4
Q

(σε)
σ

{ε1σ} 1√
2
P̄

(σσ)
ε M

(σσ)
1

21/4R
(σ1)
σ

1
21/4

R
(σε)
σ

{σσ1} 1
21/4

Q̄
(1σ)
σ 21/4R̄

(1σ)
σ N

(11)
1

−
√
2N

(1ε)
ε

{σσε} − 1
23/4

Q̄
(εσ)
σ

1
21/4

R̄
(εσ)
σ −

√
2N

(ε1)
ε N

(εε)
1




(6.14)
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and DεDσΨ

DεDσΨ =




{1σσ} {εσσ} {σε1} {σ1ε}

{1σσ} L
(σσ)
1

− 1√
2
P

(σσ)
ε

1
21/4

Q
(σ1)
σ

1
23/4

Q
(σε)
σ

{εσσ} − 1√
2
P̄

(σσ)
ε M

(σσ)
1

−21/4R
(σ1)
σ

1
21/4

R
(σε)
σ

{σε1} 1
21/4

Q̄
(1σ)
σ −21/4R̄

(1σ)
σ N

(11)
1

√
2N

(1ε)
ε

{σ1ε} 1
23/4

Q̄
(εσ)
σ

1
21/4

R̄
(εσ)
σ

√
2N

(ε1)
ε N

(εε)
1



. (6.15)

Comparing these expressions with (6.6), we find

Uσε =




[σ;1σ] [σ;εσ] [σ;σ1] [σ;σε]

{1εσ} 1

{ε1σ} 1

{σσ1} 1

{σσε} −1




= (Uσε)
−1, (6.16)

Uεσ =




[σ;1σ] [σ;εσ] [σ;σ1] [σ;σε]

{1εσ} 1

{ε1σ} −1

{σε1} 1

{σ1ε} 1




= (Uεσ)
−1. (6.17)

6.2 Defect action on Ising classical solutions

Now let us discuss the action of the defect operators on the classical solutions of OSFT.

For illustration, let us focus on the σ-brane of the Ising model and let us consider the

corresponding OSFT. At lowest nontrivial level 1
2 the string field takes the form Ψ =

tc1|0〉+ ac1|ε〉 for which the potential is [11]

V (t, a) = −1

2
t2 − 1

4
a2 +

27
√
3

64
t3 +

27

16
ta2. (6.18)

From here one can already see the four critical points given by the perturbative as well as

tachyon vacuum, and further two solutions related by a Z2-symmetry describing the other

two fundamental boundary conditions.16

Going to higher levels, the string field will keep the form

Ψσ→1 = ψσσ
1

+ ψσσ
ε , (6.19)

where ψσσ
1

and ψσσ
ε will stand for the two components in the identity and ε irreducible

quotients of the Verma modules respectively. Correspondingly, the equations of motion

split into two independent sets:

Qψσσ
1

+ ψσσ
1

∗ ψσσ
1

+ ψσσ
ε ∗ ψσσ

ε = 0, (6.20)

Qψσσ
ε + ψσσ

1
∗ ψσσ

ε + ψσσ
ε ∗ ψσσ

1
= 0. (6.21)

16At higher levels one may find other solutions, see the discussion in [11].
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Incidentally, these equations are enough to guarantee that three other string fields con-

structed from ψσσ
1

and ψσσ
ε obey the equations of motion as well:

ψσσ
1

− ψσσ
ε , (6.22)

and (
ψσσ
1

±ψσσ
ε

±ψσσ
ε ψσσ

1

)
. (6.23)

Intuitively, following our discussion in section 4, it is clear that first of these solutions should

be the result of applying the Dε defect to (6.19). Actually, we obtain Xεσσ
1σσ = −Xεσσ

εσσ = 1

from (4.12), then DεΨσ→1 results in (6.22).

