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Abstract. For the first time we have experimentally determined all of the components of piezooptic ten-

sor for monoclinic crystals. This has been implemented on a specific example of TGS crystals. Basing on 

the results obtained, the complete elastooptic tensor has been calculated. The acoustooptic figures of mer-

it (AOFM) have been estimated for the case of acoustooptic interaction occurring in the principal planes 

of optical indicatrix ellipsoid and for the geometries in which the highest elastooptic coefficients are in-

volved as effective parameters. It has been found that the highest AOFM value is equal to 6.8×10–15 s3/kg 

for the case of isotropic acoustooptic interaction with quasi-longitudinal acoustic waves in the principal 

planes. This AOFM is higher than the corresponding values typical for the canonic acoustooptic materi-

als, which are transparent in the deep ultraviolet spectral range. 

 

Keywords: monoclinic crystals, piezooptic coefficients, elastooptic coefficients, acoustooptic materials, 
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1. Introduction 

Piezooptic effect consists in changes of refractive indices n  of a material medium under the action of 

mechanical stresses mσ . It represents a well-known phenomenon discovered by David Brewster as early 

as in 1816 [1]. A similar effect, which is often called as elastooptic, is described in terms of the mechani-

cal strains ne  (see, e.g., Ref. [2]). The both effects can be represented using the relations 

0
i i i im m in nB =B B =π σ =p e∆ − , in im mnp =π C ,     (1)  

where imπ  and ilp  are respectively the piezooptic and elastooptic tensors, ( )10 2
i i

B /n=  and iB  the opti-

cal-frequency impermeability tensors defined under the conditions of absence and presence of mechanical 

stresses (or strains), and mnC  is the tensor of elastic-stiffness coefficients. 

The piezooptic and elastooptic effects have found their applications in different optical and optoe-

lectronic devices, e.g. for determining mechanical stresses, including a so-called stress-tensor field to-

mography, in remote stress sensors, accelerometers and light-polarization modulators (see Refs. [2–7]). 



One of the most important applications of the elastooptic effect is concerned with acoustooptic devices 

[8–10]. When searching for efficient geometries of acoustooptic interactions, one has to know both the 

magnitudes and signs of all of the elastooptic tensor components [11–15]. In this respect it is noteworthy 

that the most precise and widely used acoustooptic Dixon–Kohen method for measuring the elastooptic 

coefficients does not enable determining their signs [16, 17]. Only interferometric and polarimetric meth-

ods are fit for measuring the piezooptic tensor coefficients and recalculating them into the elastooptic 

components [18–22]. This can be complied using Eqs. (1) and elastic stiffness coefficients known in ad-

vance. However, one has to keep in mind that the recalculation procedure itself increases the appropriate 

errors notably.  

When the symmetry of crystals becomes lower, the numbers of independent components of all the 

tensors increase. This complicates further the problems with the errors. For instance, even for orthorhom-

bic SrB4O7 crystals, for which the piezooptic and elastooptic matrices contain twelve independent com-

ponents, some of the piezooptic tensor components have been determined, using the interferometric tech-

nique with the error exceeding 50%, while the calculation errors for some of the elastooptic coefficients 

have already been as high as 100% [23]. Such errors can make no sense of further determining preferable 

acoustooptic geometries. In our recent works [24, 25] we have shown that the piezooptic errors resulting 

from the methods based upon uniaxial loading of samples originate from barrel-like strains appearing in 

parallelepiped-shaped samples. They arise due to friction forces acting among the sample bulk and its top 

and bottom substrates. In its turn, this brings about inhomogeneous stresses inside samples, of which spa-

tial distribution is unknown. To avoid such inhomogeneous stresses, we have developed a number of 

methods for measuring the piezooptic coefficients, which are based on applying torsion or bending stress-

es to samples. Although these stresses are also non-uniform, their distribution can be known in advance 

[26–28]. On the other hand, these methods reveal a shortcoming associated with significant number of 

samples with special orientations and sizes, which are needed experimentally. Moreover, this number in-

creases drastically with lowering crystalline symmetry. As a consequence, traditional interferometric 

techniques based on uniaxial loading of samples become indispensable in the latter case. 

