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ELLIPTIC COMPLEXES WITH GENERALIZED

ATIYAH-PATODI-SINGER BOUNDARY CONDITIONS

B.-W. SCHULZE AND J. SEILER

Abstract. We show that elliptic complexes of (pseudo)differential operators

on smooth compact manifolds with boundary can always be complemented to

a Fredholm problem by boundary conditions involving global pseudodifferen-

tial projections on the boundary (similarly as the spectral boundary conditions

of Atiyah, Patodi and Singer for a single operator). We prove that boundary

conditions without projections can be chosen if, and only if, the topological

Atiyah-Bott obstruction vanishes. These results are based on a Fredholm the-

ory for complexes of operators in algebras of generalized pseudodifferential

operators of Toeplitz type which we also develop in the present paper.

Keywords: Elliptic complexes,Atiyah-Patodi-Singer type boundary conditions,

Atiyah-Bott obstruction, Toeplitz type pseudodifferential operators.
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1. Introduction

The present paper is concerned with the Fredholm theory of complexes of differ-

ential operators and, more generally, of complexes of operators belonging to pseu-

dodifferential operator algebras. In particular, we consider complexes of differential

operators on manifolds with boundary and investigate (and answer) the question in

which way one can complement complexes, which are elliptic on the level of homoge-

neous principal symbols, with boundary conditions to achieve a Fredholm problem.

A boundary condition means here a homomorphism between the given complex and

a complex of pseudodifferential operators on the boundary; it is called a Fredholm

problem if the associated mapping cone has finite-dimensional cohomology spaces

(see Sections 2.2 and 3.3 for details). As we shall show, boundary conditions can

always be found, but the character of the boundary conditions to be chosen depends

on the presence of a topological obstruction, the so-called Atiyah-Bott obstruction,

cf. Atiyah and Bott [3], here formulated for complexes. In case this obstruction

vanishes, one may take “standard” conditions (to be explained below), otherwise

one is lead to conditions named generalized Atiyah-Patodi-Singer conditions, since

they involve global pseudodifferential projections on the boundary, similar as the

classical spectral boundary conditions of Atiyah, Patodi and Singer [4] for a single

operator. Moreover, given a complex together with such kind of boundary condi-

tions, we show that its Fredholm property is characterized by the exactness of two

associated families of complexes being made up from the homogeneous principal

symbols and the so-called homogeneous boundary symbols, respectively.

Essential tools in our approach are a systematic use of Boutet de Monvel’s calculus

(or “algebra”) for boundary value problems [5] (see also Grubb [9], Rempel and

Schulze [13], and Schrohe [14]) and a suitable extension of it due to the first author

[16], as well as the concept of generalized pseudodifferential operator algebras of

Toeplitz type in the spirit of the second author’s work [24]. A key role will play

the results obtained in Sections 5 and 6 concerning complexes of such Toeplitz type

operators. Roughly speaking, in these two sections we show how to construct an

elliptic theory for complexes of operators belonging to an operator-algebra having

a notion of ellipticity, and then how this theory can be lifted to complexes involving

projections from the algebra. We want to point out that these results do not only

apply to complexes of operators on manifolds with boundary, but to complexes of

operators belonging to any “reasonable” pseudodifferential calculus including, for

example, the calculi of the first author for manifolds with cone-, edge- and higher

singularities [15] and Melrose’s b-calculus for manifolds with corners [11].

Boutet de Monvel’s calculus was designed for admitting the construction of para-

metrices (i.e., inverses modulo “smoothing” or “regularizing” operators) of Shapiro-

Lopatinskij elliptic boundary value problems on a manifold Ω within an optimal

pseudodifferential setting. The elements of this algebra are 2 × 2 block-matrix op-

erators acting between smooth or Sobolev sections of vector bundles over Ω and

its boundary ∂Ω, respectively; see Section 3.1 for further details. Boutet de Monvel

also used his calculus to prove an analogue of the Atiyah-Singer index theorem in
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K-theoretic terms. There arises the question whether any given elliptic differential

operator A on Ω (i.e., A has an invertible homogeneous principal symbol) can be

complemented by boundary conditions to yield an elliptic boundary value problem

belonging to Boutet de Monvel’s calculus. The answer is no, in general. In fact,

the so-called Atiyah-Bott obstruction must vanish for A: Specifying a normal co-

ordinate near the boundary, one can associate with A its boundary symbol σ∂(A)

which is defined on the unit co-sphere bundle S∗∂Ω of the boundary ∂Ω and takes

values in the differential operators on the half-axis R+. In case of ellipticity, this

is a family of Fredholm operators between suitable Sobolev spaces of the half-axis,

hence generates an element of the K-group of S∗∂Ω, the so-called index element.

We shall denote this index element by indS∗∂Ω σ∂(A). The Atiyah-Bott obstruction

asks that the index element belongs to π∗K(∂Ω), the pull-back of the K-group of

∂Ω under the canonical projection π : S∗∂Ω→ ∂Ω.

A simple example of an operator violating the Atiyah-Bott obstruction is the

Cauchy-Riemann operator ∂ on the unit-disc Ω in R2, see Section 3.2 for more

details. However, in this case we may substitute the Dirichlet condition u 7→ γ0u

by u 7→ Cγ0u, where C is the associated Calderón projector, which is a zero order

pseudodifferential projection on the boundary. One obtains Fredholm operators (in

fact, invertible operators), say from Hs(Ω) to Hs−1(Ω) ⊕ Hs−1/2(∂Ω;C), where

Hs(∂Ω;C) denotes the range space of C. In [21], Seeley has shown that this works

for every elliptic differential operator on a smooth manifold. Schulze, Sternin and

Shatalov in [20] considered boundary value problems for elliptic differential opera-

tors A with boundary conditions of the form u 7→ PBγu, where γ is the operator

mapping u to the vector of its first µ− 1 derivatives ∂jνu|∂Ω in normal direction, B

and P are pseudodifferential operators on the boundary and P is a zero-order pro-

jection. They showed that the Fredholm property of the resulting operator, where

PBγ is considered as a map into the image of P rather than into the full function

spaces over the boundary, can be characterized by the invertibility of suitably as-

sociated principal symbols. Based on these results, the first author of the present

work has constructed in [16] a pseudodifferential calculus containing such boundary

value problems, extending Boutet de Monvel’s calculus. This calculus permits to

construct parametrices of elliptic elements, where the notion of ellipticity is now

defined in a new way, taking into account the presence of the projections; see Sec-

tion 3.1.2 for details. In [18] the authors realized this concept for boundary value

problems without the transmission property and in [19] they consider operators on

manifolds with edges.

While [16], [18] and [19] exclusively dealt with the question of how to incorpo-

rate global projection conditions in a specific pseudodifferential calculus (Boutet

de Monvel’s calculus and Schulze’s algebra of edge pseudodifferential operators,

respectively), the second author in [24] considered this question from a more gen-

eral point of view: Given a calculus of “generalized” pseudodifferential operators

(see Section 4.1 for details) with a notion of ellipticity and being closed under con-

struction of parametrices, how can one build up a wider calculus containing all

Toeplitz type operators P1AP0, where A, P0, P1 belong to the original calculus and
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the Pj = P 2
j are projections? It turns out that if the original calculus has some nat-

ural key properties, then the notion of ellipticity and the parametrix construction

extend in a canonical way to the class of Toeplitz type operators; see Section 4.2

for details.

In the present paper we are not concerned with single operators but with complexes

of operators. There is no need to emphasize the importance of operator complexes

in mathematics and that they have been studied intensely in the past, both in

concrete (pseudo-)differential and more abstract settings; let us only mention the

works of Ambrozie and Vasilescu [1], Atiyah and Bott [2], Brüning and Lesch [6],

Rempel and Schulze [13] and Segal [22], [23]. The Fredholm property of a single

operator is now replaced by the Fredholm property of the complex, i.e., the property

of having finite-dimensional cohomology spaces. In Section 2 we shortly summarize

some basic facts on complexes of operators in Hilbert spaces and use the occasion

to correct an erroneous statement present in the literature concerning the Fredholm

property of mapping cones, cf. Proposition 2.6 and the example given before.

A complex of differential operators on a manifold with boundary which is exact

(respectively, acyclic) on the level of homogeneous principal symbols, in general will

not have the Fredholm property. Again it is natural to ask whether it is possible to

complement the complex with boundary conditions to a Fredholm problem within

the framework of Boutet de Monvel’s calculus. Already Dynin, in his two-page note

[7], observed the presence of a kind of Atiyah-Bott obstruction which singles out

those complexes that can be complemented with trace operators from Boutet de

Monvel’s calculus. Unfortunately, [7] does not contain any proofs and main results

claimed there could not be reproduced later on. One contribution of our paper is

to construct complementing boundary conditions in case of vanishing Atiyah-Bott

obstruction, though of a different form as those announced in [7]. Moreover we

show that, in case of violated Atiyah-Bott obstruction, we can complement the

complex with generalized Atiyah-Patodi-Singer conditions to a Fredholm complex,

see Section 3.3. Given a complex with boundary conditions, we characterize its

Fredholm property on principal symbolic level.

As is well-known, for the classical deRham complex on a bounded manifold the

Atiyah-Bott obstruction vanishes; in fact, the complex itself – without any addi-

tional boundary condition – is a Fredholm complex. On the other hand, the Dol-

beault or Cauchy-Riemann complex on a complex manifold with boundary violates

the Atiyah-Bott obstruction; we shall show this in Section 3.5 in the simple case

of the two-dimensional unit ball, where calculations are very explicit. Still, by our

result, the Dolbeault complex can be complemented by generalized Atiyah-Patodi-

Singer conditions to a Fredholm problem. A more thorough analysis of this partic-

ular complex is subject to future research. In general, we think that our approach

opens up new possibilities in the analysis of complexes of differential operators and

problems related with it.
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2. Complexes in Hilbert spaces

In this section we shall provide some basic material about complexes of bounded

operators and shall introduce some notation that will be used throughout this paper.

2.1. Fredholm complexes and parametrices. A Hilbert space complex consists

of a family of Hilbert spaces Hj , j ∈ Z, together with a family of operators Aj ∈

L (Hj , Hj+1) satisfying Aj+1Aj = 0 for any j (or, equivalently, imAj ⊆ kerAj+1

for any j). More intuitively, we shall represent a complex as a diagram

A : . . . −→ H−1
A−1
−−−→ H0

A0−−→ H1
A1−−→ H2

A2−−→ H3 −→ . . .

Mainly we shall be interested in finite complexes, i.e., the situation where Hj = {0}

for j < 0 and j > n+ 1 for some natural number n. In this case we write

A : 0 −→ H0
A0−−→ H1

A1−−→ . . .
An−1
−−−→ Hn

An−−→ Hn+1 −→ 0.

Definition 2.1. The cohomology spaces of the complex A are denoted by

Hj(A) = kerAj
/
imAj−1, j ∈ Z.

In case Hj(A) is finite dimensional, the operator Aj−1 has closed range. We call A

a Fredholm complex if all cohomology spaces are of finite dimension. In case A is

also finite, we then define the index of A as

indA =
∑

j

(−1)jdimHj(A).

The complex A is called exact in position j, if the j-th cohomology space is trivial;

it is called exact (or also acyclic) if it is exact in every position j ∈ Z.

Definition 2.2. The j-th Laplacian associated with A is the operator

∆j := Aj−1A
∗
j−1 +A∗

jAj ∈ L (Hj).

In case dimHj(A) < +∞, the orthogonal decomposition

kerAj = imAj−1 ⊕ ker∆j

is valid; in particular, we can write

Hj = (kerAj)
⊥ ⊕ imAj−1 ⊕ ker∆j ,

and A is exact in position j if, and only if, ∆j is an isomorphism.

Definition 2.3. A parametrix of A is a sequence of operators Pj ∈ L (Hj+1, Hj),

j ∈ Z, such that the following operators are compact:

Aj−1Pj−1 + PjAj − 1 ∈ L (Hj), j ∈ Z.

Note that in the definition of the parametrix we do not require that PjPj+1 = 0

for every j; in case this property is valid, we also call P a complex and represent it

schematically as

P : . . .←− H−1
P−1
←−− H0

P0←− H1
P1←− H2

P2←− H3 ←− . . .
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Theorem 2.4. For A the following properties are equivalent:

a) A is a Fredholm complex.

b) A has a parametrix.

c) A has a parametrix which is a complex.

d) All Laplacians ∆j, j = 0, 1, 2, . . ., are Fredholm operators in Hj.

2.2. Morphisms and mapping cones. Given two complexes A and Q, a mor-

phism T : A→ Q is a sequence of operators Tj ∈ L (Hj , Lj), j ∈ Z, such that the

following diagram is commutative:

. . . −−−−→ H−1
A−1
−−−−→ H0

A0−−−−→ H1
A1−−−−→ H2 −−−−→ . . .

yT−1

yT0

yT1

yT2

. . . −−−−→ L−1
Q−1
−−−−→ L0

Q0
−−−−→ L1

Q1
−−−−→ L2 −−−−→ . . .

i.e., Tj+1Aj = QjTj for every j. Note that these identities imply that Aj(kerTj) ⊆

kerTj+1 and Qj(im Tj) ⊆ imTj+1 for every j.

Definition 2.5. The mapping cone associated with T is the complex

CT : . . . −→

H−1

⊕

L−2


−A−1 0

T−1 Q−2




−−−−−−−−−−−−→

H0

⊕

L−1


−A0 0

T0 Q−1




−−−−−−−−−−−→

H1

⊕

L0

−→ . . .

T is called a Fredholm morphism if its mapping cone is a Fredholm complex.

We can associate with T two other complexes, namely

kerT : . . . −→ kerT−1
A−1
−−−→ kerT0

A0−−→ kerT1
A1−−→ kerT2 −→ . . .

and

cokerT : . . . −→ L−1/imT−1
Q−1
−−−→ L0/imT0

Q0
−−→ L1/imT1 −→ . . . ,

where, for convenience of notation, we use again Qj to denote the induced operator

on the quotient space.

We want to use the occasion to correct an erroneous statement present in the

literatur, stating that the Fredholm property of the mapping cone is equivalent to

the Fredholm property of both kernel an cokernel of the morphism. In fact, this is

not true, in general, as can be seen by this simple example: Let H and L be Hilbert

spaces and take T as

0 −−−−→ 0
0

−−−−→ H
−1
−−−−→ H −−−−→ 0

y0

yT1

y0

0 −−−−→ L
1

−−−−→ L
0

−−−−→ 0 −−−−→ 0,
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where 1 denotes the identity maps on H and L, respectively. The mapping cone

associated with this morphism is

0 −−−−→ 0
0

−−−−→

H

⊕

L

(
1 0

T1 1

)

−−−−−−−→

H

⊕

L

−−−−→ 0 −−−−→ 0.

