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The Jacobi process is a stochastic diffusion characterized by a linear drift and a

special form of multiplicative noise which keeps the process confined between two

boundaries. One example of such a process can be obtained as the diffusion limit

of the Stein’s model of membrane depolarization which includes both, excitatory

and inhibitory reversal potentials. The reversal potentials create the two boundaries

between which the process is confined. Solving the first-passage-time problem for

the Jacobi process, we found closed-form expressions for mean, variance and third

moment, that are easy to implement numerically. The first two moments are used here

to determine the role played by the parameters of the neuronal model. Namely, the

effect of multiplicative noise on the output of the Jacobi neuronal model with input-

dependent parameters is examined in detail and compared with the properties of the

generic Jabobi diffusion. It appears that the dependence of the model parameters on

the rate of inhibition turns out to be of primary importance to observe a change in

the slope of the response curves. This dependence also affects the variability of the

output as reflected by the coefficient of variation. It often takes values larger than

one and it is not always a monotonic function in dependency on the rate of excitation.
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Diffusion processes with multiplicative noise are able to model the changes in

the membrane depolarization between two consecutive spikes of a single neuron.

Among them, the most commonly used models consider either no state-space

boundaries or only a lower boundary. Nevertheless, the upper boundary also

modifies the properties of the model due to the multiplicativity of the noise.

Here we consider the Jacobi diffusion process that is able to include, in its neu-

ronal interpretation, both excitatory and inhibitory reversal potentials (upper

and lower boundary, respectively). In the Jacobi neuronal model the involved

parameters are input-dependent and this, together with the form of the mul-

tiplicative noise, affects the output of the model. The response of the neuron

is studied focusing on the behavior of the first-passage time through the firing

threshold, identified with the dynamics of spike generation. Computationally

easy expressions of the first two moments of the first-passage time for the Ja-

cobi process are derived and implemented to study the firing rate and variability

of the inter-spike intervals. The third moment is given as a tool for the param-

eter estimation. All the results concerning the first-passage-time problem are

general and can be used outside the framework of computational neuroscience.

I. INTRODUCTION

In the models where noise is assigned a casual importance, it is often assumed to be a

source of inefficiency and unpredictability. However, there exists a large class of phenomena

for which the noise is of a primary importance or even a part of the signal itself. Mathemat-

ical models in neuroscience are one of the most prominent examples in this direction. The

celebrated model of Lapicque, republished and discussed at its centennial anniversary1,2, was

deterministic, but its numerous generalizations took into account the input-output variabil-

ity of the neurons in the networks and became intrinsically stochastic. From a biophysical

point of view, the models of a single neuron reflect the electrical properties of its membrane.

Such circuit models can be written in terms of differential equations for the membrane volt-

age. To reduce their mathematical complexity, integrate-and-fire type of the models have

been derived3,4. These models aim to describe the dynamics of interspike intervals and
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they are based on a one-dimensional representation of the time evolution of the neuronal

membrane depolarization.

One class of stochastic models which can be classified as a generalization of the Lapicque

model with restricted state space appeared in the sixties. Stein5 and Johannesma6 intro-

duced models with conductance changes caused by excitatory and inhibitory inputs. The

state space of the depolarization was limited between two boundaries, the inhibitory and the

excitatory reversal potentials. Later, this type of models with multiplicative noise started

to be extensively investigated7–11. These studies often employed the diffusion limits of the

originally discontinuous models to improve their tractability. Among them, the most com-

monly investigated model considers the lower boundary only and with its specific form of

the diffusion coefficient, it can be identified as the Feller process (in biology), also known

as Cox-Ingersoll-Ross (in finance) or square-root process (in mathematics). Nevertheless,

there seems to be no strong mathematical argument for the selection of a specific form of

the diffusion coefficient which controls the state space of the depolarization. Thus, several

other different variants have been investigated11,12. The emphasis on the lower boundary,

the inhibitory reversal potential, appears probably because the role of the upper boundary,

the excitatory reversal potential, seems to be blurred by imposing below it a firing threshold.

However, despite the existence of the threshold, the upper boundary modifies the properties

of the model due to the multiplicativity of the noise.

The studies in which both reversal potentials are considered are more rare13–16 and the

present article is devoted to such a model. Here, the effect of multiplicative noise on the

output of Jacobi neuronal model with dependent parameters is examined in detail. After

introducing the Jacobi diffusion process and describing the firing mechanism which is based

on the solution of the first-passage-time problem, the expressions for the first three mo-

ments are presented. Up to this point, the results are independent of the application in

neuroscience. Further, intrinsic dependency of the parameters as it follows from biophysical

model is presented and results for such a model deduced and interpreted.

