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Abstract

We outline a relationship between conformal field theories and spectral prob-
lems of ordinary differential equations, and discuss its generalisation to mod-
els related to classical Lie algebras.
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1 Introduction

The ODE/IM correspondence [1, 2, 3, 4] has established a link between two di-
mensional conformal field theory (CFT) and generalised spectral problems in or-
dinary differential and pseudo-differential equations. It is based on an equivalence
between transfer matrix eigenvalues [5, 6] and Baxter Q-functions in integrable
models (IMs), and spectral determinants [7, 8] of ordinary differential equations
(ODEs).

In statistical mechanics, the transfer matrix and its largest eigenvalue – de-
noted by T in the following – are central objects. For example, consider the
six-vertex model defined on a square lattice with N columns and N ′ rows; T can
be written in terms of an auxiliary entire function Q through the so-called Bax-
ter TQ relation. Up to an overall constant, Q is completely determined by the
knowledge of the positions of its zeros, the Bethe roots, which are constrained by
the Bethe ansatz equations (BAE). Subject to some qualitative information on
the positions of the Bethe roots, easily deduced by studying systems with small
size, the Bethe ansatz leads to a unique set of ground-state roots. In the N ′ → ∞
limit the free energy per site f is simply related to T by

f ∼ −
1

N
lnT . (1.1)

In [5, 6], Bazhanov, Lukyanov and Zamolodchikov showed how to adapt the
same techniques directly to the conformal field theory (CFT) limit of the six-
vertex model. In this setting, we consider the conformal field theory with Virasoro
central charge c = 1 corresponding to the continuum limit of the six-vertex model,
defined on an infinitely-long strip with twisted boundary conditions along the
finite size direction. The largest transfer matrix eigenvalue T depends on three
independent parameters: the (rescaled) spectral parameter ν, the anisotropy η
and the twist φ. Defining E, M , l, ω, Ω through the following relations

E = e2ν , η =
π

2

M

M + 1
, ω = ei

π

M+1 , Ω = ω2M , φ =
(2l + 1)π

2M + 2
(1.2)

the resulting TQ relation is

T (E, l,M)Q(E, l,M) = ω−
2l+1
2 Q(ΩE, l,M) + ω

2l+1
2 Q(Ω−1E, l,M) . (1.3)

The Baxter function Q for this largest eigenvalue is fixed by demanding entirety
of both T and Q, and reality, positivity and ‘extreme packing’ for l > −1/2 of
the set {Ei} of zeros of Q. The BAE follow from the entirety of T and Q via

Q(Ei) = 0 ⇒ T (Ei)Q(Ei) = 0 ⇒
Q(ΩEi)

Q(Ω−1Ei)
= −ω2l+1 . (1.4)
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Surprisingly, equations (1.3) and (1.4) also emerge from an apparently unrelated
context: the study of particular spectral problems for the following differential
equation ((

d

dx
−
l

x

)(
d

dx
+
l

x

)
− x2M + E

)
y(x,E, l) = 0 , (1.5)

with x and E possibly complex. To see the emergence of (1.4) from (1.5), we
start from the unique solution ψ(x,E, l) of (1.5) on the punctured complex plane
x ∈ C \ {0} which has the asymptotic

ψ ∼ x−M/2 exp(− 1
M+1x

M+1) , (M > 1) (1.6)

as |x| → ∞ in any closed sector contained in the sector | arg x | < 3π
2M+2 . This

solution is entire in E and x . From ψ we introduce a family of solutions to (1.5)
using the ‘Sibuya trick’ (also known as ‘Symanzik rescaling’):

ψk = ψ(ωkx, ΩkE, l) . (1.7)

In (1.7), k takes integer values; any pair {ψk, ψk+1} constitutes a basis of solutions
to (1.5). An alternative way to characterize a solution to (1.5) is through its
behaviour near the origin x = 0. The indicial equation is

(λ− 1− l)(λ+ l) = 0 , (1.8)

and correspondingly we can define two (generally) independent solutions

χ+(x,E) = χ(x,E, l) ∼ xl+1 +O(xl+3) , (1.9)

and χ−(x,E) = χ(x,E,−l−1), which transform trivially under Symanzik rescal-
ing as

χ+
k = χ+(ωkx,ΩkE) = ω(l+1)kχ+(x,E) . (1.10)

The trick is now to rewrite χ+
0 = χ+(x,E) respectively in terms of the basis

{ψ0, ψ1} and {ψ−1, ψ0}:

2iχ+
0 = ω−l− 1

2Q(ΩE)ψ0 −Q(E)ω− 1

2ψ1 (1.11)

