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Abstract. Clinical Guidelines (GLs) provide evidence-based recommendations 

to suggest to physicians the “best” medical treatments, and are widely used to 

enhance the quality of patient care, and to optimize it. In many cases, the treat-

ment of patients cannot be provided by a unique healthcare agent, operating in a 

unique context. For instance, the treatment of chronic patients is usually per-

formed not only in the hospital, but also at home and\or in the general practi-

tioner’s ambulatory, and many healthcare agents (e.g., different specialist, nurses, 

family doctor) may be involved. To grant the quality of the treatments, all such 

agents must cooperate and interact. A computer-based support to GL execution 

is important to provide facilities for coordinating such different agents, and for 

granting that, at each time, the actions to be executed have a “proper” person in 

charge and executor, and are executed in the correct context. Additionally, also 

facilities to support the delegation of responsibility should also be considered. In 

this paper we extend META-GLARE, a computerized GL management system, 

to support such needs providing facilities for (1) treatment continuity (2) action 

contextualization, (3) responsibility assignment and delegation (4) check of agent 

“appropriateness”. Specific attention is also devoted to the temporal dimension, 

to grant that each action is executed according to the temporal constraints possi-

bly present in the GL. We illustrate our approach by means of a practical case 

study. 

Keywords: Computer-Interpretable Guidelines, Agent Coordination, Temporal 

reasoning. 

1 Introduction 

The rationalization of the healthcare system is a task of fundamental importance in or-

der to grant both the quality and the standardization of healthcare services, and the 

minimization of costs.  Evidence-based medicine and clinical guidelines (GLs) have 

gained a major role in this context. Clinical guidelines (GLs) are “systematically devel-

oped statements to assist practitioner and patient decisions about appropriate 

healthcare under specific clinical circumstances” [1]. In short, GLs provide evidence-

based recommendations to suggest to physician the set of diagnostic/therapeutic actions 

to be executed to cope with a specific disease, supporting their decision-making activ-

ity. Thousands of GLs have been devised in the last years. For instance, the Guideline 
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International Network (http://www.g-i-n.net) groups 103 organizations representing 47 

countries from all continents, and provides a library of more than 6400 CPGs. Despite 

such a huge effort, CPGs have not provided all the expected advantages to clinical prac-

tice yet. Recent research has shown that Computer Science can help to drastically im-

prove the impact of GLs in the clinical practice. The adoption of computer-interpreta-

ble clinical guidelines (CIGs henceforth) and computerized approaches to acquire, rep-

resent, execute and reason with CIGs can further increase the advantages of CPGs, 

providing crucial advantages to: 

(1) patients, enabling them to receive the best quality medical treatments; 

(2) physicians, providing them with a standard reference which they may consult, 

as well as advanced support for their decision-making and\or coordination ac-

tivities; 

(3) hospitals, and healthcare centers, providing them with tools to enable the qual-

ity and the standardization of their services. 

 

Many different systems and projects have been developed to this purpose (see e.g. 

[2–4]). Such systems usually provide facilities to acquire, represent and/or execute 

CIGs, and are mainly developed to support physicians in patient care. 

Different forms of support may be provided. In particular, a lot of attention has been 

devoted to decision support facilities (such as “what if” analysis [5] or cost-benefit 

analysis [6]). However, CIG systems have quite neglected the problem of properly sup-

porting the coordination of different healthcare agents in the execution of CIGs (see, 

however, the discussion in Section 7). In most cases, CIG systems assume that the CIG 

is executed in a unique location (usually, in a hospital) under the responsibility of a 

unique agent (usually, a physician). However, such a simplified assumption does not 

hold for many different GLs. For example, GLs dealing with chronic disorders require 

that the patient treatment is continued in time, and is carried on in different contexts 

(e.g. at home, or in the general practitioner’s ambulatory), under the responsibility of 

different agents (not only physicians, but also nurses, family doctors, family members). 

In such cases, it is crucial that the different healthcare agents communicate and coordi-

nate themselves in an effective way, so that, at any moment, there is a “proper” person 

in charge (henceforth, “responsible person” or “responsible” for short) for the GL ac-

tions to be executed, operating in the right context, and having the appropriate role and 

qualification. Additionally, the responsible might have the possibility of transferring 

the responsibility to other agents, or to delegate the responsibility or the execution of 

actions. None of the available computerized GL systems fully addresses such needs. 

Notably, there are several multi-agent approaches for healthcare in the literature (see 

e.g. the survey in [7]), but they consider agents as autonomous software entities. In our 

approach, we consider agents as a representation of real persons and use a multi-agents 

view to describe and support a distributed GL execution.  