Obviously, this complex is exact for every choice of T1 ∈ L (H,L), since the block-

matrix is always invertible (we see here also that the Fredholmness, respectively

exactness, of a mapping cone does not imply the closedness of the images imTj).

The kernel complex kerT is

0 −−−−→ 0
0

−−−−→ kerT1
−1
−−−−→ H −−−−→ 0.

it is exact only if T1 = 0, it is Fredholm only when kerT1 has finite codimension

in H , i.e., if imT1 is finite-dimensional. If the range of T1 is closed, then cokerT is

the complex

0 −−−−→ L
π

−−−−→ L/imT1
0

−−−−→ 0 −−−−→ 0

where π is the canonical quotient map. Thus cokerT is exact only for T1 = 0; it is

Fredholm only when im T1 has finite dimension.

Hence, for the equivalence of the Fredholm properties, additional assumptions are

required. The assumptions employed in the following proposition are optimal, as

shown again by the above (counter-)example.

Proposition 2.6. Assume that, for every j, imTj is closed and that

(2.1) dim
Q−1
j (im Tj+1)

kerQj + imTj
< +∞.

Then the following properties are equivalent:

a) The mapping cone CT associated with T is Fredholm.

b) Both complexes kerT and cokerT are Fredholm.

In case the quotient space in (2.1) is trivial, the cohomology spaces satisfy

H
j(CT) ∼= H

j(kerT)⊕H
j−1(cokerT).(2.2)

In particular, if the involved complexes are Fredholm and finite,

indCT = ind kerT− ind cokerT.

Moreover, CT is exact if, and only if, both kerT and cokerT are exact.

Proof. Let us first consider the case where the quotient space in (2.1) is trivial. Then

there exist closed subspaces Vj of Lj such that Lj = Vj⊕ imTj and Qj : Vj → Vj+1,

for every j. In fact, choosing a complement V ′
j of imTj ∩ kerQj in kerQj for every

j, take Vj := V ′
j ⊕Q−1

j (V ′
j+1). It is straightforward to see that the complex

QV : . . . −−−−→ V−1
Q−1
−−−−→ V0

Q0
−−−−→ V1

Q1
−−−−→ V2 −−−−→ . . .
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has the same cohomology groups as cokerT from above. Then consider the mor-

phism S : kerT→ QV defined by

. . . −−−−→ kerTj
Aj

−−−−→ kerTj+1 −−−−→ . . .
y0

y0

. . . −−−−→ Vj
Qj

−−−−→ Vj+1 −−−−→ . . .

(note that in the vertical arrows we could also write the Tj , since they vanish on

their kernel). The mapping cone CS is a subcomplex of CT. The quotient complex

CT/CS is easily seen to be the mapping cone of the morphism

. . . −−−−→ Hj/kerTj
Aj

−−−−→ Hj+1/kerTj+1 −−−−→ . . .
yTj

yTj+1

. . . −−−−→ imTj
Qj

−−−−→ imTj+1 −−−−→ . . .

(2.3)

again by Aj and Tj we denote here the induced maps on the respective quotient

spaces. Note that all vertical maps are isomorphisms, hence the associated map-

ping cone is exact. To see this, note that

(
−Aj 0

Tj Qj−1

)(
u

v

)
= 0 implies that

Tju+Qj−1v = 0, i.e., u = −T−1
j Qj−1v. Thus

ker

(
−Aj 0

Tj Qj−1

)
⊆ im

(
−T−1

j Qj−1

1

)
= im

(
−Aj−1T

−1
j−1

1

)

= im

(
−Aj−1

Tj−1

)
⊆ im

(
−Aj−1 0

Tj−1 Qj−2

)
⊆ ker

(
−Aj 0

Tj Qj−1

)
,

showing that H j(CT/CS) = 0. Summing up, we have found a short exact sequence

of complexes,

0 −−−−→ CS

α
−−−−→ CT

β
−−−−→ CT/CS −−−−→ 0,(2.4)

where α is the embedding and β the quotient map. Since the quotient is an ex-

act complex, a standard result of homology-theory (cf. Corollary 4.5.5 in [25], for

instance) states that the cohomology of CS and CT coincide. Since the maps defining

CS are just
(
−Aj 0

0 Qj−1

)
:

kerTj
⊕

Vj−1

−→

kerTj+1

⊕

Vj

,

the claimed relation (2.2) for the cohomology spaces follows immediately. The equiv-

alence of a) and b) is then evident.

Now let us consider the general case. Choose closed subspaces Uj, V
′
j and Wj of

Q−1
j (imTj+1) such that

imTj = Uj ⊕ (imTj ∩ kerQj),

kerQj = V ′
j ⊕ (imTj ∩ kerQj),

Q−1
j (imTj+1) = Wj ⊕ (imTj + kerQj),
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and define the spaces Vj := V ′
j ⊕Q−1

j (V ′
j+1). Then Lj = Vj ⊕ imTj ⊕Wj and Qj :

Vj → Vj+1. As above, consider the complex QV and the morphism S : kerT→ QV ;

for the cohomology one finds H j(cokerT) = H j(QV )⊕Wj ; note that theWj are of

finite dimension. The quotient complex CT/CS is the mapping cone of the morphism

. . . −−−−→ Hj/kerTj
Aj

−−−−→ Hj+1/kerTj+1 −−−−→ . . .
yTj

yTj+1

. . . −−−−→ imTj ⊕Wj
Qj

−−−−→ im Tj+1 ⊕Wj+1 −−−−→ . . .

Since it differs from the exact complex (2.3) only by the finite-dimensional spaces

Wj , it is a Fredholm complex. By Theorem 4.5.4 of [25] we now find the exact

sequence

. . . −→H
j−1(CT/CS)

∂∗−−→H
j(CS)

α∗−−→H
j(CT)

β∗

−−→H
j(CT/CS)

∂∗−−→ . . .

where ∂∗ is the connecting homomorphism for cohomology. Since both spaces

H j−1(CT/CS) and H j(CT/CS) are finite-dimensional, we find that α∗ has finite-

dimensional kernel and finite-codimensional range. Thus H j(CT) is of finite dimen-

sion if, and only if, H
j(CS) is. The latter coincides with H

j(kerT)⊕H
j−1(QV ),

which differs from H j(kerT)⊕H j−1(cokerT) only by Wj . This shows the equiv-

alence of a) and b) in the general case. � �

Of course, condition (2.1) is void in case all spaces Lj are finite-dimensional. How-

ever, for the formula of the index established in the proposition, as well as the

stated equivalence of exactness, one still needs to require that the quotient space

in (2.1) is trivial.

Remark 2.7. Assume that T : A → Q is an isomorphism, i.e., all operators Tj
are isomorphisms. If P is a parametrix to A, cf. Definition 2.3, then the operators

Sj := TjPjT
−1
j+1, j ∈ Z,

define a parametrix S of the complex Q.

2.3. Families of complexes. The concept of Hilbert space complexes generalizes

to Hilbert bundle complexes, i.e. sequences of maps

A : . . . −→ E−1
A−1
−−−→ E0

A0−−→ E1
A1−−→ E2

A2−−→ E3 −→ . . . ,

where the Ej are finite or infinite dimensional smooth Hilbert bundles and the Aj
are bundle morphisms. For our purposes it will be sufficient to deal with the case

where all involved bundles have identical base spaces, say a smooth manifold X ,

and each Aj preserves the fibre over x for any x ∈ X . In this case, by restriction to

the fibres, we may associate with A a family of complexes

Ax : . . . −→ E−1,x
A−1
−−−→ E0,x

A0−−→ E1,x
A1−−→ E2,x

A2−−→ E3,x −→ . . . , x ∈ X.

For this reason we shall occasionally call A a family of complexes. It is called a

Fredholm family if Ax is a Fredholm complex for every x ∈ X . Analogously we

define an exact family.
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Though formally very similar to Hilbert space complexes, families of complexes are

more difficult to deal with. This is mainly due to the fact that the cohomology

spaces Hj(Ax) may change quite irregularly with x.

3. Complexes on manifolds with boundary

We shall now turn to the study of complexes of pseudodifferential operators on

manifolds with boundary and associated boundary value problems.

3.1. Boutet de Monvel’s algebra with global projection conditions. The

natural framework for our analysis of complexes on manifolds with boundary is

Boutet de Monvel’s extended algebra with generalized APS-conditions. In the fol-

lowing we provide a compact account on this calculus.

3.1.1. Boutet de Monvel’s algebra. First we shall present the standard Boutet de

Monvel algebra; for details we refer the reader to the existing literature, for example

[9], [13], [14].

Let Ω be a smooth, compact Riemannian manifold with boundary. We shall work

with operators

(3.1) A =

(
A+ +G K

T Q

)
:

C∞(Ω, E0)

⊕

C ∞(∂Ω, F0)

−→

C∞(Ω, E1)

⊕

C∞(∂Ω, F1)

,

where Ej and Fj are Hermitean vector bundles over Ω and ∂Ω, respectively, which

are allowed to be zero dimensional. Every such operator has an order, denoted by

µ ∈ Z, and a type, denoted by d ∈ Z.1 In more detail,

• A+ is the “restriction” to the interior of Ω of a µ-th order, classical pseu-

dodifferential operator A defined on the smooth double 2Ω, having the

two-sided transmission property with respect to ∂Ω,

• G is a Green operator of order µ and type d,

• K is a µ-th order potential operator,

• T is a trace operator of order µ and type d,

• Q ∈ Lµcl(∂Ω;F0, F1) is a µ-th order, classical pseudodifferential operator on

the boundary.

The space of all such operators we shall denote by

B
µ,d(Ω; (E0, F0), (E1, F1)).

The scope of the following example is to illustrate the significance of order and type

in this calculus.

Example 3.1. Let A = A+ be a differential operator on Ω with coefficients smooth

up to the boundary.

1The concept of negative type can be found in [8], [9], for example.
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a) Let A be of order 2. We shall explain how both Dirichlet and Neumann

problem for A are included in Boutet de Monvel’s algebra. To this end let

γ0u := u|∂Ω, γ1u :=
∂u

∂ν

∣∣∣
∂Ω

denote the operators of restriction to the boundary of functions and their

derivative in direction of the exterior normal, respectively. Moreover, let

Sj ∈ L
3/2−j
cl (∂Ω), j = 0, 1, be invertible pseudodifferential operators on the

boundary of Ω. Then

Tj := Sjγj : C
∞(Ω) −→ C

∞(∂Ω)

are trace operators of order 2 and type j+1. If E0 = E1 := C, F1 := C and

F0 := {0}, then Aj :=

(
A

Tj

)
belongs to B2,j+1(Ω; (C, 0), (C,C)). In case

Aj is invertible, the inverses are of the form

A−1
j =

(
P+ +Gj Kj

)
∈ B

−2,0(Ω; (C,C), (C, 0));

for the original Dirichlet and Neumann problem one finds

(
A

γj

)−1

=
(
P+ +Gj KjSj

)
.

b) Let A now have order 4 and consider A jointly with Dirichlet and Neumann

condition. We define

T :=

(
S0γ0
S1γ1

)
: C

∞(Ω) −→

C ∞(∂Ω)

⊕

C ∞(∂Ω)

∼= C
∞(∂Ω,C2)

with pseudodifferential isomorphisms Sj ∈ L
7/2−j
cl (∂Ω). Then T is a trace

operator of order 4 and type 2, and

(
A

T

)
belongs to B4,2(Ω; (C, 0), (C,C2)).

The discussion of invertibility is similar as in a).

At first glance, the use of the isomorphisms Sj may appear strange but, indeed, is

just a choice of normalization of orders; it could be replaced by any other choice of

normalization, resulting in a straightforward reformulation.

As a matter of fact, with A ∈ Bµ,d(Ω; (E0, F0), (E1, F1)) as in (3.1) is associated

a principal symbol

(3.2) σµ(A ) =
(
σµψ(A ), σµ∂ (A )

)
,

that determines the ellipticity of A (see below); the components are

(1) the usual homogeneous principal symbol of the pseudodifferential operator

A (restricted to S∗Ω, the unit co-sphere bundle of Ω),

σµψ(A ) := σµψ(A) : π
∗
ΩE0 −→ π∗

ΩE1,

where πΩ : S∗Ω→ Ω is the canonical projection,
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(2) the so-called principal boundary symbol which is a vector bundle morphism

(3.3) σµ∂ (A ) :

π∗
∂Ω(S (R+)⊗ E′

0)

⊕

π∗
∂ΩF0

−→

π∗
∂Ω(S (R+)⊗ E′

1)

⊕

π∗
∂ΩF1

,

where π∂Ω : S∗∂Ω→ ∂Ω again denotes the canonical projection and E′
j =

Ej |∂Ω is the restriction of Ej to the boundary.

3.1.2. Boutet de Monvel’s algebra with APS conditions. This extension of Boutet

de Monvel’s algebra has been introduced in [16]. Consider two pseudodifferential

projections Pj ∈ L0
cl(∂Ω;Fj , Fj), j = 0, 1, on the boundary of Ω. We denote by

B
µ,d(Ω; (E0, F0;P0), (E1, F1;P1))

the space of all operators A ∈ Bµ,d(Ω; (E0, F0), (E1, F1)) such that

A (1 −P0) = (1−P1)A = 0, Pj :=

(
1 0

0 Pj

)
.

If we denote by

C
∞(∂Ω, Fj ;Pj) := Pj

(
C

∞(∂Ω, Fj)
)

the range spaces of the projections Pj , which are closed subspaces, then any such

A induces continuous maps

(3.4) A :

C∞(Ω, E0)

⊕

C∞(∂Ω, F0;P0)

−→

C∞(Ω, E1)

⊕

C∞(∂Ω, F1;P1)

.

For sake of clarity let us point out that A acts also as an operator as in (3.1) but

it is the mapping property (3.4) in the subspaces determined by the projections

which is the relevant one.

The use of the terminology “algebra” originates from the fact that operators can

be composed in the following sense:

Theorem 3.2. Composition of operators induces maps

B
µ1,d1(Ω; (E1, F1;P1), (E2, F2;P2))×B

µ0,d0(Ω; (E0, F0;P0), (E1, F1;P1))

−→ B
µ0+µ1,d(Ω; (E0, F0;P0), (E2, F2;P2)),

where the resulting is d = max(d0, d1 + µ0).