2iχ+
0 = 2iωl+1χ+

−1 = ω
1

2Q(E)ψ−1 − ωl+ 1

2Q(Ω−1E)ψ0 (1.12)

where the coefficients has been fixed by consistency among (1.11), (1.12) and
(1.10) and

Q(E, l) =W [ψ0, χ
+
0 ] . (1.13)

Here W [f, g] = f dg
dx − g df

dx denotes the Wronskian of f and g. Taking the ratio
(1.11)/(1.12) evaluated at a zero E=Ei of Q leads immediately to the Bethe
ansatz equations (1.4) without the need to introduce the TQ relation, though in
this case it can be done very easily (see, for example the recent ODE/IM review
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article [4]). Correspondingly, χ becomes subdominant at x→ ∞ on the positive
real axis: χ(x,Ei, l) ∝ ψ(x,Ei, l). The motivation of dealing with χ, instead of
ψ (1.6), is two-fold. Firstly, χ can be obtained by applying the powerful and
numerically efficient iterative method proposed by Cheng many years ago [9] in
the context of Regge pole theory, and applied to spectral problems of this sort in
[10]. To this end we introduce the linear operator L, defined through its formal
action

L[xp] =
xp+2

(p+ l)(p− l − 1)
. (1.14)

So for any polynomial P(x) of x ,

(
d

dx
−
l

x

)(
d

dx
+
l

x

)
L[P(x)] = P(x) , (1.15)

and the basic differential equation (1.5), with the boundary conditions (1.9) at
the origin, is equivalent to

χ(x,E, l) = xl+1 + L
[
(x2M − E)χ(x,E, l)

]
. (1.16)

Equation (1.16) is solvable by iteration and it allows the predictions of the
ODE/IM correspondence to be checked with very high precision.

The initial results of [1, 2, 3] connected conformal field theories associated with
the Lie algebra A1 to (second-order) ordinary differential equations. The gener-
alisation to An−1-models was established in [11, 12] but it was only recently [13]
that the ODE/IM correspondence was generalised to the remaining classical Lie
algebras Bn, Cn and Dn. Our attempts to derive generalised TQ relations from
the proposed set of pseudo-differential equations were unsuccessful, but a series
of well-motivated conjectures led us directly to the BAE, allowing us to estab-
lish the relationship between BAE and pseudo-differential equation parameters.
Moreover, while the numerics to calculate the analogs of the functions ψ turned
out to be very costly in CPU time, the generalisation of Cheng’s method proved
very efficient and allowed very high precision tests to be performed. This is our
second main reason to deal with solutions defined through the behaviour about
x = 0, rather than x = ∞.

2 Bethe ansatz for classical Lie algebras

For any classical Lie algebra g, conformal field theory Bethe ansatz equations
depending on a set of rank(g) twist parameters γ={γa} can be written in a
compact form as

rank(g)∏

b=1

ΩBabγb
Q

(b)
Bab

(E
(a)
i , γ)

Q
(b)
−Bab

(E
(a)
i , γ)

= −1 , i = 0, 1, 2, . . . (2.1)
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where Q
(a)
k (E, γ) = Q(a)(ΩkE, γ), and the numbers E

(a)
i are the (in general com-

plex) zeros of the functions Q(a). In (2.1) the indices a and b label the simple
roots of the Lie algebra g, and

Bab =
(αa, αb)

|long roots|2
, a, b = 1, 2, . . . , rank(g) (2.2)

where the α’s are the simple roots of g. The constant Ω = exp
(
i 2π
h∨µ

)
is a pure

phase, µ is a positive real number and h∨ is the dual Coxeter number.
It turns out that the Bethe ansatz roots generally split into multiplets (strings)

with approximately equal modulus |E
(a)
i |. The ground state of the model corre-

sponds to a configuration of roots containing only multiplets with a common
dimension da = K/Baa; the model-dependent integer K corresponds to the de-
gree of fusion (see for example [14]).

3 The pseudo-differential equations

To describe the pseudo-differential equations corresponding to the An−1, Bn, Cn

and Dn simple Lie algebras we first introduce some notation. We need an nth-
order differential operator [12]

Dn(g) = D(gn−1 − (n−1))D(gn−2 − (n−2)) . . . D(g1 − 1)D(g0) , (3.1)

D(g) =

(
d

dx
−
g

x

)
, (3.2)

depending on n parameters

g={gn−1, . . . , g1, g0} , g†={n− 1− g0, n− 1− g1, . . . , n− 1− gn−1} . (3.3)

Also, we introduce an inverse differential operator (d/dx)−1, generally defined
through its formal action

(
d

dx

)−1

xs =
xs+1

s+ 1
, (3.4)

and we replace the simple ‘potential’ P (E, x) = (x2M − E) of (1.5) with

PK(E, x) = (xh
∨M/K − E)K . (3.5)

Using the notation of Appendix B in [13] the proposed pseudo-differential
equations are reported below.

