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1. INTRODUCTION 
 

Basaltic volcanism is ubiquitous on Earth and the 
other inner solar system bodies. Over half of the world’s 
volcanoes consist largely of basaltic−dominated systems 
occurring at every tectonic setting and on every conti−
nent [Walker, 2000]. The basaltic volcanic eruptions at 
Tolbachik in Russia (2012−2013); Bardarbunga in Ice−
land (2014); Etna in Italy (2018); Piton de la Fournaise 

on Reunion Island (2018) and Kilauea in Hawaii (2018) 
reinforce the recurring hazard potential of basaltic ac−
tivity. The 2018 activity at Kilauea formed a very large, 
stable channel from the vent to the ocean entry and de−
stroyed numerous homes and property before coming to 
an end [HVO, 2018; Neal et al., 2018]. Until the Kilauea 
eruption, the 2012−2013 eruption of Tolbachik volcano 
was the most thermally intense flow−forming eruption 
in the past 50 years, producing ~2.5 times more emit−
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ABSTRACT 
The application of thermo−rheological models to forecast active lava flow emplacement and quantify important eruptive parameters of 

older flows has become more common over the last decade. With the modification and adaption of these models to modular computing 

languages, they are now easier, quicker, and are being incorporated into studies of both terrestrial and planetary volcanism. These mod−

els rely on certain assumptions and input parameters, some of which such as emissivity are not well understood for molten materials. With−

out a well−grounded knowledge of how this parameter governs radiant cooling, remote measurements of temperature and models such as 

FLOWGO that rely on these temperatures to track cooling with time will be in error. Here, we perform a detailed FLOWGO−based model−

ing study of lava flows emplaced at Tolbachik volcano during the 2012−2013 and the 1975−1976 eruptions. Specifically, we have modi−

fied the FLOWGO model to incorporate a two−component emissivity model linked to the fraction of molten lava and cooled crust. We fo−

cus first on the large Leningradskoye Flow emplaced at the start of the 2012 eruption, relying on data from numerous other orbital sensors 

including MODIS, ASTER and ALI to constrain some of the model input parameters. The two−component emissivity adaption produced 

better fits to the final flow length, directly related to the crust cover percentage. We then applied the constrained model to the large Cone 

II flow formed in 1975, for which no satellite−based data are available. Results revealed that a nearly identical model fit was achieved with 

initial effusion rate of 700 m3/s or 1250 m3/s. However, for the higher the effusion rate, a lower the crust cover is needed to fit the flow 

length and width. This represents the first study to implement two−component emissivity into thermo−rheological modeling of lava flows. 

The results show that this is an important factor for model accuracy and critical for large, higher effusion rate flows as well as for our un−

derstanding of older flows on Earth and other planets.



ted energy than that of a typical eruption at Etna [e.g., 
MODVOLC, 2013; Pieri et al., 1990]. Monitoring flow 
propagation direction, velocity and effusion rate, there−
fore, are critical for the flow models that have evolved 
over time. Several of these are focused on heat loss and 
down−flow topography to predict flow advance [e.g., 
Dragoni, 1989; Favalli et al., 2005; Garel et al., 2014]. 
In addition to topography, the dominant (internal) fac−
tors controlling flow propagation are the discharge rate 
combined with cooling and increasing viscosity [e.g., 
Walker, 1973; Miyamoto and Papp, 2004; Harris and 
Rowland, 2009]. All of these models, however, rely on 
surface temperature, a key source term parameter that 
is commonly measured using satellite− or ground−based 
thermal infrared (TIR) instruments [e.g., Flynn and 
Mouginis−Mark, 1992; Wright and Flynn, 2003; Done−
gan and Flynn, 2004]. It is the cooling of the flow’s up−
permost radiating glassy surface that is directly imaged 
by these TIR instruments. Understanding the emissive 
properties of this surface thus becomes critical for any 
measurement or model reliant upon accurate knowledge 
of the kinetic temperature [e.g., Lillesand and Kiefer, 
1987; Ball and Pinkerton, 2006; Harris, 2013]. 

Thermo−rheological models of basaltic lava flows 
show that their morphological and dynamic evolution 
are governed by the interaction between the hot viscous 
core and the outer crust [e.g., Kilburn, 1993; Miyamoto 
and Sasaki, 1997; Miyamoto and Crown, 2006]. These 
models were developed to examine flow evolution, heat 
loss, and ultimately their spreading rate, advance ve−
locity, inundation area and flow front arrival time [Har−
ris and Rowland, 2001; Keszthelyi et al., 2000; Vicari et 
al., 2007]. A lava flow initially dissipates most of its heat 
radiatively, and with time and distance, forms a cooler 
glassy surface that will thicken, increase in viscosity, and 
eventually become a brittle crust [Hon et al., 1994]. With 
a constant lava discharge rate, the increase in crust 
thickness and flow viscosity will eventually force a 
flow to stop (e.g., a cooling−limited flow) [Guest et al., 
1987; Rhéty et al., 2017]. Continued effusion upstream 
can then produce flow inflation and/or new break−outs 
and flow directions [Peterson et al., 1994; Crown and 
Baloga, 1999]. The magnitude of a flow’s radiative 
cooling is related most strongly to the surface temper−
ature and percentage of insulating crust [Flynn and 
Mouginis−Mark, 1994], whereas the efficiency of that 
cooling is directly proportional to the emissivity of the 
hot fraction of the lava’s surface [Holman, 1992; Ram−
sey and Harris, 2013, 2016].  

Emissivity is the unitless, wavelength−dependent 
fundamental property of a material and is sensitive to 
its composition, state and structure [e.g., Crisp et al., 
1990; Kahle et al., 1995; Burgi et al., 2002] because it 
is directly related to the vibrational motion of the atomic 
bonds within the material (i.e., the petrology and struc−
tural state of the material). It is also influenced by the 
micron−scale surface roughness [Ramsey and Fink, 
1999], and to a lesser degree, the look angle between the 
instrument and surface [Ball and Pinkerton, 2006]. In−
frared spectra acquired remotely may be used to distin−
guish bulk wt. % SiO2, the presence of volcanic glass 
and the surface texture/vesicularity [e.g., Moxham, 1971; 
Crisp et al., 1990; Ramsey et al., 2012]. Changes in ma−
terial state (i.e., solid vs. molten vs. amorphous) or 
structure (i.e., composition) dramatically affect this in−
frared property. If emissivity is equal to unity at all 
wavelengths, the material is said to be a blackbody or 
perfect radiator. 

The radiative temperatures of flows derived from 
thermal cameras or satellite instruments rely explicitly 
on knowledge of the surface emissivity, which is typi−
cally assumed close to unity [see review in Ramsey and 
Harris, 2013]. Past anecdotal or poorly−constrained field 
measurements hinted at the fact that a melt’s emissiv−
ity was lower than the cooled surface [e.g., Abtahi et al., 
2002]. If true, then so too is the derived effective radi−
ation temperature [Pieri et al, 1990]. An incorrect over−
estimate of emissivity will, therefore, overestimate the 
calculated radiative heat loss [e.g., Harris and Rowland, 
2001; Keszthelyi and Denlinger, 1996; Keszthelyi and 
Self, 1998], which has a direct consequence on the 
cooling rate and the modeled final run−out distance. 
Conversely, for multispectral TIR measurements, an in−
correctly derived temperature results in an emissivity 
spectrum that is distorted in shape and incorrect in 
magnitude limiting accurate estimates of composition 
[Rose et al., 2014].  

Here, we examine the effect of different emissivity 
values for the molten and crust fractions on the final 
length of channelized flows. More specifically, we use 
visible and infrared satellite data during the 2012−2013 
eruption of Tolbachik, Kamchatka (Russia) to constrain 
certain modeling parameters used by PyFLOWGO 
[Chevrel et al., 2018]. These satellite data provide im−
portant knowledge of the time−averaged discharge rate 
(TADR), channel width, radiant emission, and fraction of 
crust, all of which are used to refine the model results. 
We then use the constrained model to examine the 
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large Cone II Flow that was emplaced in the same re−
gion 36 years earlier during the “The Great Tolbachik 
Fissure Eruption" (GTFE), which started on 6 Jul 1975 
and ended on 10 Dec 1976 [Fedotov et al., 1991]. 

