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The Jacobi process is a stochastic diffusion ch C&i&d v a linear drift and a

special form of multiplicative noise which keps the cess confined between two

boundaries. One example of such a procgss. can be ))btained as the diffusion limit
of the Stein’s model of membrane de ol(x.i.zat@ which includes both, excitatory
and inhibitory reversal potentials. The rev a‘l’potentials create the two boundaries
between which the process is con x@ving the first-passage-time problem for
the Jacobi process, we found clo %expressions for mean, variance and third
moment, that are easy to impl %’r}t au erically. The first two moments are used here

to determine the role play&& e parameters of the neuronal model. Namely, the
effect of multiplicative Mt e output of the Jacobi neuronal model with input-

dependent param tgsxisexa ined in detail and compared with the properties of the
sion

generic Jabobi

the rate of i
the slopeg(\hﬁi onse curves. This dependence also affects the variability of the
outpt@iﬂec d by the coefficient of variation. It often takes values larger than

0 an/d 1t4s not always a monotonic function in dependency on the rate of excitation.
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Publishi]c'l)gi fusion processes with multiplicative noise are able to model the changes in
the membrane depolarization between two consecutive spikes of a single neuron.
Among them, the most commonly used models consider either no state-space
boundaries or only a lower boundary. Nevertheless, the upper boundary also
modifies the properties of the model due to the multipli€ativity of the noise.
Here we consider the Jacobi diffusion process that is able«to inelude, in its neu-
ronal interpretation, both excitatory and inhibitoryaeverSal potentials (upper
and lower boundary, respectively). In the Jacobigeuronal model the involved
parameters are input-dependent and this, togethex with.the form of the mul-
tiplicative noise, affects the output of the model. The response of the neuron
is studied focusing on the behavior of theffirst-passage time through the firing
threshold, identified with the dynamics“gf spike’generation. Computationally
easy expressions of the first two momeunts ofithe first-passage time for the Ja-
cobi process are derived and implemented to'study the firing rate and variability
of the inter-spike intervals. The thirdunoment is given as a tool for the param-
eter estimation. All the results eoncerning the first-passage-time problem are

general and can be used outside ‘the‘framework of computational neuroscience.

I. INTRODUCITON

In the models whege noise is assigned a casual importance, it is often assumed to be a
source of ineffieiency and unpredictability. However, there exists a large class of phenomena
for whiclsthedoise s of a primary importance or even a part of the signal itself. Mathemat-
ical models in"meuroscience are one of the most prominent examples in this direction. The
celebrated mddel of Lapicque, republished and discussed at its centennial anniversary'?, was
déterministic, but its numerous generalizations took into account the input-output variabil-
itywof the neurons in the networks and became intrinsically stochastic. From a biophysical
point of view, the models of a single neuron reflect the electrical properties of its membrane.
Such circuit models can be written in terms of differential equations for the membrane volt-
age. To reduce their mathematical complexity, integrate-and-fire type of the models have

been derived®*. These models aim to describe the dynamics of interspike intervals and
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Publishitigy are based on a one-dimensional representation of the time evolution of the neuronal
membrane depolarization.

One class of stochastic models which can be classified as a generalization of the Lapicque

model with restricted state space appeared in the sixties. Stein® and JohannesmaS’ intro-

duced models with conductance changes caused by excitatory ang/ inhibitory inputs. The

state space of the depolarization was limited between two boun x-j thednhibitory and the

excitatory reversal potentials. Later, this type of models Wwiplicaﬁve noise started
e

o

[ Among them, the most com-

d7—11

to be extensively investigate . These studies often e e diffusion limits of the

originally discontinuous models to improve their tractaﬁ\i
monly investigated model considers the lower boundary only and with its specific form of
the diffusion coefficient, it can be identified as the Fellet“process (in biology), also known
as Cox-Ingersoll-Ross (in finance) or square-1ogt proLcE}s (in mathematics). Nevertheless,
there seems to be no strong mathematic t&{fm\iq for the selection of a specific form of
the diffusion coefficient which controls haog&e space of the depolarization. Thus, several
other different variants have been i VGMH’H. The emphasis on the lower boundary,

the inhibitory reversal potential, %pe}% probably because the role of the upper boundary,
se

the excitatory reversal potential, o'be blurred by imposing below it a firing threshold.