II. THE PEARSON DIFFUSION MODELS

One-dimensional stochastic differential equations play a key role in the description of

fluctuating phenomena belonging to different fields of applications as physics, biology, neu-
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roscience, finance and others17. In particular, the class of models with a linear drift and

driven by a Wiener process is widely used for its mathematical tractability and flexibility.

These models are described by a stochastic differential equation of the following type

dYt = (−αYt + β) dt+ Σ(Yt)dWt, Y0 = y0, (1)

where α > 0, β ∈ R, W = {Wt}t≥0 is a standard Wiener process and Y0 = y0 is the

initial condition. The diffusion coefficient Σ(Yt) > 0 determines the amplitude of the

noise and, according to its dependence on Yt, it characterizes the solution of Eq.(1). If

Σ(Yt) =
√
aY 2

t + bYt + c for a, b, c ∈ R, the solution of Eq.(1) is called Pearson diffusion

process18. A wide range of well-known processes belongs to this class. The solution of Eq.(1)

is an Ornstein-Uhlenbeck process for Σ(Yt) = σ > 0 constant (i.e. a = b = 0, c = σ), a

Feller process (also known as Cox-Ingersoll-Ross model or square-root process) for Σ(Yt) =

σF
√
Yt, σF > 0 (i.e. b = σ2

F , a = c = 0), an inhomogeneous geometric Brownian motion for

Σ(Yt) = σGYt, σG > 0 (i.e. a = σ2
G, b = c = 0) and a Jacobi diffusion (or Wright-Fisher

diffusion process) for Σ(Yt) = σJ
√
Yt(1− Yt) (i.e. a = −σ2

J , b = σ2
J , c = 0). Throughout this

work we will focus on this last process.

The values taken by model (1), i.e. its state space, are in the interval −∞ ≤ B1 <

y0 < B2 ≤ +∞. The endpoints B1 and B2 can or cannot be reached in a finite time

depending on the underlying parameter conditions. According to the Feller’s classification

of boundaries19, B1 is an entrance boundary if it cannot be reached by Yt in finite time,

and there is no probability flow to the outside of the interval (B1,+∞), that is, the process

stays in [B1,+∞) with probability 1. Vice versa, B1 is an exit boundary if the process can

attain it, but then it cannot return into (B1,+∞). The latter situation is not suitable for

our modeling purposes, and thus it is not considered here. An analogous classification for

B2 can be stated.

We denote the transition probability density function (pdf) of the diffusion process (1) by

f(y, t|z, τ). If W(y) := lim
t→∞

f(y, t|y0, 0) exists independently on y0, we say that the process

Yt admits a stationary distribution W(y). Independently on the choice of Σ(Yt), the mean

of Yt in (1) is given by

E[Yt|Y0 = y0] =
β

α
+

(
y0 −

β

α

)
e−αt, (2)
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and the asymptotic mean by

lim
t→+∞

E[Yt|Y0 = y0] := E[Y∞] =
β

α
, (3)

while higher moments of Yt depend on the function Σ(Yt) in (1).

Let the process Yt evolve in the presence of an absorbing boundary S, y0 < S < B2.

Then Eq.(1) describes the dynamics of Yt until it crosses S for the first time, the so called

first-passage time (FPT), defined as

T := inf{t ≥ 0 : Yt ≥ S|y0 < S}, (4)

with pdf g(t) := g(t|y0, S). The moments of T can be calculated through the Siegert’s

formula20

E[T n] = n

∫ S

x0

2dz

[Σ(Yt)]2W(z)

∫ z

−∞
W(x)E[T n−1]dx, n = 1, 2, . . . (5)

Three distinct situations for the FPT can occur. The process is said to be in the suprathresh-

old, subthreshold and threshold regimes if E[Y∞] > S,E[Y∞] < S and E[Y∞] = S, respec-

tively.

A. The Jacobi diffusion process

The aforementioned Jacobi diffusion19 is a stochastic process with state space (0, 1), given

as the solution to the following stochastic differential equation

dYt = (−αYt + β)dt+ σ
√
Yt(1− Yt)dWt, Y0 = y0, (6)

with α > 0, σ > 0, y0 ∈ (0, 1). Sometimes, it is alternatively defined on the interval (−1, 1)

by setting Σ(Yt) = σJ
√

1− Y 2
t , σJ > 0. Throughout, we will consider the Jacobi diffusion

given by (6). The conditional variance of the Jacobi process, the moment generating function

and the transition pdf are given in Refs.18, 21 and 22, respectively.