Issuing from the arguments mentioned above, one can see that the problems with accurate meas-

urements of the piezooptic coefficients are the most prominent if one studies low-symmetry crystals. In 

the present work we will demonstrate that the interferometric method accompanied by uniaxial loading of 

samples can, in principle, be used for determining the piezooptic coefficients of monoclinic crystals. This 

will be done on a specific example of triglycine sulfate (TGS) crystals. As a result, a full matrix of the 

piezooptic coefficients of monoclinic crystals will be obtained for the first time. 

2. Relations for the piezooptic coefficients and experimental procedures 

TGS crystals described by the chemical formula (NH2CH2COOH)3H2SO4 represent a canonical ferroelec-

tric material belonging to the point symmetry groups 2 and 2/m respectively below and above the Curie 

temperature (TC = 322 K) [29]. The matrix of piezooptic (or elastooptic) tensor for all monoclinic groups 

is the same and contains twenty independent components [30]. In our recent work [31] we have deter-



mined the nine ‘principal’ components imπ  given by the indices i, m = 1, 2 and 3. The remaining eleven 

unknown components are π15, π25, π35, π51, π52, π53, π44, π55, π66, π46 and π64. These ‘non-principal’ co-

efficients are harder to be determined, since the corresponding theoretical relations usually include a 

complicated combination of different piezooptic components and elastic compliances [32]. In fact, this is 

the reason of the high errors arising in case if one determines these coefficients. In this work we have de-

rived simplified relations for determining the non-principal piezooptic coefficients, following from so-

called ‘symmetric’ experimental conditions. 
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      d)                                     e)                                    f ) 
 
Fig. 1. Schematic presentation of samples used for studying the piezooptic effect in crystals: (а) one of 
direct cuts, (b) Х/45°-cut, (c) Y/45°-cut, (d) Z/45°-cut, (e) B and 4 -cuts, and (f) B and 6 -cuts. 

 
Below we consider the symmetric experimental conditions, which are described by the indices 4 

and 4 , 5 and 5 , 6 and 6 , as well as B and B . Let a standard method of half-wave stresses be used. Then 

the relation for the piezooptic coefficient π46 under the experimental conditions i = 4, k = 4  and m⊥ В are 
written as [32] 

22 23 32 33 21 31 44 25 35 46 3 o
4 4

22 33 44 12 13 23 25 35 46
43

4

82( (
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B

λπ π π π π π π
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   (2) 

where Skm denote the elastic-compliance coefficients, the indices i, k and m indicate respectively the direc-

tions of light polarization, light propagation and uniaxial load, o
4 4 4B Bσ σ d=  is the control stress, 4Bσ  the 

half-wave stress, 4d  the sample thickness along the light propagation direction (see Fig. 1e), and 

λ  = 632.8 nm the wavelength of optical radiation. The directions indicated by the indices 1, 2 and 3 cor-
respond respectively to the principal axes of optical indicatrix (–Х), Y and Z, whereas the directions given 
by the indices 4, 5 and 6 correspond to the bisectors YZ, ХZ and ХY, respectively. Then the directions in-

dicated respectively as 4 , 5  and 6  represent the bisectors Y(−Z) [or (−Y)Z], Z(−X) [or (−Z)X] and Х(−Y) 
[or (−X)Y] (see Fig. 1). 