 
 

2. THE TOLBACHIK ERUPTIONS 
 
The Tolbachik complex (55.83° N, 160.33° E) is lo−

cated on the Kamchatka Peninsula, Russia and is com−
prised of two volcanoes: Plosky (“flat”) Tolbachik (PT) 
with an elevation of 3,085 m and Ostry (“sharp”) Tol−

bachik (OT) at 3,682 m. The westernmost OT is a peaked 
stratovolcano and the easternmost PT is a flat−topped 
shield volcano with a collapse caldera that formed dur−
ing the GTFE eruption. To the south of these peaks lie 
~875 km2 of basalt flows, pyroclastic deposits, and a 
NNE alignment of cinder cones called Tolbachik Dol (TD) 
or “valley” [Fedotov et al., 1991]. The GTFE was Kam−
chatka's largest volumetric basaltic eruption in historic 
times. The axial portion of TD concentrates in a narrow 
(3 – 4 km) zone where ~ 80% of all the eruptive centers 
are located (Figure 1). This eruption created a 20 km 
long chain of new cinder cones and flows, with the 
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FIGURE 1. ASTER VNIR image acquired on 2 March 2013 centered on the Tolbachik Dol (“valley”), with channels 3 (0.807 μm), 2 
(0.661 μm), 1 (0.556 μm) in red, green, blue, respectively. Spatial resolution is 15 m/pixel. The longest flow emplaced 
early in the eruption sequence is the Leningradskoye flow. Similarly, the other large flow analyzed here is the 1975 Cone 
II flow. Note the snow−free regions toward the flow’s terminus due to elevated heat flow over 40 years after emplace−
ment. Inset image is the TFE−50 vent region (brightened with a histogram equalization stretch) shown at full resolution. 
The active Naboko vent and channels shown in red are denoted by arrows. 
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largest (the Cone II Flow) emanating from the second 
cone of the northern vents in the crater chain [Fedotov 
et al., 1991]. This flow formed between 6 July and 10 
Sept 1975, with its central channel later covered by a 
smaller and thinner flow emplaced between 11 and 15 
Sept 1975. The ~ 5 km long Cone II flow is 50 – 60 m 
thick with well−developed 30−m−high levees and a 
central channel that disappears down−flow where it 
spreads over flatter topography. In this zone, dominant 
flow folds (15 – 20 m high) are present perpendicular to 
the flow direction. Also present are regions of elevated 
thermal output that persist today. The slow cooling of 
this thick, voluminous unit produces surface tempera−
tures in excess of 100° C, which have been measured in 
the cracks on the crests of the large flow folds [Wessels 
et al., 2005]. 

After nearly four decades of quiescence, Tolbachik 
volcano began a new eruption in November 2012 that 
continued until September 2013. It is officially named 
the “’TFE−50 eruption” after the 50th anniversary of the 
Institute of Volcanology and Seismology (IVS). Excel−
lent details on the chronology, style and character of the 
eruption and eruptive products are given by Belousov et 
al. [2015] and Melnikov and Volynets [2015]. The Kam−
chatka Volcanic Eruption Response Team (KVERT), 
which is part of IVS, initially reported episodes of vol−
canic tremor as early as 7 Nov 2012 [BGVN, 2012]. That 
same day, observers from the village of Kozyrevsk (~ 40 
km W) reported ash explosions and a red glow seen in 
the same area as the northern vents from the GTFE. 
Basaltic lava effused from two fissures along the west 
side of TD and a large thermal anomaly was immedi−
ately detected in polar orbiting, low spatial resolution 
satellite data [KVERT, 2012], which triggered later data 
acquisition from the high spatial resolution sensors 
used in this study. Vigorous fire fountaining activity 
produced channel−fed, fast−moving lava flows (Figure 
2). By the time of the first cloud−free high spatial reso−
lution orbital data acquisition by the Advanced Land 
Imager (ALI) on 1 Dec 2012, the primary flow (later 
named the Leningradskoye flow) emanating from the 
Naboko vent had already reached 11.3 km in length (Fig−
ure 3), eventually growing to ~ 14 km on 3 Dec, and ~ 
17 km by 8 Dec with numerous smaller breakouts and 
new flows occurring over the subsequent months. The 
Leningradskoye flow is channelized, 15 m thick a’a flow 
[Belousov et al., 2015]. It advanced at ~200m/h fed by the 
high effusion rates in the initial stage of the eruption. 
During this early phase of high effusion rates, the flow 

initially traveled through a deep and narrow channel with 
a velocity of 2−3 m/s [Belousov et al., 2015]. The flow 
within the channel was relatively uncrusted, which 
changed several weeks later as the discharge rate dropped 

FIGURE 2. Aerial photographs of the Leningradskoye flow’s open 
channel taken in the first week of the eruption. Im−
age is looking east toward the fissure that intersect−
ed the Krasny cone (approximately 2km in the 
background). The channel is covered by ~ 40% cool−
er crust. Inset shows a photograph taken on the same 
day of the same channel ~ 2km downstream. Here, the 
channel is covered with ~ 70% crust. Photographs 
courtesy of the Institute of Volcanology and Seis−
mology (IVS), FEB RAS, KVERT. 

FIGURE 3. EO−1 ALI image of the Leningradskoye flow acquired 
on 1 Dec 2012 with channels 9 (1.65 μm), 8 (1.25 μm), 
7 (0.87 μm) in red, green, blue, respectively. A square 
root stretch has been applied. Spatial resolution is 30 
m/pixel. The increase color intensity in bands 8 and 
9 (bright yellow) indicates the highest temperatures 
(open lava channels and the vent). 
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and a short tube formed at the upper part of the channel 
near the vent. Lava emerging from the tube at this point 
in time was nearly completely covered by a flexible, 
frothy crust 5−10 cm thick [Belousov et al., 2015].  

Lava effusion rates were calculated independently by 
several different methodologies. Aerial surveys on 29 
Nov 2012 by IVS scientists reported an initial average ef−
fusion rate of 440 m3/s decreasing to 140 m3/s two weeks 
later [Gordeev et al., 2013; Dvigalo et al., 2014]. This com−
pares to the time−averaged discharge rate (TADR) derived 

from Moderate Resolution Imaging Spectroradiometer 
(MODIS) data of 278 m3/s on 1 Dec 2012, decreasing to 
an average of 102 m3/s in the following two weeks (Fig−
ure 4). It should be noted that the TADR values can have 
up to 30% error and represent a discharge rate averaged 

over the 12−24 hours prior to the image acquisition 
[Coppola et al., 2010]. TADR were also calculated 
throughout the eruption following each cloud−free high 
resolution satellite image. Ramsey and Harris [2016] 
mapped the change in flow area using the high spatial 
resolution satellite data and a constant flow thickness of 
5m (based on field reporting at the time) [e.g., Gordeev at 
al., 2013]. The volumes are reported in Table 1. Through−
out 2013, the flow field expanded later being redirected 
to the eastern side of the vent chain, eventually building 

three flow fields (Vodopadnoye to the NW, Leningrad−
skoye to the SW, and Toludskoye to the SE) that covered 
over 35 km2 [Dvigalo et al., 2013].  

Information on the erupted lava petrology is an im−
portant parameter constraint for the PyFLOWGO mod−

FIGURE 4. MIROVA time averaged discharge rate (TADR) plot (blue circles) calculated using Equation 3. Also shown is the cumu−
lative volume of erupted lava (red circles). A standard error of ± 30% is shown by the thinner lines on both plots. 