Let η := 2α/σ2 and γ := 2β/σ2. Then, for γ > 0 such that min(γ, η − γ) ≥ 1, the

boundaries 0 and 1 are of entrance type22 and the Jacobi diffusion admits a stationary

distribution W . In particular, W is a Beta-distribution with shape parameter γ and scale

parameter η − γ, i.e.18

Y∞ ∼ Beta (γ, η − γ) , (7)

5
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with mean (3) and variance Var(Y∞) = β(α− β)σ2/(2α + σ2).

In the presence of a constant threshold S, with 0 < y0 < S < 1, the Laplace transform

of the FPT T , i.e. g∗(ξ) := E[e−ξT ] =
∫∞
0
e−ξtg(t)dt, ξ > 0, is given by21

g∗(ξ) =
2F1

(
2ξ
θσ2 , θ; γ; y0

)
2F1

(
2ξ
θσ2 , θ, γ;S

) , (8)

where

θ =
2α− σ2 −

√
(σ2 − 2α)2 − 8ξσ2

2σ2
.

Here 2F1 denotes the Gaussian hypergeometric function belonging to the class of the gener-

alized hypergeometric functions pFq defined by

pFq(a1, . . . , ap; b1, . . . , bq; z) :=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (9)

where (a)n is the rising factorial defined by (a)n = a(a + 1) · · · (a + n − 1) for n ∈ N and

(a)0 = 1. The mean FPT, E[T ], is21

E[T ] =
1

β

∞∑
k=0

(η)k
(γ + 1)k

Sk+1 − yk+1
0

k + 1
. (10)

Using the definition of the hypergeometric function (9) for p = 3 and q = 2, and the fact

that (1)k = k!, (2)k = (k + 1)!, we rewrite Eq.(10) as

E[T ] =
1

β
[3F2 (1, 1, η; 2, γ + 1;S)S − 3F2 (1, 1, η; 2, γ + 1; y0) y0] . (11)

This expression involves only hypergeometric functions, and has the advantage of easier

numerical evaluations with the package hypergeo23 in the computing environment R24.

We derive the second moment of T using the Siegert formula (5) and replacing the

integral terms with their Taylor expansions, following what has been proposed in Ref. 25 for

the calculation of the moments of the FPT of an Ornstein-Uhlenbeck process. In this way

we obtain the variance of T

Var(T ) =
E[T ]

β
[S 3F2 (1, 1, η; 2, γ + 1;S) + y0 3F2 (1, 1, η; 2, γ + 1; y0)] + (12)

− 4

σ2β

∞∑
k=0

(η)k
(γ + 1)k(k + 1)(k + 2)(γ + k + 1)

×

×
[
3F2(1, k + 2, η + k + 1; k + 3, γ + k + 2;S)Sk+2 − 3F2(1, k + 2, η + k + 1; k + 3, γ + k + 2; y0)y

k+2
0

]
.

To evaluate Eq.(12) numerically, we replace the series with the sum of the first k terms.

Our comparisons for different values of k with Monte Carlo simulations show that the series
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(and thus the value of the variance) can be satisfactorily computed by summing the first 20

terms. All the numerical results presented in the following parts were carefully verified by

extensive simulations with relative difference always below 1%. Finally, we also derive the

third moment of T using the Siegert formula (5), obtaining

E[T 3] =
3SE[T 2]

β
3F2 (1, 1, η; 2, γ + 1;S) +

− 12
E[T ]

σ2β

∞∑
k=0

(η)k 3F2(1, k + 2, η + k + 1; k + 3, γ + k + 2;S)Sk+2

(γ + 1)k(k + 1)(k + 2)(γ + k + 1)
+

+
24

σ4β

∞∑
k=0

(η)k
(γ + 1)k(k + 1)(γ + k + 1)

∞∑
n=0

(η + k + 1)n
(γ + k + 2)n(k + n+ 2)(γ + k + n+ 2)

×

×
[
3F2 (1, k + n+ 3, η + k + n+ 2; k + n+ 4, γ + k + n+ 3;S)Sk+n+3+

− 3F2 (1, k + n+ 3, η + k + n+ 2; k + n+ 4, γ + k + n+ 3; y0) y
k+n+3
0

]
.

The derived expressions of the first three moments can be used to perform moment estima-

tion of the parameters α, β and σ appearing in Eq.(6). This would be particularly interesting

in neuroscience, where parameter estimation from FPT data has already been successfully

applied for other diffusion models26–29. Moreover, it will allow a comparison with the results

available for the parameter inference on α and β for the Jacobi process for continuously

recorded observations of the trajectory of X(t) (modeling the membrane voltage)30.

In Fig. 1, we illustrate the inverse mean FPT, defined as 1/E[T ], the coefficient of variation

(CV) of T , defined as the ratio between the standard deviation and the mean of T , i.e.