However, despite the existence omhhreshold7 the upper boundary modifies the properties

m&ﬁcativity of the noise.
h reversal potentials are considered are more rare'® 1% and the

d tysuch a model. Here, the effect of multiplicative noise on the

of the model due to the

The studies in which b

present article is dev

output of Jacobi netgonal ‘model with dependent parameters is examined in detail. After

introducin Jacobi diffusion process and describing the firing mechanism which is based

on the sélutigh of*the first-passage-time problem, the expressions for the first three mo-
mentg’ are pr f(ted. Up to this point, the results are independent of the application in
neurosci nce.s Further, intrinsic dependency of the parameters as it follows from biophysical

del isS)resented and results for such a model deduced and interpreted.

<

II, THE PEARSON DIFFUSION MODELS

One-dimensional stochastic differential equations play a key role in the description of

fluctuating phenomena belonging to different fields of applications as physics, biology, neu-
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Puinshi:rrg« ience, finance and others'”. In particular, the class of models with a linear drift and
driven by a Wiener process is widely used for its mathematical tractability and flexibility.

These models are described by a stochastic differential equation of the following type
dY; = (—aY; + B) dt + 2(Y,)dW,, Yo = y?/ (1)

where a« > 0, f € R, W = {W;}i>0 is a standard Wiener Q@ Yo = yo is the
initial condition. The diffusion coefficient ¥(Y;) > 0 eter ines“ghe amplitude of the
noise and, according to its dependence on Y;, it charaeter es,\he solution of Eq.(1). If

= /aY2 +bY, + ¢ for a,b,c € R, the solutio of B is called Pearson diffusion
processls. A wide range of well-known processes I&Q 1s class. The solution of Eq.(1)

is an Ornstein-Uhlenbeck process for 3(Y;) = Ownstant ie. a=b=0,c=0),a

Feller process (also known as Cox—Ingersoll%JT or square-root process) for 3(Y;) =
orVY,0p >0 (ie. b=0%a=c=0) ahl\ho
YY) = oY, 06 > 0 (ie. a = 02,b —\:ﬁ'} and a Jacobi diffusion (or Wright-Fisher

eneous geometric Brownian motion for

work we will focus on this last pr

The values taken by mod%. its state space, are in the interval —oo < By <
Yo < By < +o00. The ints B; and By can or cannot be reached in a finite time

ndpo
depending on the under "1g parameter conditions. According to the Feller’s classification

of boundaries 9

afl entrance boundary if it cannot be reached by Y; in finite time,
flow to the outside of the interval (By, +00), that is, the process

and there is no r abili
stays in [By, with probability 1. Vice versa, B; is an exit boundary if the process can

attain it,Mbut ; it cannot return into (B, +00). The latter situation is not suitable for
delin oses, and thus it is not considered here. An analogous classification for
Bs can be st§ted.
ﬁ

We dejwote the transition probability density function (pdf) of the diffusion process (1) by

Y,
admits a stationary distribution W(y). Independently on the choice of ¥(Y;), the mean

). EW(y) = tlim f(y,tlyo, 0) exists independently on y,, we say that the process
—00
of Yy in (1) is given by

EYifYo = ) = 2 + (yo _ g) 2)
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Publishimg! the asymptotic mean by

i E[Yi|Yo = o] == E[Ya] = 2. 3)

while higher moments of Y; depend on the function ¥(Y;) in (1).

Let the process Y; evolve in the presence of an absorbing bo?(dary S, yo < S < Bs.
Then Eq.(1) describes the dynamics of Y; until it crosses S for the firsg time, the so called
first-passage time (FPT), defined as 5

T :=inf{t >0:Y; > Slyo S}) (4)
—~—

—

with pdf ¢g(t) := g(t|yo, S). The moments of T cah be C% ated through the Siegert’s

formula?’

S z
2dz )
]ET”:n/ —/ o)E[P" dr, n=1,2,... 5
= ), EOPwE) Je ©)
Three distinct situations for the FPT can ogur. he'process is said to be in the suprathresh-

old, subthreshold and threshold regimeg\ > S,E[Y,] < S and E[Y,] = S, respec-
tively.
vely. &\
A. The Jacobi diffusion pr&:s
The aforementio d;,l;fsmgﬁkﬁffusion19 is a stochastic process with state space (0, 1), given

as the solution tofthe lowfng stochastic differential equation

%} <_Oé}/;+ﬁ>dt+o-\/ Y;(]- _Yt)th7 }/0 = Yo, (6)
with o >, o> 0, € (0,
Z,

1). Sometimes, it is alternatively defined on the interval (—1, 1)
by seffting ¥ 7/ 1—=Y?2 0; > 0. Throughout, we will consider the Jacobi diffusion

given, byw(6)./The conditional variance of the Jacobi process, the moment generating function
a%&ansition pdf are given in Refs.18, 21 and 22, respectively.

w_‘in = 2a/0? and v := 28/0% Then, for v > 0 such that min(y,n — v) > 1, the
beundaries 0 and 1 are of entrance type?? and the Jacobi diffusion admits a stationary
distribution W. In particular, W is a Beta-distribution with shape parameter v and scale
parameter 7 — 7, i.e.!®

Yoo ~ Beta (77 n— 7) ’ (7)

5
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Publishim@h mean (3) and variance Var(Yy) = (o — 8)0° /(200 + 02).