The Riemannian and Hermitian metrics allow us to define L2-spaces (and then

L2-Sobolev spaces) of sections of the bundles over Ω. Identifying these spaces with

their dual spaces, as usually done for Hilbert spaces, we can associate with A its

formally adjoint operator A ∗. Then the following is true:

Theorem 3.3. Let µ ≤ 0. Taking the formal adjoint induces maps

B
µ,0(Ω; (E0, F0;P0), (E1, F1;P1)) −→ B

µ,0(Ω; (E1, F1;P
∗
1 ), (E0, F0;P

∗
0 )),

where P ∗
j is the formal adjoint of the projection Pj.
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Let us now describe the principal symbolic structure of the extended algebra. Since

the involved Pj are projections, also their associated principal symbols σ0
ψ(Pj) are

projections (as bundle morphisms); thus their ranges define subbundles

(3.5) Fj(Pj) := σ0
ψ(Pj)

(
π∗
∂ΩFj

)
⊆ π∗

∂ΩFj .

Note that, in general, Fj(Pj) is not a pull-back to the co-sphere bundle of a bundle

over the boundary ∂Ω.

The principal boundary symbol of A ∈ B
µ,d(Ω; (E0, F0;P0), (E1, F1;P1)), which

initially is defined as in (3.3), restricts then to a morphism

(3.6)

π∗
∂Ω(S (R+)⊗ E0)

⊕

F0(P0)

−→

π∗
∂Ω(H

s−µ(R+)⊗ E1)

⊕

F1(P1)

.

This restriction we shall denote by σµ∂ (A ;P0, P1) and will call it again the principal

boundary symbol of A ; the principal symbol of A is then the tuple

(3.7) σµ(A ;P0, P1) =
(
σµψ(A ), σµ∂ (A ;P0, P1)

)
.

The two components of the principal symbol behave multiplicatively under compo-

sition and are compatible with the operation of taking the formal adjoints in the

obvious way.

Definition 3.4. A ∈ Bµ,d(Ω; (E0, F0;P0), (E1, F1;P1)) is called σψ-elliptic if

σµψ(A ) is an isomorphism. It is called elliptic if additionally σµ∂ (A ;P0, P1) is an

isomorphism.

3.1.3. Sobolev spaces and the fundamental theorem of elliptic theory. In the fol-

lowing we let Hs(Ω, E) and Hs(∂Ω, F ) with s ∈ Z denote the standard scales

of L2-Sobolev spaces of sections in the bundles E and F , respectively. Moreover,

Hs
0(Ω, E) denotes the closure of C∞

0 (int Ω, E) in Hs(Ω, E).

Let A ∈ Bµ,d(Ω; (E0, F0;P0), (E1, F1;P1)). The range spaces

Hs(∂Ω, Fj ;Pj) := Pj
(
Hs(∂Ω, Fj)

)

are closed subspaces of Hs(∂Ω, Fj), and A induces continuous maps

(3.8)

Hs(Ω, E0)

⊕

Hs(∂Ω, F0;P0)

−→

Hs−µ(Ω, E0)

⊕

Hs−µ(∂Ω, F1;P1)

, s ≥ d.

Similarly, the principal boundary symbol σµ(A ;P0, P1) induces morphisms

(3.9)

π∗
∂Ω(H

s(R+)⊗ E0)

⊕

F0(P0)

−→

π∗
∂Ω(H

s−µ(R+)⊗ E1)

⊕

F1(P1)

, s ≥ d.

As a matter of fact, in the above Definition 3.4 of ellipticity it is equivalent con-

sidering the principal boundary symbol as a map (3.3) or as a map (3.9) for some

fixed integer s ≥ d.
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Theorem 3.5. For A ∈ Bµ,d(Ω; (E0, F0;P0), (E1, F1;P1)) the following state-

ments are equivalent:

a) A is elliptic.

b) There exists an s ≥ max(µ, d) such that the map (3.8) associated with A

is Fredholm.

c) For every s ≥ max(µ, d) the map (3.8) associated with A is Fredholm.

d) There is an B ∈ B−µ,d−µ(Ω; (E1, F1;P1), (E0, F0;P0)) such that

BA −P0 ∈ B
−∞,d(Ω; (E0, F0;P0), (E0, F0;P0)),

A B −P1 ∈ B
−∞,d−µ(Ω; (E1, F1;P1), (E1, F1;P1)).

Any such operator B is called a parametrix of A .

Remark 3.6. By (formally) setting E0 and E1 equal to zero, the above block-

matrices reduce to the entry in the lower-right corner. The calculus thus reduces

to one for pseudodifferential operators on the boundary. We shall use the no-

tation Lµcl(∂Ω;F0, F1) and Lµcl(∂Ω; (F0;P0), (F1;P1)), respectively. The ellipticity

of Q ∈ Lµcl(∂Ω; (F0;P0), (F1;P1)) is then desribed by one symbol only, namely

σµψ(Q) : F0(P0)→ F1(P1), cf. (3.5).

3.2. Example: The Cauchy-Riemann operator on the unit disc. Let us

discuss a simple example. Let Ω be the unit-disc in R2 and A = ∂ = (∂x + i∂y)/2

be the Cauchy-Riemann operator. Identify the Sobolev spaces Hs(∂Ω) with the

cooresponding spaces of Fourier series, i.e.,

f ∈ Hs(∂Ω) ⇐⇒
(
|n|sf̂(n)

)
n∈Z
∈ ℓ2(Z).

The so-called Calderón projector C, defined by

Ĉf(n) =

{
f̂(n) : n ≥ 0

0 : n < 0

belongs to L0
cl(∂Ω) and satisfies C = C2 = C∗. Note that γ0 induces an isomor-

phism between the kernel of A acting on Hs(Ω), s ≥ 1, and Hs−1/2(∂Ω;C). To

unify orders, let S ∈ L
1/2
cl (∂Ω) be invertible, P := SCS−1, and T0 := Sγ0. Then

(3.10)

(
A

T0

)
: Hs(Ω) −→

Hs−1(Ω)

⊕

Hs−1(∂Ω;P )

is an isomorphism for any integer s ≥ 1.

Lemma 3.7. Let T = Pφγ0 with φ : Hs−1/2(∂Ω) → Hs−1(∂Ω) beinga bounded

operator. Then the map from (3.10) with T0 replaced by T is Fredholm if, and only

if, Pφ : Hs−1/2(∂Ω;C)→ Hs−1(∂Ω;P ) is Fredholm.

Proof. Let
(
B K

)
be the inverse of (3.10). Then the Fredholmness of

(
A

T

)
is

equivalent to that of

(
A

T

)(
B K

)
=

(
1 0

TB TK

)
in Hs−1(Ω) ⊕ Hs−1(∂Ω;P ),
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i.e., to that of TK : Hs−1(∂Ω;P ) → Hs−1(∂Ω;P ). But now 1 = T0K = Sγ0K on

Hs−1(∂Ω;P ) implies that TK = PφS−1 on Hs−1(∂Ω;P ). It remains to observe

that S−1 : Hs−1(∂Ω;P )→ Hs−1(∂Ω;C) isomorphically. � �

Let us now interpret the previous observation within the framework of the Boutet de

Monvel algebra with generalized APS conditions. Let P ∈ L0
cl(∂Ω) be an arbitrary

projection with P − C ∈ L−1
cl (∂Ω), i.e., P has homogeneous principal symbol

σ0
ψ(P )(θ, τ) = σ0

ψ(C)(θ, τ) =

{
1 : τ = 1

0 : τ = −1
,

where we use polar coordinates on ∂Ω and τ denotes the covariable to θ. By a

straightforward calculation we find that the boundary smbol of A is

σ1
∂(A)(θ, τ) = −

1

2
eiθ(∂t + τ) : S (R+,t) −→ S (R+,t), τ = ±1,

and therefore is surjective with kernel

kerσ1
∂(A)(θ, τ) =

{
span e−t : τ = 1

0 : τ = −1
.

Lemma 3.8. Let T = Bγ0 with B ∈ L
1/2
cl (∂Ω) and

A :=

(
A

PT

)
∈ B

1,1(Ω; (C, 0; 1), (C,C;P )).

The following properties are equivalent:

a) A is elliptic.

b) σ
1/2
ψ (B)(θ, 1) 6= 0.

c) PBC ∈ L
1/2
cl (∂Ω; (C;C), (C;P )) is elliptic.

d) PB : Hs−1/2(∂Ω;C)→ Hs−1(∂Ω;P ) is Fredholm for all s.

Proof. Clearly, the homogeneous principal symbol of A never vanishes. The princi-

pal boundary symbol is given by

σ1
∂(A )(θ,−1) =

(
σ1
∂(A)(θ,−1)

0

)
: S (R+) −→

S (R+)

⊕

{0}

,

σ1
∂(A )(θ, 1) =

(
σ1
∂(A)(θ, 1)

σ
1/2
ψ (B)(θ, 1)γ0

)
: S (R+) −→

S (R+)

⊕

C

,

where γ0u = u(0) for every u ∈ S (R+). Thus ellipticity of A is equivalent to the

non-vanishing of σ
1/2
ψ (B)(θ, 1). The remaining equivalences are then clear. � �
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3.3. Boundary value problems for complexes. In the following we shall con-

sider a complex

(3.11) A : 0 −→ Hs(Ω, E0)
A0−−→ Hs−ν0(Ω, E1)

A1−−→ . . .
An−−→ Hs−νn(Ω, En+1) −→ 0

with Aj = Ãj,+ + Gj ∈ Bµj ,dj(Ω;Ej , Ej+1) and νj := µ0 + . . . + µj , where s is

assumed to be so large that all mappings have sense (i.e., s ≥ νj and s ≥ dj + νj−1

for every j = 0, . . . , n).

Definition 3.9. The complex A is called σψ-elliptic, if the associated family of

complexes made up by the homogeneous principal symbols σ
µj

ψ (Aj), which we shall

denote by σψ(A), is an exact family.

Let us now state one of the main theorems of this section, concerning the existence

and structure of complementing boundary conditions.

Theorem 3.10. Let A as in (3.11) be σψ-elliptic.

a) There exist bundles F1, . . . , Fn+2 and projections Pj ∈ L0
cl(∂Ω;Fj , Fj) such

that the complex A can be completed to a Fredholm morphism (in the sense

of Section 2.2)

0 −−−−→ H0
A0−−−−→ H1

A1−−−−→ . . .
An−−−−→ Hn+1 −−−−→ 0

yT0

yT1

yTn+1

0 −−−−→ L0
Q0
−−−−→ L1

Q1
−−−−→ . . .

Qn
−−−−→ Ln+1 −−−−→ 0

where we use the notation

Hj := Hs−νj−1 (Ω, Ej), Lj := Hs−νj (∂Ω, Fj+1;Pj+1),

the Tj are trace operators of order µj and type 0 and

Qj ∈ L
µj+1

cl (∂Ω; (Fj+1;Pj+1), (Fj+2;Pj+2)).

In fact, all but one of the Pj can be chosen to be the identity. Moreover, it

is possible to choose all projections equal to the identity if, and only if, the

index bundle of A satisfies

indS∗∂Ω σ∂(A) ∈ π∗K(∂Ω),

where π : S∗∂Ω→ Ω is the canonical projection.

b) A statement analogous to a) holds true with the trace operators Tj substi-

tuted by Kj with potential operators Kj : Lj → Hj of order −µj

The main part of the proof will be given in the next Sections 3.3.1 and 3.3.2.

Before, let us first explain why, in fact, it suffices to demonstrate part b) of the

previous theorem in case all orders µj , types dj , and the regularity s are equal to

zero. Roughly speaking, this is possible by using order-reductions and by passing

to adjoint complexes. In detail, the argument is as follows:

We shall make use of a certain family of isomorphism, whose existence is proved,

for example, in Theorem 2.5.2 of [9]: there are operators Λmj ∈ Bm,0(Ω;Ej , Ej),

m ∈ Z, which are invertible in the algebra with (Λmj )−1 = Λ−m
j and which induce
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isomorphisms Hs(Ω, Ej) → Hs−m(Ω, Ej) for every s ∈ R. Their adjoints, denoted

by Λm,∗j , are then isomorphisms Λm,∗j : Hm−s
0 (Ω, Ej)→ H−s

0 (Ω, Ej) for every s ∈ R

and also Λm,∗j ∈ Bm,0(Ω;Ej , Ej).

Assume now that Theorem 3.10.b) holds true in case µj = dj = s = 0.

Given the complex A from (3.11), consider the new complex

Ã : 0 −→ L2(Ω, E0)
Ã0−−→ L2(Ω, E1)

Ã1−−→ . . .
Ãn−−→ L2(Ω, En+1) −→ 0,

where Ãj := Λ
s−νj
j+1 AjΛ

νj−1−s
j . The Ãj have order and type 0 and Ã is σψ-elliptic.

Thus there are projections P̃j and block-matrices

Ãj =

(
−Ãj K̃j+1

0 Q̃j+1

)
∈ B

0,0(Ω; (Ej , Fj+2; P̃j+2), (Ej+1, Fj+3; P̃j+3))

(with j = −1, . . . , n) that form a Fredholm complex. Now choose families of invert-

ible pseudodifferential operators λrj ∈ Lrcl(∂Ω;Fj+1, Fj+1), r ∈ R, with (λrj)
−1 =

λ−r
j . Then also the

Aj :=

(
Λ
νj−s
j+1 0

0 λ
νj+2−s
j+2

)(
−Ãj K̃j+1

0 Q̃j+1

)(
Λ
s−νj−1

j 0

0 λ
s−νj+1

j+1

)

form a Fredholm complex. This shows b) in the general case with the choice of

(3.12) Kj := Λ
νj−1−s
j K̃jλ

s−νj
j ,

the projections Pj = λ
νj−1−s
j−1 P̃jλ

s−νj−1

j−1 and

Qj := λ
νj+1−s
j+1 Q̃jλ

s−νj
j ∈ L

µj+1

cl (∂Ω; (Fj+1, Pj+1), (Fj+2, Pj+2)).

Now let us turn to a). In case µj = dj = s = 0 pass to the adjoint complex

0 −→ L2(Ω, Ẽ0)
B0−−→ L2(Ω, Ẽ1)

B1−−→ . . .
Bn−−→ L2(Ω, Ẽn+1) −→ 0,

with Ẽj = En+1−j and Bj = A∗
n−j . Apply to this complex part b) of the Theorem,

with bundles F̃j = Fn+3−j and projections P̃j for 1 ≤ j ≤ n + 2, resulting in

a complex of block-matrices Bj =

(
−Bj Kj+1

0 Q̃j+1

)
. Then also the Aj := B̃∗

n−j ,

j = 0, . . . , n + 1, form a Fredholm complex and a) follows with Tj := K∗
n+1−j ,

Qj := Q̃∗
n+1−j and projections Pj := P̃ ∗

n+3−j .

