
13 July 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Rapid Detection of Monilinia fructicola and Monilinia laxa on Peach and Nectarine using Loop-
Mediated Isothermal Amplification

Published version:

DOI:10.1094/PDIS-01-19-0035-RE

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1724381 since 2021-01-31T11:36:23Z



Davide Spadaro 1
Plant Disease

1 Rapid Detection of Monilinia Fructicola And Monilinia Laxa on Peaches and Nectarines Using 

2 Loop-Mediated Isothermal Amplification

3

4 Sara Franco Ortega1 , Maria del Pilar Bustos López1,2, Luca Nari 3, Neil Boonham 4, Maria Lodovica 

5 Gullino1,2, Davide Spadaro 1,2

6

7 1 Centre of Competence for the Innovation in the Agro-environmental Sector - AGROINNOVA, 

8 University of Turin, via Paolo Braccini 2, I-10095 Grugliasco, TO, Italy

9 2 Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, via Paolo 

10 Braccini 2,I-10095 Grugliasco, TO, Italy

11 3 AGRION, Fondazione per la ricerca l’innovazione e lo sviluppo tecnologico dell’agricoltura 

12 piemontese, 12030 Manta (Cn), Italy

13 4 FERA Sand Hutton, York, UK, Current address: IAFRI, Newcastle University, Newcastle upon 

14 Tyne, NE1 7RU, UK

15

16

17

18

19

20

21

22

23

24 Corresponding Author: Davide Spadaro, Email: davide.spadaro@unito.it

25

Page 1 of 39



Davide Spadaro 2
Plant Disease

26 Abstract

27 Monilinia laxa and Monilinia fructicola are two causal agents of brown rot, one of the most important 

28 diseases in stone fruit. Two species cause blight on blossoms and twigs, and brown rot on fruits in 

29 pre- and postharvest. Both species are worldwide distributed in North and South America, Australia 

30 and Japan. In Europe, M. laxa is endemic, while M. fructicola was introduced in 2001 and it is now 

31 widespread in several countries. Currently, both species are coexisting in European stone fruits 

32 orchards. Monilinia spp. overwinter in cankers and mummified fruits. Mummy monitoring during 

33 winter permits to understand which species of Monilinia will be prevalent in orchard during the 

34 following season, permitting to plan an appropriate crop protection. Traditionally, the identification 

35 has been carried out using morphological features and even with PCR-based assays that requires time 

36 and well-equipped laboratories. In this study, two isothermal-based methods were designed to 

37 identify these pathogens in a faster way than using traditional methods. The Loop-mediated 

38 AMPlification (LAMP) assays were validated on some isolates of Monilinia spp. coming from the 

39 mummy monitoring according to the international EPPO standard (PM7/98) taking into account the 

40 specificity, sensitivity, repeatability and reproducibility. The sensitivity of both assays was checked 

41 by monitoring at different time points two nectarines varieties artificially inoculated and stored at two 

42 different temperatures. The reliability of both LAMP assays against the quantification of the inoculum 

43 was compared with previously published qPCR assays. Both LAMP methods were able to detect low 

44 number of cells. These LAMP methods could be a useful tool for the monitoring brown rot causal 

45 agents in the field and during postharvest.

46

47 Keywords: LAMP, brown rot, Prunus persica, nectarine, peach, field, molecular diagnostics
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48 Monilinia laxa (Aderhold and Ruhland), Monilinia fructicola (Winter) Honey, Monilinia 

49 fructigena (Adehold and Ruhland) and Monilia polystroma Leeuwen are the main agents of brown 

50 rot, one of the most important diseases in Prunus, Malus and Pyrus species (Batra 1991). 

51 Brown rot is particularly serious in peach and nectarine production by causing blossom and twig 

52 blights and brown rot on the fruits at preharvest, harvest and postharvest (Hong et al. 1997). Brown 

53 rot losses can reach 90%, by considering the harvest and postharvest stages (Hong et al. 1997; Hong 

54 et al. 1998). However, the postharvest stage is the most critical one, due to the optimal environment 

55 for Monilinia growth (Harvey 1978; Eckert and Ogawa 1988).The most important and widespread 

56 species on peaches and nectarines are M. laxa and M. fructicola. M. fructicola was originally 

57 identified in North and South America, Australia and Japan (EPPO/CABI 1997) and was introduced 

58 in Europe (France) on peaches in 2001 (Lichou et al. 2002). This pathogen is now spread throughout 

59 Europe, with reports in Austria (OEPP/EPPO 2002), Hungary and Spain on peaches (De Cal et al. 

60 2009), Italy on nectarines (Pellegrino et al. 2009), Germany on blackberries and plums (Hinrichs-

61 Berger and Müller 2010), Slovenia on peaches (Munda and Viršček Marn 2010), and Poland on 

62 apples, pears and plums (Poniatowska et al. 2013). In 2005, M. fructicola was included in the A2 

63 EPPO List of quarantine organisms due to the high yield losses reported on peaches, apricots and 

64 nectarines in Europe (EFSA 2011). On the other hand, M. laxa is a quarantine pathogen in China and 

65 in some parts of North America (Martini and Mari 2014) and was the most prevalent species in Europe 

66 until the introduction of M. fructicola. Currently, both species are coexisting in European stone fruits 

67 orchards (Villarino et al. 2013). 

68 M. fructigena, instead, is more prevalent in pome fruits and it has a low incidence in stone 

69 fruits (Martini and Mari 2014). M. polystroma, morphologically similar to M. fructigena, was initially 

70 identified in Japan (Côté et al. 2004) and has been introduced in Europe with reports in apples in 

71 Hungary (Petróczy and Palkovics 2009) and Croatia (Di Francesco et al. 2015), in apricots in 

72 Switzerland (Hilber-Bodmer et al. 2012), and in peaches in Italy (Martini et al. 2014). However, this 
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73 species is less aggressive and less prevalent, similarly to other minor species, such as M. numecola 

74 and M. tunnanensis (Cox et al. 2018).

75 In the United States, the stone fruit market has an annual value of approximately 4.4 billion 

76 $ (Cox et al. 2018). Brown rot is mainly caused by M. fructicola, the most predominant in stone 

77 fruits, while M. laxa is present in some areas of North America with lower incidence (Cox et al. 

78 2018). However, M. laxa causes important losses due to development of blossom and shoot blights 

79 on almonds, apricots, nectarines and cherries (Cox et al. 2011).

80 Monilinia spp. overwinter in cankers on branches and on the mummified fruits remaining 

81 from one year to the next one. Mummy monitoring during winter permits to understand which species 

82 of Monilinia will be prevalent in orchard during the following season, permitting to plan an 

83 appropriate crop protection. Ascospores produced on the apothecia of infected mummified fruits are 

84 an important source of inoculum that causes primary infections or blossom blights in the early spring 

85 (Tate and Wood 2000). 

86 Due to the importance of brown rot caused by Monilina spp., intensive disease management 

87 is key to reduce blossom blight during spring and to reduce the risk of fruit infection. Different 

88 sensitivity to fungicides, such as benzimidazoles and dicarboximides (Chen et al. 2013; Egüen et al. 

89 2016), has been reported for different species of Monilinia. The use of fungicides during preharvest 

90 is the most common measure used to control the incidence of pre and postharvest brown rot (Eckert 

91 and Ogawa 1988, Thomidis et al. 2009), however the decision about the optimal moment for chemical 

92 control is based on forecasting models. The request of reducing the use of fungicides is boosting the 

93 development of alternative crop protection strategies (Malavolta et al. 2003), including biocontrol 

94 agents (Larena et al. 2005; Zhang et al. 2010; Banani et al. 2015) or natural substances (Mari et al. 

95 2008; Lopez-Reyes et al. 2013; Santoro et al. 2018).