CV(T ) =
√

Var(T )/E[T ], and the stationary distribution W of the Jacobi diffusion (6)

given by Eq.(7). As expected, the inverse mean FPT increases and CV decreases with

increasing drift coefficient, β. Further, the asymptotic distribution gets more symmetric for

large values of β. Both, the inverse mean FPT as well as CV, increase with increasing the

noise amplitude and the curves become smoother.

B. The Jacobi diffusion as a neuronal model

Eq.(1) with various noisy terms is widely used in the context of neuroscience. It describes

the subthreshold dynamics of the membrane voltage of a nerve cell, i.e. the evolution of the

membrane depolarization between two consecutive spikes (firing), modeled as crossings of

a certain threshold. In this way the interspike interval (ISI) is identified with the FPT of

7
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FIG. 1. Some properties of the Jacobi diffusion. Panels (a) and (b): Inverse mean FPT and

CV(T ) as a function of the drift coefficient, β, for different values of the noise, σ2. The process is

in suprathreshold regime for β > 0.2 (thick lines). In both figures, y0 = 0.1, α = 1, S = 0.2. Panel

(c): pdf of the asymptotic distribution W of Y∞ for different values of β with y0 = 0.1, α = 1

and σ2 = 0.1. Values of β ≤ 0.05 do not satisfy the condition min(γ, η − γ) ≥ 1 in this case. The

vertical line represents the threshold S.

the mathematical model. With Σ(Yt) = 0, constant absorbing threshold S, time constant

τ = 1/α and constant or time-varying input β, Eq.(1) has often been investigated as a

deterministic leaky integrate-and-fire neuronal model31. To take the underlying intrinsic

neuronal randomness into account, the model was often extended by adding a white or

colored noise.

The diffusion process (1) has been often obtained as a diffusion limit (also known as

diffusion approximation) of discontinuous jump process under the assumption of increasing

frequency and decreasing size of the jumps9,11,32,33. An example of the initial discontinu-

ous process is the Stein’s model with reversal potentials VI and VE given by the following

stochastic differential equation:

dXt = −1

τ
Xtdt+ a(VE −Xt)dN

+(t) + i(Xt − VI)dN−(t), X0 = x0, (13)

where i and a are constants such that −1 < i < 0 < a < 1. Here τ > 0 is the membrane

constant taking into account the spontaneous voltage decay towards the resting potential

VR in the absence of input and the inhibitory and excitatory reversal potentials VI and VE

are such that VI < 0 < VE. We assume VR = x0 = 0. In Eq.(13), N+ := {N+(t), t ≥

0} and N− := {N−(t), t ≥ 0} are two independent homogeneous Poisson processes with

N+(0) = N−(0) = 0 and intensities λ and ω, respectively. The processes N+ and N−

8
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represent the excitatory and inhibitory neuronal inputs, respectively, while λ and ω are

called the excitatory and inhibitory input parameters and represent the rate of arrival of

excitatory and inhibitory postsynaptic potentials. According to model (13), each event of

the excitatory process N+ produces a jump in the membrane voltage ∆X = a(VE − Xt).

Similarly, an event of the inhibitory process N− hyperpolarizes the membrane by i(Xt−VI).

This implies that the effect of the input is state-dependent: the amplitude of changes in the

depolarization Xt decreases when Xt approaches the inhibitory or the excitatory reversal

potentials VI and VE. A direct consequence is that the process is constrained on the interval

(VI , VE), i.e. the state space of the process is (VI , VE).

Under the assumptions of jump amplitudes a, i decreasing to zero but occurring at in-

creasing frequencies λ, ω roughly inversely proportional to the square of the jump size, a

diffusion approximation of a generalization of Eq. (13), including random jump amplitudes

depending simultaneously on both reversal potentials, was proposed11. The stochastic dif-

ferential equation describing this dynamics is

dXt =

(
−Xt

τ
+ µ(VE −Xt) + ν(Xt − VI)

)
dt+ σ

√
(VE −Xt)(Xt − VI)dWt, X0 = 0,

(14)

where

µ = aλ, ν = iω. (15)

The parameter σ2 determines the amplitude of the noise and it is often assumed to grow

linearly with the input34–36. Following this, we let the noise intensity vary according to the

formula

σ2 = (λ+ ω)ε, (16)

obtained through the diffusion approximation. Here the constant ε > 0 determines the rela-

tion between the input parameters and the noise amplitude. The asymptotic depolarization

of the process Xt is denoted by X∞, and its mean is given by

E[X∞] =
µVE − νVI
1
τ

+ ν − µ
. (17)