Finally, consider the general case of a). First define Ãj = Λ
s−νj
j+1 AjΛ

νj−1−s
j as above

and then pass to the adjoint complex of the B̃j := Ã∗
n−j . Using b), this leads to a

Fredholm complex of operators

B̃j =

(
−B̃j K̃j+1

0 Q̃j+1

)
∈ B

0,0(Ω; (Ẽj , F̃j+2; P̃j+2), (Ẽj+1, F̃j+3; P̃j+3)).

Now we define

Bj =

(
Λ̃
s−νn−j−1,∗
j+1 0

0 λ̃
s−νn−j−1,∗
j+3

)(
−B̃j K̃j+1

0 Q̃j+1

)(
Λ̃
νn−j−s,∗
j 0

0 λ̃
νn−j−s,∗
j+2

)
,
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where the operators Λ̃mj refer to the bundle Ẽj , while λ̃rj to the bundle F̃j . These

Bj then define a Fredholm complex acting as operators

Bj :

H
νn−j−s
0 (Ω, Ẽj)

⊕

Hνn−j−s(∂Ω, F̃j+2, P
′
j+2)

−→

H
νn−j−1−s
0 (Ω, Ẽj+1)

⊕

Hνn−j−1−s(∂Ω, F̃j+3, P
′
j+2)

with resulting projections P ′
j . Now observe that B∗

j =

(
−An−j 0

K∗
j+1 Q∗

j+1

)
with

Qj+1 = λ̃
s−νn−j−1,∗
j+3 Q̃j+1λ̃

νn−j−s,∗
j+2 , Kj+1 = Λ̃

s−νn−j−1,∗
j+1 K̃j+1λ̃

νn−j−s,∗
j+2 ,

and that Λ̃
s−νn−j−1,∗
j+1 K̃j+1λ̃

νn−j−1−s,∗
j+2 is a potential operator of order 0, mapping

Hνn−j−1−s(∂Ω, F̃j+2, P
′
j+2) −→ H

νn−j−1−s
0 (Ω, Ẽj+1).

We conclude that

Tj := K∗
n+1−j : H

s−νj−1(Ω, Ej) −→ Hs−νj (∂Ω, Fj+1, Pj+1), Pj := (P ′
n−j+3)

∗,

is a trace operator of order µj and type 0 and the result follows by redefining

Q∗
n−j+1 as Qj .

Remark 3.11. The use of order reductions in the above discussion leads to the

fact that the operators Tj and Qj constructed in Theorem 3.10.a) depend on the

regularity s. However, once constructed them for some fixed choice s = s0, it is a

consequence of the general theory presented below in Section 6.3.1, that the resulting

boundary value problem induces a Fredholm morphism not only for the choice s = s0
but for all admissible s. An analogous comment applies to part b) of Theorem 3.10.

3.3.1. The index element of a σψ-elliptic complex. We start out with the σψ-elliptic

complex

A : 0 −→ L2(Ω, E0)
A0−−→ L2(Ω, E1)

A1−−→ . . .
An−−→ L2(Ω, En+1) −→ 0,

with Aj ∈ B0,0(Ω;Ej , Ej+1). The associated principal boundary symbols σ0
∂(Aj)

form the family of complexes

σ∂(A) : 0 −→ E0
σ0
∂(A0)
−−−−→ E1

σ0
∂(A1)
−−−−→ . . .

σ0
∂(An)
−−−−−→ En+1 −→ 0,

where we have used the abbreviation

Ej := π∗
(
L2(R+, Ej |∂Ω

)
, π : S∗∂Ω −→ ∂Ω.

Due to the σψ-ellipticity, σ∂(A) is a Fredholm family.

Theorem 3.12. There exist non-negative integers ℓ1, . . . , ℓn+1 and principal bound-

ary symbols

aj =

(
−σ0

∂(Aj) kj+1

0 qj+1

)
, j = 0, . . . , n,

of order and type 0 such that

0 −→

E0
⊕

Cℓ1

a0−→

E1
⊕

Cℓ2

a1−→ . . .
an−1
−−−→

En
⊕

Cℓn+1

an−→

En+1

⊕

0

−→ 0
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is a family of complexes which is exact in every position but possibly the first, with

finite-dimensional kernel bundle J0 := ker a0. In particular, the index-element of A

is given by

(3.13) indS∗∂Ω σ∂(A) = [J0] +
n+1∑

j=1

(−1)j[Cℓj ].

Proof. For notational convenience let us write aj := −σ0
∂(Aj). The proof is an

iterative procedure that complements, one after the other, the principal boundary

symbols an, an−1, . . . a0 to block-matrices.

Since σ∂(A) is a Fredholm family, an : En −→ En+1 has fibrewise closed range of

finite co-dimension. It is then a well-known fact, cf. Subsection 3.1.1.2 of [13] for

example, that one can choose a principal potential symbol kn+1 : Cℓn+1 → En+1

such that

(
an kn+1

)
:

En
⊕

Cℓn+1

−→ En+1

is surjective. Choosing qn := 0 this defines an. For n = 0 this finishes the proof. So

let us assume n ≥ 1.

Set ℓn+2 := 0. Let us write Ẽj := Ej ⊕ C
ℓj+1 and assume that, for an integer

1 ≤ i ≤ n, we have constructed ai, . . . , an such that

Ẽi
ai−→ Ẽi+1

ai+1
−−−→ . . .

an−→ Ẽn+1 −→ 0

is an exact family. Then the families of Laplacians

dj = aj−1a
∗
j−1 + a∗jaj, i+ 1 ≤ j ≤ n+ 1,

are fibrewise isomorphisms, i.e., bijective principal boundary symbols. Thus also the

inverses d−1
j are principal boundary symbols. Then the principal boundary symbols

πj := 1− a∗jd
−1
j+1aj , i ≤ j ≤ n,

are fibrewise the orthogonal projections in Ẽj onto the kernel of aj ; we shall verify

this in detail at the end of the proof.

Now consider the morphism

Ei−1

⊕

Ẽi+1

(
ai−1 a∗i

)

−−−−−−−−−→ Ẽi,

where Ei is considered as a subspace of Ẽi = Ei ⊕ Cℓi+1 . Since ai−1 maps into the

kernel of ai, while fibrewise the image of a∗i is the orthogonal complement of the

kernel of ai, we find that

im
(
ai−1 a∗i

)
= im ai−1 ⊕ (ker ai)

⊥
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is fibrewise of finite codimension in Ẽi = ker ai ⊕ (ker ai)
⊥. Therefore, there exists

an integer ℓi and a principal boundary symbol

b =

(
k

q

)
: Cℓi −→ Ẽi =

Ei
⊕

Cℓi+1

(in particular, k is a principal potential symbol) such that

Ei−1

⊕

Ẽi+1

⊕

Cℓi

(
ai−1 a∗i b

)

−−−−−−−−−−−→ Ẽi

is surjective. We now define

(
ki
qi

)
:= πib : C

ℓi −→ Ẽi =

Ei
⊕

Cℓi+1

and claim that

ai−1 :=

(
ai−1 ki
0 qi

)
:

Ẽi−1

⊕

Cℓi

−→ ker ai

surjectively. In fact, by construction, ai−1 maps into the kernel of ai. Moreover,

given x in a fibre of ker ai, there exists (u, v, w) in the corresponding fibre of Ei−1⊕

Ẽi+1 ⊕ Cℓi such that

x = ai−1u+ a∗i v + bw.

Being πi the orthogonal projection on the kernel of ai, we find

x = πix = ai−1u+ πibw = ai−1

(
u

w

)
.

Thus we have constructed ai−1 such that

Ẽi−1
ai−1
−−−→ Ẽi

ai−→ Ẽi+1
ai+1
−−−→ . . .

an−→ Ẽn+1 −→ 0

is an exact complex. Now repeat this procedure until a0 has been modified.

It remains to check that the πj in fact are projections as claimed: Clearly πj = 1

on ker aj . Moreover,

a∗jajπj = a∗jaj − a∗jaja
∗
jd

−1
j+1aj

= a∗jaj − a∗j(aja
∗
j + a∗j+1aj+1︸ ︷︷ ︸

=dj+1

)d−1
j+1aj + a∗ja

∗
j+1︸ ︷︷ ︸

=(aj+1aj)∗=0

aj+1d
−1
j+1aj = 0.

Hence πj maps into ker a∗jaj = ker aj. Finally

(1− πj)
2 = a∗jd

−1
j+1aja

∗
jd

−1
j+1aj

= a∗jd
−1
j+1(aja

∗
j + a∗j+1aj+1︸ ︷︷ ︸

=dj+1

)d−1
j+1aj − a∗jd

−1
j+1a

∗
j+1aj+1d

−1
j+1aj = 1− πj ,
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since aj maps into ker aj+1 and d−1
j+1 : ker aj+1 → ker aj+1, hence aj+1d

−1
j+1aj = 0.

The proof of Theorem 3.12 is complete. � �

3.3.2. The proof of Theorem 3.10. Let us now turn to the proof of Theorem 3.10.b)

in the case of µj = dj = s = 0. In fact, the statement it is a consequence of the

following Theorem 3.13 which is slightly more precise. In its proof we shall apply

some results for complexes on manifolds with boundary which we shall provide in

Section 6.3 below; these results in turn are a consequence of our general theory for

complexes in operator algebras developed in Sections 5 and 6.

Theorem 3.13. Let notation be as in Section 3.3.1. Then there exist non-negative

integers ℓ0, . . . , ℓn+1, operators

Aj =

(
−Aj Kj+1

0 Qj+1

)
∈ B0,0(Ω; (Ej ,C

ℓj+1), (Ej+1,C
ℓj+2)), j = 0, . . . , n,

and

A−1 =

(
0 K0

0 Q0

)
∈ B0,0(Ω; (0,Cℓ0 , P0), (E0,C

ℓ1))

with a projection P0 ∈ L0(∂Ω;Cℓ0 ,Cℓ0) such that

0 −→

0

⊕

L2(∂Ω,Cℓ0 ;P0)

A−1
−−−→ . . .

Aj

−−→

L2(Ω, Ej+1)

⊕

L2(∂Ω,Cℓj+2)

. . .
An−−→

L2(Ω, En+1)

⊕

0

−→ 0

is a Fredholm complex. If, and only if,

(3.14) indS∗∂Ω σ∂(A) ∈ π∗K(∂Ω),

i.e., the index-element of the complex A belongs to the pull-back of the K-group of

the boundary under the canonical projection π : S∗∂Ω → ∂Ω, we may replace Cℓ0

by a vector bundle F0 over ∂Ω and P0 by the identity map.

Proof. Repeating the construction in the proof of Theorem 3.12, we can find ℓ0 and

a boundary symbol

a−1 =

(
k0
q0

)
: Cℓ0 −→

E0
⊕

Cℓ1

, im

(
k0
q0

)
= ker a0 = J0.

Therefore,

C
ℓ0 = ker

(
k0
q0

)
⊕
(
ker

(
k0
q0

))⊥
∼= ker

(
k0
q0

)
⊕ J0.

Now let P0 be a projection whose principal symbol concides with the projection

onto J0 (such a projection exists, cf. the appendix in [16], for instance). Then

Proposition 6.10 implies the existence of Aj as stated, forming a complex which is

both σψ- and σ∂-elliptic. Then the complex is Fredholm due to Theorem 6.8.

In case (3.14) is satisfied, there exists an integer L such that J0⊕CL is a pull-back

of a bundle F0 over ∂Ω, i.e. J0 ⊕ CL ∼= π∗G. Now replace ℓ0 and ℓ1 by ℓ0 + L and

ℓ1 + L, respectively. Extend k0 and k1, q1 by 0 from Cℓ0 to Cℓ0 ⊕ CL and Cℓ1 to

C
ℓ1 ⊕ C

L, respectively. Moreover, extend q0 to C
ℓ0 ⊕ C

L by letting q0 = 1 on C
L.
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After these modifications, rename ℓj + L by ℓj for j = 0, 1 as well as the extended

k0 and q0 by k̃0 and q̃0, respectively. We obtain that

W :=
(
ker

(
k̃0
q̃0

))⊥
∼= J0 ⊕ C

L ∼= π∗F0.

With an isomorphism α : π∗F0 →W we then define the boundary symbol

a−1 =

(
k0
q0

)
:=

(
k̃0
q̃0

) ∣∣∣
W
◦ α

and again argue as above to pass to a Fredholm complex of operators Aj . � �

3.3.3. General boundary value problems. We have seen in Theorem 3.10 that any

σψ-elliptic complex (3.11) can be completed to a boundary value problem which

results to be Fredholm. Vice versa, given a boundary value problem for A, we can

characterize when it is Fredholm:

Theorem 3.14. Let A as in (3.11).

a) Assume we are given a boundary value problem

0 −−−−→ H0
A0−−−−→ H1

A1−−−−→ . . .
An−−−−→ Hn+1 −−−−→ 0

yT0

yT1

yTn+1

0 −−−−→ L0
Q0
−−−−→ L1

Q1
−−−−→ . . .

Qn
−−−−→ Ln+1 −−−−→ 0

with spaces

Hj := Hs−νj−1 (Ω, Ej), Lj := Hs−νj (∂Ω, Fj+1;Pj+1),

trace operators of order µj and type dj, and

Qj ∈ L
µj+1

cl (∂Ω; (Fj+1;Pj+1), (Fj+2;Pj+2)).

Then the following statements are equivalent:

1) The boundary value problem is Fredholm

2) A is σψ-elliptic and the family of complexes generated by the boundary

symbols

(
−σ

µj

∂ (Aj) σ
µj

∂ (Tj+1;Pj+2)

0 σ
µj+1

∂ (Qj+1;Pj+2, Pj+3)

)
, j = −1, . . . , n,

associated with the mapping cone is an exact family.

b) A statement analogous to a) holds true with the trace operators Tj : Hj →

Lj substituted by potential operators Kj : Lj → Hj of order −µj.

In fact, this theorem is a particular case of Theorem 6.8 (applied to the associated

mapping cone).
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3.4. Example: The deRham complex. Let dimΩ = n + 1 and Ek denote the

k-fold exterior product of the (complexified) co-tangent bundle; sections in Ek are

complex differential forms of degree k over Ω. Let dk denote the operator of external

differentiation on k-forms. The deRham complex

0 −→ Hs(Ω, E0)
d0−→ Hs−1(Ω, E1)

d1−→ . . .
dn−→ Hs−n−1(Ω, En+1) −→ 0

(s ≥ n+ 1) is σψ-elliptic and the associated principal boundary symbols induce an

exact family of complexes. Therefore the deRham complex is a Fredholm complex

without adding any additional boundary conditions. However, one can also pose

“Dirichlet-conditions”, i.e., consider

· · ·
dj−1
−−−−→ Hs−j(Ω, Ej)

dj
−−−−→ Hs−j−1(Ω, Ej+1)

dj+1
−−−−→ · · ·

yRj

yRj+1

· · ·
dj−1
−−−−→ Hs−j−1/2(∂Ω, Fj)

dj
−−−−→ Hs−j−3/2(∂Ω, Fj+1)

dj+1
−−−−→ · · ·

where the second row is the deRham-complex on the boundary and the R’s map

forms on Ω to their tangential part. This is also a Fredholm problem whose index

coincides with the Euler characteristic of the pair (Ω, ∂Ω). Note that for meeting

the set-up of Theorem 3.14 one needs to replace the Rk by Tk := SkRk and the

differentials dk−1 on the boundary by Qk := Skdk−1S
−1
k−1 with some invertible

pseudodifferential operators Sk ∈ L
1/2
cl (∂Ω;Fk, Fk).

