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Abstract: The small dung beetle tribe Eucraniini includes extremely specialized species that have 
been defined as “lifters” according to their food relocation behaviour. They are characterized by the 
presence of well-developed expansions on the head and pronotum, which can be included in the 
large and varied group of horns, whose presence is usually related to complex reproductive tactics. 
In this study, two closely related species, Anomiopsoides cavifrons and A. heteroclyta, were examined 
employing traditional and geometric morphometrics to test whether the Eucraniini has 
polymorphic males that might exhibit different reproductive tactics, as in the sister tribe Phanaeini, 
for which a male trimorphism was demonstrated. If also present in Eucraniini polyphenism could 
be considered a plesiomorphy common to the two clades. The inter- and intraspecific shape 
variation and object symmetry of the head and the scaling relationships between body size and traits 
were evaluated. Marked interspecific and small intraspecific differences in shape variation, high 
symmetry, and similar isometric growth patterns were shown in both species. The hypothesis of 
male polymorphism in Anomiopsoides was thus rejected. Instead, the results supported the 
alternative hypothesis that Eucraniini lacks male polymorphism, perhaps due to functional 
constraints affecting the shape of the structures involved in their peculiar food relocating behaviour. 

Keywords: Anomiopsoides; static allometry; symmetry; geometric morphometrics; feeding 
behaviour; arid environment; Argentina endemism 

 

1. Introduction 

With only 15 species, all of them endemic to NW Argentina (Figure 1), the tribe Eucraniini 
(Scarabaeidae, Scarabaeinae) has developed a unique combination of peculiar morphological 
characteristics and feeding and breeding behaviours [1,2] to survive in a xeric habitat (Figure 1a,b) 
characterized by extreme aridity and scarce vegetation [2]. The Eucraniini species share a markedly 
specialized food relocation behaviour, they have adapted to grasp and lift the dry dung pellets of 
small mammals with their forelegs and carry them into the burrow [2–4]. This behaviour, defined as 
“food-lifting relocation”, is exclusive to Eucraniini among the dung beetles, and characteristically 
displayed by both sexes [3]. 

This small coprophagous tribe is currently subdivided into the four genera Anomiopsoides 
Blackwelder, 1944, Ennearabdus Lansberge, 1874, Eucranium Brullé, 1837 and Glyphoderus Westwood, 
1837 [3–7], whose systematics were recently reviewed in a thorough survey of their current taxonomic 
status, nesting behaviour [2], and phylogenetic relationships [8–9]. 
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Figure 1. The material collection area: (a, b) Photos of the landscape features in the La Rojas province, 
where Pituil and Campanas are located. (c) Aridity map, the Monte biogeographical province (NW 
Argentina) marked by black diagonal lines [4,5,10–11]. The collection localities are marked by blue 
(Mendoza province, A. cavifrons), and green (Las Royas province, A. heteroclyta) dots. The Global 
Aridity Index dataset freely available at CGIAC Consortium for Spatial Information web page 
(http://csi.cgiar.org/Aridity/) was used to build the map. The aridity degree is shown, where the dark 
red areas are the aridest. 

The laminar, expanded armatures that originate from the clypeal portion of the head are the 
most conspicuous morphological character in the Eucraniini. Such heavy modifications leading to the 
development of exaggerated horns [12,13] are usually considered an expression of phenotypic 
plasticity, as already ascertained for many other Scarabaeinae [14–18]. 

The shape of the horns is usually quite similar within the Eucraniini, although some differences 
can be emphasized at the generic level. The males of Anomiopsoides, Eucranium, and Glyphoderus carry 
two pairs of elongated horns in the clypeal fronto-lateral part of the head, and the females have 
similar, but shorter and less developed, horns [3–5,7]. In contrast, Ennearabdus shows a far less 
complex head morphology, with only two small horns on the frontal carina of the male while the 
head of the female is unarmed [6]. 