The refractive indices for the light polarized along these bisector directions read as 



2 3
4 2 2

2 3 2 3

22 n nn
B B n n

= =
+ +

, 1 3
5 2 2

1 3 1 3

22 n nn
B B n n

= =
+ +

, 1 2
6 2 2

1 2 1 2

22 n nn
B B n n

= =
+ +

,  (3) 

where 2 2 2
1 1 2 2 3 31/ ,  1/ , 1/B n B n B n= = =  are the diagonal impermeability tensor components, and n1, n2 

and n3 the principal refractive indices. The relation corresponding to the symmetric experimental condi-
tions (i.e., to the direction of uniaxial loading m⊥ B ) is given by 
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4 4
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Subtracting Eqs. (2) and (4), one obtains 

25 35 46
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   (5) 

on the basis of which one can determine the coefficient 46π , whenever the 25π  and 35π  coefficients are 

known. 
Similar relations can be obtained for all of the eleven piezooptic components, as seen from Table 1. 

Notice also that some of the relations presented in Table 1 contain the principal piezooptic coefficients. 
This fact can be used for verifying the values of the coefficients obtained with the samples of so-called 
direct cuts. 

 

Table 1. Theoretical relations used for determining non-principal piezooptic coefficients of monoclinic 
crystals. 

Experimental 
conditions 

 
Relation 

Sample of X/45°-cut (Fig. 1b) 

m = 4( 4 ) 
k = 4 (4) 
i = 4( 4 ) 

4
44 22 23 33 44 22 23 32 333 o 3

4 444(44)

12 ( 2 ) ( ) / 2nλ S S S S
n σ n

π π π π π−
=− + + + − − + + +  

Sample of Y/45°-cut (Fig. 1с) 

m = 2 
k = 5 (5) 
i = 5( 5 ) 

5
52 253 o o 3

5 52 552

11 1=
2

nπ S
n n
λ

σ σ
  −

− − −  
 

 

m = 5( 5 ) 
k = 2 
i = 1 

1
15 253 o o 3

1 15 115

11 1 2 nπ S
n n
λ

σ σ
  −

= − − +  
 

 

m = 5( 5 ) 
k = 2 
i = 3 

3
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m = 5( 5 ) 
k = 5 (5) 
i = 2 

25 3 o o
2 25 25

1 1π
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m = 5( 5 ) 
k = 5 (5) 
i = 5( 5 ) 

5
55 11 13 33 55 11 13 31 333 o o 3
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Sample of Z/45°-cut (Fig. 1d) 

m = 6( 6 ) 

k = 6 (6) 

 i = 6( 6 ) 

6
66 11 12 22 66 11 12 21 223 o 3

6 666(66)

1( 2 ) ( ) / 2nπ S S S S π π π π
n σ n

λ −
=− + + + − − + + +  

Sample of B and 4 -cuts (Fig. 1e) 

m⊥ B( B ) 
k = 4  
 i = 4 

4
46 25 35 46 25 353 o o 3

4 4 44
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Sample of B and 6 -cuts (Fig. 1f) 

m⊥ B( B ) 
k = 6  
 i = 6 

6
64 15 25 46 15 253 o o 3

6 6 66

11 1 ( ) ( /
B B

nλπ S S S π π
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We have determined the absolute values of the piezooptic coefficients using a Mach–Zehnder inter-

ferometer. This can be done through measuring the half-wave mechanical stresses. According to the defi-

nition, application of these stresses leads to the difference of optical paths between the objective and ref-

erence arms of interferometer, which is equal to the half of optical wavelength. The measuring method 

has been described in detail in our recent work [31].  

Our single crystals have been grown from aqueous solution at the Institute of Technical Acoustics of 

NAS of Belarus, with the average sizes of parallelepiped-shaped samples being equal to 7×7×7 mm3. 

The piezooptic coefficients have been measured in the coordinate system ХYZ. The axes of this system 

coincide with the principal axes of the optical indicatrix ellipsoid. Note that the crystallographic coordi-

nate system abc for the monoclinic TGS crystals is not rectangular. The monoclinic angle is large enough, 

~ 105 deg [33]. The axes defined crystallographically are the b (i.e., Y) and c. We form a working Carte-

sian coordinate system X1X2X3 basing on the crystallographic system, so that the axes b and c are parallel 

respectively to X2 and X3, while the axis X1 is perpendicular to the bc plane. 