For a better understanding of the parameters µ and ν, we recall the equation of a

conductance-based neuronal model. The evolution in time of the potential difference V

across the membrane of a neuron is given by (see e.g. Ref.14 and Ref.37)

dVt = −gL
C
Vtdt−

[
gE(t)

C
(Vt − VE) +

gI(t)

C
(Vt − VI)

]
dt, (18)

9
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where C is the membrane capacitance, gL is the conductance of the leak current, while

gE(t) and gI(t) are the conductances of the excitatory and inhibitory components of the

synaptic current, respectively. Eq.(18) is analogous to Eq.(13) with gL/C playing the role of

the membrane constant τ and with gE(t) = CaE
∑

k δ(t − tk), where aE is a dimensionless

constant measuring the strength of the synapse and tk is the time of the arrival of the k-

th incoming excitatory pulse, distributed according to a Poisson process with parameter λ

(similarly for gI(t) and ω). The arrival of one excitatory pulse increases the conductance

gE(t) by a factor of CaE and consequently the increase in the voltage is ∆V = aE(VE − Vt).

Focusing again on the model (14), we see that the state space of Xt is again the interval

(VI , VE), where VI and VE are both entrance boundaries if the following condition is satisfied

ε(λ+ ω) < − 2VI
τ(VE − VI)

. (19)

Throughout the paper, the underlying parameters are chosen to guarantee that this bound-

ary condition is met.

As previously mentioned, three firing regimes can be considered for the process Yt and

thus for the process Xt. Referring to the latter model, if the asymptotic mean depolarization

(17) is larger than the firing threshold S, then the process is in the suprathreshold regime.

If it is smaller, then it is in the subthreshold regime and the noise plays a crucial role for the

crossing of the threshold. Finally, if the asymptotic mean is equal to S, the process is in the

threshold regime. However, due do the interplay of the parameters, the specific situation is

more complicated and the role played by the noise may be counterintuitive, as seen later.

Using the transformation

y =
x− VI
VE − VI

,

from Eq.(14) we get Eq.(6), whose solution is confined in (0, 1), with

α =
1

τ
+ µ− ν, β = µ− VI

τ(VE − VI)
, Y0 = y0 = − VI

VE − VI
. (20)

All the analytical results previously presented for the Jacobi process in (0, 1) can thus be

used. However, it is important to stress that the coefficients α, β and also the noise σ2 are

now input dependent, being functions of the input parameters λ and ω.

10
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III. INPUT-OUTPUT PROPERTIES OF THE JACOBI NEURONAL

MODEL

A. Firing rate

The relation between the level of synaptic input received by a neuron and the frequency

of the generated action potentials (firing frequency) is commonly reflected by the so-called

f -I curve. The activation of an inhibitory input can produce in the neuron a change in its

membrane potential (hyperpolarization) and/or an increase in the membrane conductance

(shunting inhibition)38,39. The latter effect modifies the sensitivity of a neuron to a variation

in the excitatory input rate40 and produces a change in the slope of the f -I curve for

different inhibitory input rates (divisive effect)36. If the slope is high, a small variation

in the excitatory input rate produces a big difference in the resulting firing rate. The

hyperpolarization decreases the membrane depolarization reducing the effect of a subsequent

excitatory stimulation. In this case the f -I curve shifts for different inhibitory input rates

but keeps its slope (subtractive effect). In this section, we investigate how the dependence

of the coefficients α, β, σ in the model (14) on the input rates given by Eqs. (16) and (20)

affects the FPTs (and thus the ISIs) of the Jacobi neuronal model.

As already mentioned, the firing frequency is commonly replaced by the inverse of the

mean ISI, 1/E(T ). In this way we constructed the f -I curve for model (14) considering

the same physiologically realistic parameters as those given in Example 1 of Ref. 21: VI =

−10mV, VE = 100mV, S = 10mV, τ = 5.8ms, i = −0.2, a = 0.02, x0 = 0mV, for different

values of ε, λ and ω, namely λ ∈ (0, 3), ω ∈ (0, 1) and ε = 0.001, 0.0145 (as in Ref. 36), and

0.02.

In Fig. 2 we plot the firing rate as a function of the excitatory rate λ for different values

of the inhibitory rate ω, and observe a divisive effect of inhibition for low frequencies of the

excitatory input and a subtracting effect for high frequencies. For higher values of λ, the

deterministic force characterized by β drives the neuron to fire. The behavior of 1/E(T )

for the neuronal model (14) differs from that of the general Jacobi diffusion (6) reported in

Fig.1. There the inverse mean FPT increases when σ2 increases, while here the firing rate

decreases in the suprathreshold regime if we increase σ2 by increasing the inhibitory rate, ω

(cf. Eq.(16)).