The presence of head and pronotum weapons is often linked to complex alternative reproductive 
tactics in Scarabaeinae males [19–22]. An exemplar model of such differentiated behaviour is 
Onthophagus taurus (Schreber, 1759), a Scarabaeinae tunneler in which two distinct male morphs have 
been identified [23]. In this species, it has been demonstrated that each morph has a different strategy 
in male-male competition, with major males showing aggressive fighting behaviour and minor males 
showing nonaggressive sneaking behaviour to avoid combat with major males [23]. Notably, both 
morphs are favoured in different ways in reproductive contests [23]. 

The cephalic expansions shown by the Eucraniini might be truly regarded as tools involved in 
male-male competition [22], considering that the tribe is closely related to other Scarabaeinae taxa in 
which such impressive phenotypic adaptability is not an infrequent occurrence. A recent 
phylogenetic analysis [24] confirmed that the monophyletic Eucraniini clade constitutes the sister 
group of the American tribe Phanaeini, which includes more than 150 species at present [25]. 
Phanaeini are tunnelers that bury dung near, or just below, the dung pad [26–27] and show 
substantial variation in nesting behaviour [27], as well as a high degree of male polyphenism: males 
carry a clypeal horn and pronotal prominences that can grow at disproportionate rates compared to 
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overall body growth [28–31]. The presence of variant male morphs in the same species in response to 
different factors is an expression of phenotypic plasticity that reflects a varied range of complex 
situations in the Scarabaeinae [18,32–36]. When allometric relationships between body size and horn 
length were examined in some Phanaeini species, e.g., Oxysternon conspicillatum (Weber, 1801), 
threshold mechanisms regulating horn expression were detected [37], with size scaling relationships 
best fitted by a sigmoidal function [38]. In these Phanaeini species, three distinct male phenotypes 
were found, leading to the identification of alpha, beta, and gamma male morphs, each of which 
suggested a distinct reproductive strategy that could be defined as a guard, sneak, or mimetic tactics, 
respectively [37]. 

The aim of the present research is to test whether the Eucraniini show male polymorphism as 
seen in the sister tribe Phanaeini [37] and therefore have nonlinear scaling relationships between body 
size and any of the selected traits (the two clypeal horns and fore tibiae), or else are characterized by 
isometric body and trait growth [39], which would suggest the action of functional constraints on the 
developmental patterns of the head and legs. These functional constraints result from their peculiar 
nesting behaviour. In this framework, the left-right asymmetry of the head [40] will also be evaluated 
to define any phenotypic variation due to intrinsic and extrinsic factors [41–42] that could affect the 
object symmetry of the head [43–44]. Two well-characterized, unmistakable and closely related 
species, Anomiopsoides cavifrons (Burmeister, 1861) and A. heteroclyta (Blanchard, 1845), have been 
chosen to examine the shape and size variation by using both traditional and geometric 
morphometric approaches. 

2. Materials and Methods 

2.1. Material 

The dataset includes male specimens of A. heteroclyta (NH = 16) and A. cavifrons (NC = 91), which 
were collected by EB from north-western Argentina (Las Catitas for A. cavifrons, and Pituil and 
Campanas for A. heteroclyta, Figure 1c) during a field expedition in 1989, and housed in the University 
of Torino, Department of Life Sciences and Systems Biology (MIZT). The collection localities were 
georeferenced and used to build a map in the GIS environment (QGIS v3.8.2, freely available at 
https://www.qgis.org/). Also, the Global Aridity Index dataset (freely available at CGIAC-CSI web 
page, https://cgiarcsi.community/), and the biogeographical regionalisation of Argentina [10–11] 
(freely available at https://sites.google.com/site/biochartis/) were included in the map. 

The specimens were photographed using a Leica DMC4500 digital camera connected to a 
stereoscopic dissecting scope Leica Z16APO, using the software Leica Application Suite (LAS) to 
capture and store the images, which were taken carefully avoiding object malpositioning. 