Different constitutive coefficients of the TGS crystals, in particular the elastic-stiffness coefficients 

[34], are defined in the coordinate system X1X2X3. Under normal conditions and at λ  = 632.8 nm, the 

coordinate system XYZ is rotated with respect to the system X1X2X3 by 3º around the two-fold symmetry 

axis (i.e., the b axis) [33]. The principal refractive indices at 632.8 nm are equal to n1 = 1.591, n2 = 1.488 

and n3 = 1.563 [35]. We have taken the elastic stiffnesses from Ref. [34] and rewritten their matrix in the 

coordinate system XYZ (see Table 2). Finally, the elastic compliances have been determined using the 

known relations Smk = (Cmk)–1. 

 



Table 2. Elastic-stiffness and compliance coefficients for the TGS crystals written in the coordinate systems 
X1X2X3 [34] and XYZ. 

Cmk, GPa C11 C12 C13 C22 C23 C33 C15 C25 C35 C44 C55 C66 C46 

Coordinate sys-
tem X1X2X3 

45.5 17.2 19.8 32.1 20.8 26.3 –3.0  –0.36 –5.0 9.5 11.1 6.2 –0.26 

Coordinate sys-
tem XYZ 

46.1 17.2 19.9 32.1 20.7 25.3 –2.8  –0.55 –4.1 9.5 11.3 6.2 –0.43 

Skm, 10–12 m2/N S11 S12 S13 S22 S23 S33 S15 S25 S35 S44 S55 S66 S46 
Coordinate sys-
tem X1X2X3 

32.9 –2.9 –22.7 69.8 –57.7 108.5 –1.4 –24.5 40.9 105.4 107.3 161.5 4.4 

Coordinate sys-
tem XYZ 

34.0 –0.49 –27.8 69.8 –60.1 117.5 –9.3 –21.5 44.7 106.0 102.6 160.9 7.3 

 

As seen from Table 2, the elastic-stiffness coefficients in the both coordinate systems are almost the 
same. The only exceptions are the coefficients C46 and C25. However, the components of the elastic-
compliance tensor in the coordinate system XYZ differ significantly from those written in the coordinate sys-
tem X1X2X3. 

3. Results and discussion 

The main results of our piezooptic studies are gathered in Table 3. The errors for the non-principal piezo-
optic coefficients are high enough. The lowest relative errors, 17% and 18%, are peculiar for the coeffi-
cients π64 and π52. The coefficient π46 has been determined with the relative error exceeding 100%. 
The other coefficients have been measured with the errors 29–68%. Besides, the combination of 
coefficients π51 + π53 has been derived with the error amounting to 94%. It is noteworthy that the method 
of measurements used by us does not enable determining these tensor components separately. 

 
Table 3. Non-principal piezooptic coefficients for the TGS crystals determined at Т = 293 K (1 Br = 10–

12 m2/N).  
Experimental conditions  

o
imσ , kg/cm 

 
πim, Br 

 m k i 

Sample of X/45°-cut (Fig. 1b)  

4( 4 ) 4 (4) 4( 4 ) o
44σ = o

4 4σ = 34.0 π44 = −3.7±2.2  

Sample of Z/45°-cut (Fig. 1d) 

6( 6 ) 6 (6) 6( 6 ) 
o
66σ = o

66σ = 25.5 π66 = 3.2±2.2  

Sample of Y/45°-cut (Fig. 1c)  

 
2 

 
5 

 5  
o
52

σ  = 20.2 π52 = 3.4±0.6  

 
5 

 
2 

1 o
15σ = 14.0 π15 = −6.3±1.8  

3 o
35σ  = 12.5 π35 = −2.8±1.7  

 
5 

 