We omit any details, since all these observations have already been mentioned in

Example 9 of [7].

3.5. Example: The Dolbeault complex. In this section we show that the Dol-

beault complex generally violates the Atiyah-Bott obstruction.

Complex differential forms of bi-degree (0, k) over Cn ∼= R2n are sections in the

corresponding vector bundle denoted by Ek. Let ∂k be the dbar-operator acting on

(0, k)-forms and let

Πξ =
∑

i

ξ
( ∂

∂zi

)
dzi

denote the canonical projection in the (complexified) co-tangent bundle. The ho-

mogeneous principal symbol of ∂k is given by

σ1
ψ(∂k)(ξ)ω = (Πξ) ∧ ω, ξ ∈ T ∗

zR
2n, ω ∈ Ek,z ,

with z ∈ Cn. Now let Ω ⊂ Cn be a compact domain with smooth boundary and

restrict ∂k to Ω. If r : Ω → R is a boundary defining function for Ω, the principal

boundary symbol of ∂k is (up to scaling) given by

σ1
∂(∂k)(ξ

′)η = Πξ′ ∧ η − i(Πdr) ∧
dη

dr
,

where ξ′ ∈ T ∗
z′∂Ω and η ∈ Hs(R+)⊗ Ek,z′ with z′ ∈ ∂Ω.

For simplicity let us now take n = 2 and let Ω = {z ∈ C2 | |z| ≤ 1} be the unit-

ball in C
2. Using the generators dz1 and dz2, we shall identify E0,0 and E0,2 with
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C2 × C and E0,1 with C2 × C2. As boundary defining function we take an r with

r(z) = 2(|z| − 1) near ∂Ω; then, on ∂Ω,

∂

∂r
=

1

2

∑

j=1,2

zj
∂

∂zj
+ zj

∂

∂zj
.

Now we identify T ∗∂Ω with those co-vectors from T ∗Ω|∂Ω vanishing on ∂/∂r. Hence,

representing ξ ∈ T ∗
zΩ as ξ =

∑
j=1,2 ξjdzj + ξjdzj we find

ξ ∈ T ∗
z ∂Ω ⇐⇒ Re (ξ1z1 + ξ2z2) = 0.

In other words, we may identify T ∗∂Ω with

T ∗∂Ω =
{
(z, ξ) ∈ C

2 ⊕ C
2 | |z| = 1, Re ξ · z = 0

}
,

where ξ · z = (ξ, z)C2 denotes the standard inner product of C2; for the unit co-

sphere bundle of ∂Ω we additionally require |ξ| = 1. Note that for convenience we

shall use notation z and ξ rather than z′ and ξ′ as above.

Using all these identifications, the principal boundary symbols σ1
∂(∂0) and σ1

∂(∂1)

can be identified with the operator-families

d0 : Hs+1(R+) −→ Hs(R+,C
2), d1 : Hs(R+,C

2) −→ Hs−1(R+),

defined on T ∗∂Ω by

d0(z, ξ)u = (ξ1u− iz1u
′, ξ2u− iz2u

′) = ξu − izu′,

d1(z, ξ)v = ξ2v1 − ξ1v2 − i(z2v
′
1 − z1v

′
2) = v · ξ⊥ − iv′ · z⊥;

here, u′ = du
dr and similarly v′ and v′j denote derivatives with respect to the variable

r ∈ R+. Moreover, c⊥ := (c2,−c1) provided that c = (c1, c2) ∈ C
2. Note that

c⊥ · d = −d⊥ · c for every c, d ∈ C2; in particular, c · c⊥ = 0.

Therefore, the principal boundary symbol of the dbar-complex

D : 0 −→ Hs+1(Ω, E0,0)
∂0−→ Hs(Ω, E0,1)

∂1−→ Hs−1(Ω, E0,2) −→ 0

corresponds to the family of complexes

(3.15) σ∂(D) : 0 −→ Hs+1(R+)
d0−→ Hs(R+,C

2)
d1−→ Hs−1(R+) −→ 0.

It is easily seen that D is σψ-elliptic. Hence the boundary symbols form a Fredholm

family. We shall now determine explicitely the index element of D and shall see

that D violates the Atiyah-Bott obstruction.

Proposition 3.15. The complex (3.15) is exact for all (z, ξ) ∈ S∗∂Ω with z 6= iξ,

while

dimker d0(iξ, ξ) = dim
ker d1(iξ, ξ)

im d0(iξ, ξ)
= 1, im d1(iξ, ξ) = Hs−1(R+).

In particular, d1 is surjective in every point of S∗∂Ω.
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Proof. We will first study range and kernel of d0: By definition,

im d0(z, ξ) =
{
ξu− izu′ | u ∈ Hs+1(R+)

}
.

Clearly u belongs to the kernel of d0(z, ξ) if, and only if,
(
ξ1 −iz1
ξ2 −iz2

)(
u

u′

)
=

(
0

0

)
.

In case ξ and z are (complex) linearly independent, this simply means u = 0.

Otherwise there exists a constant c ∈ C with |c| = 1 such that z = cξ. Then

0 = Re z · ξ = Re c shows that c = ±i. In case z = −iξ we obtain

ξ1(u− u′) = ξ2(u− u′) = 0.

Since ξ 6= 0 it follows that u is a multiple of er. Hence u = 0 is the only solution

in Hs(R+). Analogously, in case z = iξ we find that u must be a multiple of e−r,

which is always an element of Hs(R+). In conclusion, for (z, ξ) ∈ S∗∂Ω,

ker d0(z, ξ) =

{
span{e−r} : z = iξ,

{0} : else
.

Let us next determine range and kernel of d1: It will be useful to use the operators

L−w = w − w′, L+w = w + w′.

Note that L− : Hs(R+)→ Hs−1(R+) is an isomorphism (recall that L± = op+(l±)

with symbol l±(τ) = 1 ± iτ being so-called plus- and minus-symbols, respectively,

that play an important role in Boutet de Monvel’s calculus).

Let us consider the equation

(3.16) d1(z, ξ)v = ξ2v1 − ξ1v2 − i(z2v
′
1 − z1v

′
2) = f.

We consider three cases:

(i) Assume that ξ and z are linearly independent, hence δ := i(z1ξ2−z2ξ1) 6= 0.

Let f ∈ Hs−1(R+) be given. If

v := (iz − ξ)L−1
− f/δ ∈ Hs(R+,C

2),

a direct computation shows that

d1(z, ξ)v = L−1
− f − (L−1

− f)′ = L−L
−1
− f = f.

Hence d1(z, ξ) is surjective.

Now let f = 0 and set w = i(z2v1 − z1v2). Then, due to (3.16), w′ =

ξ1v2 − ξ2v1. In particular, w,w′ ∈ Hs(R+), i.e., w ∈ Hs+1(R+). Moreover,
(
w

w′

)
=

(
−iz2 iz1
−ξ2 ξ1

)(
v1
v2

)
,

which is eqivalent to

v = (v1, v2) = (ξ1w − iz1w
′, ξ2w − iz2w

′)/δ = (ξw − izw′)/δ,

hence ker d1(z, ξ) = im d0(z, ξ).
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(ii) Consider the case z = −iξ. Then, setting w = ξ2v1 − ξ1v2, (3.16) becomes

L−w = f . Then, using that |ξ| = 1, (3.16) is equivalent to

ξ2(v1 − ξ2L
−1
− f)− ξ1(v2 + ξ1L

−1
− f) = 0.

Since the orthogonal complement of the span of ξ⊥ = (ξ2,−ξ1) is just the

span of ξ, we find that the solutions of (3.16) are precisely those v with

v = (v1, v2) =
(
ξ1λ+ ξ2L

−1
− f, ξ2λ− ξ1L

−1
− f

)
, λ ∈ Hs(R+).

Since ξλ = ξL−u = ξ(u − u′) = ξu − izu′ for ξ = iz with u = L−1
− λ, we

conclude that d1(z, ξ) is surjective with kerd1(z, ξ) = im d0(z, ξ).

(iii) It remains to consider the case z = iξ. Similarly as before, setting w =

ξ2v1 − ξ1v2, (3.16) becomes L+w = w + w′ = f . Note that the general

solution is

w = ce−r + wf , wf (r) = e−r
∫ r

0

esf(s) ds =

∫ r

0

e−tf(r − t) dt,

where f 7→ wf : Hs−1(R+)→ Hs(R+) is a continuous right-inverse of L+.

Then (3.16) is equivalent to

ξ2
(
v1 − ξ2(ce

−r + wf )
)
− ξ1

(
v2 + ξ1(ce

−r + wf )
)
= 0

we find that the solutions of (3.16) are precisely those v with

v = (v1, v2) =
(
ξ1λ+ ξ2(ce

−r + wf ), ξ2λ− ξ1(ce
−r + wf )

)
, λ ∈ Hs(R+).

Since L+ : Hs+1(R+) → Hs(R+) surjectively, we can represent any ξλ as

ξL+u = ξ(u + u′) = ξu− izu′ and thus conclude that d1(z, ξ) is surjective

with

kerd1(z, ξ) = im d0(z, ξ)⊕ span{ξ⊥e−r}.

This finishes the proof of the proposition. � �

In the previous proposition, including its proof, we have seen that d1(z, ξ) is sur-

jective for every (z, ξ) ∈ S∗∂Ω with

ker d1(z, ξ) =

{
im d0(z, ξ)⊕ span{ξ⊥e−r} : z = iξ,

im d0(z, ξ) : else
.

Now let ϕ ∈ C∞(R) be a cut-off function with ϕ ≡ 1 near t = 0 and ϕ(t) = 0 if

|t| ≥ 1/2. Then define φ ∈ C∞(S∗∂Ω) by

φ(z, ξ) = ϕ(|ξ + iz|2/2) = ϕ(1 + iz · ξ);

for the latter identity recall that z · ξ = Im z · ξ for (z, ξ) ∈ S∗∂Ω. Obviously, φ is

supported near the skew-diagonal {(iξ, ξ) | |ξ| = 1} ⊂ S∗∂Ω.

Lemma 3.16. With the above notation define

v(z, ξ) = φ(z, ξ)ξ⊥e−ir/z·ξ ∈ S (R+,C
2), (z, ξ) ∈ S∗∂Ω

(recall that r denotes the variable of R+). Then we have

ker d1(z, ξ) = im d0(z, ξ) + span{v(z, ξ)} ∀ (z, ξ) ∈ S∗∂Ω.
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Proof. Obviously, v(iξ, ξ) = ξ⊥e−r. Moreover, for z 6= iξ,

d1(z, ξ)v(z, ξ) = v(z, ξ) · ξ⊥ − i
dv(z, ξ)

dr
· z⊥ = 0,

using c⊥ · d⊥ = d · c. Hence v(z, ξ) ∈ ker d1(z, ξ) = im d0(z, ξ). � �

If we now define

k0 ∈ C
∞
(
S∗∂Ω,L (C, Hs(R+,C

2))
)
, c 7→ k0(z, ξ)c := cv(z, ξ)

then

(3.17) 0 −→

Hs+1(R+)

⊕

C

d̃0:=(d0 k0)
−−−−−−−−→ Hs(R+,C

2)
d1−−→ Hs−1(R+) −→ 0

is a family of complexes, which is exact in the second and third position. The

index-element of D is generated by the kernel-bundle of d̃0.

Lemma 3.17. The kernel-bundle of d̃0 is one-dimensional with

ker d̃0(z, ξ) =




span{(e−r, 0)} : z = iξ,

span
{(

φ(z, ξ) (z,ξ)
(z,ξ⊥)

e−ir/(z,ξ),−1
)}

: else
.

Proof. In case z = iξ, the ranges of k0 and a0 have trivial intersection; hence

ker d̃0(iξ, ξ) = ker d0(iξ, ξ)⊕ ker k0(iξ, ξ) = span {e−r} ⊕ {0}.

In case z 6= ±iξ, we find that d0(z, ξ) has the left-inverse

d0(z, ξ)
−1v =

1

(ξ, z⊥)
(v, z⊥),

since if v = d0(z, ξ)u = ξu−izu′ then d0(z, ξ)
−1v = u by simple computation. Thus

d̃0(z, ξ)

(
u

c

)
= 0 ⇐⇒ u = −c d0(z, ξ)

−1v(z, ξ),

which immediately yields the claim. � �

Proposition 3.18. If π : S∗∂Ω→ Ω denotes the canonical projection, then

indS∗∂Ωσ∂(D) 6∈ π∗K(∂Ω),

i.e., the Atiyah-Bott obstruction does not vanish for D.

In order to show this result we need to verify that the kernel-bundle E := ker d̃0
is not stably isomorphic to the pull-back under π of a bundle on ∂Ω = S3. Since

vector bundles on the 3-sphere are always stably trivial, we only have to show that

E is not stably trivial.

To this end let z0 = (1, 0) ∈ ∂Ω be fixed and let E0 denote the restriction of E to

S∗
z0∂Ω = {ξ ∈ C

2 | (z0, ξ) ∈ S∗D} = {ξ ∈ C
2 | |ξ| = 1, Re ξ1 = 0} ∼= S2.

We shall verify that E0 is isomorphic to the Bott generator bundle on S2, hence is

not stably trivial; consequently, also E cannot be.
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In fact, write S∗
z0∂Ω as the union S+ ∪ S− of the upper and lower semi-sphere,

S± = {ξ ∈ S∗
z0∂Ω | 0 ≤ ±Im ξ1 ≤ 1}. Specializing the above Lemma 3.17 to the

case z = z0, and noting that then z · ξ = ξ1 and z · ξ⊥ = ξ2, we find that

s+(ξ) = (0, 1), ξ ∈ S+,

s−(ξ) =
(
− φ(z0, ξ)ξ1e

−ir/ξ1 , ξ2

)
, ξ ∈ S−,

define two non-vanishing sections of E0 over S+ and S−, respectively. Note that

s−(ξ) = (0, ξ2) near the equator {ξ = (0, ξ2) | |ξ2| = 1} ∼= S1. In other words, the

bundle E0 is obtained by clutching together the trivial one-dimensional bundles over

S+ and S−, respectively, via the clutching function f : S1 → C \ {0}, f(ξ2) = ξ2.