In the presence of a constant threshold S, with 0 < yy < S < 1, the Laplace transform
of the FPT T, i.e. g*(§) := f e~Stg(t)dt, & > 0, is given by?!

3) / (8)
9:2a—02—\/( —2a SSU’Q\

Here 5 F} denotes the Gaussian hypergeometrlc function elo ing 6o the class of the gener-
""'--.

2Fl (9027957;y0)
2F1 (9027077;

g (&) =

where

alized hypergeometric functions ,Fj, defined by

* 5
ot (ap)y 2"

o %)n (bg)n nt’

where (a), is the rising factorial defined by (a),& df@+1)---(a +n — 1) for n € N and
(a)o = 1. The mean FPT, E[T], is*! \\

E[T] =

(9)

qu(al,...,ap;bl,...,bq;z) :

(10)

2,7 +1,8) S = 3Fy (1, 1,12, 7 + Liyo) wo) - (11)

E[T] == 1
5 FT@L}
This expression inv; ve} 0 ypergeometric functions, and has the advantage of easier

numerical evalua ons ith #he package hypergeo® in the computing environment R24.

We derive d moment of T using the Siegert formula (5) and replacing the
integral te thelr Taylor expansions, following what has been proposed in Ref. 25 for
the calcu t e moments of the FPT of an Ornstein-Uhlenbeck process. In this way
we o@:\é riance of T’

Var S3F2 1a1ana2’7+1S)+y03F2(171777727+1y0)]+

'\:_ (M)k 5
B (v+ Drk+ D(k+2)(v +k +1)

(12)

X [3Fy(Lk+2,n+k+1Lk+3,7v+k+2:9)S"2 s k+2,n+k+Lk+3,v+k+2150)y, ’”2].

To evaluate Eq.(12) numerically, we replace the series with the sum of the first k& terms.

Our comparisons for different values of £ with Monte Carlo simulations show that the series

6
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Publishihagli thus the value of the variance) can be satisfactorily computed by summing the first 20
terms. All the numerical results presented in the following parts were carefully verified by
extensive simulations with relative difference always below 1%. Finally, we also derive the

third moment of 7" using the Siegert formula (5), obtaining

3SE[T?
] sFy (1,1,m;2,7v+1;5) +

B )\
_12E[T]i(n)k3F2(1,k+2,17+l<:+1;k+3,7+k—|—2;LS k4 N
025 & (7+1)k(k+1)(kz+2)(7+k—|—1)N
24 on > + 1),
Z ;:O(VJrk

otf = (y+ Di(k + 1) (y + k +1)

><[3F2(1,k+n+3,n+k+n+2;k+n+4,7+ n+3; 5) Sk+nt3y

E[T3] =

+

=0

3F2(1,k+n+3777—|-k+n+2;k+n§+wn+3;%)y§+n+3}'
o

The derived expressions of the first three anoments gan be used to perform moment estima-
tion of the parameters «, 5 and o appe ng..m\cl(6) This would be particularly interesting
in neuroscience, where parameter estimationfrom FPT data has already been successfully
applied for other diffusion modelgS-2°. Wforeover, it will allow a comparison with the results
available for the parameter if &}N a and f for the Jacobi process for continuously
recorded observations of the "m of X(t) (modeling the membrane voltage)3°.

In Fig. 1, we illustra th‘e}Qirse mean FPT, defined as 1/E[T7], the coefficient of variation

(CV) of T, defined /s 916 tio between the standard deviation and the mean of T, i.e.
CV(T) = \/W / , And the stationary distribution W of the Jacobi diffusion (6)

given by Eq. })A xpected, the inverse mean FPT increases and CV decreases with

increasing dri

large valites of 3.

noise m‘\plit%
ﬂ
B%é Jacobi diffusion as a neuronal model

NI

Fq.(1) with various noisy terms is widely used in the context of neuroscience. It describes

efficient, 8. Further, the asymptotic distribution gets more symmetric for

th, the inverse mean FPT as well as CV, increase with increasing the

and the curves become smoother.

the subthreshold dynamics of the membrane voltage of a nerve cell, i.e. the evolution of the
membrane depolarization between two consecutive spikes (firing), modeled as crossings of

a certain threshold. In this way the interspike interval (ISI) is identified with the FPT of