5  
5 o

55σ = 31.0 π55 = 5.7±2.2  

2 o
25σ = 59.0 π25 = −1.6±0.6  

  1 o
15

σ = 12.5 π15 = −6.3±1.8  



5  2 3 o
35

σ = 17.0 π35 = −2.8±1.7  

 
5  

 
5 

 5  
o
55

σ = 20.0 π51 + π53 = 1.7±1.6  

2 o
25

σ = 40.0 π25 = −1.6±0.6  

Sample of B, 4 -cuts (Fig. 1e) and sample of B and 6 -cuts (Fig. 1f) 

⊥B  4  4 o
4Bσ  = 23.1   

π46 = 0.5±2.1  
 ⊥ B  4  4 o

4B
σ  = 16.9 

⊥B  6  6 o
6Bσ  = 9.2  

π64 = 17.1±3.0  
 ⊥ B  6  6 o

6B
σ  = 29.5 

 
We have used another technique, a method of optical extinction of anisotropic sample between 

crossed polarizers. The direct-cut sample (see Fig. 1a) has been placed between the crossed linear polariz-

ers so that the light propagates along the Y axis (k = 2) and the uniaxial load mσ  is applied along the Х 

(m = 1) or Z (m = 3) axes. Under such conditions, the optical indicatrix rotates around the Y axis by a cer-
tain angle φ, which depends on the coefficients π51 or π53: 

5tan m mπ σ
ϕ

Β Β1 3

=
−

,      (6) 

We have φ = (0.4±0.1)° under the conditions m = 3 and σ3 = 300 kg/cm2 and φ   0 when m = 1 and 

σ1 = 300 kg/cm2. The magnitude of the π53 coefficient is equal to 3 0 0 3. .± Br. Taking into account that 

the combined coefficient π51 + π53 is equal to 1.7±1.6, one can find that the π53 coefficient is positive and 
π51 negative (π51 = –1.3 ±1.6). In other words, the above sum is almost zero, agreeing well with a zero an-
gle of optical indicatrix rotation observed when the load is applied along the X axis. Accounting for the 
results of our work [31], we state that all of the piezooptic coefficients for the TGS crystals are now de-
termined (see Table 3). 

 
Table 3. Piezooptic coefficients for the TGS crystals (in Br). 

π11 π22 π33 *π12 *π21 π13 π31 π23 π32 π44 

–0.73 

±0.06 

5.40 

±0.55 

6.5 

±1.5 

–1.1 

±1.9 

0.7 

±1.0 

8.2±2.
7 

–0.14 

±0.01 

4.9 

±1.4 

0.46 

±0.06 

−3.7 

±2.2 

π55 π66 *π46 π64 *π51 π52 π53 π15 π25 π35 

5.7 

±2.2 

3.2  

± 2.2 

0.5 

±2.1 

17.1 

±3.0 

1.3 

±1.6 

3.4 

±0.6 

3.0 

±0.3 

−6.3 

±1.8 

−1.6 

±0.6 

−2.8 

±1.7 

 

As seen from Table 3, the four coefficients marked by asterisk, π12, π21, π46 and π51, are determined 

with the relative errors that exceed 100%. However, the coefficient π51 can be accepted as being almost 

equal to zero, as we have already mentioned. In addition, we have checked out the values of the principal 

piezooptic coefficients obtained in the work [31]. It has been found that they agree well with the present 

results. The elastooptic coefficients calculated using Eqs. (1) are collected in Table 4. The errors for the 



elastooptic parameters are calculated using the relations 2 2 1/2( ) [( ) ( ) ]im mn im mn im mnπ C π C π Cδ δ δ= + . Note that 

the errors of determination of the elastooptic coefficients are, in general, high enough. They do not exceed 

25% for nearly the half of the coefficients. Still higher errors (~ 60%) are peculiar for the coefficients p12 

and p44, while the relative errors for the coefficients p66, p46 and p51 marked by asterisks in Table 4 exceed 

100%. One can see from Table 4 that the largest elastooptic coefficients are those described by the tensor 

components p22, p23 and p21. These are the components that provide coupling with the electric field of dif-

fracted optical wave parallel to the two-fold symmetry axis, i.e. the polar axis. 