Thus E0 coincides with the Bott generator.

4. Generalized pseudodifferential operator algebras

The aim of this section is to introduce an abstract framework in which principal

facts and techniques known from the theory of pseudodifferential operators (on

manifolds with and without boundary and also on manifolds with singularities) can

be formalized. We begin with two examples to motivate this formalization:

Example 4.1. Let M be a smooth closed Riemannian manifold. We denote by G

the set of all g = (M,F ), where F is a smooth Hermitian vector bundle over M .

Let

H(g) := L2(M,F ), g = (M,F ),

be the Hilbert space of square integrable sections of F . If g = (g0, g1) with gj =

(M,Fj) we let

Lµ(g) := Lµcl(M ;F0, F1), µ ≤ 0,

denote the space of classical pseudodifferential operators of order µ acting from

L2-sections of F0 to L2-sections of F1. Note that there is a natural identification

Lµcl(M ;F0 ⊕ F1, F
′
0 ⊕ F ′

1) =

{(
A00 A01

A10 A11

) ∣∣∣∣∣ Aij ∈ Lµ(M ;Fj , F
′
i )

}
.

With π : S∗M → M being the canonical projection of the co-sphere bundle to the

base, we let

E(g) := π∗F, g = (M,F ),

and then for A ∈ L0(g), g = (g0, g1), the usual principal symbol is a map

σ0
ψ(A) : E(g0) −→ E(g1);

it vanishes for operators of negative order. Obviously we can compose operators

(only) if the bundles they act in fit together and, in this case, the principal symbol

behaves multiplicatively. Taking the L2-adjoint induces a map Lµcl(M ;F0, F1) →

Lµcl(M ;F1, F0) well-behaved with the principal symbol, i.e., σ0
ψ(A

∗) = σ0
ψ(A)

∗, where

the ∗ on the right indicates the adjoint morphism (obtained by passing fibrewise to

the adjoint).
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Example 4.2. Considerations analogous to that of Example 4.1 apply to Boutet

de Monvel’s algebra for manifolds with smooth boundary. Here the weights are g =

(Ω, E, F ), where E and F are Hermitian boundles over Ω and ∂Ω, respectively, and

Lµ(g) = Bµ,0(Ω; (E0, F0), (E1, F1)), 0 ≤ −µ ∈ Z,

H(g) = L2(Ω, E)⊕ L2(∂Ω, F ),

for g = (Ω, E, F ) and g = (g0, g1) with gj = (Ω, Ej , Fj). The principal symbol has

two components, σµ(A) = (σµψ(A), σ
µ
∂ (A)).

4.1. The general setup. Let G be a set; the elements of G we will refer to as

weights. With every weight g ∈ G there is associated a Hilbert space H(g). There is

a weight such that {0} is the associated Hilbert space. With any g = (g0, g1) ∈ G×G

there belong vector-spaces of operators

L−∞(g) ⊂ L0(g) ⊂ L (H(g0), H(g1));

0 and −∞ we shall refer to as the order of the operators, those of order −∞

we shall also call smoothing operators. We shall assume that smoothing operators

induce compact operators in the corresponding Hilbert spaces and that the identity

operator is an element of L0(g) for any pair g = (g, g).

Remark 4.3. Let us point out that in this abstract setup the operators have order

at most 0. This originates from the fact that in concrete applications the use of

order-reductions often allows to reduce general order situations to the zero order

case (see for example the corresponding reduction in the proof of Theorem 3.10).

Two pairs g0 and g1 are called composable if g0 = (g0, g1) and g1 = (g1, g2), and in

this case we define

g1 ◦ g0 = (g0, g2).

We then request that composition of operators induces maps

Lµ(g1)× Lν(g0) −→ Lµ+ν(g1 ◦ g0), µ, ν ∈ {−∞, 0},

whenever the involved pairs of weights are composable.

Definition 4.4. With the previously introduced notation let

L• = ∪
g∈G×G

L0(g).

By abuse of language, we shall speak of the algebra L•.

For a pair of weights g = (g0, g1) its inverse pair is defined as g(−1) = (g1, g0).

We shall assume that L• is closed under taking adjoints, i.e., if A ∈ Lµ(g) then the

adjoint of A : H(g0)→ H(g1) is realized by an operator A∗ ∈ Lµ(g(−1)).

Definition 4.5. Let A ∈ L0(g). Then B ∈ L0(g(−1)) is called a parametrix of A

if AB − 1 ∈ L−∞(g ◦ g(−1)) and BA− 1 ∈ L−∞(g(−1) ◦ g).

In other words, a parametrix is an inverse modulo smoothing operators.
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4.1.1. The Fredholm property. It is clear that if A ∈ L0(g) has a parametrix then

A induces a Fredholm operator in the corresponding Hilbert spaces.

Definition 4.6. We say that L• has the Fredholm property if, for every A ∈ L0(g),

g = (g0, g1), the following holds true:

A has a parametrix ⇐⇒ A : H(g0)→ H(g1) is a Fredholm operator.

It is well-known that Boutet de Monvel’s algebra has the Fredholm property, see

Theorem 7 in Section 3.1.1.1 of [13], for example.

4.1.2. The block-matrix property. We shall say that the algebra L• has the block-

matrix property if there exists a map

(g0, g1) 7→ g0 ⊕ g1 : G×G→ G

which is associative, i.e., (g0 ⊕ g1)⊕ g2 = g0 ⊕ (g1 ⊕ g2), such that

H(g0 ⊕ g1) = H(g0)⊕H(g1), (g0, g1) ∈ G×G,

and such that

Lµ(g), g = (g00 ⊕ . . .⊕ g0ℓ , g
1
0 ⊕ . . .⊕ g1k),

can be identified with the space of (k + 1)× (ℓ+ 1)-matrices



A00 · · · A0ℓ

...
...

Ak0 · · · Akℓ


 :

H(g00)

⊕
...

⊕

H(g0ℓ )

−→

H(g01)

⊕
...

⊕

H(g1k)

, Aij ∈ Lµ((g0j , g
1
i )).

4.1.3. Classical algebras and principal symbol map. An algebra L• will be called

classical, and then for clarity denoted by L•
cl, if there exists a map, called principal

symbol map,

A 7→ σ(A) =
(
σ1(A), . . . , σn(A)

)

assigning to each A ∈ L0
cl(g), g = (g0, g1), an n-tuple of bundle morphisms

σℓ(A) : Eℓ(g
0) −→ Eℓ(g

1)

between (finite or infinite dimensional) Hilbert space bundles Eℓ(g
j) over some base

Bℓ(g
j), such that the following properties are valid:

(i) The map is linear, i.e.,

σ(A +B) = σ(A) + σ(B) :=
(
σ1(A) + σ1(B), . . . , σn(A) + σn(B)

)

whenever A,B ∈ L0(g).

(ii) The map respects the composition of operators, i.e.,

σ(BA) = σ(B)σ(A) :=
(
σ1(B)σ1(A), . . . , σn(B)σn(A)

)

whenever A ∈ L0(g0) and B ∈ L0(g1) with composable pairs g0 and g1.



ELLIPTIC COMPLEXES WITH GENERALIZED APS-CONDITIONS 31

(iii) The map is well-behaved with the adjoint, i.e., for any ℓ,

σℓ(A
∗) = σℓ(A)

∗ : Eℓ
1(g1) −→ Eℓ

0(g0),

where σℓ(A)
∗ denotes the adjoint morphism (obtained by taking fibrewise

the adjoint); for brevity, we shall also write σ(A∗) = σ(A)∗.

(iv) σ(R) = (0, . . . , 0) for every smoothing operator R.

Definition 4.7. A ∈ L0
cl(g) is called elliptic if its principal symbol σ(A) is invert-

ible, i.e., all bundle morphisms σ1(A), . . . , σn(A) are isomorphisms.

Besides the above properties (i)− (iv) we shall assume

(v) A ∈ L0
cl(g) is elliptic if, and only if, it has a parametrix B ∈ L0

cl(g
(−1)).

Finally, in case L•
cl has the block-matrix property, we shall also assume that the

identification with block-matrices from Section 2.2 has an analogue on the level of

principal symbols.

4.2. Operators of Toeplitz type. In the following let g = (g0, g1) and gj =

(gj , gj) for j = 0, 1. Let Pj ∈ L0(gj) be projections, i.e., P 2
j = Pj . We then define,

for µ = 0 or µ = −∞,

T µ(g;P0, P1) :=
{
A ∈ Lµ(g) | (1 − P1)A = 0, A(1− P0) = 0

}

=
{
P1A

′P0 | A
′ ∈ Lµ(g)

}
.

If we set

H(gj, Pj) := imPj = Pj
(
H(gj)

)
,

then H(gj , Pj) is a closed subspace of H(gj) and we have the inclusions

T−∞(g, P0, P1) ⊂ T 0(g, P0, P1) ⊂ L
(
H(g0, P0), H(g1, P1)

)
.

Clearly, smoothing operators are not only bounded but again compact.

The union of all these spaces (i.e., involving all weights and projections) we shall

denote by T •. We shall call T • a Toeplitz algebra and refer to elements of T • as

Toeplitz type operators.

Definition 4.8. Let A ∈ T 0(g;P0, P1). Then B ∈ T 0(g(−1);P1, P0) is called a

parametrix of A if

AB − P1 ∈ T−∞(g ◦ g(−1);P1, P1), BA− P0 ∈ T−∞(g(−1) ◦ g;P0, P0).

4.2.1. Classical operators and principal symbol. The previous definitions extend, in

an obvious way, to classical algebras; again we shall use the subscript cl to indicate

this, i.e., we write T •
cl. We associate with A ∈ T 0

cl(g;P0, P1) a principal symbol in

the following way: Since the Pj are projections, the associated symbols σℓ(Pj) are

projections in the bundles Eℓ(g
j) and thus define subbundles

Eℓ(g
j , Pj) := imσℓ(Pj) = σℓ(Pj)(Eℓ(g

j)).

For A ∈ T 0
cl(g;P0, P1) we then define

σ(A;P0, P1) =
(
σ1(A;P0, P1), . . . , σn(A;P0, P1)

)
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by

(4.1) σℓ(A;P0, P1) = σℓ(A) : Eℓ(g
0, P0) −→ Eℓ(g

1, P1);

note that σℓ(A) maps into Eℓ(g
1, P1) in view of the fact that (1− P1)A = 0.

Remark 4.9. The principal symbol map defined this way satisfies the obvious ana-

logues of properties (i), (ii), and (iv) from Section 4.1.3. Concerning property (iii)

of the adjoint, observe that there is a natural identification of the dual of H(g, P )

with the space H(g, P ∗). This leads to maps

A 7→ A∗ : T µ(cl)(g;P0, P1) −→ T µ(cl)(g
(−1);P ∗

1 , P
∗
0 ),

and (iii) generalizes correspondingly.

Definition 4.10. An operator A ∈ T 0
cl(g;P0, P1) is called elliptic if its princi-

pal symbol σ(A;P0, P1) is invertible, i.e., all bundle morphisms σ1(A;P0, P1), . . . ,

σn(A;P0, P1) from (4.1) are isomorphisms.

Property (v) from Section 4.1.3, whose validity was a mere assumption for the

algebra L•
cl, can be shown to remain true for the Toepltz algebra T •

cl, see Theorem

3.12 of [24]:

Theorem 4.11. For A ∈ T 0
cl(g;P0, P1) the following properties are equivalent:

a) A is elliptic (in the sense of Definition 4.10),

b) A has a parametrix (in the sense of Definition 4.8).

Similarly, the Fredholm property in L• is inherited by the respective Toeplitz alge-

bra T •, as has been shown in Theorem 3.7 of [24]:

Theorem 4.12. Let L• have the Fredholm property. For A ∈ T 0(g;P0, P1) the

following properties are equivalent:

a) A has a parametrix (in the sense of Definition 4.8).

b) A : H(g0, P0)→ H(g1, P1) is a Fredholm operator.

5. Complexes in operator algebras

In this section we study complexes whose single operators belong to a general

algebra L•. So let

(5.1) A : . . .
A−1
−−−→ H(g0)

A0−−→ H(g1)
A1−−→ H(g2)

A2−−→ H(g3)
A3−−→ . . . ,

be a complex with operators Aj ∈ L0(gj), gj = (gj, gj+1). Of course, A is also a

Hilbert space complex in the sense of Section 2. Note that the Laplacians associated

with A satisfy ∆j ∈ L0((gj , gj)), j ∈ Z.
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5.1. Fredholm complexes and parametrices. The notion of parametrix of a

Hilbert space complex has been given in Definition 2.3. In the context of operator

algebras the definition is as follows.

Definition 5.1. A parametrix in L• of the complex A is a sequence of operators

Bj ∈ L0(g
(−1)
j ), j ∈ Z, such that

Aj−1Bj−1 +BjAj − 1 ∈ L−∞((gj , gj)), j ∈ Z.

In case BjBj+1 = 0 for every j we call such a parametrix a complex.

Clearly, a parametrix in L• is also a parametrix in the sense of Definition 2.3, but

not vice versa.

Proposition 5.2. Let L• have the Fredholm property. Then A is a Fredholm com-

plex if, and only if, A has a parametrix in L•.

Proof. If A has a parametrix it is a Fredholm complex by Theorem 2.4. Vice versa,

the Fredholmness of A is equivalent to the simultaneous Fredholmness of all Lapla-

cians ∆j . By assumption on L•, this in turn is equivalent to the existence of para-

metrices Dj ∈ L0((gj , gj)) to ∆j for every j. Then Bj := DjA
∗
j is a parametrix in

L•. In fact, the identity Aj∆j = ∆j+1Aj implies that Dj+1Aj ≡ AjDj , where ≡

means equality modulo smoothing operators. Therefore,

BjAj +Aj−1Bj−1 = DjA
∗
jAj +Aj−1Dj−1A

∗
j−1

≡ DjA
∗
jAj +DjAj−1A

∗
j−1 = Dj∆j ≡ 1.

This finishes the proof. � �

The parametrix constructed in the previous definition is, in general, not a complex.

To assure the existence of a parametrix that is also a complex one needs to pose

an additional condition on L• (as discussed below, it is a mild condition, typically

satisfied in applications).

Definition 5.3. L• is said to have the extended Fredholm property if it has the

Fredholm property and for every A ∈ L0(g), g = (g, g), with A = A∗ and which is

a Fredholm operator in H(g), there exists a parametrix B ∈ L0(g) such that

AB = BA = 1− π

with π ∈ L (H(g)) being the orthogonal projection onto kerA.