96 A correct identification of the species of Monilinia may improve crop protection. Fungal 

97 isolation and micromorphological analysis are necessary to identify the species of Monilinia, but 

98 morphological features may vary depending on the incubation media and conditions making difficult 
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99 an accurate species-specific identification (Byrde 1977, Lane 2002). In addition, micromorphological 

100 identification requires a long incubation period that is critical for decision making (OEPP/ EPPO 

101 2009). Different assays based on PCR amplification of rDNA internal transcribed spacer region (Ioos 

102 and Frey 2000), RAPD (Boehm et al. 2001; Côté et al. 2004), PCR with SCAR primers (Hughes et 

103 al. 2000), microsatellites using a nested-PCR (Ma et al. 2003; Boehm et al. 2001) or qPCR (Van 

104 Brouwershaven et al. 2009; Guinet et al. 2016, Wang et al. 2018) have been developed to differentiate 

105 the species of Monilinia. However, these methods are time-consuming and require transport to a 

106 diagnostics laboratory, which delays the decision making process. 

107 Loop-mediated isothermal AMPlification (LAMP) assay demonstrated to be a specific, 

108 sensitive and reliable tool for fungal identification in routine diagnostics (Franco Ortega et al. 2018a). 

109 The LAMP reaction is an isothermal DNA amplification method with an enzyme copying the target 

110 region faster than other PCR based methods, whilst avoiding the use of thermal cycling (Notomi et 

111 al. 2000; Nagamine et al. 2002). The enzyme is also robust, thus complex DNA extraction is not 

112 required to perform the LAMP assay, which is not affected by inhibitors. The greatest advantage of 

113 the LAMP assay is the possibility of using battery-powered platforms, such as Genie II or Genie III 

114 (Optigene, Horsham, UK), which make the LAMP a suitable diagnostic tool for direct detection in 

115 field, packinghouse or during transport and storage stages. 

116 The aim of the present study was to monitor the occurrence of the emerging pathogen M. 

117 fructicola and other species of Monilinia spp. in peach and nectarine orchards during the first four 

118 consecutive years of occurrence in Italy. Mummy monitoring during winter time permits to plan an 

119 appropriate crop protection strategy against brown rot in the following growing season. A collection 

120 of isolates of Monilinia spp. was created, by isolating from peach and nectarine mummies harvested 

121 at the end of the winter season. The strains were identified morphologically and with molecular tools. 

122 The collection constituted the basis for developing two LAMP assays, one for M. fructicola and the 

123 other one for M. laxa, the two main species of Monilinia. The molecular assays were validated on a 

124 selection of isolates from the mummy collection and on inoculated nectarines.

Page 5 of 39



Davide Spadaro 6
Plant Disease

125

126 Materials and Methods

127 Pathogen isolation. Forty-six peach and nectarine fields listed in Table S1 were monitored 

128 during the winter seasons from 2008-2009 to 2011-2012 to verify the occurrence of Monilinia 

129 fructicola and of other species of Monilinia. The monitoring was carried out on twenty cultivars of 

130 peach and nectarine: ‘Alitop’, ‘Amiga’, ‘Big Top’, ‘Caldesi’, ‘Diamond Ray’, ‘Elegant Lady’, 

131 ‘Firebrite’, ‘Fire Top’, ‘Fire Sweet Red’, ‘Maeba Top’, ‘Nectaross’, ‘Orion’, ‘Red Valley’, ‘Rome 

132 Star’, ‘Royal Glory’, ‘Sweet Lady’, ‘Stark Red Gold’, ‘Vista Rich’, ‘Venus’, and ‘V3’ (Table S1). 

133 Twenty-five mummified fruits, when present, were collected from each orchard, disinfected in a 

134 sodium hypochlorite (1%) solution, rinsed under tap water and dried. Small pieces of infected 

135 material were placed on Potato Dextrose Agar (PDA; Sigma-Aldrich, Saint Louis, MO, USA) to 

136 isolate the pathogen. The samples were grown at 23-25°C for four days. Single spore cultures of each 

137 Monilinia isolates were obtained and stored in 60% glycerol at -80°C. The isolates were stored at 

138 Agroinnova microorganism collection (University of Turin, Italy). For the development of the LAMP 

139 assays, besides the isolates of Monilinia spp. coming from the field monitoring, some Monilinia spp. 

140 from the FERA collection (York, UK) and two isolates of M. polystroma provided by the University 

141 of Bologna were used.

142 Fungal isolates and DNA extraction. Single spore isolates listed in Table 1 were grown on 

143 PDA for 10 days at room temperature. Mycelium was collected and the total genomic DNA was 

144 extracted with E.Z.N.A. Fungal DNA mini kit (OMEGA Bio-Tek, Norcross, GA, USA), according 

145 to the manufacturer’s instructions. The DNA concentration of each isolate was measured using a 

146 Nanodrop 1000 (ThermoFisher, Delaware, USA) and the concentration of DNA was adjusted at 1 to 

147 50 ng/µl. A multiplex PCR developed by Côté et al. (2004) with the primers listed in Table S2 was 

148 used to identify all the samples obtained during the monitoring. Fungal species identification  was 

149 confirmed with the primers designed by Hughes et al. (2000), including the primer ITS1 for M. 
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150 fructigena, and the primers described by Gell et al. (2007). Amplified products were checked on 1.5% 

151 agarose gel stained with ethidium bromide. 

152 Crude extraction method from peaches. DNA was extracted from artificially inoculated 

153 peaches using a crude extraction method to avoid the use of long and complex procedures. The crude 

154 extraction was based on the procedure described by Chomczynski and Rymaszewski (2006) and 

155 Tomlinson et al. (2010a). Alkaline PEG buffer (1 ml) composed of 20 mM KOH at pH 13.5 with 50 

156 g L-1 of PEG average of Mm: 4,600 a with 1 ball bearing (7/16” stainless steel 316 GD Spheric 

157 Trafalgar Ltd) in a 5 ml tube was used for the crude extraction by adding 1-2 g of the inoculated peach 

158 material (adding the skin and flesh of the inoculated point, cutting by a sterile scalpel). Samples were 

159 manually shaken for one minute. The solution was ten-fold diluted to use in the LAMP reaction. The 

160 peach genomic DNA was also obtained in parallel with E.Z.N.A. Plant DNA kit (OMEGA Bio-Tek) 

161 to compare the results from both DNA extraction methods. 

162 LAMP primer design. Six LAMP primers including two external primers, F3 and B3; two 

163 internal primers, FIP (F1c+ F2) and BIP (B1c+B2); and two loop primers, Floop and Bloop, were 

164 designed from M. fructicola and M. laxa sequences according to the method described by Notomi et 

165 al. (2000). The LAMP primers for M. fructicola were designed on an intron in the cytochrome b, 

166 associated with the Qol fungicides resistance, present in M. fructicola (GenBank accession number 

167 GQ304941.1), but absent in other Monilinia species (Luo et al. 2010). The primers for M. laxa were 

168 designed on a genomic sequence identified as a SCAR marker by Gell et al. (2007) (GenBank 

169 accession number: EF207417.1). All the primers were manually designed taking into account the 

170 annealing temperature. Possible hairpin and secondary structures were checked using the OligoCalc 

171 program (http://biotools.nubic.northwestern.edu/OligoCalc.html), while possible interactions 

172 between primers was controlled using the Multiple Primer Analyzer (Thermo Scientific) 

173 (https://www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-

174 biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/multiple-

175 primer-analyzer.html). HPLC-purified primers were synthesized by Eurofins (UK) and both LAMP 
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176 assays are available in kit format from OptiGene Ltd (Horsham, UK: http://www.optigene.co.uk). 

177 BLASTn analysis of the F1c and B1c of both primers was performed to check possible cross-

178 reactivity in silico. 