An−1 models:

The An−1 ordinary differential equations are

Dn(g
†)χ†

n−1(x,E) = PK(x,E)χ†
n−1(x,E) , (3.6)
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with the constraint
∑n−1

i=0 gi=
n(n−1)

2 and the ordering gi < gj < n− 1, ∀ i < j .
We introduce the alternative set of parameters γ = γ(g) = {γa(g)}

γa =
2K

h∨M

(
a−1∑

i=0

gi −
a(h∨ − 1)

2

)
. (3.7)

The solution χ†
n−1(x,E) is specified by its x ∼ 0 behaviour

χ†
n−1 ∼ xn−1−g0 + subdominant terms, (x→ 0+) . (3.8)

In general, this function grows exponentially as x tends to infinity on the positive
real axis. In Appendix B of [13], it was shown that the coefficient in front of
the leading term, but for an irrelevant overall constant, is precisely the function
Q(1)(E, γ) appearing in the Bethe Ansatz, that is

χ†
n−1 ∼ Q(1)(E, γ(g)) x(1−n)M

2 e
x
M+1

M+1 + subdominant terms, (x→ ∞) . (3.9)

Therefore, the set of Bethe ansatz roots

{E
(1)
i } ↔ Q(1)(E

(1)
i , γ) = 0 (3.10)

coincide with the discrete set of E values in (3.6) such that

χ†
n−1 ∼ o

(
x(1−n)M

2 e
x
M+1

M+1

)
, (x→ ∞) . (3.11)

This condition is equivalent to the requirement of absolute integrability of
(
x(n−1)M

2 e−
x
M+1

M+1

)
χ†
n−1(x,E) (3.12)

on the interval [0,∞). It is important to stress that the boundary problem defined

above for the function χ†
n−1 (3.8) is in general different from the one discussed

in Sections 3 and 4 in [13] involving ψ(x,E). The latter function is instead a
solution to the adjoint equation of (3.6) and characterised by recessive behaviour
at infinity. Surprisingly, the two problems are spectrally equivalent and lead to
identical sets of Bethe ansatz roots.

Dn models:

The Dn pseudo-differential equations are

Dn(g
†)

(
d

dx

)−1

Dn(g)χ2n−1(x,E) =
√
PK(x,E)

(
d

dx

)√
PK(x,E)χ2n−1(x,E) .

(3.13)
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Figure 1: Lowest three functions Ψ(x,E) for a D4 pseudo-differential equation.

Fixing the ordering gi < gj < h∨/2, the g ↔ γ relationship is

γa =
2K

h∨M

(
a−1∑

i=0

gi −
a

2
h∨

)
, (a = 1, . . . , n− 2) (3.14)

γn−1 =
K

h∨M

(
n−1∑

i=0

gi −
n

2
h∨

)
, γn =

K

h∨M

(
n−2∑

i=0

gi − gn−1 −
n− 2

2
h∨

)
.

(3.15)
The solution is specified by requiring

χ2n−1 ∼ xh
∨−g0 + subdominant terms, (x→ 0+) , (3.16)

χ2n−1 ∼ Q(1)(E, γ(g)) x−h∨ M

2 e
x
M+1

M+1 + subdominant terms, (x→ ∞). (3.17)

Figure 1 illustrates Ψ(x,E) = xh
∨ M

2 e−
x
M+1

M+1 χ2n−1(x,E) for the first three eigen-
values of the D4 pseudo-differential equation defined by K=1,M = 1/3 and
g=(2.95,2.3,1.1,0.2) .

Bn models:

The Bn ODEs are

Dn(g
†)Dn(g)χ

†
2n−1(x,E) =

√
PK(x,E)

(
d

dx

)√
PK(x,E)χ†

2n−1(x,E) . (3.18)

With the ordering gi < gj < h∨/2, the g ↔ γ relation is

γa =
2K

h∨M

(
a−1∑

i=0

gi −
a

2
h∨

)
. (3.19)

The asymptotic behaviours about x = 0 and x = ∞ are respectively

χ†
2n−1 ∼ xh

∨−g0 + subdominant terms, (x→ 0+) , (3.20)
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and

χ†
2n−1 ∼ Q(1)(E, γ(g)) x−h∨ M

2 e
x
M+1

M+1 + subdominant terms, (x→ ∞) . (3.21)

Cn models:

The pseudo-differential equations associated to the Cn systems are

Dn(g
†)

(
d

dx

)
Dn(g)χ2n+1(x,E) = PK(x,E)

(
d

dx

)−1

PK(x,E)χ2n+1(x,E)