11
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FIG. 2. Firing rate, 1/E(T ), for the Jacobi diffusion neuronal model, as a function of the excitatory

rate λ for several fixed levels of the inhibitory rate ω, the values of λ are limited by condition (19).

The right panel is a zoomed version of the left one. Same parameter values of Example 1 of Ref.21:

VI = −10 mV, VE = 100 mV, S = 10 mV, τ = 5.8 ms, i = −0.2, a = 0.02, x0 = 0 mV, and

ε = 0.0145 as in Ref. 36. The values of ω are in the legend (ms−1). We note a divisive effect for

low frequencies and subtracting effect for high frequencies of the excitatory input, as also shown

in Ref.36. The lines become thick when the chosen parameters yield the process in suprathreshold

regime.

If we decrease the value of the reversal potential VE, the excitatory term µ(VE −Xt) in

(14) has a weakened effect (figure not shown). The f -I curve shifts to the right for increasing

inhibition ω compared to the case of Fig.2. This is because changing the reversal potential

is equivalent to change the input by a constant quantity41. Also in this case, divisive and

subtractive effects are observed. Thus, their presence does not depend on the value of the

reversal potential.

B. Firing variability

Using Eqs. (11) and (12), in Fig.3, we plot the CV of the ISIs generated by model (14)

as a function of the excitatory rate λ for different fixed values of the inhibitory rate ω. In

all the considered cases, the CV grows with increasing inhibition. For ε = 0.001, it means

very small level of noise, as seen from equation (16), the CVs are smaller than one and

are decreasing functions of the excitatory rate λ. For bigger ε, we observe values of the

12
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FIG. 3. Coefficient of variation of the ISIs generated by the Jacobi diffusion neuronal model as

a function of the excitatory rate λ for several choices of the inhibitory rate ω. The parameters

are chosen as in Fig.2. Left figure: ε = 0.001. The CVs monotonically decrease in λ and takes

small values for low inhibitory inputs. Central figure: ε = 0.0145. The CVs grow with increasing

inhibition. For high values of ω, the curves reach a maximum value and then change concavity.

Right figure: ε = 0.02. For values of ω close to zero, the CV curves have minima. All CVs

are plotted as a function of λ such that Eq.(19) is fulfilled, this is the reason why some lines stop

before others. The lines become thick when the chosen parameters yield a process in suprathreshold

regime. All maxima and minima occur in the subthreshold regime in the considered cases.

CV greater than one and different behaviors, concavities and types of monotonicity of the

CV for different values of ω. Interestingly, the CVs are non-monotonic in λ and some CVs

exhibit a maximum or a minimum for certain values of the input parameters. Note that,

in the cases considered here, all maxima and minima occur in the subthreshold regime (the

thick lines in the figure indicate suprathreshold regime). Many of these features are not

present in the CVs of the Jacobi diffusion (6) reported in Fig. 1, suggesting a qualitative

difference between the general and the neuronal-based models.

To illustrate the simultaneous dependence of the CV on the inhibitory and the excitatory

inputs, we report its heat map in Fig.4-left for ε = 0.0145. All CVs increase in ω, CVs

larger than one can be obtained by either increasing the inhibitory inputs or decreasing

the excitatory inputs, while CVs smaller than one are only observed for low values of ω.

Interestingly, for a fixed inhibitory input ω, it is possible to decrease the CVs by either

increasing the excitatory input (as one would expect), or decreasing it. The blue lines

report the contour plots of the CVs, i.e. the values of (λ, ω) yielding the same CVs, while

the black dots represent the values of λ, denoted by λ∗, maximizing the CV for a fixed ω.
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FIG. 4. Left figure: Heat map of the dependency of the CV of T on both inhibitory and excitatory

inputs. The ranges of values of λ and ω are written on the axes labels, the other parameters are the

same of Fig.2. The yellowish areas represent values of the CV larger than one. The blue lines are

the curves along which the CV has a constant value, i.e. the 2D sections of the 3D plot (contour

lines). The black points are (λ∗, ω), where λ∗ denotes the value of λ maximizing the CV of T for

a given ω. Right figure: Relationship between ω and λ∗ for two different values of ε. Note that

λ∗ increases for increasing absolute values of ω; however the relation is not always linear as it may

look from the heat map.

The values of λ∗ increase with ω, suggesting some relation in the proportion of inhibitory

and excitatory inputs. This can be observed in Fig.4-right, where we report (ω, λ∗) for two

values of ε.