179 LAMP assay. The LAMP reaction (25 µl) contained 200 nmol/l of each external primer (F3 

180 and B3), 2 µmol/l of each internal primers (FIP and BIP), 1 µmol/l of each loop primer, 1x Isothermal 

181 Mastermix ISO-004 (OptiGene Ltd) with 1 µl of the pure DNA or the crude extractions. A Genie II 

182 ® instrument (OptiGene Ltd) and a StepOne (Applied Biosystem, California, USA) was used to carry 

183 out the LAMP tests. The program conditions were 45 min at 65°C and a measure of the annealing 

184 temperature from 95°C to 70°C with a reduction of 0.05°C/s. The StepOne was programmed as 

185 described previously by Franco Ortega et al. (2018b). A negative control with water and a positive 

186 control with the pure DNA of the target were included in each assay. The COX assay described by 

187 Tomlinson et al. (2010b) was applied as internal control to verify if the plant DNA from the samples 

188 resulted negative with the LAMP assays for M. fructicola and M. laxa could be amplified. 

189 Validation of the LAMP assays. The LAMP assays were validated according to the 

190 international standard EPPO PM 7/98 taking into consideration specificity, sensitivity, repeatability 

191 and reproducibility. The specificity of the assays were checked in triplicate using an inclusivity-

192 exclusivity panel of the target and non-target Monilinia spp., as well as other common pathogens of 

193 stone fruits. The sensitivity was tested on 10-fold serial dilutions of the DNA from one isolate of M. 

194 fructicola (isolate MSR38) and one isolate of M. laxa (isolate 1406) with four replicates of each 

195 dilution. The extraction and the LAMP assays were performed on different days with different 

196 machines (Genie II and StepOne) by three members of the lab staff to evaluate the reproducibility. 

197 The reliability of both LAMP assays was confirmed in parallel with a qPCR assay on two cultivars 

198 of nectarines, using three biological replicates and three technical replicates for each assay.

199 Artificial inoculation and LAMP assay on fruit. Nectarines ‘Amiga’ and ‘Fire Top’ were 

200 inoculated with M. fructicola MSR2 and M. laxa 1506. Healthy nectarines were disinfected by 

201 submerging in 2% hypochlorite (vol: vol) solutions before being wiped with distilled water and air-
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202 dried. The fruit inoculation was performed in artificial wounds (2 mm in diameter and 4 mm deep) 

203 using 10 µl of the spore suspension (105 conidia/ml) prepared from 10-day old Monilinia cultures 

204 grown on PDA. The fruits were stored at 18°C or at 4°C. The DNA from the inoculation region of 

205 the fruit was used in the crude extraction method and the E.Z.N.A. Plant DNA kit. The quantity of 

206 the fruit tissue of each nectarine used in each extraction was measured to calculate the number of 

207 cells present in the sample.The LAMP assay was carried out with the crude extraction method at 2 

208 days post inoculation (dpi), 4/5 dpi, 7 dpi, 9 dpi, 11/12 dpi for the nectarines stored at 18°C and at 2 

209 dpi, 4/5 dpi, 7 dpi, 9 dpi, 11/12 dpi, 14 dpi and 16 dpi for the nectarines stored at 4°C. Sampling times 

210 were 4 and 11 dpi for ‘Amiga’ and 5 and 12 dpi for ‘Fire Top’. The fruit symptoms were also scored 

211 using the following disease index: 0: no evident symptoms; 1: brown rot lower than 1 mm diameter; 

212 2: brown rot of 1-3 mm diameter; 3: brown rot of 1-2 cm diameter; 4: at least half of the fruit surface 

213 presented brown rot; 5: mummified fruit. The disease severity was calculated using the average of 

214 three replicates (the same 3 nectarines selected randomnly from the inoculated bach and posteriorly 

215 used for both DNA extractions). Samples prior to inoculation were used in both LAMP and qPCR 

216 analysis as negative controls. 

217 Real-Time PCR. The primers designed by Hughes et al. (2000), Mcf-F1 and Mfc-R1 specific 

218 for M. fructicola and MI-Mfg-F2 and MI-Mfc-R1 specific for M. laxa, were used to quantify the 

219 number of cells present in the samples. The 25 µl reactions were carried out using 1x Power SYBR 

220 Green PCR Master Mix (Applied Biosystems), 120 nM of each primer and 1 µl of the peach genomic 

221 DNA extracted using the commercial kit. The amplification was carried out using the following 

222 protocol: 95°C for 10 min, 40 cycles of 15 s at 95°C, 1 min at 60°C, and 45 s at 72°C in a OneStep 

223 Plus Real-Time PCR system (Applied Biosystems). A standard curve was performed using M. 

224 fructicola MSR2 and M. laxa 1506 ranging from 9.4 ng/µl to 9.4 fg/µl. A positive control with DNA 

225 extracted from cultured pathogen and a negative control of water were included in each run. The 

226 quantity of DNA present in the sample was calculated according to the standard curve measures, 

227 while the number of cells was estimated using the Monilinia fructicola genome weight (0.000048 ng; 

Page 9 of 39



Davide Spadaro 10
Plant Disease

228 https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=NGKE01#contigs) using the formula: number of 

229 cells /µl = DNA quantity/0.000048 (Amaral Carneiro et al. 2017). The amount of fruit used (ranging 

230 from 1 g to 2 g) and the elution volume of the extracted DNA were used to calculate the total number 

231 of cells. 

232 Analytical specificity and sensitivity assays. The inoculated nectarines (24 samples) and 

233 eight negative samples (four for either cultivar) were used to calculate some analytical parameters for 

234 both LAMP assays, which were compared with the SYBR Green qPCR of Hughes et al. (2000). 

235 Diagnostic sensitivity (DSe) or true-positive rate and analytical specificity (DSp) or true-negative 

236 rate, were calculated using the formula as follows: Dse= ΣTP/(ΣTP+FN); Dpe= ΣTN/(ΣTN+FP); 

237 where TP (True Positive) is the number of positive samples in the experiment, TN (True Negative) is 

238 the number of real negative samples, FN (False Negatives) are the negative samples using the LAMP 

239 assay but infected with Monilinia spp., and FP (False Positives) are the positive results using LAMP 

240 assay and naturally free from pathogens (Altman and Bland, 1994). The likelihood positive ratio 

241 (LR+) and the likelihood negative ratio (LR-) were calculated according to the ratio between DSe and 

242 the FP-rate and the FP-rate and Dse, respectively, using the calculator tool Diagnostic Test Calculator 

243 (http://araw.mede.uic.edu/cgi-bin/testcalc.pl) 

244

245 Results

246 Field monitoring. During the monitoring, 1889 mummified fruits were harvested (281 in 

247 2008/09, 480 in 2009/2010, 542 in 2010/2011, and 586 in 2011/2012). The number of isolates of the 

248 different species of Monilinia were recorded to get the incidence in the orchards: 200 isolates from 

249 the mummies of 2008/09, 417 from 2009/10, 396 from 2010/11, and 470 from 2011/12. This 

250 monitoring permitted to identify the evolution over time of the species of Monilinia spp. from the 

251 mummies, able to cause brown rot in peaches and nectarines. 
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252 An increase in the occurrence of M. fructicola was shown during the years, from a minimum of 6.2% 

253 during the 2008-2009 winter season to a maximum of 49.6% in the 2011-2012. On the other hand, 

254 the incidence of M. laxa decreased from 91.8% in 2008-2009 to 46.6% in 2011-2012. In the 2011-

255 2012 winter season, the incidence of M. fructicola overtook the incidence of M. laxa. (Figure 1). The 

256 incidence of M. fructigena was constantly low and did not vary significantly during the study period: 

257 from 2.0% (2008-09), to 2.7% (2009-10), 2.1% (2010-11) and 3.8% (2011-12). 

258 M. fructicola was more abundant in peaches than in nectarines during the winter season 2011-2012 

259 (Figure 2). Among the cultivars analyzed during the last winter season, ‘Fire Top’ (90%), ‘Fire Sweet 

260 Red’ (90%), ‘Rome Star’ (76.1%), ‘Diamond Ray’ (69.1%), ‘Alitop’ (63.35%), and ‘Nectaross’ 

261 (61.1%) showed the highest occurrence of M. fructicola, while the varieties with the highest incidence 

262 of M. laxa were ‘Stark Red’ (100%), ‘Caldesi’ (69.2%), Royal Glory’ (66.7%) and ‘Big Top’ 

263 (56.9%). The highest incidence of M. fructigena was found in the variety ‘Caldesi’ (30%), while in 

264 the other varieties the incidence was just 7%.