7


http://dx.doi.org/10.1063/1.5051494

I Ijl‘h( Jacopi diffisipmanueeiptivas aactisted 631 Chavg diikbk here to see the version of record. |
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5

VE[T)
pdf of Y.,

cv(m
00 02 04 06 08 10 12
Il

0.0 0.5 1.0 15 2.0 2,

FIG. 1. Some properties of the Jacobi diffusion. Panels (a) an\(&). nverse mean FPT and
CV(T) as a function of the drift coefficient, (3, for different 1u‘69g£&16 noise, o2. The process is
in suprathreshold regime for 3 > 0.2 (thick lines). In both figures;yg = 0.1, @ = 1, S = 0.2. Panel
(c): pdf of the asymptotic distribution W of Y focqiidffe 1t \llues of B with y9 = 0.1, a = 1

and 02 = 0.1. Values of 3 < 0.05 do not satisfy the 16@1 min(y,n7 — ) > 1 in this case. The

-

vertical line represents the threshold S. \
\

the mathematical model. With >(

T = 1/a and constant or time-yaryi
deterministic leaky integrate- nd&\ e

neuronal randomness into account, the model was often extended by adding a white or

colored noise.
The diffusion pro e@s been often obtained as a diffusion limit (also known as
X
ing

diffusion approtiZa of ﬁiscontinuous jump process under the assumption of increasing
frequency and _decr

ous process t@ Stein’s model with reversal potentials V; and Vg given by the following

) = Opgonstant absorbing threshold S, time constant
nput 3, Eq.(1) has often been investigated as a

ronal model®'. To take the underlying intrinsic

9,11,32,33

ize of the jumps . An example of the initial discontinu-

stochasti€ differential equation:

m

1
Ay == Xidt +a(Vp = X)ANT () +i(X, = V)IN~(1),  Xo=m0,  (13)

—
where ¢ and a are constants such that —1 <7 < 0 < a < 1. Here 7 > 0 is the membrane
Xist\an taking into account the spontaneous voltage decay towards the resting potential

in the absence of input and the inhibitory and excitatory reversal potentials V; and Vg
are such that V; < 0 < Vg. We assume Vg = 290 = 0. In Eq.(13), Nt := {NT(¢),¢t >
0} and N= := {N~(t),t > 0} are two independent homogeneous Poisson processes with

N*T(0) = N=(0) = 0 and intensities A\ and w, respectively. The processes Nt and N~

8
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Publishimegresent the excitatory and inhibitory neuronal inputs, respectively, while A and w are
called the excitatory and inhibitory input parameters and represent the rate of arrival of
excitatory and inhibitory postsynaptic potentials. According to model (13), each event of
the excitatory process N produces a jump in the membrane voltage AX = a(Vg — X;).
Similarly, an event of the inhibitory process N~ hyperpolarizes the‘ﬂembrane by (X — V7).
This implies that the effect of the input is state-dependent: the

3ﬁt of changes in the

depolarization X; decreases when X; approaches the inhibifor the excitatory reversal

potentials V; and Vg. A direct consequence is that the pr

63 is‘egnstrained on the interval
(V1, Vi), i.e. the state space of the process is (V, Vg). T

Under the assumptions of jump amplitudes a,1 c;;asi o to zero but occurring at in-
creasing frequencies A, w roughly inversely propértiona the square of the jump size, a
diffusion approximation of a generalization of (U?L);)ncluding random jump amplitudes
depending simultaneously on both reversal‘b%s, was proposed''. The stochastic dif-

ferential equation describing this dynamics 1

X
dXt = (_Tt‘{‘/J/(VE—Xt)“‘V( S‘/j) t—i-U\/(VE—Xt)(Xt—‘/])th, XO :O,

\%\ . "

= al, v =iw. (15)

The parameter o2 detetmines the amplitude of the noise and it is often assumed to grow

linearly with the in ut3f/36./

formula /
5\ o’ = (A +we, (16)

obtained rcyg e diffusion approximation. Here the constant € > 0 determines the rela-

llowing this, we let the noise intensity vary according to the

tion betwee hednput parameters and the noise amplitude. The asymptotic depolarization
of the rocess X, is denoted by X, and its mean is given by

ﬁ
_ wVp —vVp

) EX]=T0, a7

b @, better understanding of the parameters p and v, we recall the equation of a
conductance-based neuronal model. The evolution in time of the potential difference V'

across the membrane of a neuron is given by (see e.g. Ref.14 and Ref.37)

Wi —vie) + 2D, vy a (18)

v, = — Iy — |92 .