The remaining two solutions in (6.23) also fit in with our discussion: from the analysis

in section 5, we see that the solution DσΨσ→1 describes a σ-brane in the theory around a

system with a 1-brane and an ε-brane. We then denote it by Ψ1+ε→σ,

Ψ1+ε→σ ≡ DσΨσ→1. (6.24)

From (4.12), we see that

Dσψ
σσ
1

=

(
Xσσσ

111
ψ11

1

Xσσσ
1εε ψ

εε
1

)
=

(
ψ11

1

ψǫǫ
1

)
, (6.25)

Dσψ
σσ
ε =

(
Xσσσ

ε1ε ψ
1ǫ
ε

Xσσσ
εε1 ψε1

ε

)
=

(
ψ1ε
ε

ψε1
ε

)
. (6.26)

and Ψ1+ε→σ is given by

Ψ1+ε→σ =

(
ψ11

1
ψ1ε
ε

ψε1
ε ψεε

1

)
. (6.27)

Further acting Dσ or DεDσ, we obtain the two solutions in (6.23)

DσΨ1+ε→σ =

(
ψσσ
1

+ψσσ
ε

+ψσσ
ε ψσσ

1

)
, (6.28)

DεDσΨ1+ε→σ =

(
ψσσ
1

−ψσσ
ε

−ψσσ
ε ψσσ

1

)
. (6.29)

Note that these two solutions are related by a similarity transformation,

DǫDσΨ1+ε→σ = Uεσ(DσΨ1+ε→σ)U
−1
εσ , (6.30)

where

Uεσ =

(
U

{1σσ}[σ;1σ]
εσ

U
{εσσ}[σ;εσ]
εσ

)
=

(
1

−1

)
. (6.31)

The matrix which is used here to connect these two solutions is nothing but the U matrix

discussed in section 4.1.2 and which is a part of (6.17) we derived in the first half of this

– 43 –



J
H
E
P
0
4
(
2
0
1
8
)
0
5
7

section. Furthermore, we can consider the entries of U as proportional to the identity string

field, and then we can regard (6.30) as a gauge transformation in OSFT Λ(QB +Ψ)Λ−1.

The discussion here can be generalized and we can prove the following statement:

consider a Verlinde fusion algebra a × b =
∑

eNab
ee and let Ψ be a general classical

solution of OSFT. Then two classical solutions Ψ′ = DaDbΨ and Ψ′′ = ⊕eNab
eDeΨ are

related by a gauge transformation with a constant gauge parameter, which is given by the

U matrix,

Ψ′ = Uab(QB +Ψ′′)U−1
ab . (6.32)

This is true in general because the entries of U are proportional to the identity string

field and thus vanish upon action of the BRST charge. Note that there is no problem

in considering the components of U to be proportional to the identity string field, for if

two final boundary conditions are not the same (a′′ 6= ã′′), the corresponding components

become zero, as showed in (4.27). This is consistent with the fact that (quotients of) the

identity Verma module cannot connect different boundary conditions.

Similarly, we can produce different classical solutions by acting defect operators on

Ψσ→1. We here summarize solutions obtained by acting combination of Dσ’s and Dε’s

with the number of Dσ’s less than three:

Ψσ→1

Dε

��

Dσ // Ψ1+ε→σ
Dσ //

Dε

��
Ψ2σ→1+ε

Dσ //

Dε

��

. . .

Ψσ→ε

Dε

OO

Dσ

// Ψ′
1+ε→σ

Dε

UU Dσ

// Ψ2σ→ε+1

Dε

OO

Dσ

// . . .