A morphological analysis of the head variation was performed applying both traditional and 
geometric morphometrics approaches. Our analysis focused chiefly on the two pairs of clypeal 
processes, i.e. the medial (horn1) and lateral (horn2), and the fore tibia. 

2.2. Traditional Morphometrics Analysis 

After a careful evaluation, five linear measures (Figure 2a–c) were chosen as reliable estimators 
of the dimensions of the anatomical traits in the study. The pronotum width is commonly considered 
a good index of body size in coleopteran taxa [45], while the two head horns and fore tibia were 
defined by the length linear measurements.  
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Figure 2. Linear measurements and landmark configuration. (a) Maximum pronotal width 
(W_pronotum), medial and lateral clypeal horn lengths, dorsal view (L_horn1 and L_horn2, 
respectively). (b) Fore tibia length, ventral view (L_tibia). (c) Medial clypeal horn length, side view 
(Ls_horn1). (d) Landmark configuration (NL = 23) for the head. 

The following measurements (expressed in mm) were taken by the Measurement Module of the 
software Leica Application Suite (LAS): (1) maximum pronotum width (W_pronotum), as index of 
body size, (2) medial clypeal horn length, dorsal view (L_horn1), (3) medial clypeal horn length, side 
view (LS_horn1), 4) lateral clypeal horn length (L_horn2), 5) right fore tibia length (L_tibia). 

Allometric relationships of the length of both clypeal horns, and fore tibia to body size were then 
tested in males of both species separately [38,45,46] using the software PAST v3.20 [47], and 
SigmaPlot v10.0 (Systat Software Inc., San Jose, CA, USA, 2007). 

The Akaike Information Criterion (aic) was chosen to determine what model best described the 
allometric relationships (i.e., as the index of goodness of fit) [38]. Additionally, the unimodal or 
bimodal distribution of data was evaluated using the histogram of the frequency distribution for each 
measure. All the graphics were made using IBM SPSS Statistics v25 (IBM Corp., Armonk, NY, USA). 

For each species, the bivariate analysis was used to evaluate the relationships between each of 
the four measurements (dependent variables) and the body size (independent variable), and to verify 
if a common slope could be assigned when analyzing the measured values in pairs [48]. The analysis 
was done using the software PAST, selecting the RMA regression option. 

2.3. Geometric Morphometrics Analysis 

The geometric morphometrics semilandmark-based approach [49–55] was applied to describe 
the head shape variation using tpsDig v2.31 [56] and tpsUtil v1.79 [57] to define the point 
configuration (Figure 2d). A thorough description of the digitalized landmarks is given in the 
Supplementary Material (Figure S1 and Table S1). The criterion for the choice of landmark 
configuration was to capture at best the overall shape variation of the head. 

The head dataset was analyzed by principal component analysis (PCA) using tpsRelw v1.70 [58], 
examining the species together and separately, to evaluate the overall shape variation, and thus 
define the variability shown by the two species. 

The comparison of the two species was done using tpsRegr v1.45 [59], performing a multivariate 
test equivalent to a Hotelling generalized T2-Test with 1000 random permutations, and retaining the 
grids of the two groups to compare the differences in shape variation of the head. 

The landmark configuration was then reflected using tpsUtil, to evaluate the symmetry of the 
head (original vs mirrored configurations, as suggested by Klingenberg [43]), using the software 
tpsPLS v1.23 [60] with 999 random permutations in the Permutation tests. We focused on the 
evaluation of shape asymmetry since it can give a more thorough result than the size asymmetry, as 
suggested by Klingenberg [43] for object symmetry.  
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3. Results 

3.1. Traditional Morphometric Analysis 

Based on the traits examined here (i.e., the two clypeal horns and fore tibiae), different male 
morphs could not be identified in either A. cavifrons or A. heteroclyta. For the two species, analyses of 
the scaling relationship between each of the traits and body size always gave a better fit for the linear 
function than for Hill’s sigmoid function, according to the AIC values (Figures 3 and 4, 
Supplementary Material Table S2). 