DATE DAY FLOW FIELD AREA (km2) EFFUSION RATE (m3/s)

12/01/12 5 20.3 141

12/02/12 6 21.5 42

12/11/12 15 23.6 8

12/22/12 26 24.0 1

01/12/13 47 25.2 2

TABLE 1. Results of the first phase of the Tolbachik eruption using high spatial resolution satellite data to map flow field area and 
calculate effusion rate assuming a constant flow thickness of 5m. These results, calculated in real−time with each new 
satellite image acquired, compare quite well with later studies of the flow dimensions [Dvigalo et al., 2013; Gordeev et 
al., 2013]. 



eling. Petrologic information for the 1975 GTFE erup−
tion comes from Fedotov et al. [1991] with the lava flow 
from Cone II falling into their “northern vents” cate−
gory. These lavas are classified as magnesian basalt with 
moderate alkalinity, having a range of eruption tem−
perature of 900 – 1050 °C. Field−based estimates of lava 
viscosity made from lava flow front velocities ranged 
widely from 104 – 1010 Pa·s [Vende−Kirkov, 1978; Fe−
dotov et al., 1991]. One would expect a composition 
other than basalt for all but the very low end of this 
range, which was not the case. The northern vent lavas 
had an average bulk SiO2 wt. % of ~ 50 and 20 vol. % 
phenocrysts, primarily clinopyroxene and olivine (3−8 
mm). In contrast, Belousov et al. [2015] reported that 
the lavas from the 2012 TFE−50 eruption were more 
evolved with a slightly higher SiO2 content of 52 – 53 
wt. %. This, combined with the higher alkalinity, clas−
sifies these lavas as basaltic trachyandesites (Table 2). 
Over time, the erupted lavas became more basic with 
SiO2 weight percentages decreasing. Plecheov et al. 
[2015] reports the average crystal content for the 
Naboko vent lavas, which produced the Leningradskoye 
flow, ranged from 23 – 29 vol. % with a porosity of ~ 
6 vol. %. The primary crystals were plagioclase, olivine 
and titanomagnetite. Based on geothermometry anal−
yses, they estimate the eruptive lava temperature was 
~1080 °C. 

3. DATASETS AND MODELING 
 
3.1 HIGH SPATIAL RESOLUTION SATELLITE DATA 
The Advanced Land Imager (ALI) was launched aboard 

the Earth Observing−1 (EO−1) spacecraft in November 
2000, and was deactivated by NASA in 2017. ALI had ten 
spectral channels in the visible/short wave infrared 
(VSWIR) region (0.43 – 2.35 μm) with nine having a spa−
tial resolution of 30 m and one (the panchromatic chan−
nel) spanning 0.48 – 0.69 μm with 10 m resolution. The 
data were collected in four swaths, which spanned 37 km 
in width, with each swath having a length that varied 
from 42−185 km [Digenis et al., 1998; Hearn et al., 2001]. 
ALI acquired numerous observations of the flows 
throughout the 2012−13 eruptive phase, including the 
first clear higher resolution image on 1 Dec 2012.  

The Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) was launched on the 
Terra spacecraft in December 1999 and measures 
ground−leaving radiance in 14 spectral channels [Ya−
maguchi et al., 1998]. With the failure of the shortwave 
infrared (SWIR) subsystem in 2009, only two subsystems 
remain, each with different spatial/spectral resolutions: 
the visible/near infrared (VNIR) sensor with three chan−
nels (0.56–0.81 μm) at a 15 m spatial resolution and the 
TIR sensor with five channels (8.2–11.3 μm) with 90 m 
spatial resolution. ASTER was tasked to acquire data of 
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OXIDE 2012 FLOW (wt. %) 1975 FLOW (wt. %)

SiO2 51.75 50.50

TiO2 1.94 0.89

Al2O3 16.31 13.88

FeO 8.38 7.09

Fe2O3 2.34 1.99

MnO 0.20 0.18

MgO 4.39 9.86

CaO 7.31 11.55

Na2O 3.93 2.55

K2O 2.40 0.79

P2O5 0.75 0.23

LOI (~H2O) 0.30 0.47

TABLE 2. X−ray fluorescence analysis of major oxides done for this study, comparing one sample from the 1975 GTFE to one from 
the 2012 TFE−50 Tolbachik eruptions. The 2012 sample is higher in AlO3 as reported by Gordeev et al. [2013] and Be−
lousov et al. [2015], plotting in the same geochemical space as their sample analyses. Comparing the SiO2 wt. % to the 
sum of the K2O + NaO2 wt. %, classifies the 1975 sample as a basalt and the 2012 sample as a basaltic trachyandesite, 
consistent with prior studies. Reported LOI is assumed equal to H2O because of the basaltic rock composition.
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FIGURE 5. Time series of ASTER TIR data acquired over the first 3 weeks of the TFE−50 eruption. All images are shown at the same 
scale, with a guassian stretch applied. Spatial resolution is 90 m/pixel. The (n) or (d) after the date refers to data acquired 
at night or day local time, respectively. (A) 2 Dec 2012 (n). (B) 3 Dec 2012 (d). (C) 11 Dec 2012 (n). (D) 12 Dec 2012 (d). 
(E) 18 Dec 2012 (n). (F) 20 Dec 2012 (n). Images A – C and F contain various degrees of intervening cloud cover, though 
not enough to entirely block the TIR radiance, but significant enough to blur details and make accurate temperature re−
trievals impossible. Image D contains an inset of the VNIR data from the same date, which is able to resolve the indi−
vidual open channels (shown by yellow arrows). 



the Tolbachik eruption at every observational opportu−
nity (both day and night) from early Dec 2012 until late 
June 2013 (Figure 5).  

 
3.2 DIGITAL ELEVATION DATA 

ASTER has the ability to acquire along−track DEMs, 
which can be analyzed on a scene by scene basis or as 
part of the time/scene−averaged (for higher signal to 
noise) ASTER global DEM (GDEM) product [Abrams et 
al., 2010]. Individual scene DEMs are produced from any 
daytime band 3 (0.81 μm) data by way of two different 
telescopes in nadir and backward viewing geometries. 
This configuration results in a time delay of approxi−
mately one minute between the acquisitions with a 
base−to−height ratio of 0.6. Relative DEMs are produced 
automatically as an on−demand level 3 product with a 
spatial posting of 30 m and a vertical accuracy of ~20 
m on average [Fujisada et al., 2005]. Individual scene 
DEMs do commonly do contain artifacts due to scan−
ner noise, the presence of clouds and/or shadowing.  

The ASTER science team also produced two versions 
of a global DEM (GDEM) dataset, which averages all the 
ASTER scenes acquired over a given region. This pro−
cess greatly reduces instrument noise related errors and 
removes most cloud artifacts [Fujisada et al., 2005]. 
Version 1 (v1), released in 2009, was compiled from over 
1.2 million individual scenes. The improved GDEM ver−
sion 2 (v2) was released in 2011 adding 260,000 addi−
tional DEMs acquired from 2008 − 2011, improving 
coverage and further reducing data artifacts. The refined 
production algorithm for v2 also provides finer hori−
zontal resolution and increased accuracy (e.g., vertical 
accuracy of ~17 m on average) [Tachikawa et al., 2011]. 

The ASTER GDEM v2 is used as the topographic 
base layer of choice for the analysis of the Cone II flow 
from the 1975−76 eruption. The creation of GDEM v2 
ended with data acquired prior to the start of the TFE−
50 eruption. Therefore, we rely on the single−scene 
DEM’s for the 2012−13 eruption. Pre−flow topography 
is extracted by mapping the position of the 2012 flow 
channels from the ALI SWIR data and ASRER TIR data 
on the GDEM. These elevation data are used in 
PyFLOWGO (Figure 6). Individual ASTER scene DEMs 
collected during the eruption were analyzed to deter−
mine channel width, flow thickness, and channel to−
pography where possible. However, the presence of vol−
canic fume and cloud combined with the 
scene−dependent noise limited the use of the individ−
ual scene DEMs. Pre−flow topography for the 1975 

flow was extracting from the GDEM using transects next 
to the flow and directly down the centerline of the 
main channel. Channel widths of this larger flow are 
also easily resolved in the GDEM data. Five channel 
cross sections were extracted down the length of the 
flow and used to constrain PyFLOWGO model runs. 