265 Variation in the Monilinia species present was found in different areas. All samples from three 

266 locations (Dronero, Manta and Piasco; Piedmont, northern Italy) were identified as M. laxa, while M. 

267 laxa was not isolated from the samples from Castellar and Scarnafigi. The other areas showed 

268 different percentages of M. laxa and M. fructicola. M. fructigena was present in less than 8% of the 

269 samples tested (Figure S1).

270 A collection of isolates of Monilinia spp. was created, useful for the development of a new diagnostic 

271 method to distinguish the predominant species of Monilinia. A significant number of isolates from 

272 the monitoring were used in the specificity test of both LAMP assays.

273 Design and validation of the LAMP assay using DNA from pure culture. The primers for 

274 the identification of M. fructicola and M. laxa were designed on the cytochrome b sequence and on 

275 the SCAR marker region, identified by Gell et al. (2007), respectively. All primers were checked for 

276 lack of secondary structure, self-annealing or hairpin. 
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277 BLASTn analysis of the F1c and B1c (primer FIP and BIP) for the detection of M. fructicola showed 

278 100% sequence identity with M. fructicola (GenBank accession number KM610206.1), while the F1c 

279 and B1c regions of the FIP and BIP primers for the detection M. laxa had 100% identity to the 

280 sequence of this species (accession number EF207417.1).

281 Initially, identification of the Monilinia spp. was carried out using the primers designed by 

282 Hughes et al. (2000) and by Gell et al. (2007). Both PCR analyses confirmed the results of the LAMP 

283 assays. The isolates of Monilinia spp. from the monitoring, as well as other isolates, were used to 

284 validate the specificity of the LAMP assays, which is reported in Table 1. The LAMP primers 

285 amplified only the targets (M. fructicola and M. laxa, respectively), while untargeted amplifications 

286 were not obtained. The time to positive (Tp) for the M. fructicola LAMP assays ranged from 7 min 

287 35 s to 25 min, with an annealing temperature ranging from 84.06°C to 85.54°C. For the M. laxa 

288 LAMP assay the Tp ranged from 7 min 11 s to 24 min 26 s, with an annealing temperature ranging 

289 from 81.52°C to 85°C.

290 The sensitivity testing demonstrated that the M. fructicola LAMP assay was able to detect 

291 100-999 fg of DNA, while the M. laxa LAMP assay had a lower detection limit of 10-99 fg of DNA 

292 (Table 2). The assays consistently showed positive results in the three replicates tested, even by 

293 changing the machine, the operator, or the day of the test. 

294 In vivo testing. Both LAMP assays were tested on two varieties of nectarines. Brown rot 

295 symptoms were visible earlier on ‘Amiga’ than on ‘Fire top’ nectarines at both temperatures. ‘Fire 

296 top’ nectarines inoculated with M. fructicola and stored at 18°C started to exhibit concentric lesions 

297 from the inoculation area with evident symptoms of brown rot at 7 dpi (Table 3). Instead, ‘Amiga’ 

298 nectarines stored at 18°C exhibited symptoms at 4 dpi (Table 4). Nectarines inoculated with M. 

299 fructicola and stored at 4°C showed the first symptoms of brown rot at 14 dpi on ‘Fire Top and at 7 

300 dpi on ‘Amiga’. Brown rot symptoms were visible earlier by inoculating M. laxa than M. fructicola 

301 on both varieties.
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302 The LAMP assay for M. fructicola was able to detect the presence of the pathogen in both nectarine 

303 varieties before the appearance of brown rot symptoms (Table 3 and 4). The Tp ranged from 4 min 

304 33 s to 15 min from the DNA of nectarines stored at 18°C, and ranged from 5 min 52 s to 36 min, 

305 with the majority of the positive results between 9-13 min, from the DNA of nectarines stored at 4°C 

306 (Tables 3 and 4). The annealing temperature ranged from 84.35 to 85.18°C (Tables 3 and 4).  

307 The M. laxa LAMP assay gave positive results prior to symptom development in both nectarine 

308 varieties and at both storage temperatures (Tables 5 and 6). Anyway, there were differences in the 

309 LAMP assay for M. laxa between the varieties: ‘Fire Top’ nectarines were not positive until 7 dpi at 

310 both storage temperatures (Table 5), while in ‘Amiga’ nectarines the pathogen was detected at 2 dpi 

311 (Table 6). Using the DNA from M. laxa-inoculated ‘Amiga’ nectarines stored at 18°C, the LAMP 

312 assay produced a Tp ranging from 4 min 2 s to 24 min 15 s (Table 6). The Tp of the nectarines stored 

313 at 4°C ranged from 4 min 2 s to 28 min 12 s. The annealing temperature ranged from 83.15 to 83.55°C 

314 when all samples were compared (Tables 5 and 6). 

315 Comparison between qPCR and LAMP assay. The number of cells present during the 

316 experiments were quantified using SYBR Green and the combination of primers obtained by Hughes 

317 et al. (2000) (Tables from 3 to 6). In order to check the sensitivity of the LAMP assays, the number 

318 of cells of three nectarines were compared with an average of the disease index of the same nectarines 

319 to obtain a real comparison between molecular data and symptoms. The number of cells increased 

320 over time reaching a maximum of 20,000,000 cells for the variety ‘Amiga’ stored at 18°C. The 

321 number of cells of the nectarines increased day after day, similarly with the disease index. This trend 

322 was observed in both varieties (‘Amiga’ nectarines inoculated with M. fructicola and M. laxa stored 

323 at 18°C and 4°C respectively, as well as ‘Fire Top’ inoculated with M. laxa and stored at 18°C), 

324 however the LAMP assay gave reliable detection. 

325 Different results were obtained with the qPCR and the LAMP assays. In the case of M. 

326 fructicola-inoculated nectarines, both techniques showed positive results for both nectarine varieties 

327 at both storage temperatures, with only one exception in which the qPCR was not able to detect any 
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328 cells (‘Fire Top’ nectarines at 2 dpi). However, as observed in the Table 3 and 4, there were significant 

329 differences between the number of positives obtained with each technique, being the qPCR more 

330 repeatable. 

331 On the other hand, there were bigger differences between the qPCR and the LAMP assays to 

332 detect M. laxa. In the case of ‘Fire Top’ nectarines, the nectarines stored at 18°C at 2 dpi and the 

333 nectarines stored at 4°C at 2 and 4 dpi, were only detected with the qPCR and not with the LAMP 

334 (Table 5). However, ‘Amiga’ nectarines stored at both temperatures were detected with the LAMP at 

335 all time points, but the qPCR produced negative results in two cases: 18°C stored nectarines at 2 dpi 

336 and 4°C stored nectarines after 9 dpi (Table 6). The LR+ and LR- of both assays were calculated to 

337 check the effectiveness of the LAMP assay in comparison with the qPCR with SYBR Green. In the 

338 case of the LAMP assay for M. fructicola, the value of Dsp and Dse were 1.0 (100%), while the Dsp 

339 and Dse values of the specific primers were 0.88 (88%) and 0.96 (96%) respectively. The M. laxa 

340 LAMP assay showed a DSp value of 0.83 (83%) and a DSe value of 0.67 (67%) compared with the 

341 0.88 (0.88%) and 0.73 (73%) of the DSp and Dse values of the specific primers.

342 Taking into consideration the likelihood ratios, the LR+ and LR- of M. fructicola LAMP assay 

343 were infinite, while the LR- of the M. laxa LAMP assay was 0.17 and the LR+ was infinite. The same 

344 values calculated for the qPCR primers with SYBR Green for M. fructicola and M. laxa showed in 

345 both cases infinite LR+ and LR- of 0.04 and 0.12, respectively. 