Note that, with A ∈ L0(g) and π as in the previous definition, we have the orthog-

onal decomposition H(g) = imA⊕ kerA and A : imA→ imA is an isomorphism.

If T denotes the inverse of this isomorphism, then the condition of Definition 5.3

can be rephrased as follows: It is asked that there exists a B ∈ L0(g) with

(5.2) Bu = T (1− π)u for all u ∈ H(g).

Theorem 5.4. Let L• have the extended Fredholm property. Then A is a Fredholm

complex if, and only if, A has a parametrix in L• which is a complex.
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Proof. Let A be a Fredholm complex. By assumption, there exist parametrices

Dj ∈ L0((gj , gj)) of the complex Laplacians ∆j with ∆jDj = Dj∆j = 1 − πj ,

where πj ∈ L (H(gj)) is the orthogonal projection onto the kernel of ∆j . Now

define Bj := DjA
∗
j . As we have shown in the proof of Proposition 5.2, the Bj define

a parametrix. Since Dj+1 maps imA∗
j+1 = (kerAj+1)

⊥ into itself, and imA∗
j+1 ⊂

kerA∗
j , we obtain A∗

jDj+1A
∗
j+1 = 0, hence BjBj+1 = 0. � �

The following theorem gives sufficient conditions for the validity of the extended

Fredholm property.

Theorem 5.5. Let L• have the Fredholm property and assume the following:

a) If A = A∗ ∈ L0(g), g = (g, g), is a Fredholm operator in H(g), then the

orthogonal projection onto the kernel of A is an element of L−∞(g).

b) R1TR0 ∈ L−∞(g), g = (g, g), whenever R0, R1 ∈ L−∞(g) and T ∈ L (H(g)).

Then L• has the extended Fredholm property.

In other words, condition b) asks that sandwiching a bounded operator T (not nec-

essarily belonging to the algebra) between two smoothing operators always results

being a smoothing operator. A typical example are pseudodifferential operators on

closed manifolds, where the smoothing operators are those integral operators with

a smooth kernel, and sandwiching any operator which is continuous in L2-spaces

results again in an integral operator with smooth kernel. Similarly, also Boutet

de Monvel’s algebra and many other algebras of pseudodifferential operators are

covered by this theorem.

Proof of Theorem 5.5. Let A = A∗ ∈ L0(g), g = (g, g), be a Fredholm operator in

H(g). Let B = T (1 − π) ∈ L (H(g)) be as in (5.2); initially, B is only a bounded

operator in H(g), but we shall show now that B infact belongs to L0(g).

By assumption we find a parametrix P ∈ L0(g) to A, i.e. R1 := 1 − PA and

R0 := 1−AP belong to L−∞(g). Then, on H(g),

B − P = (PA+R1)(P −B) = P (π −R0) +R1(P −B),

B − P = (P −B)(AP +R0) = (π −R1)P + (P −B)R0

Substituting the second equation into the first and rearranging terms yields

B − P = P (π −R0) +R1(π −R1)P +R1(P −B)R0.

The right-hand side belongs to L−∞(g) by assumptions (a) and (b). Since P belongs

to L0(g), then so does B. � �

5.2. Elliptic complexes. Let us now assume that we deal with a classical algebra

L•
cl and the complex A from (5.1) is made up of operators Aj ∈ L0

cl(gj), gj =

(gj , gj+1). If A 7→ σ(A) =
(
σ1(A), . . . , σn(A)

)
is the associated principal symbol

map, cf. Section 4.1.3, then we may associate with A the families of complexes

(5.3) σℓ(A) : . . .
σℓ(A−1)
−−−−−→ Eℓ(g

0)
σℓ(A0)
−−−−→ Eℓ(g

1)
σℓ(A1)
−−−−→ Eℓ(g

2)
σℓ(A2)
−−−−→ . . . ,
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for ℓ = 1, . . . , n; here we shall assume that, for each ℓ, all bundles Eℓ(g), g ∈ G,

have the same base space and that σℓ(A) is a family of complexes as described in

Section 2.3.

Definition 5.6. The complex A in L•
cl is called elliptic if all the associated families

of complexes σℓ(A), ℓ = 1, . . . , n, are exact families (in the sense of Section 2.3).

Theorem 5.7. For a complex A in L•
cl the following properties are equivalent:

a) A is elliptic.

b) All Laplacians ∆j, j ∈ Z, associated with A are elliptic.

These properties imply

c) A has a parametrix in L•
cl.

d) A is a Fredholm complex.

In case L•
cl has the Fredholm property, all four properties are equivalent. In presence

of the extended Fredholm property, the parametrix can be chosen to be a complex.

Proof. The equivalence of a) and b) is simply due to the fact that the principal

symbol σℓ(∆j) just coincides with the j-th Laplacian associated with σℓ(A) and

therefore simultaneous exactness of σℓ(A), 1 ≤ ℓ ≤ n, in the j-th position is equiv-

alent to the invertibility of all σℓ(∆j), i.e., the ellipticity of ∆j . The rest is seen as

above in Poposition 5.2 and Theorem 5.4. � �

The complex A induces the families of complexes σℓ(A). The following theorem is

a kind of reverse statement, i.e., starting from exact families of complexes we may

construct a complex of operators. For a corresponding result in the framework of

Boutet de Monvel’s algebra see Lemma 1.3.10 in [12] and Theorem 8.1 in [10].

Theorem 5.8. Assume that L•
cl has the extended Fredholm property. Let N ∈ N and

Aj ∈ L0(gj), gj = (gj , gj+1), j = 0, . . . , N , be such that the associated sequences of

principal symbols form exact families of complexes

0 −→ Eℓ(g
0)

σℓ(A0)
−−−−→ Eℓ(g

1)
σℓ(A1)
−−−−→ Eℓ(g

2) . . .
σℓ(AN )
−−−−−→ Eℓ(g

N+1) −→ 0,

ℓ = 1, . . . , n. Then there exist operators Ãj ∈ L0(gj), j = 0, . . . , N , with σ(Ãj) =

σ(Aj) and such that

Ã : 0 −→ H(g0)
Ã0−−→ H(g1)

Ã1−−→ H(g2) . . .
ÃN−−→ H(gN+1) −→ 0

is a complex. In case Aj+1Aj is smoothing for every j, the operators Ãj can be

chosen in such a way that Ãj −Aj is smoothing for every j.

Proof. We take ÃN = AN and then apply an iterative procedure, first modifying

the operator AN−1 and then, subsequently, the operators AN−2, . . . , A0.

Consider the Laplacian ∆N+1 = ANA∗
N ∈ L0

cl(g
N+1, gN+1). Since, by assump-

tion, any σℓ(AN ) is (fibrewise) surjective, σℓ(∆N+1) = σℓ(AN )σℓ(AN )∗ is an iso-

morphism. Hence ∆N+1 is elliptic. By the extended Fredholm property we find a

parametrix DN+1 ∈ L0((gN+1, gN+1)) of ∆N+1 with ∆N+1DN+1 = DN+1∆N+1 =
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1−πN+1, where πN+1 ∈ L−∞(gN+1, gN+1) is the orthogonal projection in H(gN+1)

onto the kernel of ∆N+1, i.e., onto the kernel of A∗
N . Then it is straightforward to

check that ΠN := 1−A∗
NDN+1AN is the orthogonal projection in H(gN ) onto the

kernel of AN . Then let us set

ÃN−1 := ΠNAN−1 = AN−1 +RN−1, RN−1 = −A∗
NDN+1ANAN−1.

Since σ(ANAN−1) = σ(AN )σ(AN−1) = 0 we find that σ(RN−1) = 0. Obviously, if

ANAN−1 is smoothing then so is RN−1. This finishes the first step of the procedure.

Next we are going to modify AN−2. For notational convenience redefine AN−1 as

ÃN−1. Similarly as above, the n-th Laplacian ∆N = A∗
NAN+ÃN−1Ã

∗
N−1 is elliptic,

due to the exactness of the symbol complexes. We then let DN be a parametrix

with ∆NDN = DN∆N = 1 − πN , where πN ∈ L−∞(gN , gN ) is the orthogonal

projection in H(gN) onto the kernel of ∆N . Then set ΠN−1 = 1−A∗
N−1DNAN−1.

Now observe that

(1−ΠN−1)
2 = A∗

N−1DNAN−1A
∗
N−1DNAN−1

= A∗
N−1DN∆NDNAN−1AN−1 −A∗

N−1DNA∗
NANDNAN−1

= 1−ΠN−1,

since DN∆NDN = DN (1 − πN ) = DN and DN maps im (AN−1) into itself, hence

the second summand vanishes in view of im (AN−1) ⊂ ker (AN ). Similarly one

verifies that im (ΠN−1) = ker (AN−1). In other words, ΠN−1 is the orthogonal

projection in H(gN−1) onto the kernel of AN−1. Then proceed as above, setting

ÃN−2 = ΠN−1ÃN−1. Repeat this step for AN−3, and so on. � �

Remark 5.9. Let notations and assumptions be as in Theorem 5.8. Though the

Aj do not form a complex, the compostions Aj+1Aj have vanishing principal sym-

bols and thus can be considered as “small”. In the literature such kind of almost-

complexes are known as essential complexes, cf. [1], or quasicomplexes, cf. [10]. In

this spirit, Theorem 5.8 says that any elliptic quasicomplex in L•
cl can be “lifted” to

an elliptic complex.

6. Complexes in Toeplitz algebras

After having developed the theory for complexes in an operator algebra L•
(cl), let

us now turn to complexes in the associated Toeplitz algebra T •
(cl). These have the

form

(6.1) AP : . . .
A−1
−−−→ H(g0;P0)

A0−−→ H(g1;P1)
A1−−→ H(g2;P2)

A2−−→ . . . ,

with operators Aj ∈ L0
(cl)(gj ;Pj ;Pj+1), gj = (gj , gj+1); we use the subscript P to

indicate the involved sequence of projections Pj , j ∈ Z. Of course, if all projections

are equal to the identity, we obtain a usual complex in L•.

As we shall see, the basic definitions used for complexes in L• generalize straight-

forwardly to the Toeplitz case. However, the techniques developed in the previous

section do not apply directly to complexes in Toeplitz algebras. Mainly, this is
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due to the fact that Toeplitz algebras behave differently under application of the

adjoint, i.e.,

A 7→ A∗ : T 0(g;P0, P1) −→ T 0(g;P ∗
1 , P

∗
0 ).

As a consequence, it is for instance not clear which operators substitute the Lapla-

cians that played a decisive role in the analysis of complexes in L•.

To overcome this difficulty, we shall develop a method of lifting a complex AP to a

complex in L•, which preserves the essential properties of AP. To the lifted complex

we apply the theory of complexes in L• and then arive at corresponding conclusions

for the original complex AP.

For clarity, let us state explicitely the definitions of parametrix and ellipticity.

Definition 6.1. A parametrix in T • of the complex AP is a sequence of operators

Bj ∈ L0(g
(−1)
j ;Pj+1, Pj), j ∈ Z, such that

Aj−1Bj−1 +BjAj − Pj ∈ L−∞((gj , gj);Pj , Pj) j ∈ Z.

In case BjBj+1 = 0 for every j we call such a parametrix a complex.

Let, additionally, L• = L•
cl be classical with principal symbol map A 7→ σ(A) =

(σ1(A), . . . , σn(A)). Then we associate with AP the families of complexes

(6.2) σℓ(AP) : . . . Eℓ(g
0, P0)

σℓ(A0;P0,P1)
−−−−−−−−→ Eℓ(g

1, P1)
σℓ(A1;P1,P2)
−−−−−−−−→ Eℓ(g

2, P2) . . . ,

cf. (4.1).

Definition 6.2. A complex AP in T •
cl is called elliptic if all σℓ(AP), 1 ≤ ℓ ≤ n,

are exact families of complexes.

We shall now investigate the generalization of Proposition 5.2 and Theorems 5.4,

5.7 and 5.8 to the setting of complexes in Toeplitz algebras.

6.1. Lifting of complexes. Consider an at most semi-infinite complex AP in T •,

i.e.,

(6.3) AP : 0 −→ H(g0;P0)
A0−−→ H(g1;P1)

A1−−→ H(g2;P2)
A2−−→ . . .

with operators Aj ∈ L0
(cl)(gj ;Pj ;Pj+1), gj = (gj , gj+1) for j ≥ 0. Moreover, assume

that L• has the block-matrix property described in Section 2.2.

Let us define the weights

g[j] := gj ⊕ gj−1 ⊕ . . .⊕ g0 ∈ G, j = 0, 1, 2, . . . .

Then we have

H(g[j]) = H(gj)⊕H(gj−1)⊕ . . .⊕H(g0).

We then define

A[j] ∈ L0(g[j]), g[j] := (g[j], g[j+1]),

by

A[j](uj ,uj−1, . . . , u0)

=
(
Ajuj, (1− Pj)uj, Pj−1uj−1, (1− Pj−2)uj−2, Pj−3uj−3, . . .

)
.

(6.4)
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In other words, the block-matrix representation of A[j] is

A[j] = diag(Aj , 0, 0, 0, . . .) + subdiag(1 − Pj , Pj−1, 1− Pj−2, Pj−3, . . .).

Since Aj+1Aj = 0 as well as (1 − Pj+1)Aj = 0, it follows immediately that

A[j+1]A[j] = 0. Therefore,

(6.5) A∧
P : 0 −→ H(g[0])

A[0]
−−→ H(g[1])

A[1]
−−→ H(g[2])

A[2]
−−→ H(g[3])

A[3]
−−→ . . . ,

defines a complex in L•. Inserting the explicit form of H(g[j]), this complex takes

the form

A∧
P : 0 −→ H(g0)

A[0]
−−→ H(g1)

⊕

H(g0)

A[1]
−−→ H(g2)

⊕

H(g1)

⊕

H(g0)

A[2]
−−→ H(g3)

⊕

H(g2)

⊕

H(g1)

⊕

H(g0)

A[3]
−−→ . . .

Definition 6.3. The complex A∧
P defined in (6.5) is called the lift of the complex

AP from (6.3).

Proposition 6.4. Let A∧
P be the lift of AP as described above. Then

kerA[j] =ker
(
Aj : H(gj, Pj)→ H(gj+1, Pj+1)

)
⊕

⊕ kerPj−1 ⊕ imPj−2 ⊕ kerPj−3 ⊕ . . . ,

imA[j] = im
(
Aj : H(gj , Pj)→ H(gj+1, Pj+1)

)
⊕

⊕ kerPj ⊕ imPj−1 ⊕ kerPj−2 ⊕ . . . .

Here, image and kernel of the projections Pk refer to the maps Pk ∈ L (H(gk)).