C C
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Publishiwg( re C' is the membrane capacitance, g; is the conductance of the leak current, while
ge(t) and g¢;(t) are the conductances of the excitatory and inhibitory components of the
synaptic current, respectively. Eq.(18) is analogous to Eq.(13) with g, /C playing the role of
the membrane constant 7 and with gg(t) = Cag ), 6(t — ti), where ap is a dimensionless
constant measuring the strength of the synapse and ¢ is the tin}/ of the arrival of the k-

th incoming excitatory pulse, distributed according to a Poissom process with parameter A

(similarly for g;(¢) and w). The arrival of one excitatory pulse“imtreases the conductance

hsvo ageis AV = ap(Ve — V).
aceof X, is again the interval

ge(t) by a factor of Cag and consequently the increase i

Focusing again on the model (14), we see that the tafe
(V1, Vi), where V7 and Vg are both entrance boundaries if ths following condition is satisfied

€A +w) < —> —ILVI) (19)

ary condition is met.

Throughout the paper, the underlying @“}re chosen to guarantee that this bound-

As previously mentioned, three firihgfregimes can be considered for the process Y; and
thus for the process X;. Refer inx latter model, if the asymptotic mean depolarization
(17) is larger than the firing &R}S , then the process is in the suprathreshold regime.
If it is smaller, then it i m‘t'ﬂjlbthreshold regime and the noise plays a crucial role for the

crossing of the threshold. Finally, if the asymptotic mean is equal to .S, the process is in the

threshold regime #Howeyer, due do the interplay of the parameters, the specific situation is

more complic tyﬁ%ﬂ\the role played by the noise may be counterintuitive, as seen later.
f

Using the trangfofmation
£ =V
= N T
fr, rm&&@élpwe get Eq.(6), whose solution is confined in (0, 1), with
) 1 Vi Vi
—— _ = — Yo =y = — . 20
S\ a 7_+lu v, ﬂ 2 T(VE—V})’ 0 Yo VE_‘/[ ( )

All the analytical results previously presented for the Jacobi process in (0,1) can thus be
used. However, it is important to stress that the coefficients «, B and also the noise o2 are

now input dependent, being functions of the input parameters A and w.

10
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Publishiiid. INPUT-OUTPUT PROPERTIES OF THE JACOBI NEURONAL

MODEL

A. Firing rate

neuroy and the frequency

réflected by the so-called

The relation between the level of synaptic input received by

of the generated action potentials (firing frequency) is commo

f-I curve. The activation of an inhibitory input can produge intheneuron a change in its

membrane potential (hyperpolarization) and/or an incréage 4 e membrane conductance
(shunting inhibition)3®3%. The latter effect modifies tg‘éﬁi ity of a neuron to a variation
in the excitatory input rate’” and produces a ghang '1516 slope of the f-I curve for
different inhibitory input rates (divisive effe ?(&If ‘t)e slope is high, a small variation
in the excitatory input rate produces a afi%ssr?c-é in the resulting firing rate. The
hyperpolarization decreases the membraneglg\%?&ization reducing the effect of a subsequent
excitatory stimulation. In this case theS\\me shifts for different inhibitory input rates
but keeps its slope (subtractive e eé}if): this section, we investigate how the dependence
(

of the coefficients «, 3,0 in the m ) on the input rates given by Egs. (16) and (20)

affects the FPTs (and thus th f the Jacobi neuronal model.

As already mentioned, firing frequency is commonly replaced by the inverse of the
mean ISI, 1/E( Way
0

T). th
the same physiolg &‘Qﬁ)&s ic parameters as those given in Example 1 of Ref. 21: V; =
—10mV, Vg = {(?W = 10mV,7 = 5.8ms,i = —0.2,a = 0.02,z9 = O0mV, for different
values of ¢, @w, namely A € (0,3),w € (0,1) and € = 0.001,0.0145 (as in Ref. 36), and
0.02. y

we constructed the f-I curve for model (14) considering

In [Fig. 2 lot the firing rate as a function of the excitatory rate A for different values
ofgthe 1 ibi%ry rate w, and observe a divisive effect of inhibition for low frequencies of the
e itatoﬁ( input and a subtracting effect for high frequencies. For higher values of A, the
H’o}e{mnistic force characterized by ( drives the neuron to fire. The behavior of 1/E(T)
fox_the neuronal model (14) differs from that of the general Jacobi diffusion (6) reported in
Fig.1. There the inverse mean FPT increases when o? increases, while here the firing rate
decreases in the suprathreshold regime if we increase o2 by increasing the inhibitory rate, w

(cf. Eq.(16)).