346

347 Discussion

348 The occurrence of Monilinia spp. was monitored during four winter seasons in Italian peach 

349 and nectarine orchards for a better understanding of the establishment of the introduced species M. 

350 fructicola and of the evolution of the species of Monilinia spp.. The results of the mummy monitoring 

351 over 4 years helped to understand the capacity of coexistence of M. laxa and M. fructicola in the same 

352 orchards. Since the first report of M. fructicola in Europe, the pathogen, listed as an EPPO A2 
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353 pathogen due to the damage caused (OEPP/EPPO 2005), has spread to different countries. Despite 

354 the importance of stone fruit production in Italy, an extensive monitoring activity has not not 

355 performed by other authors since the first occurrence (Pellegrino et al., 2009). The geographical 

356 region where M. fructicola was first identified in Italy, was the focus of this study. M. laxa and M. 

357 fructicola could produce fruit losses up to 90% (Larena et al. 2005; Hong et al. 1997), under favorable 

358 weather conditions. The losses caused by M. fructigena are by far lower, with a relatively low 

359 incidence in Italy. In this study, the incidence of M. fructicola increased year after year, overtaking 

360 the incidence of M. laxa in the 2011-12 survey. This suggested a higher fitness of M. fructicola and 

361 the higher adaptability to the weather conditions of northern Italy.

362 The estimation of the mummy inoculum and the optimal environmental conditions for the 

363 disease development should be considered to understand the seasonal variation of the disease and to 

364 ensure the timely implementation of a management strategy against brown rot (Luo et al. 2001a; Luo 

365 and Michailides 2001a). The monitoring of mummies during winter permits to plan an appropriate 

366 crop protection strategy, which depends on the species of Monilinia present in the orchard.  An 

367 Integrated Pest Management (IPM) approach is suggested by EFSA (2011) in order to effectively 

368 control brown rot and blossom blight, focusing on reducing the inoculum of Monilinia in the field 

369 and therefore the risk of infection (Luo and Michailides 2001b). The importance of the mummies as 

370 an important inoculum source was confirmed during the survey. Therefore, removal and destruction 

371 of the fruit mummies is a key aspect of the sanitation process, especially given the diffusion speed of 

372 brown rot in orchards.

373 During postharvest, the incidence of brown rot is associated with the incidence of Monilinia 

374 spp. in orchard. Any delay on the application of control measures for Monilinia spp. can cause losses 

375 of over 50% particularly during postharvest, but yield losses can be reduced if correct control 

376 measures are timely applied (Margosan et al. 1997). However, some of the measures developed to 

377 reduce brown rot have been demonstrated to be species-dependent (Mari et al. 2012; Lopez-Reyes et 

378 al. 2013), making necessary a precise identification of the causal agent of brown rot. Until now, no 
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379 LAMP tests have been developed to directly check the presence of Monilinia on fruit, therefore the 

380 methods described in this study could help growers to control the presence of brown rot in peaches, 

381 by supporting the choice of the correct control measures before harvesting and during storage. 

382 One of the biggest drawbacks of the PCR-based methods is the inhibition of the reaction by some 

383 components of plant tissue which results in false negative results (Wilson 1997), therefore most PCR-

384 based methods involve long and complex DNA extraction methods. As an alternative, the LAMP 

385 assays for the detection of M. fructicola and M. laxa were validated using a crude extraction method, 

386 which is simpler, and showed to be reliable and effective in the detection of both pathogen species. 

387 The validation of the assays was carried out according to the international standard published by 

388 EPPO (PM7/98). A significant number of isolates from the monitoring were used to validate the 

389 specificity of both LAMP assays. To verify the parameters of both LAMP assays in vivo, we focused 

390 on fully ripe nectarines, which were stored at two temperatures reflecting the storage and shelf life 

391 conditions of stone fruit. 

392 The LAMP assay for M. fructicola was less sensitive than the LAMP assay for M. laxa. 

393 Notwithstanding, on nectarines inoculated with different amounts of M. laxa, the pathogen 

394 detection was possible even without visible symptoms. The LAMP results were confirmed using 

395 qPCR. The lowest number of cells in all the ‘Fire Top’ nectarines inoculated with M. fructicola was 

396 259.7 cells (no symptoms visible) giving two positive replicates out of nine with the qPCR and six 

397 out of nine with the LAMP assay, which verified the reliability of the assay. In a similar situation, 

398 M. laxa (73.5 cells) produced less positive results with the LAMP assay (1/9 compared to 2/9 with 

399 the qPCR). In contrast, ‘Amiga’ nectarines were less susceptible to M. fructicola and M. laxa with 

400 less cells quantified and lower symptoms in all the experiments. The use of the LAMP assay on the 

401 ‘Amiga’ variety confirmed the reliability and effectiveness of the LAMP assays on the detection of 

402 few cells (22.8 cells and even 1.3 cells) independently from the nectarine variety, suggesting that 

403 the assay is potentially a powerful tool for pre-symptomatic detection.
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404 According to the natural disease development, a consistent and constant increase in the 

405 number of pathogen cells was expected over time, however, in some cases, the pattern of the disease 

406 did not correspond with the number of cells shown. In particular, when the whole fruit showed brown 

407 rot or the nectarines were mummified, the number of cells were not the highest ones. This could be 

408 explained with the high amount of fungal DNA present in the sample, especially in the mummified 

409 fruits, which could inhibit the qPCR. However, the LAMP assay reliably detected the pathogen even 

410 in these cases. 

411 On the other hand, the LAMP assays were able to detect the presence of the pathogen even 

412 without visible symptoms, when the qPCR did not produce positive results. In summary, both LAMP 

413 assays were validated and could be reliably used for the detection of M. fructicola and M. laxa. 

414 Despite the use of a crude extraction method instead of a commercial and complex DNA extraction 

415 used for the qPCR assay, the results of the LAMP assay were consistent, and no inhibition or loss of 

416 sensitivity were reported taking into consideration the likelihood ratios which were similar to those 

417 of the qPCR for both pathogens. The monitoring performed during four winter seasons suggested a 

418 higher adaptability of M. fructicola, compared to M. laxa, in the Italian orchards. The LAMP assays 

419 allow a faster identification in orchard of Monilinia spp., helping the growers to speed the decision 

420 making process about crop protection strategies, to be used in the following growing season.

421  
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593 Tables

594 Table 1. Specificity testing results of the inclusion-exclusion panel of target and non-target species.

595

MONILINIA FRUCTICOLA
LAMP TEST

MONILINIA LAXA
LAMP TEST

AVERAGE AVERAGEISOLATE 
CODE SPECIE ORIGE

N Tp (min:s) Annel °C Tp (min:s) Annel °C
1326 Monilinia fructicola Unknown 07:35±00:17 84.52±0.46 Negative Negative

C3-29 M.fructicola Italy 11:05±01:57 84.18±0.16 Negative Negative
MSR2 M.fructicola Italy 10:50±01:14 84.07±0.01 Negative Negative
MSR38 M.fructicola Italy 09:45±00:15 84.56±0.30 Negative Negative
MSR47 M.fructicola Italy 08:00±00:30 84.19±0.08 Negative Negative

P164C13-
12(1) M.fructicola Italy 09:25±01:15 84.64±0.74 Negative Negative

C1C4 M.fructicola Italy 10:05±00:48 84.76±0.79 Negative Negative
C14-12 (5) M.fructicola Italy 10:15±01:24 84.27±0.1 Negative Negative

2603 M.fructicola Italy 10:20±00:23 84.55±0.41 Negative Negative
MUS26 M.fructicola Italy 09:15±01:34 84.2±0.12 Negative Negative
S14CF M.fructicola Italy 09:55±01:36 84.14±0.06 Negative Negative