The descriptive statistics of the linear measures (Table 1) showed that although A. heteroclyta was 
larger than A. cavifrons, both species showed a similar pattern for all measurements. Furthermore, A. 
heteroclyta had a slightly higher variance in body size (W_pronotum) than in the other measures. 

Table 1. Descriptive statistics of linear measurements in the males of both Anomiopsoides species. 

   Range Min Max Mean 
Std 

Error 
Std Dev Variance 

ca
vi

fr
on

s 

W_pronotum 3.664 4.958 8.622 6.472 0.092 0.886 0.786 

L_horn 1 1.124 1.115 2.239 1.658 0.028 0.272 0.074 

Ls_horn 1 1.573 1.653 3.226 2.409 0.040 0.383 0.147 

L_horn 2 0.860 1.375 2.235 1.748 0.022 0.213 0.045 

L_tibia 1.880 2.357 4.237 3.201 0.047 0.448 0.201 

he
te

ro
cl

yt
a 

W_pronotum 3.769 8.961 12.730 10.585 0.262 1.049 1.101 

L_horn 1 1.409 2.383 3.792 3.020 0.119 0.477 0.227 

Ls_horn 1 2.135 3.276 5.411 4.440 0.163 0.654 0.427 

L_horn 2 1.350 2.844 4.194 3.415 0.095 0.382 0.146 

L_tibia 2.048 4.394 6.442 5.396 0158 0.633 0.401 

The comparison of the regressions (RMA) suggested a common pattern for both horn and fore 
tibia measurements plotted against body size, with p (same slope) < 0.001, when A. cavifrons and A. 
heteroclyta were examined separately. 

3.2. Geometric Morphometric Analysis 

In the analysis of the head, the landmark configuration (NH = 23) was analysed using PCA, with 
the first three out of 42 relative warps (i.e., the principal components hereinafter referred to as RWs) 
explaining almost 73% of the overall variation in shape. Only the first three RWs explained > 5.0% of 
the variation in shape. The two species were characterized by extremely differentiated heads, as 
shown in the scatterplot of RWs 1 and 2 (Figure 5a). The deformation grids (Supplementary Material 
Figure S2) demonstrated marked shape differences in axes extremities. When the two species were 
analysed separately, it was instead demonstrated that the overall variation in head shape was very 
small, with each species showing homogeneous male weaponry. For example, the cumulative 
percentage of the overall shape variation explained by relative warps 1 and 2 was only 48.85% for A. 
cavifrons, extending the morphospace in the scatterplot (Supplementary Material Figure S2) from -
0.063 to 0.162 for RW_1 (range = 0.225, variance = 0.004) and from−0.055 to 0.052 for RW_2 (range = 
0.107, variance = 0.001). 

The marked overall differentiation in head features between the two species was confirmed by 
the results of the multivariate test of significance (Wilks' Lambda: F = 90.596, df = 42, 64.0 p < 0.01, 
Generalized Goodall F-test: F = 113.978, df = 42, 441, p = 0.000, and Permutation tests: percent of 
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Goodall F values ≥ observed = 0.10%), as shown by the deformation grids of the two groups (Figure 
5b,c). 

 
Figure 3. Anomiopsoides cavifrons size analysis. All the measures were expressed in mm. For each linear 
measure plotted against the body size (i.e., W_pronotum), the scatterplot with the best fitting line 
(defined by the lowest aic value) and histogram of the frequency of individuals are given. (a) 
Scatterplot of the medial clypeal horn length, dorsal view, and body size, the aic value = 5.147 (linear 
function). (b) Scatterplot of the medial clypeal horn length, side view, and body size, the aic value = 
5.629 (linear function). (c) Scatterplot of lateral clypeal horn length, dorsal view, and body size, the 
aic value = 4.556 (linear function). (d) Scatterplot of the fore tibia length, ventral view, and body size, 
the aic value = 5.542 (linear function). The descriptive statistics (Table 1) are discussed in the text. See 
Supplementary Material Table S2 for the statistical values of the graphics. 