(6.33)

where

Ψσ→ε = ψσσ
1

− ψσσ
ε , (6.34)

Ψ′
1+ε→σ =

(
ψ11

1
−ψ1ε

ε

−ψε1
ε ψεε

1

)
, (6.35)

besides Ψ2σ→1+ε ≡ DσΨ1+ε→σ and Ψ2σ→ε+1 ≡ DεDσΨ1+ε→σ in (6.28) and (6.29), respec-

tively. The relation between Ψ1+ε→σ and Ψ′
1+ε→σ is also given by a U matrix,

DσDεΨσ→ε = Uσε(DσΨσ→ε)U
−1
σε , (6.36)

that is,

Ψ1+ε→σ =

(
1

−1

)
Ψ′

1+ε→σ

(
1

−1

)
. (6.37)

Starting from Ψ1→σ, another series of classical solutions can be obtained. Since the

state Ψ1→σ satisfies the boundary condition 1, the whole solution will be solely composed

by the identity highest weight representation

Ψ1→σ = ψ̃11

1
. (6.38)
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Applying open string defect operators Dε and Dσ again and again, we obtain the following

sequence:17

Ψ1→σ

Dε

��

Dσ // Ψσ→1+ε
σ //

Dε

��
Ψ1+ε→2σ

Dσ //

Dε

��
Ψ2σ→2·1+2ε

Dε

�� Dσ // . . .

Ψε→σ

Dε

OO

Dσ // Ψ′
σ→1+ε

σ //

Dε

��
Ψ′

1+ε→2σ
Dσ //

Dε

��
Ψ′

2σ→2·1+2ε

Dε

�� Dσ // . . .

(6.39)

where

Ψε→σ = ψ̃εε
1
, (6.40)

Ψσ→1+ε = Ψ′
σ→1+ε = ψ̃σσ

1
, (6.41)

Ψ1+ε→2σ = Ψ′
1+ε→2σ =

(
ψ̃11

1

ψ̃εε
1

)
, (6.42)

Ψ2σ→1+ε = Ψ′
2σ→1+ε =

(
ψ̃σσ
1

ψ̃σσ
1

)
. (6.43)

It is interesting that we constructed these solutions without using the ε highest weight

representation, which also corresponds to possible excitations on a σ-brane, or on a (1+ε)-

brane system.

Following the same line of reasoning, we can generally prove that for a×b = c with a, b

and c general conformal boundary conditions, Ψa→c can be constructed strictly within the

identity highest weight representation, since Ψa→c = DaΨ1→b. This is a rather nontrivial

fact derived by considering defect action on classical solutions.

7 Conclusions

In this paper, starting from CFT topological defects, we have built new operators acting on

the open string star algebra, and we have used them to generate new solutions in OSFT.

To this end we have carefully studied the action of topological defects on boundaries and

boundary fields, extending the results of Graham and Watts [60] to the full boundary

operator algebra. We have also provided a clear geometric construction of open topological

defects using defect networks. Our geometric picture is two-dimensional and it does not

require the 3D topological description of [57]. The action of defects on boundary fields

turns out to be much more involved than the action on bulk fields and the composition

of open defect operators follows the fusion rules only up to a similarity transformation in

the Chan-Paton space. The pentagon identity is crucial for the consistency of open defect

operators and their fusion. The concrete results we presented are valid for diagonal minimal

models but the idea of using topological defects to generate new solutions is clearly very

general and applies to any string background.

17Here we have distinguished Ψσ→1+ǫ and Ψ′

σ→1+ǫ because Dσ(Ψ1→σ −Ψε→σ) 6= 0 as topological defects

do not kill boundary fields [60].
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We have payed special attention to the issue of gauge freedom in the definition of

the F -matrices, which arises from the symmetries of the pentagon identity. We do not

use the auxiliary concept of chiral vertex operators and we take conformal blocks to be

canonically normalized as in [83] which fixes the “gauge” of the F -matrices. However, in

the computations we have performed, we did not have to specify any gauge choice for the

F -matrices involved in defect network manipulations: our results concerning the action of

topological defects on boundary fields and their composition are explicitly independent of

the gauge chosen for defect networks. Combining defects and disorder operators may give

further constraints relating the defect F -matrices with the F -matrices coming from the

transformation of the conformal blocks.