953 M.fructicola Unknown 18:35±07:09 84.36±0.21 Negative Negative
866 M.fructicola Unknown 14:20± 05:34 84.52 0.36 Negative Negative
1371 M.fructicola Australia 10:35±00:23 84.24±0.12 Negative Negative
853 M.fructicola Unknown 09:50±02:08 84.42±0.56 Negative Negative
881 Monilinia laxa France Negative Negative 07:30 82.88±0.45
1402 M. laxa Italy Negative Negative 09:20±00:31 82.44±0.18
1406 M. laxa Italy Negative Negative 10:15±00:40 82.57±0.26
1516 M. laxa Italy Negative Negative 18:45±04:01 82.44±0.24
1757 M. laxa Italy Negative Negative 09:10±01:02 82.54±0.25
1790 M. laxa Italy Negative Negative 07:40±00:31 82.26±0.03
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1331 M. laxa Italy Negative Negative 13:30±02:23 83.33±1.66
1368 M. laxa Australia Negative Negative 10:35±00:09 82.62±0.25
1281 M. laxa Italy Negative Negative 10:35±01:57 82.63±0.18
ML1 M. laxa Italy Negative Negative 09:15±01:00 83.29±0.76
887 M. laxa UK Negative Negative 17:50±04:48 82.68±0.74
888 M. laxa UK Negative Negative 17:00±07:26 82.86±0.91
890 M. laxa UK Negative Negative 10:20±01:08 83.08±0.81
1369 M. laxa Australia Negative Negative 08:45±01:09 82.95±0.81
1370 M. laxa Australia Negative Negative 08:30±01:09 82.91±0.61
1767 M. laxa Unknown Negative Negative 09:50±01:17 81.97±0.45
1791 Monilinia fructigena Unknown Negative Negative Negative Negative
1756 M. fructigena Unknown Negative Negative Negative Negative
1248 M. fructigena Unknown Negative Negative Negative Negative
1249 M. fructigena Unknown Negative Negative Negative Negative
1515 M. fructigena Unknown Negative Negative Negative Negative
1756 M. fructigena Unknown Negative Negative Negative Negative
48 M. fructigena Unknown Negative Negative Negative Negative

1760 M. fructigena Unknown Negative Negative Negative Negative
1762 M. fructigena Unknown Negative Negative Negative Negative
1763 M. fructigena Unknown Negative Negative Negative Negative
1765 M. fructigena Unknown Negative Negative Negative Negative
1770 M. fructigena Unknown Negative Negative Negative Negative
1773 M. fructigena Unknown Negative Negative Negative Negative
1718 Monilinia polystroma Unknown Negative Negative Negative Negative
1719 M. polystroma Unknown Negative Negative Negative Negative
1538 Verticillium albo-atrum Unknown Negative Negative Negative Negative
1540 Colletotrichum truncatum Unknown Negative Negative Negative Negative
1542 Helminthosporium solani Unknown Negative Negative Negative Negative
1543 Cylindrocarpon Unknown Negative Negative Negative Negative
1544 Botryosphaeria berengeriana Unknown Negative Negative Negative Negative
1547 Botryosphaeria laricina Unknown Negative Negative Negative Negative
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1548 B. laricina Unknown Negative Negative Negative Negative
2692 Colletotrichum acutatum Unknown Negative Negative Negative Negative
92 Zythia fragariae Unknown Negative Negative Negative Negative
221 G. cingulata/C. acutatum Unknown Negative Negative Negative Negative
256 Colletotrichum acutatum Unknown Negative Negative Negative Negative
308 Eutypa lata Unknown Negative Negative Negative Negative
332 Macrophoma japonica Unknown Negative Negative Negative Negative
452 cylindrocarpon Unknown Negative Negative Negative Negative
667 Zythia sp. Unknown Negative Negative Negative Negative
668 Mycosphaerella pinodes Unknown Negative Negative Negative Negative
677 Lambertella corni-maris Unknown Negative Negative Negative Negative
931 Phytophthora fragariae Unknown Negative Negative Negative Negative
1138 C.fragariae Unknown Negative Negative Negative Negative
1725 Rhizopus spp Unknown Negative Negative Negative Negative
2556 Phytophthora fragariae var fragariae Unknown Negative Negative Negative Negative
1539 Alternaria spp. Unknown Negative Negative Negative Negative
77 Penicillium citrinum Unknown Negative Negative Negative Negative

MCAL Aspergillus flavus Unknown Negative Negative Negative Negative
X1 Penicillium expansum Unknown Negative Negative Negative Negative

DPO1 Diaporthe spp Unknown Negative Negative Negative Negative
BC Botrytis cinerea Unknown Negative Negative Negative Negative

GUN1 Guignardia Unknown Negative Negative Negative Negative
PS Plasmopora Unknown Negative Negative Negative Negative

ALTALTER Alternaia alternata Unknown Negative Negative Negative Negative
596

597
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598 Table 2. Sensitivity testing of the M. fructicola and M. laxa LAMP assay reporting the number of 
599 replicates amplified out the total replicates tested. In parenthesis the time to positive average of the 
600 positive results. The sensitivity testing was carried out using two different isolates.
601

602
603
604
605
606
607
608
609
610

 M. fructicola isolates M. laxa isolates
 MSR38 c14-12 1406 1790

1-10 ng 5/5(07:09) 4/4(09:35) 5/5(11:49) 4/4(08:26)
100-999 
pg

5/5(08:00) 4/4(10:35) 5/5(10:41) 4/4(09:37)

10-99 pg 5/5(09:21) 4/4(11:45) 3/5(17:55) 3/4(16:45)
1-9.9pg 3/5(09:56) 1/4(14:30) 1/5(14:15) 0/4
100-999 fg 0/5 0/4 1/5(29:15) 0/4
10-99 fg 0/5 0/4 0/5 0/4
1-9.9f g 0/5 0/4 0/5 0/5
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611 Table 3. Results of the M. fructicola LAMP assay and the qPCR using the primers MI-Mfg-F2 and MI-Mfc-R1 on the DNA obtained from the ‘Fire 

612 Top’ nectarines inoculated with M. fructicola and stored at 18°C and 4°C. The LAMP assay was performed on the crude extracted DNA while the 

613 qPCR was carried out using DNA extracted using a commercial kit at different time points (DPI: days post inoculation, Tp: time to positive).

614

LAMP assay qPCR assay

DPI Disease 
Index Tp (min:s) NUMBER OF 

POSITIVES
ANNEALING 

TEMPERATURE (°C)

Ct+ 
DEV.STANDARS

(Ct RANGE)

NUMBER OF 
POSITIVES CELLS/g

2 0.00 11:31±01:55
(09:02-14:41) 5/9 84.85±0.07 32.22±1.03

(30.34-33.08) 9/9 3,143.8
(8,477.9-2,000)

5 0.00 10:03±03:02
(04:33-12:50) 6/9 84.54±0.1 36.39±0.58

(35.69-37.10) 4/9 995.8
(1,439-685.3)

7 0.67 10:56±00:10
(10:50-11:04) 2/9 85.18±0.01 36.06±2.87

(33.24-39.25) 4/9 759.7
(3,352.9-141.9)

9 1.00 07:06±04:25
(06:33-07:47) 3/9 84.81±0.14 21.43±8.96

(13.26-36.83) 5/9 5.4+06
(3.98E+08-1,636)

12 4.00 09:02±01:32
(07:05-11:17) 9/9 85.09±0.1 21.25±6.84

(12.59-30.73) 9/9 6.3+06
(6E+08-42,931)

14 Not tested

18°C

16 Not tested

2 0.00 18:52±14:48
(09:37-35:57) 3/9 84.43±0.54 33.69±1.09

(32.31-35.30) 7/9 1,559.4
(3,223-668.4)

5 0.00 12:13±08:21
(07:01-30:59) 8/9 84.56±0.14 Negative

7 0.00 12:11±01:25
(11:02-15:00) 6/9 85.17±0.11 38.89±0.78

(38.34-39.44) 2/9 259.7
(346.5-194.2)

9 0.00 10:28±23
(10:12-10:54) 3/9 84.69±0.17 27.94±5.23

(20.52-33.72) 9/9 2.0+05
(1E+07-9,696)

12 0.00 19:50±08:54
(13:-36:56) 4/9 84.62±0.83 33.91±1.68

(32.20-36.51) 9/9 6,428.6
(1.6+04 -1,638.9)

14 1.33 10:23±02:00
(09:08-13:57) 5/9 84.98±0.09 18.61±1.71

(16-20.49) 6/9 7.7E+06
(3E+07-2.8E+06)

4°C

16 0.00 13:49±02:00
(11:11-17:22) 9/9 84.83±0.08 33.82±7.03

(23.49-39.23) 4/9 2,573.7
(5.9E+06-149.6)

615
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616 Table 4. Results of the M. fructicola LAMP assay and the qPCR using the primers MI-Mfg-F2 and MI-Mfc-R1 on the DNA obtained from ‘Amiga’ 

617 nectarines inoculated with M. fructicola and stored at 18°C and 4°C during the time. The LAMP assay was performed on the crude extracted DNA 

618 while the qPCR was carried out using DNA extracted using a commercial kit at different time points (DPI: days post inoculation, Tp: time to positive).