Insects 2019, 10, 359 7 of 14 

 

 
Figure 4. Anomiopsoides heteroclyta size analysis. All the measures were expressed in mm. For each 
linear measure plotted against the body size (i.e., W_pronotum), the scatterplot with the best fitting 
line (defined by the lowest aic value) and a histogram showing the frequency of individuals are given. 
(a) Scatterplot of the medial clypeal horn, dorsal view, and body size, the aic value = 5.796 (linear 
function). (b) Scatterplot of the medial clypeal horn, side view, and body size, the aic value = 6.158 
(linear function). (c) Scatterplot of lateral clypeal horn, dorsal view, and body size, the aic value = 
5.115 (linear function). (d) Scatterplot of the fore tibia length, ventral view, and body size, the aic value 
= 5.344 (linear function). The descriptive statistics (Table 1) are discussed in the text. See 
Supplementary Material Table S2 for the statistical values of the graphics. 
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Figure 5. Shape analysis of Anomiopsoides male head. (a) Scatterplot of the RWs 1 and 2, which 
accounted together for about 73% of the overall shape variation of the head. (b) Deformation grid of 
the A. heteroclyta group from the tpsRegr analysis. (c) Deformation grid of the A. cavifrons group from 
the tpsRegr analysis. 

When the symmetry of the head was analysed using the partial least-square analysis in tpsPLS 
(original vs. reflected configurations), a significant result was found (Table 2) for the correlation of 
the two sides of the head for both species. Similar results showing only a subtle asymmetry [40] were 
obtained. The cross-set analysis gave, as usual, the most significant value of covariation for only one 
of the calculated dimensions (D1, Table 2), whereas the other dimensions had negligible percent 
values of covariance and thus could be discarded. It was noteworthy that, although D1 accounted for 
the majority of the covariance, all the dimensions showed a high correlation (expressed by the r value) 
between the two shape configuration vectors, with individuals always disposed around the midline 
in the plots. The r value for all the dimensions was >0.99 for A. heteroclyta and >0.91 for A. cavifrons, 
meaning that the strength of the linear relationship between the shapes of the head and head-reverted 
was very high in the two species. The present results, therefore, demonstrated a high degree of 
symmetry in the structure, as also confirmed by the statistical results for shape projections (Table 2). 
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Table 2. Results of the PLS analysis and subsequent Permutation Tests (nReps = 999) for D1 in both 
Anomiopsoides species (shape1 = original, shape2 = reflected). 

name of the 

specie 

cross set 

analysis  
r 

statistics for shape1 

projections 

statistics for shape2 

projections 

Permutation 

Tests 

Min Max 
Std 

Dev 
Min Max 

Std 

Dev 

% of correlations 

≥ observed 

cavifrons 77.363 0.998 −0.077 0.053 0.028 −0.077 0.052 0.027 0.10 

heteroclyta 69.536 0.999 −0.047 0.066 0.034 −0.047 0.066 0.034 0.10 

4. Discussion 

According to the results of the analyses, the presence of two pairs of expanded cephalic horns in 
Anomiopsoides cannot be considered an example of polyphenic development related to male-male 
reproductive competition, as seen in the sister tribe Phanaeini [37], since different male morphs were 
not detected in the tribe Eucraniini. The hypothesis that male polymorphism should be considered a 
plesiomorphic character shared by these two sister clades must, therefore, be rejected. Noteworthy, 
within the Eucraniini species, Ennearabdus lobocephalus (Harold, 1868) shows far less developed head 
projections, and is considered the most primitive species within the tribe [6,8], suggesting thus that 
the extreme development of clypeal horns showed by the other species of this tribe is a derivative 
condition. An alternative hypothesis that could be supported by the present finding is that 
morphological integration of traits depends on functional constraints. The proposed hypothesis 
suggested a much different scenario for the development of such shaped horns in Eucraniini, in 
which distinct male morphs were not identified and isometric growth related to body size for the 
horns and fore tibiae was detected, suggesting a pattern of proportional scaling relationships between 
those structures. The present results may be explained by considering that both horns and fore tibiae 
cooperate in the peculiar food-lifting relocation behaviour of these dung beetles [27]. 