A simple generalization of our results should be given by the study of open topological

defects in RCFT’s with charge-conjugation modular invariant, the original setting of [60].

In this case the representations won’t be self-conjugate and one will have to pay attention

to the orientation inside defect networks. More work would be needed to address RCFT

with non-diagonal partition function (the simplest example being the Potts model).

It would be interesting to explore open topological defects in irrational CFT’s (although

a complete classification of them is not available). For example, a typical property of defects

in non rational CFT’s is that they can possess a moduli space as it happens for boundary

conditions. It would be also useful to extend our work to conformal defects [67] to get more

general solution generating techniques in OSFT.

A more interesting (and difficult) question, and actually one of the motivation for the

present research, is whether defects can be used as part of the building blocks for construct-

ing OSFT solutions. This is certainly a new arena where interesting new structures may

appear and which could overcome some limitations of the known solutions such as [38].

Open topological defects are very natural objects inside the open string star-algebra

which are relevant to the description of the open string landscape. We hope that our

research is a useful step towards a better understanding of the space of solutions of OSFT.
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A Comments on Moore and Seiberg “gauge symmetry”

An important property of the pentagon equation is its huge symmetry called a bit mis-

leadingly a gauge symmetry

Fpq

[

a b

c d

]

→ Λ(a, b, q)Λ(c, q, d)

Λ(c, a, p)Λ(p, b, d)
Fpq

[

a b

c d

]

, (A.1)

where Λ(i, j, k) is an arbitrary function of an admissible triplet. One can redefine Λ(i, j, k)

by multiplying it with φ1(i)φ2(j)φ3(k) to get

Fpq

[

a b

c d

]

→ φ1(p)

φ1(a)

φ2(a)

φ2(q)

φ3(p)

φ3(q)

Λ(a, b, q)Λ(c, q, d)

Λ(c, a, p)Λ(p, b, d)
Fpq

[

a b

c d

]

, (A.2)

so that the symmetry looks even bigger. Imposing that our normalization condition

Fcb

[

1 b

c d

]

= 1 is preserved by the gauge transformation, implies Λ(1, b, b) = Λ(c, 1, c), ∀b, c,
so that both expressions are label-independent, and hence we can freely normalize them

to 1, i.e.

Λ(1, b, b) = Λ(c, 1, c) = Λ(1, 1, 1) = 1. (A.3)

Under this condition g′a =

(
F11

[

a a

a a

]

)−1

is gauge invariant.

Imposing that a gauge transformation preserves the 180◦ invariance condition

Fpq

[

a b

c d

]

= Fpq

[

d c

b a

]

implies that Λ must be cyclically invariant. The specular conditions

Fpq

[

a b

c d

]

= Fpq

[

c d

a b

]

and Fpq

[

a b

c d

]

= Fpq

[

b a

d c

]

would similarly imply that Λ is permutation

invariant.

An important question however, is to what extent is this freedom physical. Here we

wish to stress that, while different physical quantities in BCFT might be related by such

a transformation, in general there is no gauge freedom when a concretely defined quantity

is concerned.

In particular the structure constants of boundary CFT are given by one concrete

gauge choice of F , which cannot be changed by a choice of normalization of the boundary

operators. Changing their normalization as

φab
i → φ̃ab

i = nab
i φab

i , (A.4)

the structure constants transform as well

C
(abc) p
ij → C̃

(abc) p
ij =

nab
i nbc

j

nac
p

C
(abc) p
ij , (A.5)

C(aca) 1
pp → C̃(aca) 1

pp =
nac
p nca

p

naa
1

C(aca) 1
pp . (A.6)

It is easy to check that the equation (3.15) is obeyed also for the transformed structure

constants, and that it is not required to transform F

nab
i nbc

j

nac
p

ncd
k nda

l

nca
p

nac
p nca

p =
nbc
j n

cd
k

nbd
q

nda
l nab

i

ndb
q

nbd
q ndb

q . (A.7)
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a bφi

a b

φi

a b

φi

a b

φi

= αab
i==

1 11111

i

Figure 21. A boundary field in the i Virasoro representation can be traded for a defect network

ending on a defect ending field carrying the same Virasoro representation but sitting on a boundary

with the 1 boundary condition.