C. The role of input-dependent parameters

What is the reason causing the different behavior of the inverse mean FPT (firing rate)

and the CV(T ) for the Jacobi diffusion (6) and the neuronal model (14)? To answer this

question, we investigate the role played by the inhibitory and excitatory inputs ω and λ in

the coefficients α, β and σ2 of the neuronal model (14). In the general Jacobi model (6), if

seen as a neuronal model, the only variable coefficient is β, while in (14) the inputs affect all

three coefficients. To answer the question posed above, keeping the notation of Section II B,

we study how 1/E(T ) and CV(T ) change if the input parameters act only on two of the

14
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three coefficients.

In the first row of Fig.5, we fix α = 1/τ constant, i.e., independent on the input param-

eters. Under this scenario we observe, except for very low values of ω, a small subtractive

effect in the f -I curve for low values of λ. Almost no effect is seen for high values of λ.

It suggests that the noise alone cannot produce large divisive effects. Similarly, no divisive

effects are observed when α = 1/τ +µ, i.e. when α depends on the excitation only (µ = aλ)

but not on the inhibition (results not shown). In contrast to Fig.2, the firing rate increases

with the inhibition in this case. This is because the parameter ω effects σ2 only, and in this

way increases the fluctuations of the membrane depolarization and thus the firing rate. On

the right panel of the first row of Fig.5, one can see that the CV increases when the rate of

inhibitory input, ω, increases and is monotonically decreasing function of λ. These results

agree qualitatively with what we observed in Fig.1 for the Jacobi diffusion (6).

In the second row of Fig.5, we let α and β vary with the input parameters and fix

σ2 = 0.33 ms−1, physiological value used in Ref.21. A divisive effect is not visible in the

f -I curve, while the subtractive one is strong. In this scenario, the firing rate decreases

if the inhibitory rate increases. The CVs are monotonically decreasing functions of λ that

intersect for different values of ω. For λ and ω close to zero, the CV is greater than one

because, differently from before, σ2 does not depend on them and therefore it does not tend

to zero. Interestingly, increasing the inhibition reduces the CVs for values of λ smaller than

0.5 ms−1.

In the third row of Fig.5, we consider β = −VI/(τ(VE − VI)) independent of λ, while α

and σ2 are varying with the input parameters. Both the divisive and the subtractive effects

are visible in the f -I curve. However, the firing frequency, 1/E(T ), is lower than before

(about 1/10). Considering the dependency of CV on the input, we see that for values of ω

greater than 0.1 ms−1, the CV is monotonically increasing in λ and larger than one. This

happens because β is constant while σ2 increases in λ causing the variability to increase.

Finally, under this scenario, for small values of ω (see the case ω = 0.01 ms−1) the CV curve

shows a minimum, Fig.3 - right panel. To get maxima in the CV as a function of λ, it seems

that the input parameters have to act simultaneously on all the three coefficients as happens

for the Jacobi neuronal model (14) with coefficients given by Eq.(20).
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α = 1/τα = 1/τα = 1/τ , β = µ− VI/(τ(VE − VI)), σ2 = (λ+ ω)ε

α = 1/τ + µ− ν, β = µ− VI/(τ(VE − VI)), σ2 = 0.03ms−1σ2 = 0.03ms−1σ2 = 0.03ms−1

α = 1/τ + µ− ν, β = −VI/(τ(VE − VI))β = −VI/(τ(VE − VI))β = −VI/(τ(VE − VI)), σ2 = (λ+ ω)ε

FIG. 5. Firing rate, 1/E(T ), and coefficient of variation of the ISIs generated by the Jacobi diffusion

neuronal model as a function of the excitatory rate λ for several choices of the inhibitory rate ω

if the input parameters act on two of the three coefficients α, β and σ2 only (the constant one is

marked in bold). In the first row α = 1/τ constant (i.e. independent of the input parameters λ

and ω), in the second row σ2 = 0.03 ms−1 constant, in the third row β = −VI/(τ(VE − VI)) while

α and σ2 change with λ and ω. We recall from Eq. (15) that µ = aλ and ν = iω.
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IV. DISCUSSION

A. Firing rate

An increase of the firing frequency with increasing level of inhibition is a counter-intuitive

phenomenon. It was observed for neuronal networks, e.g. in Ref.42, and for single neurons,

e.g. in Ref.43. Here, for low values of the excitatory rate λ we see on the right panel of

Fig.2 that increasing the inhibition increases the firing rate. The reason is the following: if

the input frequency is low (small λ), then the inhibition helps the firing since it increases

the noise, cf. Eq.(16).