The congruent linear scaling relationships highlighted for all the chosen traits in relation to body 
size (Figures 3 and 4) could be a common developmental pattern in Eucraniini, with larger 
individuals having longer horns and fore tibiae and possibly carrying larger pellets. Smaller 
individuals sometimes cut in pieces the dung to move it easier [2]. Comparing the two species, overall 
dimensional differences were detected (Table 1), but both species expressed similar patterns in the 
expression of static allometry in the scaling relationships between body size and traits (Figures 3 and 
4). In Eucraniini the two structural traits involved in food-lifting relocation are characterized by an 
isometric growth [38,46,61], and these results can suggest a functional link between the clypeus and 
fore tibiae, which may be regarded as a developmental constraint [62]. 

The morphological integration of traits [63,64] is a relatively common occurrence in 
holometabolous insects, in which, due to the determinate mechanism of growth, the highest 
phenotypic correlation can be found [65]. For Eucraniini, a functional interaction between head and 
foreleg development can be proposed, with related traits being affected in the same way [65] and 
static allometry often being strongly constrained [66]. As a rule, functional constraints that affect the 
potential growth of traits can reduce the expression of allometry. Thus, functionally related traits 
cannot vary freely [63,67]. 

It is not always easy to determine which factors regulate the relationships between traits, 
although nutritional regulation is surely involved in insect development [61,68–70]. Usually, changes 
in nutrition can greatly affect adult body size and traits across and within species, with many 
examples being found in the Scarabaeinae [61,71]. In the Eucraniini, the scarcity and physical 
characteristics of resources could have reduced the range of nutritional effects on phenotypic size 
variability. These species neither modify the collected pellets in any way nor exhibit soil lining 
behaviour, i.e., the dung is not manipulated at all within the nest [27]. Maternal effects related to food 
relocation might not be involved in the modulation of the expressed offspring phenotypes in this 
tribe [19]. Thus, the development of exaggerated cephalic horns might not be affected by growth 
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regulation depending on the allocation of diversified food resources [19]. An equally expanded 
cephalic armature (hyperallometry) is present in all Anomiopsoides males, thus, different male morphs 
cannot be detected in the tribe Eucraniini. Therefore, the appearance of any alternative reproductive 
tactics expressed by di- or even trimorphic males [23,37,72] cannot be accounted for here. Although 
the biology of the Eucraniini is not known in detail, some kind of sexual cooperation has been 
observed during the provisioning of the underground chamber, which involves occasional external 
patrolling near the entrance of the tunnel, an activity that is performed indifferently by either 
individual of the couple [2] to watch over the food resources and avoid depredation. These 
observations [2,73,74] supported the hypothesis that males may not have developed any true “guard 
tactics” to protect the entrance of the tunnel with the breeding female inside the nest, as observed in 
other dung beetles that exhibit male polyphenism [34,38]. 

Among the Scarabaeinae, the Eucraniini are characterized by a very peculiar, distinctive 
morphology, with all the body parts being highly modified, and the species within this tribe are all 
well characterized, distinct and easily identifiable. The head is nevertheless the most diversified 
morphological trait, in which the differential pattern of variability is expressed both within and 
among the species. The shape analysis showed higher variation at the interspecific level compared to 
the intraspecific level for the male head, which is thus relatively uniform within each species but 
clearly differentiated between the species (Figure 5a). While the overall variation in shape defined 
distinct patterns at the species level, differently shaped morphs could not be detected within each 
species, as they showed continuous rather than discrete variability patterns, which was also 
evidenced by the deformation grids (Supplementary Material Figure S2) when comparing the overall 
shape variation at the species level. 