So the freedom in normalization of the boundary operators has no relation to the choice

of gauge for F blocks
pq

[

j k

i l

]

, which in fact is fixed in conformal field theory as we saw above.

In general there are two special gauges for the solutions of the pentagon identity (obey-

ing also the identity and specular conditions): the blocks gauge and the Racah gauge. The

blocks gauge has been discussed in section 3.2. The Racah gauge is defined as

FRac
pq

[

a b

c d

]

=
{

b, a, q

c, d, p

}

. (A.8)

It has the special property

FRac
11

[

a a

a a

]

FRac
1a

[

b c

b c

]

=
1√

g′ag
′
bg

′
c

. (A.9)

The Racah-gauge F -matrix is among other things important for expressing the boundary

structure constants in terms of the bulk structure constants, see formula (4.7).

B Un-fusing defects from boundaries

In this appendix we will derive a useful manipulation which we have used in section 4.2.1

to determine the defect coefficients Xdab
ia′b′ in the geometric approach. We will assume that

all fundamental boundary conditions in the game can be obtained by fusing a topological

defect on a particular reference boundary condition, denoted as 1. Consider a boundary

field φab
i changing an a boundary to a b boundary. By our assumption this is topologically

equivalent to a T-shaped network of defects with a leg ending on a defect ending field,

carrying the i Virasoro representation and sitting at the 1 boundary, as in figure 21.

The equality holds up to an unknown three-label coefficient αab
i = αba

i , symmetric in the

boundary condition labels for parity reasons. By the triviality of the identity representation

we must have

αaa
1

= 1. (B.1)

This is consistent with the fact that the normalized g-function of the defect is related to

the disk partition function as

〈 1 〉(a) = 〈 1 〉(1) 1

F11

[

a a

a a

] = 〈 1 〉(1) g′a = ga. (B.2)
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b

i

j

k

c

a

1

= αab
i αbc

j α
ca
k

b

i

j

k

c

a

1

1

Figure 22. Two equivalent ways of computing a boundary three-point function. The α coefficients

are sensitive to both the normalization choice for boundary fields and the F -matrix gauge used in

defect manipulations.

i

j

k

= Gijkf3(xi, xj, xk)

1

1

1

i

j

k

Figure 23. A simple three-point function which depends on the gauge chosen for defect manipu-

lation. The function f3(xi, xj , xk) is the part of the three-point-function which is completely fixed

by conformal invariance.

We can determine the coefficients αab
i by computing a boundary three-point function in

two ways, either by using the (given) boundary structure constants, or by manipulating

defects after having performed the move in figure 21, as represented in figure 22.

After factoring out the universal dependence on the insertion points, we are left with

the equality

C
(abc)k
ij C

(aca)1
kk g′a = Gijk α

ab
i αbc

j αca
k

Fbk

[

a c

i j

]

F1k

[

a c

a c

] . (B.3)

The new quantity Gijk is the non-trivial coefficient of the three-point function involving

the elementary defect network with boundary shown in figure 23.