(3.22)

with the ordering gi < gj < n. The relation between the g’s and the twist
parameters in the BAE is

γa =
2K

h∨M

(
a−1∑

i=0

gi − an

)
, γn =

K

h∨M

(
n−1∑

i=0

gi − n2

)
(3.23)

and
χ†
2n+1 ∼ x2n−g0 + subdominant terms, (x→ 0+) , (3.24)

χ†
2n+1 ∼ Q(1)(E, γ)x−nMe

x
M+1

M+1 + subdominant terms, (x→ ∞) . (3.25)

Using a generalisation of Cheng’s algorithm, the zeros of Q(1)(E, γ) can be
found numerically and shown to match the appropriate Bethe ansatz roots [13].

In general, the ‘spectrum’ of a pseudo-differential equation may be either
real or complex. In the An−1, Bn, Dn models with K=1∗, the special choice
gi = i leads to pseudo-differential equations with real spectra, a property which
is expected to hold for a range of the parameters g (see, for example, [12]). The
K>1 generalisation of the potential (3.5), proposed initially by Lukyanov for the
A1 models [15] but expected to work for all models, introduces a new feature.
The eigenvalues corresponding to a K=2, 3 and K=4 case of the SU(2) ODE
are illustrated in figure 2. The interesting feature appears if we instead plot the
logarithm of the eigenvalues as in figure 3. We see that the logarithm of the
eigenvalues form ‘strings’, a well-known feature of integrable models. The string
solutions approximately lie along lines in the complex plane, the deviations away
from which can be calculated [13] using either WKB techniques, or by studying
the asymptotics of the Bethe ansatz equations directly.

∗ The Cn spectrum is complex for any integer K≥1.
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Figure 2: Complex E-plane: the eigenvalues for the SU(2) model with M = 3,
g0 = 0 for K = 2, 3 and 4 respectively.
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Figure 3: Complex (lnE)-plane: two, three- and four-strings.

To end this section, we would like to comment briefly on the motivation behind
the conjectured pseudo-differential equations of Bn, Cn and Dn type. Modulo the
generalisation to K>1, the An−1 type ODEs were derived in [12]. We began with
the D3 case since it coincides up to relabeling with A3, implying that the D3

function Q(1)(E, γ) coincides with the A3 function Q(2)(E, γ). Fortunately, the
latter is known [12] to encode the spectrum of a differential equation satisfied by
the Wronskian of two solutions of the Q(1)-related ODE. The generalisation to
Dn models with larger n was then clear. Further supporting evidence came from
a relationship between certain Dn lattice models and the sine-Gordon model,
which appears as an SU(2) problem. This relationship also extends to a set of
Bn models, and leads naturally to the full Bn proposal. Finally, the Cn proposal
arose from the Bn cases via a consideration of negative-dimension W-algebra
dualities [16]. Numerical and analytical tests provided further evidence for the
connection between these spectral problems and the Bethe ansatz equations for
the classical Lie algebras.

4 Conclusions

The link between integrable models and the theory of ordinary differential equa-
tions is an exciting mathematical fact that has the potential to influence the
future development of integrable models and conformal field theory, as well as
some branches of classical and modern mathematics. Perhaps the most surpris-
ing aspect of the functions Q and T , only briefly discussed in this short note, is
their variety of possible interpretations: transfer matrix eigenvalues of integrable
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lattice models in their CFT limit [5, 6], spectral determinants of Hermitian and
PT-symmetric [17, 18] spectral problems (see for example [10]), g-functions of
CFTs perturbed by relevant boundary operators [5, 19], and particular expec-
tation values in the quantum problem of a Brownian particle [20]. Further, the
(adjoint of the) operators (3.6), (3.13), (3.18) and (3.22) resemble in form the
Miura-transformed Lax operators introduced by Drinfel’d and Sokolov in the
context of generalised KdV equations, studied more recently in relation to the
geometric Langlands correspondence [21, 22]. Clarifying this connection is an in-
teresting open task. Here we finally observe that the proposed equations respect
the well-known Lie algebras relations D2 ∼ A1⊕A1, A3 ∼ D3, B1 ∼ A1, B2 ∼ C2.
Also, at special values of the parameters the Cn equations are formally related
to the Dn ones by the analytic continuation n → −n, matching an interesting
W-algebra duality discussed by Hornfeck in [16]:

(D̂−n)K × (D̂−n)L

(D̂−n)K+L

∼
(Ĉn)−K/2 × (Ĉn)−L/2

(Ĉn)−K/2−L/2

. (4.26)

The relationship between our equations and coset conformal field theories is an-
other aspect worth investigation. We shall return to this point in a forthcoming
publication.
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