The majority of the shape variation at the interspecific level was related to modifications of the 
anterior part of the head, depending not only on the medial horns, which are extremely different in 
the two species, but also on the central area within the medial horns (corresponding to the area 
between points 11 and 13, see Supplementary Material Figure S1), which is modified differently in 
the two species (Figure 5b,c). The lateral horns displayed a less marked variation (Figure 5a, 
Supplementary Material Figure S2). The development of horns can ostensibly affect other parts of the 
head, although the underlying processes of these correlated modifications have not yet been fully 
characterized [64]. Additionally, within each species, the majority of shape variation was noted in the 
same, very circumscribed, portion of the head (Supplementary Material Figure S2). The medial horns 
were also slightly different within each species, but the amount of overall shape variation was lower 
and related, for example, to small variations in the apex or in the expanded area at the base of the 
medial horns. The particular feeding behaviour of this tribe influenced not only the size but ostensibly 
also the shape variation of the head, and it was involved together with the forelegs in lifting and 
transporting the dung pellets. 

The results of the analyses that tested the presence and degree of asymmetry in both 
Anomiopsoides species confirmed the strength of the functional constraints defining the pattern of 
shape variation of the head. This structure showed an elevated symmetry in Eucraniini, as expected 
in structures that are characterized by strong functionality and hence subject to functional constraints 
[75]. The maintenance of the developmental stability of the clypeal projections is important in food-
lifting relocation involving the head horns and fore tibiae [27]. 

The Eucraniini head manifested a pattern of fluctuating asymmetry [43] with developmental 
errors producing an asymmetry that was normally distributed around a mean of zero [40]. No 
statistically significant directional asymmetry was detected, unlike that reported for a wide range of 
organisms, including insects [43]. 

Fluctuating asymmetry can be used to infer the developmental origin of integration within 
morphological structures through a geometric morphometric approach [43]. The present results, 
which show a low degree of asymmetry in the head, support that the two medial horns are 
functionally correlated and that large differences between the left and right averages might be 
disadvantageous for this structure. It could, therefore, be suggested that some kind of constraint 
prevents the expression of greater asymmetry in the head during development. The Eucraniini do 
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indeed exhibit strong developmental stability against adverse phenotypic variations, which could 
affect food relocation performance, reducing the effectiveness of dung pellet removal. 

5. Conclusions 

To summarize, the hypothesis that the Eucraniini might show male polymorphism was rejected 
since isometric relationships were detected between body size and each of the selected traits. The 
head showed well-differentiated patterns of shape variation for the two Anomiopsoides species and a 
low degree of asymmetry in both species. Thus, no different shape morphs were identified. In the 
Eucraniini, low shape variability of the structures of the clypeus was shown, which can favour their 
functional performance. In this framework, we can, therefore, assume that male clypeal morphology 
and the peculiar food relocating behaviour of the Eucraniini evolved in concert. Thus, we support 
the alternative hypothesis that the exaggerated and even growth of clypeal horns is linked to—and 
constrained by—functionality in the Eucraniini. In this tribe, also the females carry evident clypeal 
horns, although not so greatly developed as in males. Since we focused on male polyphenism, the 
horns of females were not examined here. However, a thorough examination of the size and shape 
variation of female horns could contribute to elucidate the developmental mechanism of the head 
structures within the Eucraniini. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
Configuration of the points of the head, Table S1: Description of the landmarks digitized on the head of the 
Anomiopsoides males, Table S2: Stats values of the graphics in Figures 3 and 4, Figure S2: Scatterplot of the head, 
with the deformation grids of the two species. 
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Supplemental material – Figure S1 and Table S1 

Description of the landmarks digitized on the head of the Anomiopsoides males 

 