619

LAMP assay qPCR assay

DPI Disease 
index TP (min:s) NUMBER OF 

POSITIVES

ANNEALING 
TEMPERATURE

(°C)

Ct+
DEV.STANDARS 

(Ct RANGE)

NUMBER OF 
POSITIVES CELLS/g

2 0.00 12:11±01:25
(11:02-15:00) 6/9 85.17±0.11 36.11±1.46

(34.58-39.06) 8/9 28
(62.7-5.9)

4 1.00 08:18±02:02
(06:35-10:55) 6/9 84.67±0.08 34.23±2.15

(31.99-37) 4/9 66.6
(216.3-15.5)

7 3.00 08:22±01:38
(07:05-11:46) 9/9 84.95±0.15 22.99±6.47

(16.68-30.98) 6/9
2.2E+04

(6.2 E+05-
333.9)

9 4.00 08:09±00:50
(06:52-09:23) 9/9 84.67±0.13 18.61±1.71

(16-20.49) 6/9
3.9E+05

(1.6E+06-
1.46E+06)

12 5.00 09:51±02:00
(09:57-12:40) 9/9 84.35±0.28 29.88±3.24

26.75-33.17) 9/9 1,048.5
(5,435.4-185.4)

14 Not tested

18°C

16 Not tested

2 0.00 14:20±04:19
(11:44-25:31) 9/9 85.0±0.15 36.85±1.85

(33.93-38.33) 8/9 22.8
(106.1-10.5)

4 1.33 12:14±03:52
(09:50-12:28) 6/9 84.64±0.15 30.33±1.6

(28.26-33.51) 9/9 497.9
(1,482.5-93.6)

7 0.33 12±01:18
(11:34-15:14) 7/9 85.00±0.12 30.19±2.17

(27.81-33.29) 9/9 626.7
(2,186.9-122.3)

9 0.00 10:26±00:53
(09:22-11:30) 6/9 84.9±0.08 28.91±2.8

(24.44-32.62) 9/9 1844.3
(1.9E+04-261.5)

12 1.00 07:13±00:02
06:43-07:426 6/9 84.73±0.14 34.04±4.03

(28.15-39.05) 8/9 123.8
(2,747.3-8.9)

14 0.67 08±02:03
06:17-11:29 9/9 84.7±0.15 28.15±5.98

(18.6-33.39) 9/9 2754
(4.2E+05-174.4)

4°C

16 1.67 07:25±01:52
(05:52-11:15) 9/9 84.72±0.19 23.7±4.18

(19.43-30.80) 9 2.8E+04
(2.7E+05-681.3)

620
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622 Table 5. Results of the M. laxa LAMP assay and the qPCR using the primers MI-Mfg-F2 and MI-Mfc-R1 on the DNA obtained from the ‘Fire Top’ 

623 nectarines inoculated with M. laxa  and stored at 18°C and 4°C during the time. The LAMP assay was performed on the crude extracted DNA while 

624 the qPCR was carried out using DNA extracted using a commercial kit at different time points (DPI: days post inoculation, Tp: time to positive).

625

LAMP assay qPCR assay

DPI Disease 
index TP (min:s) NUMBER OF 

POSITIVES

ANNEALING 
TEMPERATURE

(°C)

Ct+
DEV.STANDARS 

(Ct RANGE)

NUMBER OF 
POSITIVES CELLS/g

2 0.00 Negative 36.36±2.36
(34.69-38.02) 2/9 104.0

(317.4-71.1)
4 1.33 Negative Negative

7 2.33 12:02±01:39
(10:34-14:23) 4/9 83.55±0.12 36.52±0.84

(35.55-37.03) 3/9 186.9
(358.4-137.7)

9 4.00 07:52±00:56
(06:45-09:44) 9/9 83.47±0.24 20.66±1.15

(19-22.09) 9/9 2.3E+07
(6E+07-9.9E+06)

11 5.00 11:13±03:27
(08:29-12:39) 6/9 83.15±0.4 29.37±3.52

(27.17-37.11) 9/9 15E+05
(6,7E+05-418)

14 Not tested

18°C

16 Not tested

2 0.00 Negative 36.11±1.08
(34.91-37.01) 3/9 126.3

(282.6-139.6)

4 1.33 Negative 34.45±1.38
(33.47-35.42) 2/9 671.0

(1,289.5-403.9)

7 0.00 12:46 1/9 83.55 38.32±0.89
(37.69-38.95) 2/9 73.5

(112.1-38.2)

9 0.00 13:40±08:25
(08:04-28:12) 5/9 83.26±0.15 31.38±1.3

(29.47-32.55) 9/9 1.7E+04
(6.1E+04-9,168.9)

11 1.00 09:27±00:22
(09:04-09:55) 6/9 83.29±0.16 24.31±6.66

(19.38-34.18) 6/9 2.3E+06
(6E+07-3084.4)

14 1.33 06:59±04:11
(04:02-11:47) 4/9 83.44±0.07 27.88±2.23

(27.25-30.26) 8/9
5.3 E+04
(2.7E+05-
1,2E+04)

4°C

16 1.33 08:07±00:21
(07:46-08:28) 3/9 83.44±0.08 26.6±9.99

(17.52-38.18) 7/9 1.3E+05
(1.8 E+08-54.3)

626
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627 Table 6. Results of the M. laxa LAMP assay and the qPCR using the primers MI-Mfg-F2 and MI-Mfc-R1 on the DNA obtained from ‘Amiga’ 

628 nectarines inoculated with M. laxa and stored at 18°C and 4°C during the time. The LAMP assay was performed on the crude extracted DNA while 

629 the qPCR was carried out using DNA extracted using a commercial kit at different time points (DPI: days post inoculation, Tp: time to positive).

630

LAMP assay qPCR assay

DPI Disease 
index TP (min:s) NUMBER OF 

POSITIVES

ANNEALING 
TEMPERATURE

(°C)

Ct+ 
DEV.STANDARS

(Ct RANGE)

NUMBER OF 
POSITIVES CELLS/g

2 0.00 12:29±05:09
(09:00-24:15) 8/9 83.43±0.14 Negative

4 1.33 08:44±01:44
(07:16-10:41) 9/9 83.35±0.2 32.4502±3.832

(29.19-39.92) 7/9 81.2
(717.9-0.6)

7 3.67 08:48±02:44
(08:02-13:20) 9/9 83.25±0.21 28.5379±4.06

(22.81-32.04) 9/9 997.1
(4.6E+04-96)

9 4.00 07:16±02:28
(04:02-10:00) 9/9 83.35±0.11 29.3679±0.41

(28.97-29.79) 3/9 666.9
(870-502.9)

12 5.00 08:06±01:13
(06:40-09:50) 9/9 83.27±0.18 25.62±4.09

(20.21-31.58) 9/9 8,151.5
(3E+05-152)

14 Not tested

18°C

16 Not tested

2 0.00 11:12±01:46
(09:41-13:58) 2/9 83.48±0.1 38.7275±1.07

(37.11-39.93) 5/9 1.3
(3.8-0.6)