 
Table 4. Elastooptic coefficients calculated for the TGS crystals. 

p11 p22 p33 p12 p21 p13 p31 p23 p32 p44 

0.128 

±0.064 

0.288 

±0.039 

0.183± 
0.039 

0.125 

±0.083 

0.227 

±0.055 

0.196 

±0.080 

0.139 

±0.031 

0.256 

±0.043 

0.149 

±0.032 

−0.035 

±0.021 

p55 *p66 *p46 p64 *p51 p52 p53 p15 p25 p35 

0.054 

±0.026 

0.012 

±0.014 

0.005 

±0.013 

0.161 

±0.030 

0.042 

±0.075 

0.146 

±0.034 

0.097 

±0.036 

−0.102 

±0.024 

−0.043 

±0.009 

−0.058 

±0.020 

 
Now we are in a position to consider the acoustooptic interactions that involve the elastooptic com-

ponents mentioned above. Then the acoustooptic effect implies the coupling of the electric field E2 of dif-

fracted optical wave with the induction of the incident optical wave D2 ( 2 22 2E B D∆= ). In case of iso-

tropic interaction with the quasi-longitudinal waves propagating along the X, Y and Z axes, we have 

2 21 1 2 2 22 2 2E p e D , E p e D= =  and 2 23 3 2E p e D ,=  with ne  being the strain tensor component caused by the 

acoustic wave. Schematic vector diagrams corresponding to the Bragg acoustooptic interactions in the 

principal planes of optical indicatrix ellipsoid are presented in Fig. 2. Here the coefficients p22, p23 and p21 

play a role of effective elastooptic coefficients. 

  
(a)    (b)    (c) 

Fig. 2. Schematic vector diagrams of isotropic acoustooptic Bragg diffractions occurring in the principal 
planes XY (a), YZ (b) and XZ (c) in TGS. Labels 1, 3, 5 and 6 correspond to tangential Bragg diffractions, 
whereas 2, 4, 7 and 8 to collinear diffractions of a reflection type. 
 



Now let us estimate the acoustooptic figure of merit defined as 6 2 2
2 i ef klM n p / ρv= , where 

ρ  = 1680 kg/m3 [33] denotes the crystal density, efp  the effective elastooptic coefficient and klv  the 

acoustic wave velocity. Here the indices k and l correspond to the directions of propagation and polariza-
tion of the acoustic wave, respectively. We analyze the acoustooptic diffractions of eight different types 
schematically defined in Fig. 2. Solving the Christoffel equation (see Ref. [30]) and using the elastic-
stiffness coefficients written in the XYZ coordinate system (see Table 2), one can determine the velocities 
of the quasi-longitudinal waves as 11v =5251 m/s, 22 4371 m/sv =  and 33 39 /s69 mv = . The acoustooptic 

figures of merit for different types of the isotropic acoustooptic diffractions are collected in Table 5. No-
tice that the equality ni = np holds true for all of these cases. 
 
Table 5. Effective elastooptic coefficients, acoustic wave velocities and acoustooptic figures of merit for 
TGS calculated for the case of acoustooptic diffraction occurring in the principal planes of optical indica-
trix. 

Type of 
diffraction 
(see Fig. 2) 

1 2 3 4 5 6 7 8 

pef p22 p21 p22 p23 p21 p23 p21 p23 

ijv  22v  11v  22v  33v  11v  33v  11v  33v  

M2, 10–15 
s3/kg 

6.4 2.3 6.4 6.8 2.3 6.8 2.3 6.8 

 
It is worth noticing that the highest M2 coefficients correspond to the interactions with relatively 

slow acoustic waves 33v  and 22v . These coefficients are comparable with those obtained in our recent 

work [31] (5.9×10–15 s3/kg). In particular, we have pef = p31 in the latter case. Here we remark that a de-
tailed analysis of M2 anisotropy is not the aim of the present work. It can be performed only after the elas-
tooptic coefficient is derived, e.g. with the Dixon–Cohen method. 