No Landmark definition 

1 Base of the head, near the eye angle, left 

2 Left gena, base 

3 Genal carina, left 

4 Apex of the horn 2, left 

5 Inner base of the horn 2, left 

6 Outer base of the horn 1, left 

7 Apex of the horn 1, left 

8-11 Inner margin of horn 1, left (semilandmarks) 

12 Anterior midpoint of the head 

13-16 Inner margin of horn 1, right (semilandmarks) 

17 Apex of the horn 1, right 

18 Outer base of the horn 1, right 

19 Inner base of the horn 2, right 

20 Apex of the horn 2, right 

21 Genal carina, right 

22 Right gena, base 

23 Base of the head, near the eye angle, right 

 

 

 



Male horn lack of allometry may be tied to food relocation behaviour in lifting dung beetles (Coleoptera, Scarabaeidae, Eucraniini) 

Supplemental material – Table S2 

Statistics of the graphics in Figs 3 and 4. The goodness of fit was calculated using the software PAST, here the AIC value 

of linear function and Hill’sigmoid function are given. The power function slope was calculated on the scatterplots by 

SPSS; the 95% confidence intervals were obtained by SPSS (one-sample T-test, with P<0.000 for all the analyses). The 

95% confidence interval for the pronotum width were 6.288/6.657 for A. cavifrons, and 10.026/11.144 for A. heteroclyta. 

 

  goodness of fit power function slope 
95% confidence 

interval 

  AICL AICH linear function R2 lower upper 

ca
vi

fr
o

n
s 

L_horn1 5.147 9.372 y=0.17+0.28*x 0.848 1.601 1,714 

L_horn2 4.556 8.869 y=0.28+0.23*x 0.897 1.704 1.793 

Ls_horn1 5.629 9.881 y=0.22+0.41*x 0.887 2.330 2.498 

L_tibia 5.542 9.639 y=0.06+0.49*x 0.922 3.108 3.294 

h
et

er
o

cl
yt

a
 

L_horn1 5.796 12.477 y=1.13+0.39*x 0.744 2.766 3.275 

L_horn2 5.115 11.827 y=0.28+0.35*x 0.913 3.212 3.620 

Ls_horn1 6.158 12.734 y=1.49+0.56*x 0.808 2.766 3.275 

L_tibia 5.344 12.002 y=0.76+0.58*x 0.930 5.059 5.733 
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Supplemental material – Figure S2 

On the scatterplot of RWs 1&2 the deformation grids corresponding to the extreme values of the x-y axes are showed, the position being marked by the red 

stars. The consensus confuguration is below, its position at crossing point of the axes (coordinates 0.000, 0.000) marked by a black star. For each species, the 

individual grids used to show the overall shape variation (see below) are marked by a star, and numbered. 

 



Male horn lack of allometry may be tied to food relocation behaviour in lifting dung beetles (Coleoptera, Scarabaeidae, Eucraniini) 

Consensus configuration of the RWs 1 and 2 

 

Anomiopsoides heteroclyta shape variability 

 1   2

 3   4  

In A. heteroclyta the shape variation showed by the plot of RW 1 & 2 is clearly related to the horn 1 

variation, while the horn 2, the genae and the basal part of the head do not vary, although the horn 2 

could be slightly inward turned. The analysis showed that the head is markedly symmetrical. 



Male horn lack of allometry may be tied to food relocation behaviour in lifting dung beetles (Coleoptera, Scarabaeidae, Eucraniini) 

Anomiopsoides cavifrons shape variability 

 5  6 

 7  8  

 9  10   

Also in A. cavifrons analogous results to those already showed by A. heteroclyta were obtained. While 

the horn 2, the genae and the basal part of the head do not much vary, the shape variation showed by 

the plot of RW 1 & 2 mainly concerned the horn 1, which show a higher variation than in the former 

species, although the head remain markedly symmetrical also in this species. A high degree of 

variation is also displayed by the anterior part ogf the head between the two medial horns (i.e., horn 

1) which can be very differently shaped. 

 