 
3.3 HIGH TEMPORAL RESOLUTION SATELLITE DATA 

The MODerate resolution Imaging Spectroradiome−
ter (MODIS) is carried on both the Terra and Aqua 
NASA−EOS satellites, which have been flown in sun−
synchronous polar orbits since February 2000 and May 
2002, respectively. The two MODIS instruments provide 
radiometric data in 36 spectral bands from 0.4 μm to 
14.4 μm. Of these, 29 channels collect data in the IR re−
gion with a nominal spatial resolution of 1 km at nadir. 
The ±55−degree scan angle produces 2330 km swath 
widths with data acquired approximately four times 
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FIGURE 6. High resolution orbital data draped over the ASTER−
derived DEM produced from the VNIR image acquired 
on 28 Feb 2013. DEM posting = 30 m. (A) ALI image 
acquired on 1 Dec 2012 with channels 9, 8, 7 in red, 
green, blue, respectively (see FIGURE 3). White tri−
angles denote extracted radiance locations (see Fig−
ure 8B). (B) ASTER image acquired on 28 Feb 2013 
with channels 3, 2, 1 in red, green, and blue, respec−
tively. The active channel in the ALI image was traced, 
exported as a vector and shown in green. 



per day for a given target. At the higher latitudes of the 
Kamchatka peninsula, however, 6−10 overpasses per 
day are common due to pole−ward orbit convergence. 
MODIS IR channels, include a middle infrared (MIR) and 
a TIR channel, centered at 3.96 μm (channels 21 & 22), 
and 12.02 μm (channel 32), respectively. These are typ−
ically used to detect high−temperature volcanic thermal 
anomalies [Wright et al., 2002; Coppola et al., 2016].  

 
3.5 MIROVA SYSTEM 

MIROVA (Middle Infrared Observation of Volcanic 
Activity) is an automated global hot spot detection sys−
tem (http://www.mirovaweb.it) based on near−real time 
MODIS data [Coppola et al., 2016]. The system completes 
automatic detection and location of high−temperature 
thermal anomalies through a series of processing steps. 
The system provides a quantification of the Volcanic Ra−
diative Power (VRP in Watts), by means of the MIR 
method of Wooster et al. [2003]: 

 
(1) 

 
where npix is the number of hot−spot contaminated 
pixels, Apixel is the pixel size (1 km2 for MODIS) and 
RMIR,alert and RMIR,bk are the pixel−integrated MIR radi−
ances (at 3.96 μm) of the ith alerted pixel(s) and back−
ground, respectively. According to Wooster et al. [2003], 
the constant of proportionality (18.9 m2⋅μm⋅sr) in the 
equation allows estimations of VRP (± 30%) from hot 
surfaces having temperatures ranging from 600 − 1500 
K. This makes the application of Equation 1 to the lava 
flow surface a practical way to estimate the radiant flux 
of the active portion of the flow field, with essentially 
no contribution from the cooler and cooling flow areas. 
The cumulative Volcanic Radiative Energy (VRE) in 
Joules is calculated as the trapezoidal integration of the 
VRP time series.  

During effusive eruptions, the calculation of Time 
Averaged Discharge Rate (TADR) of lava using satellite 
thermal data is an important input parameter for later 
modelling lava flow advances and dynamics [Harris et 
al., 2016]. This approach, commonly referred to as the 
“thermal proxy”, is derived from the contribution of 
several studies that have continuously revised and re−
fined the theoretical framework and its practical appli−
cation to real cases [e.g., Pieri and Baloga, 1986; Crisp 
and Baloga, 1990; Harris et al., 1998; Wright et al., 2001; 
Harris et al., 2007a; Harris and Baloga, 2009; Dragoni 
and Tallarico, 2009; Coppola et al., 2013; Garel et al., 

2012, 2014, 2015; Tarquini et al., 2017]. A specific anal−
ysis of the TADR calculations using MODIS−MIROVA 
data [Coppola et al., this volume] outlines the methods 
and limits of this approach during the emplacement of 
large lava flows, such as the case for the TFE−50 Tol−
bachik eruption. Following Coppola et al. [2013], a sin−
gle coefficient, called radiant density (crad in J m−3), can 
be calculated to describe the appropriate relationship 
between radiated energy (VRE) and erupted volume 
(Vol) for the observed eruption: 

 
(2) 

 
For the Tolbachik eruption we considered a total 

volume of the lava flow of ~573 x 106 m3 [Dai and 
Howatt, 2017] and calculated a crad equal to 1.08 × 108 

J m−3, a value typical of lava flows having mafic com−
position [Coppola et al., 2013]. It follows that for any 
VRP measurements, the corresponding TADR can be 
calculated following: 

 
(3) 

 
 

3.6 SENSOR WEBS 
The improved temporal coverage of the Tolbachik 

TFE−50 eruption by the ALI and ASTER sensors was 
made possible by detection and communication protocols, 
as well as software to implement those protocols, all de−
signed to create “sensor web” networks [Davies et al., 
2016; Ramsey et al., 2016]. Both ASTER and ALI have 16−
day nominal repeat observational frequencies at the 
equator, which improves at higher latitudes due to the 
convergence of overlapping orbit swaths. However, with 
the sensor web programs, these time periods are greatly 
improved [see Davies et al., 2016; Ramsey et al., 2016]. 

The sensors on the EO−1 spacecraft were used as part 
of the Volcano Sensor Web (VSW), which relied on on−
board software for rapid scheduling and data processing 
using reports of volcanic unrest as triggers [Davies et al., 
2016]. The VSW did not rely solely on detections from 
other orbital sensors, but also ground−based detection and 
communicated reports. The rapid retasking of the space−
craft, off−nadir pointing as well as the use of onboard 
data processing and downloading commonly enabled 
very rapid response times to volcanic eruptions.  

A program that links high temporal/low spatial res−
olution data detection of thermally−elevated anomalies 
to specific scheduling of ASTER data has been in place 
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since 2004 [Ramsey and Dehn, 2004; Carter et al., 2007, 
2008; Rose and Ramsey, 2009; Duda et al., 2009; Ram−
sey, 2016]. The urgent request protocol (URP) global sys−
tem started with (and has been heavily focused on) the 
northern Pacific region [Duda et al., 2009; Ramsey and 
Harris, 2013; Ramsey, 2015]. The URP program allows 
data acquisition frequency as high as night−day−night 
observational triplets acquired approximately every two 
weeks and day−night pairs acquired approximately ev−
ery five days during the Tolbachik eruption.  

The presence of the VSW and the URP provided a 
much larger volume of higher spatial resolution data 
than would normally be available for such an eruption. 
For example, ALI acquired the first high resolution im−
age of the Tolbachik eruption on 1 Dec 2012, whereas 
the first clear ASTER observation came ~ 30 hours later 
during a nighttime overpass. ASTER was also able to ac−
quire a daytime scene only 13.5 hours later due to the 
orbit configuration of the Terra satellite [Ramsey, 2016]. 
During the first seven months of the Tolbachik eruption, 
there were 48 cloud free/nearly cloud free acquisitions 
by all high resolution satellite instruments (an average 
of one scene approximately every 4 days). Of the total 
number of scenes, 33 were ASTER, 11 were ALI and 4 
were from other sensors. The data acquired in the first 
few weeks of the eruption in particular provided some 
of the best synoptic views, documenting vent loca−
tions, flow lengths/direction, channel widths and their 
changes over time (Figure 5).  

 
3.7 PYFLOWGO MODELING 

The original one−dimensional FLOWGO model tracks 
the thermal and rheological evolution of a lava control 
volume using a series of heat loss equations coupled 
with the Jeffreys equation for Newtonian flow in an 
open channel, modified for a Bingham fluid [Harris and 
Rowland, 2001; Harris and Rowland, 2014]. Lava is 
tracked down−flow with its cooling, crystallization, vis−
cosity and yield strength re−calculated at each down−
flow step to estimate the velocity [Harris et al., 2007b; 
Riker et al., 2009; Robert et al., 2014]. The model was 
applied to various cooling limited lava flows [Harris and 
Rowland, 2001; Harris et al., 2005; Harris and Rowland, 
2012; Rhéty et al., 2017]. PyFLOWGO [Chevrel et al., 
2018] implements the model using the Python open 
source software [van Rossum, 1995].  