In order to further check our results, we have computed the elastooptic coefficients, using a quantum-

mechanical approach implemented recently into a known CRYSTAL program [22, 36, 37]. A hybrid function-

al augmented by a correction to take into account weak dispersive interactions (B3LYPD3) has been used 

within the density-functional theory. We have considered a fully relaxed structure: a = 9.3845, b = 12.6108, 

c = 5.5317 Å, and the angle between the directions (101) and (100) being equal to *β = 110.21° [33]. The best 

agreement between the experimental and computation data (p13 = 0.251, p21 = 0.247, p22 = 0.284, p13 = 0.313 

and p23 = 0.233) has been observed when the material coefficients differ by 2–22% from the elastooptic 

components obtained experimentally.  

4. Conclusions 

In the present work we have determined all the components of piezooptic tensor for monoclinic crystals. This 

task has been implemented on a canonical example of TGS crystals. In order to decrease the experimental er-

rors, we have derived so-called simplified relations. They enable determining the non-principal piezooptic co-

efficients due to taking so-called symmetric experimental conditions into account. The relative errors for the 

piezooptic coefficients π64 and π52 coefficients are about 17 and 18%. The other coefficients are meas-



ured with higher relative errors, 29–68%. Such relatively small coefficients as π46, π51, π12 and π21 

reveal still higher errors which exceed 100%. Finally, we have found that the highest piezooptic 

coefficient is equal to π64 = (17.1±3.0) Br. 

Basing on the piezooptic coefficients thus measured and the literature data available for the elastic-

stiffness tensor components, we have calculated the elastooptic coefficients. The corresponding relative 

errors are high enough. In particular, although these errors do not exceed 25% for nearly half of the coef-

ficients, they increase higher (~ 60%) in case of the coefficients p12 and p44, and become still higher for the 

coefficients p66, p46 and p51 (more than 100%). 

The highest elastooptic parameters are those corresponding to the tensor components p22, p23 and 

p21. It is these components that provide acoustooptic coupling of the diffracted electric field parallel to the 

two-fold symmetry (or polar) axis. The acoustooptic figures of merit have been estimated for the case of 

isotropic acoustooptic interactions occurring in the principal planes of the coordinate system XYZ, in 

which the elastooptic coefficients mentioned above play a role of effective parameters. These figures 

amount to 2.3, 6.4 and 6.8×10–15 s3/kg. The last two values correspond to the interactions with the slow 

acoustic waves propagating along the Y and Z axes, respectively.  

It is obvious that the acoustooptic figures of merit obtained for TGS are lower than the appropriate val-

ues known for such canonical acoustooptic materials as, e.g., TeO2 [38–40] or Нg2Cl2 [41]. Nonetheless, the 

M2 coefficients of the TGS crystals, which are transparent in the deep ultraviolet range, are higher than 

those typical for fused silica or KDP crystals. We remind that the latter materials are often used for acous-

tooptic operation of ultraviolet optical radiation. Moreover, since TGS are low-symmetry crystals, they 

can reveal much more promising ‘indirect-cut’ experimental geometries of acoustooptic interactions. In 

principle, the latter geometries can be characterized by notably higher acoustooptic figures of merit, when 

compared to those obtained in the present work. To analyze comprehensive the spatial anisotropy of M2, 

one has to derive the elastooptic coefficients with higher precision than that typical for this work. This 

problem can be solved, using the Dixon–Cohen method and accounting for the results of the present study 

and, in particular, the signs of the elastooptic tensor components obtained by us. 
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