We will now see that consistency will relate G and the α’s to the choice of normalization

of the boundary fields and the chosen gauge for the defect networks. Suppose we made

a generic rescaling of the canonically normalized boundary fields with structure constants

given by (3.23), φab
i → nab

i φab
i so that

C
(abc)k
ij =

nab
i nbc

j

nac
k

√√√√
√

g′ig
′
jg

′
k

θ(i, j, k)blocks

{

c, a, k

i, j, b

}

. (B.4)
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Then rewriting the right hand side of (B.3) by expressing the generic F -matrices in terms

of the Racah symbols, using (2.36) and (2.40), and isolating the unknowns α and G to the

right we get

nab
i nbc

j n
ac
k√

γ(i, j, k)blocks

√
γ(i, j, k)

γ(i, a, b)γ(j, b, c)γ(k, a, c)
= Gijk α

ab
i αbc

j αca
k , (B.5)

where we have defined for convenience

γ(i, j, k) ≡ θ(i, j, k)√
g′ig

′
jg

′
k

. (B.6)

Notice that specifying this quantity corresponds to picking a gauge for the F -matrices

used for defect manipulation. Racah gauge corresponds to γ(i, j, k) = 1, for an admissible

triplet. The generic solution to equation (B.5), enforcing αab
i = αba

i , is then given by

αab
i = βi

nab
i√

γ(i, a, b)
, (B.7)

Gijk =
1

βiβjβk

√
γ(i, j, k)

γ(i, j, k)blocks
. (B.8)

Notice the undetermined parameters βi. Their presence is easily explained: they are just a

normalization choice for the defect ending field appearing in figure 21. This undetermined

normalization always cancels in the defect manipulations we consider in this paper and it

is consistent to set all βi to 1.

C Ising data

In this appendix, we present explicit data for the Ising model to facilitate concrete

calculations.

The standard F -matrices (the one entering in the transformation properties of the

canonically normalized conformal blocks, and called F blocks in the main text) are given by

the expressions below for ξ = 1
2 . The Racah coefficients are given by the same expressions

for ξ = 1. Note that the parameter ξ corresponds to the gauge-freedom of Moore and

Seiberg, but we stress again that there is no such freedom in the transformation property

of the 4-pt conformal blocks, once the coefficient of their leading term is canonically set

to 1. The general ξ-dependent F -matrices read

F11

[

ε ε

ε ε

]

= 1, F11

[

σ σ

σ σ

]

= −Fεε

[

σ σ

σ σ

]

=
1√
2

(C.1)

F1ε

[

σ σ

σ σ

]

=
ξ√
2
, Fε1

[

σ σ

σ σ

]

=
1√
2ξ

(C.2)

F1σ

[

ε σ

ε σ

]

= F1σ

[

σ ε

σ ε

]

= ξ, Fσ1

[

ε ε

σ σ

]

= Fσ1

[

σ σ

ε ε

]

=
1

ξ
(C.3)

Fσσ

[

ε σ

σ ε

]

= Fσσ

[

σ ε

ε σ

]

= −1. (C.4)
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The modular S-matrix is (the order of rows and columns is 1, ε, σ)

S =




1
2

1
2

√
1
2

1
2

1
2 −

√
1
2√

1
2 −

√
1
2 0


 . (C.5)

The normalized g-functions, g′a = (F11

[

a a

a a

]

)−1, are therefore

g′1 = 1, g′ε = 1, g′σ =
√
2. (C.6)

We can obtain the symmetric defect coefficients Xdab
ia′b′ = Xdba

ib′a′ given in (4.12) by using

the above F -matrices in the Racah gauge. The action of defects on the boundary fields in

the 1 highest weight representation is given by

Xε11
1εε = Xεεε

111
= Xεσσ

1σσ = Xσ11
1σσ = Xσεε

1σσ = Xσσσ
111

= Xσσσ
1εε = 1,

on boundary fields in the ε highest weight representation

Xε1ε
εε1 = −Xεσσ

εσσ = 1, Xσ1ε
εσσ =

1√
2
, Xσσσ

ε1ε =
√
2,

and finally for σ

Xε1σ
σεσ =

1√
2
, Xεεσ

σ1σ =
√
2, Xσ1σ

σσ1 = −Xσεσ
σσε =

1

21/4

Xσ1σ
σσε =

1

23/4
, Xσεσ

σσ1 = 21/4.
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