To correctly simulate the evolution of down−flow 
lava properties, the user is allowed to change the input 
parameters as well as the thermo−rheological models 

(i.e. heat loss mechanisms, crystallization rate, temper−
ature− and crystallinity−dependent viscosity, crust cover 
fraction, etc.) within plausible limits [e.g. Harris et al., 
2007b] so as to best−fit a natural flow. Input parame−
ters cover broad categories of channel dimension, erup−
tion conditions, the radiative, conductive, convective 
parameters, and material properties of the lava. Within 
these categories are some terms (typically assumed) that 
are specifically related to (and derived from) the TIR ra−
diance, including emissivity, lava/crust temperatures, 
and vesicularity. Typically, lava emissivity and vesicu−
larity are assumed and held constant throughout a 
model run as the temperature of the crust cools. As orig−
inally specified by Harris and Rowland [2001], the frac−
tion of this crust increases down−flow as flow velocity 
decreases (rather than being a function of the radiative 
cooling), implying a flow regime in which the crust is 
more stable at lower flow velocities (and presumably 
lower temperatures).  

For thermo−rheological models such as PyFLOWGO 
that rely on radiant cooling, the question arises: to 
what degree does an incorrect emissivity (and perhaps 
other) assumption(s) affect the final model results. To 
first test whether emissivity plays a significant role in 
the radiant cooling, and therefore in determining the fi−
nal cooling−limited flow length, we modified 
PyFLOWGO with a radiative heat flux (Qrad) model that 
uses an “effective” emissivity:  

 
(4) 

 
Here, it is not just the effective radiation temperature 

(Teff) that depends on the crustal fraction (fcrust), but also 
the effective emissivity (εeff). This allows the effective 
emissivity to be computed via a two−component emis−
sivity model where the cooler lava crust emissivity 
(εcrust) is different than that of the molten lava emissiv−
ity (εhot): 

 
(5) 

 
This differs from previous FLOWGO modeling that 

assumed only a single emissivity (εhot = εcrust = 0.95). 
Based on recent work by Ramsey and Harris [2016], Lee 
and Ramsey [2016] and Lee et al. [2010], the emissivity 
of molten lava in situ (εhot) and silicate glasses in the 
laboratory is likely much lower (avg. ~ 0.6) over the 5 
– 25 μm TIR region. For the emissivity of the crusted 
surface (εcrust), we use the same value (0.95) from prior 
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studies [Harris, 2013]. Assuming this two−component 
emissivity model, therefore, results in a lower radiant 
heat loss for situations where the fcrust < 1. This should 
result produce a slower cooling flow and therefore, a 
greater cooling limited distance (maximum length). The 
lower emissivity of the molten fraction reduces its ra−
diative efficiency; and hence, the control volume cools 
more slowly. 

 
 

4. RESULTS 
 

4.1 THE TWO-EMISSIVITY MODEL 
To estimate the maximum difference in the cooling 

limited distance between the two emissivity models, we 
first ran PyFLOWGO with a constant slope of 5°, crust 
temperature and crust fraction down the entire flow 
length. The simulations are shown between an un−
crusted flow (fcrust = 0) with an effective emissivity of 0.6 
and a fully crusted flow (fcrust = 1) with an effective 
emissivity of 0.95; as well as a flow that is half crusted 
(fcrust = 0.5) having an effective emissivity of 0.78. The 
maximum difference between the two models is ex−
pected to be between the uncrusted and the fully crusted 
flows. Results show a linear relationship between crust 
cover/emissivity to the final modeled flow distance. 
The two−component emissivity model produces flows 
that are a maximum of 34% longer than flows using a 
single constant emissivity (Figure 7). The difference in 
cooling limited distance here is only dependent on the 
crustal fraction, which is a function of flow velocity and 
directly related (i.e., the complement) to the fraction of 
molten material having the lower emissivity.  

 
4.2 PETROLOGY 

We analyzed the whole rock composition of two 
samples which were sampled from the lower, folded re−
gion of the Cone II flow and near the terminus of the 
Leningradskoye Flow (Table 2). The Leningradskoye 
flow sample is broadly consistent with reported values 
[e.g., Gordeev et al., 2013; Belousov et al., 2015; Plechov 
et al., 2015]. The results from the Cone II flow sample, 
however, do vary somewhat from those of the later 
stage northern vents reported by Fedotov et al., [1991]. 
Our results show lower Al2O3 and higher in CaO and 
MgO, each by ~2 wt. %. These variations would still 
classify the sample as basaltic, but are more consistent 
with the Fedotov et al. [1991] results for the earlier 
stages of this eruption, which were emplaced before the 

Cone II flow. These compositions were used for the 
petrologically−dependant fluid viscosity model used by 
PyFLOWGO (Tables 2 and 3). 

 
4.3 THE 2012 LENINGRADSKOYE FLOW (TFE-50 ERUP-

TION) 
Using MIROVA, we calculate that the TFE−50 erup−

tion radiated approximately 5.87 (±1.76) × 1016 J into 
the atmosphere during the course of the eruption. Ap−
plication of Equation 3 to the Tolbachik MODIS data, 
suggests that the TADR peaked at the very beginning of 
the eruption reaching 300 (±100) m3 s−1 on 29 Novem−
ber 2012 at 01:09 UTC. Later, the eruption showed a pro−
gressive decline in intensity, with effusion rates drop−
ping to 278 m3/s on 1 Dec 2012, less than ~100 m3 s−1 
on 13 December 2012, ~50 m3 s−1, on 22 January 2013, 
and ~5 m3 s−1 by 22 August 2013 (Figure 4). These val−
ues correspond closely to those derived from visual 
mapping of the flow field using the higher resolution 
ASTER/ALI data (Table 1).  

Because the ASTER GDEM is created from all ASTER 
scenes spanning from 2000 – 2011, it does not resolve 
the TFE−50 eruption lava flow fields. The ASTER sin−
gle scene DEM created from the 11 Jan 2018 acquisition, 
however, was relatively free of these data errors and 
represents the surface five years following the TFE−50 
eruption. This DEM was precisely geolocated to the 
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FIGURE 7. Percent difference between the run−out distances of 
the PyFLOWGO simulations using a 2−component 
emissivity model (εhot = 0.6 and εcrust = 0.95) versus 
a single emissivity model (εhot = εcrust = 0.95) as func−
tion of crust cover fraction. There is no difference in 
run−out distances if the flow is fully crusted. By con−
trast, if initially uncrusted, the maximum difference 
is 33%. Crust temperature plays a minor role, but those 
changes do not exceed the symbol size on the figure. 
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MODEL NAME MODEL CHOICE  REFERENCE 
“crystallization_rate_model” basic Harris and Rowland [2001] and Chevrel et al. [2018]

“melt_viscosity_model” vft Giordano et al. [2008]

“relative_viscosity_model” er Einstein-Roscoe model from Chevrel et al. [2018]

“yield_strength_model” ryerson Ryerson et al. [1988]

“crust_temperature_model” constant Harris and Rowland [2001] and Chevrel et al. [2018]

“effective_cover_crust_model” basic Harris and Rowland [2001] and Chevrel et al. [2018]

“vesicle_fraction_model” constant Harris and Rowland [2001] and Chevrel et al. [2018]

HEAT BUDGET CONTRIBUTION MODEL CHOICE  REFERENCE 
“radiation” / radiation [2 emissivity]” yes This study

“condution” yes Harris and Rowland [2001]

“forced convection” yes Harris and Rowland [2001]

“rain” no Harris and Rowland [2001]

“viscous heating” no Harris and Rowland [2001]

PARAMETERS VALUE UNITS REFERENCE
“step_size” 10 m Harris and Rowland [2001] and Chevrel et al., [2018]

“effusion_rate” 278 m3/s from MODIS [this study]

“width” 30 m ALI image data [this study]

“depth” 6.1 m this study- best fit

“gravity” 9.81 g/m2

“eruption_condition”

“eruption_temperature” 1355.15 K Plechov et al. [2015]

“lava_state”

“crystal_fraction” 0.25 Plechov et al. [2015]

“density_dre” 2630 kg/m3 Volynet et al. [2015]

“vesicle_fraction” 0.06 Plechov et al. [2015]

“radiation_parameters”

“stefan-boltzmann_sigma” 5.67E-08 W/m2 K4 stefan-boltzmann constant 

“emissivity_epsilon_crust” 0.95 this study

“emissivity_epsilon_uncrusted” 0.6 Lee and Ramsey [2016]

“conduction_parameters”

“basal_temperature” 773.15 K Harris and Rowland [2001] and Chevrel et al, [2018]

“core_base_distance” 19 Harris and Rowland [2001] and Chevrel et al. [2018]

“convection_parameters”