11
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0.4 : :
0.3
T(IJ T(IJ
E E
£ %2 =
u =

0.17

0.0

0.0 0.5 1.0 1.5 2.0
?L(ms')

FIG. 2. Firing rate, 1/E(T), for the Jacobi diffusion neuronal cl, aswa function of the excitatory
.

rate A for several fixed levels of the inhibitory rate w, the'yalues Sf A are limited by condition (19).

The right panel is a zoomed version of the left one. ame parameter values of Example 1 of Ref.21:

Vi=-10mV, Vg = 100 mV, § = 10 mV, 7 =%%.8 mQ: —0.2, a = 0.02, xp = 0 mV, and
e = 0.0145 as in Ref. 36. The values of w aﬂ\‘}\ﬁ nd (ms~!). We note a divisive effect for
fr

low frequencies and subtracting effect for ig.b\uencies of the excitatory input, as also shown

in Ref.36. The lines become thick whe s-b,%ch parameters yield the process in suprathreshold

regime. \ o
N
N\

If we decrease the va f the réversal potential Vg, the excitatory term p(Vep — X;) in
(14) has a weakened e % not shown). The f-I curve shifts to the right for increasing
inhibition w comp 6 t}? ase of Fig.2. This is because changing the reversal potential
is equivalent to h&ﬁb input by a constant quantity*!. Also in this case, divisive and

re

subtractive e% a
reversal @

served. Thus, their presence does not depend on the value of the

NS

-
.y

riability

Wgng Egs. (11) and (12), in Fig.3, we plot the CV of the ISIs generated by model (14)
as\a function of the excitatory rate A for different fixed values of the inhibitory rate w. In
all the considered cases, the CV grows with increasing inhibition. For ¢ = 0.001, it means
very small level of noise, as seen from equation (16), the CVs are smaller than one and

are decreasing functions of the excitatory rate A\. For bigger ¢, we observe values of the

12
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FIG. 3. Coefficient of variation of the ISIs generated by the JaN sion neuronal model as
a function of the excitatory rate A\ for several choices of t ir‘lDb..i..FEfy rate w. The parameters
are chosen as in Fig.2. Left figure: € = 0.001. The CVE monotonically decrease in A and takes
small values for low inhibitory inputs. Central ﬁgurc:z 0145. The CVs grow with increasing

inhibition. For high values of w, the curves reach a Xiﬁl)lm value and then change concavity.

Right figure: ¢ = 0.02. For values of w clo ,L’u'ﬁe CV curves have minima. All CVs

v

before others. The lines become thick when t % parameters yield a process in suprathreshold

are plotted as a function of A such that E led, this is the reason why some lines stop

regime. All maxima and minima ocgur 1\‘5% subthreshold regime in the considered cases.

N\

CV greater than one and differ(m‘haviors, concavities and types of monotonicity of the
CV for different values fmlSerestingly, the CVs are non-monotonic in A and some CVs

exhibit a maximum 6r a minimium for certain values of the input parameters. Note that,
in the cases considereddierefall maxima and minima occur in the subthreshold regime (the
thick lines in e%&eindicate suprathreshold regime). Many of these features are not
present in th b)s of the Jacobi diffusion (6) reported in Fig. 1, suggesting a qualitative
differencé.betaveen the general and the neuronal-based models.

Tofillustrat {e simultaneous dependence of the CV on the inhibitory and the excitatory

uts, we report its heat map in Fig.4-left for ¢ = 0.0145. All CVs increase in w, CVs

larger tl&n one can be obtained by either increasing the inhibitory inputs or decreasing
T‘hﬁ R atory inputs, while CVs smaller than one are only observed for low values of w.
Interestingly, for a fixed inhibitory input w, it is possible to decrease the CVs by either
increasing the excitatory input (as one would expect), or decreasing it. The blue lines
report the contour plots of the CVs; i.e. the values of (A, w) yielding the same CVs, while

the black dots represent the values of A, denoted by A\*, maximizing the CV for a fixed w.

13
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FIG. 4. Left figure: Heat map of the dependency of Q:‘C() n both inhibitory and excitatory
n ax

inputs. The ranges of values of A\ and w are written o s labels, the other parameters are the

;
same of Fig.2. The yellowish areas represent es of the CV larger than one. The blue lines are
e

the curves along which the CV has a constant value;¢:e. the 2D sections of the 3D plot (contour

lines). The black points are (\*,w), where Ams the value of A maximizing the CV of T for

a given w. Right figure: Relationsib}em and A* for two different values of €. Note that
V.