Therefore, both complexes have the same cohomology spaces,

Hj(AP) ∼= Hj(A
∧
P), j = 0, 1, 2, . . .

In particular, AP is a Fredholm complex or an exact complex if, and only if, its lift

A∧
P is a Fredholm complex or an exact complex, respectively.

Proof. Let us define the map

Tj : H(gj)→ H(gj+1)⊕H(gj), Tju = (Aju, (1− Pj)u).

Then it is clear that

kerA[j] = kerTj ⊕ kerPj−1 ⊕ imPj−2 ⊕ kerPj−3 ⊕ . . . ,

imA[j] = imTj ⊕ imPj−1 ⊕ kerPj−2 ⊕ imPj−3 ⊕ . . . .

Now observe that Tju = 0 if, and only if, u ∈ ker (1−Pj) = H(gj , Pj) and Aju = 0.

This shows

kerTj = ker
(
Aj : H(gj , Pj)→ H(gj+1, Pj+1)

)
.
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Moreover, writing u = v + w with v ∈ H(gj, Pj) and w ∈ kerPj , we obtain Tju =

(Ajv, w). This shows

imTj = im
(
Aj : H(gj , Pj)→ H(gj+1, Pj+1)

)
⊕ kerPj

and completes the proof. � �

6.2. Fredholmness, parametrices and ellipticity of Toeplitz complexes.

The next theorem shows that a parametrix of the lift induces a parametrix of the

original complex.

Theorem 6.5. Let A∧
P be the lift of AP as described above. If A∧

P has a parametrix

in L• then AP has a parametrix in T •.

Proof. Let A∧
P have a parametrix B in L•, made up of the operators B[j] ∈

L0(g
(−1)
[j] ) = L0((g[j+1], g[j])). Let us represent B[j] as a block-matrix,

B[j] =




B
[j]
j+1,j B

[j]
j,j B

[j]
j−1,j · · · B

[j]
0,j

...
...

...
...

B
[j]
j+1,0 B

[j]
j,0 B

[j]
j−1,0 · · · B

[j]
0,0


 , B

[j]
k,ℓ ∈ L0((gk, gℓ)).

Since B is a parametrix to A∧
P, we have

(6.6) A[j−1]B[j−1] +B[j]A[j] = 1 + C[j], C[j] ∈ L−∞((g[j], g[j])).

Similarly as before, let us write C[j] =
(
C

[j]
k,ℓ

)
with C

[j]
k,ℓ ∈ L−∞((gk, gℓ)). Inserting

in (6.6) the block-matrix representations and looking only to the upper left corners,

we find that

Aj−1B
[j−1]
j,j−1 +B

[j]
j+1,jAj +B

[j]
j,j(1 − Pj) = 1 + C

[j]
j,j .

Multiplying this equation from the left and the right with Pj and defining

Bj := PjB
[j]
j+1,jPj+1 ∈ T 0((gj+1, gj);Pj+1, Pj)

we find

Aj−1Bj−1 +BjAj − Pj ∈ T−∞((gj , gj);Pj , Pj), j = 0, 1, 2, . . .

Thus the sequence of the Bj is a parametrix in T • of AP. � �

In case the parametrix of A∧
P is also a complex, the resulting parametrix for AP

will, in general, not be a complex. We must leave it as an open question whether

(or under which conditions) it is possible to find a parametrix of AP which is a

complex.

Theorem 6.6. Let L• have both the block-matrix property and the Fredholm prop-

erty. For an at most semi-infinite complex AP in T • as in (6.3), the following are

equivalent:

a) AP is a Fredholm complex.

b) AP has a parametrix in T • (in the sense of Definition 6.1).

If L• = L•
cl is classical, these properties are equivalent to
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c) AP is an elliptic complex (in the sense of Definition 6.2).

Proof. Clearly, b) implies a). If a) holds, the lifted complex A∧
P is a Fredholm

complex. According to Proposition 5.2 it has a parametrix. By Theorem 6.5 we

thus find a parametrix in T • of AP. Thus a) implies b).

Now let L• be classical. If A∧
P is the lifted complex, then the family of complexes

σℓ(A
∧
P) in the sense of (5.3) is the lift of the family of complexes σℓ(AP) from (6.2).

Thus, due to Theorem 6.5 (applied in each fibre), AP is elliptic if, and only if,

A∧
P is. By Theorem 5.7, the latter is equivalent to the Fredholmness of A∧

P which,

again by Theorem 6.5, is equivalent to the Fredholmness of AP. This shows the

equivalence of a) and c). � �

Now we generalize Theorem 5.8 to complexes in Toeplitz algebras.

Theorem 6.7. Assume that L•
cl has both the block-matrix property and the ex-

tended Fredholm property. Let N ∈ N and Aj ∈ T 0(gj ;Pj , Pj+1), gj = (gj , gj+1),

j = 0, . . . , N , be such that the associated sequences of principal symbols form exact

families of complexes

0 −→ Eℓ(g
0, P0)

σℓ(A0;P0,P1)
−−−−−−−−→ . . .

σℓ(AN ;PN ,PN+1)
−−−−−−−−−−−→ Eℓ(g

N+1, PN+1) −→ 0,

ℓ = 1, . . . , n. Then there exist operators Ãj ∈ T 0(gj ;Pj , Pj+1), j = 0, . . . , N , with

σ(Ãj ;Pj , Pj+1) = σ(Aj ;Pj , Pj+1) and such that

ÃP : 0 −→ H(g0, P0)
Ã0−−→ H(g1, P1) . . .

ÃN−−→ H(gN+1, PN+1) −→ 0

is a complex. In case Aj+1Aj is smoothing for every j, the operators Ãj can be

chosen in such a way that Ãj −Aj is smoothing for every j.

Proof. Consider the finite complex as a semi-infinite one, i.e., for j > N we let

gj = g be the weight such that H(g) = {0} and denote by Aj be the zero operator

acting in {0}. Then we let

A[j] ∈ L0(g[j]), g[j] := (g[j], g[j+1]),

as defined in (6.4). This defines a series of operators A[0], A[1], A[2], . . . which, in

general, is infinite, i.e., the operators A[j] with j > N need not vanish. However,

by construction, we have that

(6.7) A[j+1]A[j] = 0 ∀ j ≥ N.

Moreover, the associated families of complexes of principal symbols are exact fami-

lies due to Proposition 6.4. We now modify the operator A[N−1] using the procedure

described in the proof of Theorem 5.8 (due to (6.7) the operators A[j] with j ≥ N

do not need to be modified).

Thus let Π[N ] be the orthogonal projection in H(g[N ]) onto

kerA[N ] =ker
(
AN : H(gN , PN )→ H(gN+1, PN+1)

)
⊕

⊕ kerPN−1 ⊕ imPN−2 ⊕ kerPN−3 ⊕ . . .
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and Ã[N−1] := Π[N ]A[N−1] = A[N−1] + R[N−1] with R[N−1] ∈ L0(g[N−1]) having

vanishing principal symbol. If we write Π[N ] in block-matrix form, the entry Π11
[N ] ∈

L0(gN ) in the upper left corner is the orthogonal projection ofH(gN ) onto ker
(
AN :

H(gN , PN ) → H(gN+1, PN+1)
)
. Thus ΠN := PNΠ11

[N ]PN ∈ T 0(gN ;PN , PN ) is the

orthogonal projection of H(gN , PN ) onto the same kernel. Comparing the upper

left corners of A[N−1] and Ã[N−1] = Π[N ]A[N−1] we find that
(
Π11

[N ]AN−1 +Π12
[N ](1− PN−1)

)
−AN−1 = R11

[N−1].

Multiplying by PN from the left and by PN−1 from the right yields that AN−1

differs from ÃN−1 := ΠNAN−1 ∈ T 0(gN ;PN , PN ) by

RN−1 := PNR11
[N−1]PN−1 ∈ T 0(gN ;PN−1, PN ).

Moreover,RN−1 has vanishing symbol σ(RN−1;PN−1, PN ) and AN ÃN−1 = 0, since

ΠN maps into the kernel of AN .

Now we replace AN−1 by ÃN−1 and repeat this procedure to modify AN−2, and so

on until modification of A0. � �

6.3. Complexes on manifolds with boundary revisited. Let us now apply

our results to complexes on manifolds with boundary, i.e., to complexes in Boutet

de Monvel’s algebra and its APS version. In particular, we shall provide details we

already have made use of in Section 3.3 on boundary value problems for complexes.

In the following we work with the operators

Aj ∈ B
µj ,dj (Ω; (Ej , Fj ;Pj), (Ej+1, Fj+1;Pj+1)), j = 0, . . . , n.

6.3.1. Complexes in Boutet’s algebra with APS type conditions. Assume Aj+1Aj =

0 for every j. For convenience we introduce the notation

Hs
j := Hs(Ω, Ej)⊕Hs(∂Ω, Fj ;Pj)

and the numbers νj := µ0 + . . .+ µj . Then we obtain finite complexes

(6.8) AP : 0 −→ Hs
0

A0−−→ Hs−ν0
1

A1−−→ Hs−ν1
2

A2−−→ . . .
An−−→ Hs−νn

n+1 −→ 0

for every integer s ≥ smin with

smin := max
{
νj , dj + νj−1 | j = 0, . . . , n

}
(with ν−1 := 0).

The complex AP is called elliptic if both associated families of complexes σψ(AP)

and σ∂(AP), made up of the associated principal symbols and principal boundary

symbols, respectively, are exact. In fact, ellipticity is independent of the index s.

Theorem 6.8. The following statements are equivalent:

a) AP is elliptic.

b) AP is a Fredholm complex for some s ≥ smin.

c) AP is a Fredholm complex for all s ≥ smin.

In this case, AP has a parametrix made up of operators belonging to the APS-

version of Boutet de Monvel’s algebra. Moreover, the index of the complex does not

depend on s.
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Proof. We shall make use of order reductions

R
m
j :=

(
Λmj 0

0 λmj

)
∈ Bm,0(Ω; (Ej , Fj), (Ej , Fj)),

as already described in the discussion following Theorem 3.10, i.e., Rm
j is invertible

with inverse given by R
−m
j .

Let A be elliptic. Define

A
′
j = R

smin−νj
j+1 Aj R

νj−1−smin

j , P ′
j = λ

smin−νj−1

j Pj λ
νj−1−smin

j .

Then

A
′
j ∈ B

0,0(Ω; (Ej , Fj ;P
′
j), (Ej+1, Fj+1;P

′
j+1))

and A ′
j+1A

′
j = 0 for every j, i.e., the A ′

j induce a complex A′
P′ in the respective

L2-spaces, which remains elliptic. By Theorem 6.6 (with L•
cl = B

•,0 as described in

Example 4.2) there exists a parametrix of A′
P′ , made up by operators

B
′
j ∈ B

0,0(Ω; (Ej+1, Fj+1;P
′
j+1), (Ej , Fj ;P

′
j)).

Then

Bj := R
νj−1−smin

j B
′
j R

smin−νj
j+1 ∈ B0,ej(Ω; (Ej+1, Fj+1;Pj+1), (Ej , Fj ;Pj)),

with ej := smin − νj and we obtain that

Aj−1Bj−1 + BjAj − 1 ∈ B−∞,ej(Ω; (Ej , Fj ;Pj), (Ej , Fj ;Pj)).

Thus the induced operators Bj : H
s−νj
j+1 → H

s−νj−1

j give a parametrix of (6.8)

whenever s ≥ smin. Summing up, we have verified that a) implies c).

Now assume that b) holds for one s = s0. Similarly as before, we pass to a new

Fredholm complex A′
P′ made up by the operators A ′

j = R
s0−νj
j+1 Aj R

νj−1−s0
j , which

have order and type 0. By Theorem 6.6 this complex is elliptic, and hence also the

original complex AP is. Hence a) holds.

It remains to verify the indepence of s of the index. However, this follows from the

fact that the index of AP coincides with the index of its lifted complex A∧
P (cf.

Proposition 6.4). The index of the latter is known to be independent of s, see for

instance Theorem 2 on page 283 of [13]. � �

6.3.2. From principal symbol complexes to complexes of operators. Theorem 6.7 in

the present situation takes the following form:

Theorem 6.9. Assume that both the sequence of principal symbols σ
µj

ψ (Aj) and

the sequence of principal boundary symbols σ
µj

ψ (Aj ;Pj , Pj+1) induce exact families

of complexes. Then there exist operators

Ãj ∈ B
µj ,smin−νj−1(Ω; (Ej , Fj ;Pj), (Ej+1, Fj+1;Pj+1)), j = 0, . . . , n,

with Ãj+1Ãj = 0 for every j and such that

Aj − Ãj ∈ B
µj−1,smin−νj−1(Ω; (Ej , Fj ;Pj), (Ej+1, Fj+1;Pj+1)).
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Proof. Define operators A ′
j as in the beginning of the proof of Theorem 6.8. These

have order and type 0 and satisfy the assumptions of the Theorem. Then by The-

orem 6.7 there exist

Ã
′
j ∈ B

0,0(Ω; (Ej , Fj ;P
′
j), (Ej+1, Fj+1;P

′
j+1))

with Ã ′
j+1Ã

′
j = 0 and

A
′
j − Ã

′
j ∈ B

−1,0(Ω; (Ej , Fj ;P
′
j), (Ej+1, Fj+1;P

′
j+1)).

By choosing Ãj := R
νj−smin

j+1 Ã ′
j R

smin−νj−1

j , the claim follows. � �

We conclude this section with a particular variant of Theorem 6.9, which we need

for completing the proof of Theorem 3.13.

Proposition 6.10. Let the Aj be as in Theorem 6.9 of order and type 0. Further-

more, assume that Aj =

(
Aj Kj

0 Qj

)
and that Aj+1Aj = 0 for every j. Then the

Ãj from Theorem 6.9 can be chosen in the form Ãj =

(
Aj K̃j

0 Q̃j

)
.

Proof. To prove this result we recall from the proof of Theorem 6.7 that the Ãj

are constructed by means of an iterative procedure, choosing Ãn := An and then

modifying An−1, . . . ,A0 one after the other. In fact, if Ãn, . . . , Ãk+1 are constructed

and have the form as stated, then Ãk := πk+1Ak with πk+1 being the orthogonal

projection in L2(Ω, Ek+1) ⊕ L2(∂Ω, Fk+1;Pk+1) onto the kernel of Ãk+1. Now let

u ∈ L2(Ω, Ek) be arbitrary. Since Ak+1Ak = 0, it follows that (Aku, 0) belongs to

ker Ãk+1 and thus

Ãk

(
u

0

)
= πk+1

(
Aku

0

)
=

(
Aku

0

)
.

Hence the block-matrix representation of Ãk has the desired form. � �
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