“wind_speed” 5 m/s Harris and Rowland [2001] and Chevrel et al. [2018]

“ch_air” 0.0036 Harris and Rowland [2001] and Chevrel et al. [2018]

“air_temperature” 273.15 K Harris and Rowland [2001] and Chevrel et al. [2018]

“air_density” 0.4412 kg/m3 Harris and Rowland [2001] and Chevrel et al. [2018]

“air_specific_heat_capacity” 1099 J/kg K Harris and Rowland [2001] and Chevrel et al. [2018]

“thermal_parameters”

“buffer” 140 °C Harris and Rowland [2001]

“crust_cover_fraction” 0.9 this study: best fit

“alpha” -0.16 this study: best fit

“crust_temperature” 773.15 °C Belousov et al. [2015]

“melt_viscosity_parameters”

“a_vft” -4.55 Pa s Volynet et al. [2015]

“b_vft” 6887.303 J/mol Volynet et al. [2015]

“c_vft” 527.44 K Volynet et al. [2015]

“crystals_parameters”

“crystals_grown_during_cooling” 0.37 this study: best fit

“solid_temperature” 1253.15 K this study: best fit

“latent_heat_of_crystallization” 350000 J/kg Harris and Rowland [2001] and Chevrel et al. [2018]

TABLE 3. All PyFLOWGO input models and parameters that were used for the Leningradskoye lava flow of the 2012 Tolbachik eruption.



ASTER GDEM, which was then subtracted from it. The 
outlines of the flow fields are resolved as a positive el−
evation anomaly. Transects taken perpendicular to the 
Leningradskoye Flow show steep levees and flow fronts 
with maximum thicknesses of 35 m. In some of these 
transects, the channel is visible and ranges from 30−50 
m in width and 5 – 20 m in depth. It was not possible, 
however, to discern the channel at the vent, perhaps be−
cause it had been filled in by subsequent flow activity. 
A transect down this flow varies in average thickness 
from 46 m near the vent to 16 m over the rest of the 
flow.  

PyFLOWGO was run to simulate the Leningradskoye 
lava flow that formed between 29 Nov 2012 and 1 Dec 
2012. In that period, the flow was fed by an open chan−
nel and reached a length of 11.3 km, which is 70% of its 
final length. After 1 Dec 2012, the effusion rate dropped 
and later lava tubes formed allowing the flow to extend 
to its final length (16.4 km). We did not attempt to fit 
the final flow length because PyFLOWGO is designed 
only for open channel systems. We use the effusion rate 
for this time period determined by MIROVA (278 m3/s) 
for model initialization and the steepest line of descent 
measured on the pre−flow ASTER GDEM. The active 
channel widths are measured directly from the ALI and 
ASTER infrared data. These are likely overestimates, 
however, due first to the minimum spatial resolution of 
30 m/pixel (ALI) and 15 m/pixel (ASTER VNIR) and, sec−
ond, to the intense radiance, which where convolved 
with an instrument’s point spread function, causes ex−
cess radiance to be detected in the surrounding lava−free 
pixels. This results in the channel−related thermal 
anomaly to appear wider than the actual widths mea−
sured in the field. The effect was most noticeable in the 
upper part of the flow where the emitted radiance was 
most intense. The channel width at the vent was there−
fore set to 30 m, the minimum resolvable distance in the 
ALI data and the ASTER DEM. To match the effective 
MIROVA effusion rate over the at−vent slope, the depth 
is set at 6.1 m, which is in agreement with field−based 
estimates [Belousov et al., 2015]. Some PyFLOWGO in−
put parameters were obtained by information obtained 
during the eruption [e.g., Plechov et al., 2015; Volynet 
et al., 2015; Gordeev et al., 2015; Belousov and Be−
lousova, 2018] or by assumptions based on other well−
constrained basaltic flows following Harris and Rowland 
[2001] and Chevrel et al. [2018]. For example, to esti−
mate the initial viscosity we consider the petrologic 
observations from Plechov et al. [2015], which include 

the interstitial glass composition having 0.03 wt. % 
H2O, and the cooled lava having an average of 25 vol. 
% crystals and 6 vol. % bubbles. We used the model of 
Giordano et al. [2008] for the interstitial melt viscosity 
in association with the Einstein−Roscoe model for com−
puting the effect of crystals. Because the vesicle fraction 
is as low as 6 vol. %, the effect of bubble on viscosity 
is neglected here. Model results produced an initial vis−
cosity of 1.9 × 104 Pa·s at the eruption temperature of 
1082 °C, which is in agreement with field estimations 
and measurements done by Gordeev et al., 2015 and Be−
lousov and Belousova, 2018]. The simulation that best 
fit the flow length constrained by the channel widths 
and emitted radiance down−flow measured from the ALI 
image was produced using the parameters reported in 
Table 3 and is presented in Figure 8. 
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FIGURE 8. Best fit FLOWGO simulation for the Leningradskoye 
lava flow of the 2012 Tolbachik eruption using in−
put models and parameters given in Table 3. The con−
tinuous line is for a two−component emissivity 
model, whereas the dashed line represents a singu−
lar emissivity of 0.95. The red dots are channel width 
measurements from ASTER and ALI images. The ver−
tical red lines represent the flow length on 1 Dec 2012 
measured from the ALI image. (A) Modeled channel 
width. Misfits near the beginning of the flow are like−
ly due to the intense radiance from the lava in these 
regions causing the channels to appear larger than 
their actual width due to radiance bleeding into neigh−
boring pixels. (B) Modeled emitted radiance. Misfits 
at greater distances here are likely due to increasing 
percentages of cooled crust/older lava mixing with−
in these pixels. 



The best fit model result used a variable crustal cov−
erage as part of the “basic” model in PyFLOWGO, orig−
inally proposed by Harris and Rowland [2001]. This 
model allows fcrust to increase as a function of mean 
flow velocity (Vmean)): 

 
(6) 

 
where finit, the initial (at vent) crust fraction and α, a co−
efficient, were derived for a poorly insulated flow by 
Harris and Rowland [2001] to be 0.9 and −0.16, respec−
tively. The velocity of the lava within the channel var−
ied between 2 and 3.5 m/s within the first kilometer and 
then progressively decreased down−flow (Figure 9d). 

These values are also in agreement with field−based es−
timates reported in Belousov et al. [2015].  

In these simulations, the difference between the sin−
gle and the two−component emissivity is small because 
the modeled crust coverage fraction is high, varying 
from 60% – 90%. (Figure 10). This range is somewhat 
higher than seen in the field images of the open chan−
nel, which varied between 35% – 60% (Figure 2). How−

ever, the field−based values are derived from the visi−
bly darker fraction of crust on the channel surface. It is 
possible that the “radiative crust” (i.e., surfaces that are 
still visibly red but have cooled enough to raise the 
emissivity) is higher. 

We also attempted to fit the spectral radiance ob−
tained from the ALI data to the model−output for emit−
ted spectral radiance from the simulated PyFLOWGO 
surface. Unsaturated pixel−integrated spectral radiance 
values were extracted down−flow (Figure 6a) from the 
ALI band 7 (0.87 μm). The subpixel hot fraction emit−
ted radiance was estimated using the two−component 
mixing approach of Dozier [1981] and then compared to 
the PyFLOWGO model output (Figure 8b). The results 

show that the two−component emissivity model does 
result in a spectral radiance that is closer to that of the 
ALI data. However, the fit deteriorates down−flow with 
the measured radiance decreasing to a near constant 
value, approximately an order of magnitude lower than 
the PyFLOWGO model predicted values. This overesti−
mation by the model could be due to several factors. The 
ALI data are resampled during the conversion from the 
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FIGURE 9. Thermo−rheological variations for the 2012 Leningradskoye lava flow properties using the best fit simulation and the 
input models and parameters given in Table 3. The continuous line is the two−component emissivity model results, where−
as the dashed line represents a singular emissivity of 0.95. The vertical red lines represent the flow length on 1 Dec 2012 
measured from the ALI image. The singular emissivity produces model results that consistently over−predict the actu−
al flow length. 



original radiance data (L1R) to the distributed L1Gst data 
product. This could cause mixing of radiant energy 
from adjacent pixels containing cooled lava or snow, 
thus lowering the pixel−integrated values. Furthermore, 
the ALI data have not been atmospherically corrected. 
There were significant steam plumes and clouds en−
croaching on the upper part of the flow and smaller va−
por plumes are seen emanating from the lava channel 
along the entire length. This atmospheric interference 
will lower the pixel integrated radiance [see Sawyer and 
Burton, 2006]. Finally, whereas PyFLOWGO calculates 
emitted radiance based on the hottest lava temperature 
at a particular point along the flow, the satellite data 
captures emitted energy from all temperatures within a 
given pixel. It is very likely that within a 30 m pixel, 
there exists some fraction of hot material plus that of 
cool/cold material, as well as numerous surfaces at 
temperatures between these two end−member temper−
atures [Dozier, 1981; Rothery et al., 1988; Harris, 2013]. 
These would not be resolved in the two−component 
subpixel analysis and yet would lower the effective 
pixel−integrated spectral radiance. Therefore, use of 
spectral radiance as a constraint on PyFLOWGO model 
output is best applied to higher−resolution (i.e., ground− 
or airborne) data together with in situ measurements of 
the intervening atmosphere. 

