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Gypsum mineral mainly occurs on evaporitic environment around the world [1, 2]. It has also 

been reported as a relevant phase in Mars [3-5]. The growth conditions during the growth of 

gypsum crystals influences the surface growth mechanisms and the habit. Many authors suggest 

that the growth mechanisms of gypsum crystals at low supersaturation is due to dislocation 

growth, these studies are based on kinetic data fitted to theoretical equations[6, 7]. However, 

the observation of hillocks on the surface gypsum crystals has been challenging. A couple of 

studies on the cleavage face (010) of gypsum by Atomic Force Microscopy (AFM) and Differential 

Interface Contrast Microscopy (DICM) shown some hillock but only one of them could be clearly 

identified as a screw dislocation, so the authors conclude that the main growth mechanism at 

low supersturation on this face is by 2D nucleation[8, 9]. Equivalent studies on the (120) face 

are missing, mainly due to the roughness of these faces. In a preliminary study of the gypsum 

(120) face using crystals growing by evaporation, we observed that hillocks spread on (120) at 

low supersaturation. Those hillocks are made by monolayers with a height of 4.30 Å 

corresponding to the d-spacing. These hillocks show an asymmetric morphology (figure 1). 

 Figure 1: Hillock of a spiral growing on 

(120) face of gypsum crystal. Screw 

dislocation is the origin of the growth. 
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