A* increases for increasing absolute values of'w; however the relation is not always linear as it may

look from the heat map. \

The values of \* in ea? ‘}w, suggesting some relation in the proportion of inhibitory

and excitatory inputs. his/can be observed in Fig.4-right, where we report (w, A*) for two

values of e. -)

C. The ﬁe olﬁinput-dependent parameters
.ﬁ

Whatis t)e reason causing the different behavior of the inverse mean FPT (firing rate)
angd the ‘SZV(T ) for the Jacobi diffusion (6) and the neuronal model (14)? To answer this
ﬁhﬁs‘t&)n, we investigate the role played by the inhibitory and excitatory inputs w and A in
the coefficients «, 8 and o2 of the neuronal model (14). In the general Jacobi model (6), if
seen as a neuronal model, the only variable coefficient is 3, while in (14) the inputs affect all
three coefficients. To answer the question posed above, keeping the notation of Section I1B,

we study how 1/E(T) and CV(T') change if the input parameters act only on two of the

14
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Publishitigee coefficients.

In the first row of Fig.5, we fix @ = 1/7 constant, i.e., independent on the input param-
eters. Under this scenario we observe, except for very low values of w, a small subtractive
effect in the f-I curve for low values of . Almost no effect is seen for high values of \.
It suggests that the noise alone cannot produce large divisive effeg(s. Similarly, no divisive
effects are observed when av = 1/7 4 p, i.e. when « depends on e.sxm ion only (1 = al)

ects o2 only, and in this

but not on the inhibition (results not shown). In contrast to/Fig:2,the firing rate increases
with the inhibition in this case. This is because the para N

way increases the fluctuations of the membrane depolarization and thus the firing rate. On
—

the right panel of the first row of Fig.5, one can see that th increases when the rate of

inhibitory input, w, increases and is monotonicaﬂ}:decr ing function of A\. These results

: o@e Jacobi diffusion (6).
In the second row of Fig.5, we let « a&t&ﬁ; v with the input parameters and fix
n“Ref.21.

0% = 0.33 ms™!, physiological value used ~1\ . A divisive effect is not visible in the
f-1 curve, while the subtractive o iﬁﬁm{g. In this scenario, the firing rate decreases

if the inhibitory rate increases. Fhe %eﬁ’e monotonically decreasing functions of A that

agree qualitatively with what we observed in

intersect for different values of w. Avand w close to zero, the CV is greater than one
,\Zﬁees not depend on them and therefore it does not tend
to zero. Interestingly, in€reasing the inhibition reduces the CVs for values of A smaller than
0.5 ms™'. %‘S

In the third ?(r ig.5/vve consider § = =V /(7(Ve — V7)) independent of A, while «

because, differently from before

and o? are varyihg with the input parameters. Both the divisive and the subtractive effects
are visible j }D f-I curve. However, the firing frequency, 1/E(T"), is lower than before
(about 1£10) .#Considering the dependency of CV on the input, we see that for values of w
greatef than 1418_1, the CV is monotonically increasing in A and larger than one. This

t@%se 5

haplme is constant while o2 increases in A causing the variability to increase.

1ally, Snder this scenario, for small values of w (see the case w = 0.01 ms™!) the CV curve

oW inimum, Fig.3 - right panel. To get maxima in the CV as a function of \, it seems
~

that the input parameters have to act simultaneously on all the three coefficients as happens

for the Jacobi neuronal model (14) with coefficients given by Eq.(20).

15
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Publishing a=1/r, B=p-V/(r(VE-V1)), o°>=(A+w)e

0.3

1EM)(ms™)

0.11

004 *°

0.3

o
)
h

1/E(T)(ms ™)

0.11

?x(ms’1)

ﬁ
ering rate, 1/E(T), and coefficient of variation of the ISIs generated by the Jacobi diffusion

euroenal model as a function of the excitatory rate A for several choices of the inhibitory rate w
if the input parameters act on two of the three coefficients o, 8 and o2 only (the constant one is
marked in bold). In the first row o« = 1/7 constant (i.e. independent of the input parameters A
and w), in the second row 2 = 0.03 ms~! constant, in the third row 8 = —V;/(7(Vg — V7)) while

a and o2 change with A\ and w. We recall from Eq. (15) that g = aX and v = iw.
16
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Publishiig. DISCUSSION

A. Firing rate

An increase of the firing frequency with increasing level of inhi]z?n is a counter-intuitive

phenomenon. It was observed for neuronal networks, e.g. in Ref.42 *and for single neurons,
on

e.g. in Ref.43. Here, for low values of the excitatory rate A ge s e right panel of