The noise alone causes only a modest divisive effect on the firing rate during shunting in-

hibition. Holt and Koch41 showed that for an integrate-and-fire model in the suprathreshold

regime, the effect of a voltage-independent inhibition is subtractive. Doiron et al.44 extended

this result to the voltage-dependent case, observing a divisive effect at low frequencies of

excitation for a stochastic leaky integrate-and-fire model with additive noise, provided that

the noise increases with the inhibitory input36. Divisive modulation of the firing rate under

noisy conditions is instead enhanced by a nonlinear integration of the inputs45. In fact, it is

known that dendritic integration of excitatory and inhibitory inputs can be highly nonlinear

due to the dendritic saturation46. In Ref.47 the authors proposed a dendritic integrate-and-

fire model incorporating the nonlinearity of the dendritic integration rule, at the expense

of an heavier mathematical formulation. The synaptic inputs are summed linearly in the

original Stein’s model5, but the inclusion of the reversal potentials introduces a nonlinear

synaptic summation. Here we argue that in neuronal models with multiplicative noise, like

the Jacobi diffusion considered in Eq.(6) with parameters given by Eq.(20), a fundamental

role to obtain divisive phenomena is played by the coefficient α, and in particular its de-

pendence on the underlying inhibitory inputs. We speculate that, not only the role of the

noise is crucial48, but also 1/α has to decrease for increasing ω to obtain a divisive effect

(see third row of Fig.5).

B. Variability of the response

Traditionally, the neural code is assumed to be hidden in the firing frequency. Neverthe-

less, recently, the spiking variability attracts attention of neuroscientists as an alternative or
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at least as an auxiliary part of the code49–51. Two interchangeable measures of variability,

the Fano factor and the Coefficient of variation, have been employed52–54. Here, due to the

knowledge of the first two moments of the ISIs, we evaluated the CV as a function of the

excitation rate. It is drastically affected by the dependence of the coefficients α, β and σ2

on the input parameters in Eq.(20) producing three main features: CV greater than one,

and presence of maxima and minima with respect to the rate of excitatory inputs, λ.

We observe minima of CV for small values of the inhibitory rate and for strong dependency

of the noise on the input (large values of ε). If the rate of inhibitory inputs, ω, is small,

then an increase of λ implies a decrease in the CV, as it happens for the general Jacobi

process with fixed α and σ2. However, if the rate of excitatory inputs, λ, is large, the noisy

term σ2 = (λ+ ω)ε ≈ λε becomes dominant and the CV increases. Minima in the CV as a

function of the noise were observed for the Ornstein-Uhlenbeck neuronal model55.

In the Jacobi neuronal model with coefficients given by Eq.(20), the increase of inhibitory

and excitatory rates leads to an increase of the noise σ2, but at the same time to a decrease in

1/α that reduces the voltage fluctuations. This suppression of fluctuations was also observed

in the conductance-based model14 and in vivo recordings56. This mechanism explains the

presence of maxima in Fig.3: the CV grows with the noise but then it is slowed down by

α. The maxima are not observed for ε = 0.001, because in that case the noise is too small

to produce an increase in the CV. To the best of our knowledge, maxima in the CV for the

Ornstein-Uhlenbeck neuronal model were observed only when a refractory period was added

to the dynamics55.

Values of the CV larger than one are commonly found in experimental data and investi-

gation of neuronal models in this direction has a long history7,8. Generally, it is perceived as

connected to an increase of inhibition. Also for the Jacobi neuronal model with coefficients

(20), the inhibition increases the CV. In fact, even if the inhibition causes an increase of

the firing rate (and thus decreases the mean of T ), it increases the variance of T even more

substantially, producing thus a higher CV. Some authors connect large values of the CV with

a balance between excitation and inhibition. For example, a highly irregular firing activity

is produced in the presence of an appropriate balance of the excitatory and inhibitory input

(see e.g. Ref.49 and Ref.57). Christodoulou and Bugmann58,59 obtained CVs greater than

one for strong inhibition, in particular for a level of inhibition that is greater than 80% of

the level of excitation. Konig et al.60 argued that an exact balance (100%) of excitatory and
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inhibitory inputs cannot be realistic from a biological point of view. For the Jacobi neuronal

model, we observe CVs greater than one also for the inhibitory rate that is less than 50%

of the rate of the excitatory one, see for example Fig.3-central panel.

For all these reasons, the Jacobi neuronal model given by Eqs. (14), (16) and (20) consti-

tutes a good compromise between the realistic description of a neuron and the mathematical

tractability. Indeed, it is able to reproduce high degree of irregularity of the real neuronal

firing. A deeper understanding of the meaning and consequences of minima and maxima in

the CV of the ISIs is also of interest and it will be the object of a future work in the context

of information transmission and coherence resonance.
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