4 0.33 11:30±03:17
(06:59-20:20) 5/9 83.28±0.16 30.9794±2.08

(27.77-33.81) 9/9 188
(1,606.1-28.3)

7 0.67 10:54±02:17
(08:23-11:55) 5/9 83.28±0.17 25.9199±6.02

(17.79-31.35) 9/9 7,481.7
(1.7E+06-198.5)

9 1.00 08:55±03:21
(07:38-16:29) 9/9 82.89±1.66 Negative

12 1.33 10:04± 06:31
(07:38-16:29) 7/9 83.26±0.13 24.96±1.57

(22.51-26.72) 9/9
1.4 E+04
(7.3E+04-
4,382.9)

14 2.67 07:01±00:17
(05:56-23:09) 9/9 83.47±0.11 24.113±5.9738

(15.28-31.16) 9/9 2.5E+04
(9E+06-225.4)

4°C

16 3.33 0:0:14:01±58
(06:38-07:37) 9/9 83.47±0.11 35.185±2.9199

(30.38-38.35) 6/9 15.3
(379.6-1.8)
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632 FIGURE LEGENDS

633

634 Figure 1. Incidence of Monilinia spp. (%) during the monitoring of four winter seasons (2008-2009 

635 to 2011-2012). Monilinia laxa (solid line), Monilinia fructicola (dashed line), Monilinia fructigena 

636 (dotted line).

637

638 Figure 2. Percentage of Monilinia spp. isolated from A) nectarine and B) peaches during the winter 

639 season 2011-2012.

640
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Figure 2. Percentage of Monilinia spp. isolated from A) nectarine and B) peaches during the winter season 
2011-2012. 
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Supplementary material

Table S1. Orchards monitored during the 2011-2012 winter season with the geographical area, the host, cultivar and percentage of Monilinia spp. isolated.

Occurrence of 
M. fructicola during

Percentage of different species of Monilinia 
during 2011-2012Orchard 

number Location Host Cultivar 2008-
2009

2009-
2010

2010-
2011 M. fructicola (%) M. laxa 

(%)
M. fructigena 

(%)
1 CASTELLAR Nectarine Fire Top 90 0 10
2 COSTIGLIOLE Nectarine Big Top N N N 62.5 37.5 0
3 DRONERO Nectarine Big Top N N N 0 100 0
4 FOSSANO Nectarine Diamond Ray N N N 75 25 0
5 FOSSANO Nectarine Diamond Ray N N N 81.25 18.75 0
6 FOSSANO Nectarine Big Top N N N 0 100 0
7 LAGNASCO Nectarine Big Top N N Y 57.1 42.9 0
8 LAGNASCO Peach Vista Rich N N Y 45.55 54.55 0
9 LAGNASCO Nectarine Amiga N N N 40 40 20
10 LAGNASCO Nectarine Orion Y Y Y 90 10 0
11 LAGNASCO Nectarine Big Top N N Y 66.7 33.3 0
12 LAGNASCO Nectarine Diamond Ray N Y Y 81.8 18.2 0
13 LAGNASCO Peach Red Valley N N Y 54.6 45.5 0
14 LAGNASCO Nectarine Big Top N Y Y 88.9 11.1 0
15 LAGNASCO Nectarine Diamond Ray N N N 0 76.9 23.1
16 LAGNASCO Peach Royal Glory N N N 26.7 66.7 6.6
17 LAGNASCO Nectarine Caldesi N N N 0 69.2 30.8
18 LAGNASCO Nectarine Fire Sweet Red Y Y Y 90 0 10
19 MANTA Nectarine Big Top N N N 0 100 0
20 PIASCO Nectarine Big Top N N N 0 100 0
21 REVELLO Nectarine Diamond Ray N N Y 100 0 0
22 REVELLO Nectarine Venus N N N 25 58.3 16.7
23 REVELLO Nectarine Alitop N N Y 100 0 0
24 REVELLO Nectarine Venus N N N 46.15 53.85 34
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25 SALUZZO Peach Elegant Lady N N N 75 12.5 12.5
26 SALUZZO Nectarine Nectaross N N N 62.5 37.5 0
27 SALUZZO Nectarine Big Top N N Y 100 0 0
28 SALUZZO Nectarine Big Top N N N 40 60 0
29 SALUZZO Nectarine Venus N N N 62.5 37.5 0
30 SCARNAFIGI Peach Rome Star N N N 87.5 0 12.5
31 SCARNAFIGI Nectarine Big Top N N N 100 0 0
32 SCARNAFIGI Peach Rome Star N N N 100 0 0
33 SAVIGLIANO Nectarine V3 N N N 0 100 0
34 SAVIGLIANO Nectarine Big Top N N N 25 75 0
35 SAVIGLIANO Peach Rome Star N N N 16.7 83.3 0
36 SAVIGLIANO Nectarine Diamond Ray N N Y 76.5 23.5 0
37 SAVIGLIANO Peach Vista Rich N N N 66.7 33.3 0
38 SAVIGLIANO Nectarine Amiga N N N 60 40 0
39 VERZUOLO Nectarine Stark Red Gold N N N 0 100 0
40 VERZUOLO Nectarine Big Top N N N 20 80 0
41 VERZUOLO Nectarine Big Top N N N 66.7 33.3 0
42 VERZUOLO Nectarine Amiga N N N 0 100 0
43 VERZUOLO Peach Rome Star N N Y 100 0 0
44 VERZUOLO Nectarine Big Top N N N 20 80 0
45 VERZUOLO Nectarine Nectaross N N Y 60 40 0
46 VERZUOLO Nectarine Alitop N N N 26.7 60 13.3
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Table S2. Primers used in this study.

PRIMER SEQUENCE TAXA 
DETECTED REFERENCE

MO368-5 5′-GCA AGG TGT CAA AAC TTC CA-3′

MO368-8R 5′-AGA TCA AAC ATC GTC CAT CT-3′

M. fructigena 
and 

M.polystroma
Côté et al. (2004)

MO368-5 5′-GCA AGG TGT CAA AAC TTC CA-3′
MO368-

10R 5′-AAG ATT GTC ACC ATG GTT GA-3′ M. fructicola Côté et al. (2004)

MO368-5 5′-GCA AGG TGT CAA AAC TTC CA-3′
LAXA-R2 5′-TGC ACA TCA TAT CCC TCG AC-3′ M. laxa Côté et al. (2004)

ITS1 5′-TCC GTA GGT GAA CCT GCG G-3′ White et al. (1990)

MFG-R2 5′-GGT CAA CCA TAG AAA ATT GGT-
3′

M. fructigena Hughes et al., 
(2000)

MCF-F1 5′-TAT GCT CGC CAG AGG ATA ATT 
A-3′

MFC-R1 5′-GAT TTT AGA GCC TGC CAT TA-3′
M. fructicola Hughes et al. 

(2000)

MI-MFG-
F2 5′-GCT CGC CAG AGA ATA ATC-3′

MI-MFC-
R1 5′-GAT TIT AGA GCC TGC CAT TG-3′

M. laxa
Hughes et al. 

(2000)

IGENAS 5′-TGCTCTGCCCGTACCCAG-3′

IGENAAS 5′-GGATTTATTGTGATGTAGTTTCG-
3′

M. fructigena Gell et al. (2007)

ICOLAS 5′-GAGACGCACACAGAGTCAG-3′
ICOLAAS 5′-GAGACGCACATAGCATTGG-3′ M. fructicola Gell et al. (2007)

ILAXAS 5′-TGAGCACGAGTGAATGTATAG-3′
ILAXAAS 5′-TGAGCACGAGGGCATATC-3′ M. laxa Gell et al. (2007)
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Figure S1. A. Percentage of M. fructicola, M. laxa and M. fructigena in function of the A. Prunus persica 
cultivars during the 2011-2012 winter season. B. A. Geographical origin during the 2011-2012 winter season.
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