Fig.2 that increasing the inhibition increases the firing rate.‘qg
the input frequency is low (small A), then the inhibitiog he

the noise, cf. Eq.(16). -

son is the following: if
s thefiring since it increases
—

The noise alone causes only a modest divisive effection th§ firing rate during shunting in-
hibition. Holt and Koch*' showed that for an int@te 1d-fire model in the suprathreshold
regime, the effect of a voltage-independent inhibitipn i&stibtractive. Doiron et al.** extended
this result to the voltage-dependent case! N a divisive effect at low frequencies of
excitation for a stochastic leaky integr %@ model with additive noise, provided that

the noise increases with the inhibito Ni.LLBut Divisive modulation of the firing rate under
by

o
nonlinear integration of the inputs*. In fact, it is

noisy conditions is instead enhan&c&06
known that dendritic integra% tory and inhibitory inputs can be highly nonlinear

due to the dendritic saturation?. g Ref.47 the authors proposed a dendritic integrate-and-

/e\jnlinearity of the dendritic integration rule, at the expense

at)',ca

niffthe inclusion of the reversal potentials introduces a nonlinear

mulation. The synaptic inputs are summed linearly in the

pendénce on the underlying inhibitory inputs. We speculate that, not only the role of the

ngise-is cial’®, but also 1/« has to decrease for increasing w to obtain a divisive effect

( thirb row of Fig.5).
\ <

B.\ Variability of the response

Traditionally, the neural code is assumed to be hidden in the firing frequency. Neverthe-

less, recently, the spiking variability attracts attention of neuroscientists as an alternative or

17
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4951 Two interchangeable measures of variability,

Publishi:mtg] cast as an auxiliary part of the code
the Fano factor and the Coefficient of variation, have been employed®?5*. Here, due to the
knowledge of the first two moments of the ISIs, we evaluated the CV as a function of the
excitation rate. It is drastically affected by the dependence of the coefficients o, 8 and o2
on the input parameters in Eq.(20) producing three main featureg: CV greater than one,
and presence of maxima and minima with respect to the rate o *1ta v inputs, .

of the noise on the input (large values of €). If the rat tory inputs, w, is small,

We observe minima of CV for small values of the 1nh1b1t0ry%d for strong dependency
nh

then an increase of A\ implies a decrease in the CV, as 1 .?Tens for the general Jacobi

process with fixed o and 2. However, if the rate of Oltatdsv nputs, A, is large, the noisy

term 0% = (A + w)e & \e becomes dominant an tﬁ‘e reases. Minima in the CV as a

function of the noise were observed for the Or tem—@nbeck neuronal model®®.

In the Jacobi neuronal model with Coe cients glv n by Eq.(20), the increase of inhibitory

and excitatory rates leads to an increasefo he oise 02, but at the same time to a decrease in
0S

1/a that reduces the voltage fluctua is suppressmn of fluctuations was also observed

in the conductance-based model# and\i
presence of maxima in Fig.3: th&\gr
«. The maxima are not observe%e = 0.001, because in that case the noise is too small
to produce an increase j f@if . To the best of our knowledge, maxima in the CV for the

Ornstein-Uhlenbeck fdeuro

56

vivo recordings®®. This mechanism explains the

s with the noise but then it is slowed down by

del were observed only when a refractory period was added

.55 /
to the dynamics®% y.
Values of t %Ner than one are commonly found in experimental data and investi-
gation of neurenal models in this direction has a long history”®. Generally, it is perceived as

connecte@to An increase of inhibition. Also for the Jacobi neuronal model with coefficients

(20), £he inhibigion increases the CV. In fact, even if the inhibition causes an increase of

thefiri
s stantyﬂly, producing thus a higher CV. Some authors connect large values of the CV with

rat) (and thus decreases the mean of T'), it increases the variance of T" even more

}balince between excitation and inhibition. For example, a highly irregular firing activity
is\produced in the presence of an appropriate balance of the excitatory and inhibitory input
(see e.g. Ref.49 and Ref.57). Christodoulou and Bugmann®®®® obtained CVs greater than
one for strong inhibition, in particular for a level of inhibition that is greater than 80% of

160

the level of excitation. Konig et al.®® argued that an exact balance (100%) of excitatory and

18
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PUbliShih]gl bitory inputs cannot be realistic from a biological point of view. For the Jacobi neuronal
model, we observe CVs greater than one also for the inhibitory rate that is less than 50%
of the rate of the excitatory one, see for example Fig.3-central panel.

For all these reasons, the Jacobi neuronal model given by Eqgs. (14), (16) and (20) consti-
tutes a good compromise between the realistic description of a neuz( and the mathematical
%

tractability. Indeed, it is able to reproduce high degree of irre the real neuronal

firing. A deeper understanding of the meaning and consequefices*ef minima and maxima in
e}\Q\ure work in the context

the CV of the ISIs is also of interest and it will be the ob Qa t
—~

of information transmission and coherence resonance. 9
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