 
4.4 THE 1975 CONE II FLOW (GTFE ERUPTION) 

The Cone II flow dimensions are easily resolved in the 
ASTER GDEM making it much more straight forward to 
measure the channel width and depth down−flow. Six 
perpendicular transects were taken from the base of Cone 
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FIGURE 10. Variations in the crustal coverage, effective emissivity 
and radiative heat loss for the 2012 Leningradskoye 
lava flow properties using the best fit simulation and 
the input models and parameters given in Table 3. 
The continuous line is the two−component emissiv−
ity model results, whereas the dashed line represents 
a singular emissivity of 0.95.  

MODEL NAME MODEL CHOICE  REFERENCE 

“melt_viscosity_model" basic Giordano et al., [2008]

PARAMETERS VALUE UNITS REFERENCE

“effusion_rate" 700, 1250 m3/s
this study- best fit (see 
crust fraction below)

“width" 70 m ASTER GDEM – this study

“depth" 8.7 m this study- best fit

“eruption_temperature" 1325.15 K Fedotov et al., [1991]

“viscosity_eruption" 50000 Pa s this study- best fit

“crystal_fraction" 0.20 Fedotov et al., [1991]

“thermal_parameters" 
“crust_cover_fraction" 0.9, 0.4 this study: best fit

TABLE 4. Specific PyFLOWGO input models and parameters that differ from those in Table 3 that were used for the Cone II lava 
flow of the 1975 Tolbachik eruption. 



II the point where the flow spreads laterally and folding 
masks the end of the channel. The channel averaged 140 
m in width and 11.8 m in depth over the six transects. At 
the base of Cone II, the channel is between 60−90 m wide 
and 8−9 m deep. These values are used as bounding 
constraints for initiation of PyFLOWGO (Table 4). 

This flow extended 5 km and was characterized by a 
very wide channel, oversteepened levees and a folded 
terminus with a 50 m high flow front. The morphology 
of the flow makes it appear perhaps more silicic than the 
actual composition, which is magnesian, moderately 
alkaline basalt [Fedotov et al., 1991]. Samples acquired 
from this flow in 2005 were found to be basalt with 50.5 
wt. % SiO2 (Table 2). Although the composition is 
basaltic, the effective viscosity was estimated in the field 
to range between 104−107 Pa·s and up to 109 Pa·s, based 
on lava flow front velocities [Vende−Kirkov, 1978; Fe−
dotov et al., 1991].  

To simulate the evolution of the thermo−rheological 
properties down−flow, we used the same input param−
eters as used for the 2012 Leningradskoye lava flow but 
imposed an initial melt viscosity on the low−end (5 x 
104 Pa·s) of the range provided by Vende−Kirkov [1978] 
together with an eruption temperature of 1050 °C [Fe−

dotov et al., 1991]. We were able to fit the channel width 
and the final length with an effusion rate of 700 m3/s 
and an initial channel dimension of 70 × 8.7 m (Figure 
11). The difference between the two−component emis−
sivity model and the single emissivity model was neg−
ligible considering the high initial crust cover fraction 
of finit = 0.9 used (Figure 12). However, the large chan−
nel and thickness of this flow indicates a higher initial 
effusion rate and flow velocity could have been possi−
ble. In a case like this, a similar model fit can be ob−
tained with a higher effusion rate (1250 m3/s) using a 
similar initial channel size (70 x 8 m), but starting with 
a lower crustal coverage (finit = 0.4) and the two−com−
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FIGURE 11. Best fit PyFLOWGO simulation for the Cone II lava 
flow emplaced during the 1975 Tolbachik eruption. 
Input models and parameters are similar to those used 
for the 2012 eruption, except those presented in Table 
4. The green lines show the results for an effusion rate 
of 1250 m3/s and an initial crust fraction (finit) of 0.4, 
whereas the black lines are for an effusion rate of 700 
m3/s and finit = 0.9. The solid lines represent the two−
component emissivity model results, whereas the 
dashed lines represent a singular emissivity of 0.95. 
The red dots are width measurements from ASTER 
GDEM data and the vertical red line represents the 
final flow length. 

FIGURE 12. Variations in the crustal coverage, effective emissivity 
and radiative heat loss for the 1975 Cone II lava flow 
properties using the best fit simulation and the in−
put models and parameters given in Table 3. The green 
lines show the results for an effusion rate of 1250 m3/s 
and an initial crust fraction (finit) of 0.4, whereas the 
black lines represent an effusion rate of 700 m3/s and 
finit = 0.9. The solid lines are the two−component 
emissivity model results, whereas the dashed lines are 
for the singular emissivity of 0.95.  



ponent emissivity model. For this case, it is critical to 
consider the two−component emissivity model as it has 
a significant impact on the final results (Figures 11,13). 
In particular, using the single emissivity model gener−
ated a much shorter flow (4000 m) where the viscosity 
increased to 108 Pa·s (Figure 13c). Fedotov et al. [1991] 
estimated the flow velocity to be ~0.3 m/s approximately 
2.5 km from the vent, whereas Belousov et al. [2015] re−
ported < 0.2 m/s. The modeled velocity of the lava 
within the channel is estimated here to be 1.5 to 2 m/s 
near the vent, decreasing to < 0.5 m/s after the first kilo−
meter, which is in good agreement with the prior esti−
mates. 

 
 

5. DISCUSSION 
 
The 2012−2013 eruption produced high effusion rate 

channelized basaltic flows useful for testing and refin−
ing the PyFLOWGO modeling. Because of a unique set 
of high−resolution orbital assets and data acquisition 
programs ongoing at the time of the eruption, unprece−
dented TIR data coverage exists throughout all phases 

of this eruption. These were useful to constrain chan−
nel lengths and widths, vent locations, temperature, as 
well as multispectral emissivity of molten surfaces and 
channel depths from digital elevation models (DEMs). 
This information, combined with the detailed reporting 
from Russian scientists present during the eruption, 
were used to initiate PyFLOWGO modeling of the largest 
channelized flow, which formed near the very start of 
the eruption. With the ability to refine and calibrate the 
model using those additional satellite data, the best−fit 
model parameters were then applied to the large 1975 
Cone II flow to investigate the impact of assumed pa−
rameters such as emissivity on PyFLOWGO. 

The PyFLOWGO model provides a great degree of 
flexibility on many of the input variables and choice of 
viscosity models. This flexibility also constraining the 
model output quite difficult without knowledge of at 
least some of the input parameters, and highlights the 
need for independent flow parameter data against which 
to best−fit model−driven scenarios. Past studies using 
FLOWGO modeling commonly compared the results to 
well−constrained field data, such as the channel di−
mensions, measurements of the crust percentage, ve−
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FIGURE 13. Thermo−rheological variations for the 1975 Cone II lava flow properties using the best fit simulation. The input mod−
els and parameters are similar to those used for the 2012 eruption, except the few presented in Table 4. The green lines 
show the results for an effusion rate of 1250 m3/s and an initial crust fraction (finit) of 0.4, whereas the black lines rep−
resent an effusion rate of 700 m3/s and finit = 0.9. The solid lines represent the two−component emissivity model re−
sults, whereas the dashed lines are a singular emissivity of 0.95. The vertical red lines represent the final flow length 
on 1 Dec 2012 measured from the ALI image. 



locity and/or cooling profiles down−flow [Harris et al., 
2007b; Wright et al., 2008, Harris and Rowland, 2009, 
2012]. Here, we apply PyFLOWGO, constrained primar−
ily by high spatial (e.g., ASTER and ALI) and high tem−
poral (e.g., MODIS) resolution satellite data. The MODIS 
time−averaged discharge rate and the ASTER−derived 
DEM data proved to be the most important as they 
provide the volume flux source term, and topographic 
underlay required by the model, respectively. The 
ASTER/ALI data also allowed the flow length, channel 
widths, advance rate, temperature and spectral radiance 
to be constrained to some degree. 

Two parameters measured from the high spatial res−
olution data (channel width and spectral radiance) 
proved more difficult to constrain. The excessive radi−
ance from the wider, less crust−covered channels closer 
to the vent resulted in overestimations of the measured 
channel widths. Conversely, channelized regions with a 
modeled crust percentage greater than ~75% had emit−
ted spectral radiance much lower than the PyFLOWGO 
predictions. Incomplete atmospheric correction, image 
resampling and pixel mixing likely produces emitted ra−
diance values at scales too complex to be extracted from 
the 30 m pixels examined here; an issue that warrants 
future study. 

Despite the paucity of constrained ground−based 
data and the complexities regarding higher−level mod−
eling of some of the high resolution image data, we were 
able to model the Leningradskoye lava flow by fitting 
the final flow length and starting discharge rate. Model 
output of core temperature, crystal fraction, mean ve−
locity and viscosity are in good agreement with ground 
and satellite control. Applying these constraints then to 
the Cone II flow combined with data extracted from the 
ASTER GDEM allowed us to estimate the discharge rate 
as well as the effect of variable emissivity and initial 
crust cover. The difference between two−component 
and the single emissivity models was negligible where 
considering a high initial crust cover fraction, but sig−
nificant for higher effusion rate with a lower initial crust 
cover fraction (Figures 12,13). Such a validation ap−
proach is important for interpreting older flows where 
information on their emplacement is either limited or 
nonexistent. 

The primary focus of this study was to apply 
PyFLOWGO using data constrained as much as possible 
by only satellite data, and in the process, test one vari−
able (emissivity), which has always been assumed con−
stant in past studies. We modified PyFLOWGO to accept 

two values for emissivity and assigned those to the 
crust and molten fractions in the channel. The effective 
emissivity term was thus a weighted sum of the crust 
fraction having a high emissivity (0.95) plus the molten 
fraction having the lower emissivity (0.60). This change 
has a measureable (linear) impact on the PyFLOWGO re−
sults for a theoretical flow and where applied to the ac−
tual Tolbachik flows resulted in a slightly improved fit 
for the 2012 Leningradskoye flow and significantly im−
proved fit for the 1975 Cone II flow. As one might ex−
pect, the largest change in the model results arises 
where a flow initially enters the channel free or nearly 
free of cooling, higher emissivity crust. If a flow is 
modeled with a high initial crust fraction, the two end−
member emissivity modification will only provide a 
marginally better final fit. However, what we did not ex−
plore here is assumption in PyFLOWGO that crust for−
mation is related solely to flow velocity rather than tem−
perature. A more complex solution incorporating crust 
formation with flow cooling (modulated by the lower 
emissivity) is warranted. Field images of the 2012 flow 
channels commonly showed significantly less crust at a 
given position along the flow than was predicted by 
PyFLOWGO. If this is the case, then we predict the lower 
emissivity of the molten fraction of the channel will 
have more of an impact.  

The emissivity measurement of molten material has 
been presented in numerous recent studies both in the 
laboratory and the field [Ramsey and Harris, 2016; Lee 
and Ramsey, 2016; Lee et al., 2010; Abtahi et al., 2002]. 
The assessment of Burgi et al. [2002] for the emissivity 
of the surface of the active lake at Erta Ale (0.74), al−
beit in the 1.1−1.7 μm region, is in agreement with this 
study [see also Flynn et al., 2001]. This fundamental 
change in our understanding of how efficiently mate−
rials radiate heat prior to solidifying is important for 
models such as PyFLOWGO but also in any situation 
where an accurate thermal infrared non−contact tem−
perature is made. Emissivity measured over multiple 
wavelengths produces a spectrum that relates informa−
tion about the material’s petrology, its state of atomic 
bond vibrations and angles, and the amount of glass 
formation [see Ramsey and Fink, 1999]. The broadband 
emissivity, an average over the entire wavelength region, 
is a measure of how efficiently that material emits heat. 
It should be noted that the prior studied of molten 
emissivity were conducted in the TIR region (~ 5 – 25 
μm in the laboratory and ~ 8 – 12 μm in the field/from 
orbit). Radiant heat loss, however, is occurring over a 
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larger portion of the electromagnetic spectrum, most 
notably in the short−wave infrared region (~ 1 – 5 μm). 
If the emissivity is closer to unity at these wavelengths, 
then the impact of the lower emissivity in the thermal 
infrared region will be mitigated to a degree. Further 
laboratory studies of emissivity in the 1−5 and 8−14 μm 
regions are planned to clarify this question. Further 
study into the model’s logic of linking crust formation 
to velocity rather than temperature is also planned. 
This is likely resulting in an underestimate of the effect 
of the two end−member emissivity approach. More 
model simulations with this logic changed to tempera−
ture or temperature/velocity dependency are planned. 

 
 

6. CONCLUSIONS 
 
The 2012−2013 TFE−50 eruption of Tolbachik vol−

cano produced several large basaltic flow fields con−
taining large open channel flows. The largest of these 
was the Leningradskoye flow, which was emplaced in 
the early days of the eruption. The active period of this 
eruption was captured by high spatial resolution VNIR 
to TIR image data from ASTER and ALI as well as high 
temporal resolution, low spatial resolution image data 
from MODIS. The ASTER and ALI data allowed the lava 
flow progress and flow field areal extent/volumes to be 
tracked, whereas the MODIS data provided estimates of 
the lava time−averaged discharge rates. Using these 
datasets as a means to constrain the input parameters of 
PyFLOWGO we were able to model the Leningradskoye 
flow as it appeared on 1 Dec 2012. Over the flow length 
of 11.3 km on that date, the core temperate was mod−
eled to have decreased by ~80 °C down−flow, which re−
sulted in an increase in viscosity from 104 to 107 Pa·s 
and crystal fraction from 25 vol. % to near 60 vol.%. 
Over the flow length, the crust cover varied from ~50% 
to > 90%, whereas the velocity decreased from 3.5 m/s to 
< 0.5 m/s near the flow terminus.  

These input parameters were assumed to be similar for 
the 1975 Cone II flow. Here, the ASTER GDEM was used 
for channel width and depth constraints. The wide chan−
nel and greater flow thickness suggests a higher effusion 
rate feeding this event, which were shown by the 
PyFLOWGO results. The Cone II flow can be modeled to 
have a higher effusion rate (1250 m3/s) and lower aver−
age crust coverage (~ 40%) than the Leningradskoye flow.  

One important PyFLOWGO input parameter tested 
here was the effect of variable emissivity on flow cool−

ing rates. We developed a new implementation of 
PyFLOWGO to account for a two−component emissiv−
ity model. This effective emissivity resulted in a mea−
sureable linear change in the model results and was 
strongly dependent on the crust fraction estimated by 
the model. For the smaller and slower Leningradskoye 
flow, the crust fraction was higher at the start of the 
channel compared to the Cone II flow. This higher frac−
tion of crust mitigates the impact of the lower emissiv−
ity for the molten fraction. This effect does, however, 
become an important factor for larger flows emplaced 
at higher velocities and lower degrees of crust cover. 

Because the current implementation of all lava flow 
emplacement models tie crust formation to effective 
radiation temperature [Pieri et al., 1990], we argue that 
it is also appropriate to apply the two−end−member 
emissivity assumption. Such modifications, coupled 
with future studies of active channel−fed flow em−
placement, will further constrain the uncertainties in−
herent in our understanding of lava flow heat loss and 
cooling dynamics.  
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