In this paper, we describe how we have extended META-GLARE, [8], a recent 

evolution of GLARE (Guideline Acquisition, Representation and Execution), a do-

main-independent CIG system for GL acquisition and execution [9], to provide such 

support to healthcare agents. However, although we have implemented our approach in 

META-GLARE, it is worth stressing that the methodology we propose is general and 

application-independent. 
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First, we identify the extensions to the CIG formalism needed to represent the dif-

ferent pieces of information required to manage the above phenomena. In particular, 

our representation formalism supports the specification, for each action, of the context 

in which it must be executed, and of the qualification and competences required to its 

responsible, to its delegate (if any) and to its executor. 

Then, we describe the facilities we have provided to support the coordination of the 

different agents involved in the execution of a CIG on a patient. The main goal of such 

facilities is to grant that a proper treatment is assured to the patient. While “standard” 

CIG systems support physicians by suggesting the proper action to be executed at a 

given time on the patient, our approach further enhances such a support to grant that 

the actions are executed in the proper context, under the responsibility of a proper (i.e., 

having the correct qualification and competences) agent, and are executed by a proper 

agent. To achieve such a goal, our facilities support: 

(1) treatment continuity,  

(2) action contextualization,  

(3) responsibility assignment and delegation, 

(4) check of agent and executor “appropriateness”. 

Last, but not least, our approach is the first one in the literature that explicitly man-

ages the temporal dimension within the coordination process. Indeed, actions are del-

egated and executed at specific times, so that, to implement a realistic and useful coor-

dination process, systems have to explicitly manage the “window” of time in which 

actions have to be executed (given the temporal constraints in the CIG, and given the 

execution times of the previous actions in the CIG). For instance, before accepting a 

delegation\execution, it is important (and realistic) that the agents have also the infor-

mation about when they will have to manage such an action. Without such an infor-

mation, their acceptance is just a “generic” one (and not a strong commitment to man-

age the action) since they cannot grant to be available at the time when the action will 

have to be executed. Therefore, our approach also proposes temporal facilities to 

(5) associate with each action (during the coordination process) the window of 

time when it has to be executed, and 

(6) check that the actions are executed at “proper” times (i.e., at times consistent 

with the temporal constraints in the CIG). 

Notably, the facilities (5) and (6) constitute a major advance with respect to the 

other approaches in the literature, since they require not only the representation of the 

temporal constraints in the CIG, but also the development of temporal reasoning algo-

rithms, and their integration into the delegation\execution process. In particular, tem-

poral reasoning is necessary in order to associate with each GL action a “window” of 

time in which it has to be executed. Notably, such a “window” cannot be evaluated 

once-and-for-all, since the execution of other actions may further “restrict” the window 

of execution of a given one. In our approach, we suggest that such a temporal window 

has to be evaluated (i) whenever an agent is looking for a responsible\delegate\executor 

of an action, to check whether the new agent accepts the task in the specified window 

of time, and (ii) whenever an action has to be effectively executed, to grant that it is 

executed in a time consistent with the temporal constraints in the CIG and with the 

times of execution of the previously executed actions in the CIG.  
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As a running example, in this paper we show the application of our approach to the 

“management of harmful drinking and alcohol dependence in primary care” GL devel-

oped by the Scottish Intercollegiate Guidelines Network (SIGN) [10], which we have 

adapted to the Italian context.  

The paper is structured as follows: in Section 2 we describe the main features of 

GLARE and META-GLARE. In Section 3 we describe our extensions to the META-

GLARE representation formalism. In Section 4, we specifically discuss the temporal 

reasoning support. In Section 5 we describe the different facilities we provide to support 

the distributed execution of a CIG, and the coordination of the involved agents, with 

specific emphasis on the temporal issues. In Section 6 we exemplify a practical appli-

cation of our approach considering the treatment of alcohol-related disorders. Finally, 

in Section 7 we address related work and concluding remarks. 

2 GLARE and META-GLARE 

META-GLARE is an evolution of GLARE, a domain-independent system for acquisi-

tion and execution of GLs [9], which we have been developing since 1997, in collabo-

ration with the physicians of Azienda Ospedaliera San Giovanni Battista in Torino, 

Italy.  

The main goals of the GLARE systems are: 

(i) to be domain-independent. In particular, GLARE has been already applied to 

deal with a wide range of CIGs ranging from asthma to ischemic stroke; 

(ii) to be user-friendly. GLARE is intended to be a tool to support physicians (in 

particular, regarding decision making), and not to replace them. Such a goal 

has several implications, including the facts that (i) CIGs representation lan-

guage must be as close as possible to the physicians’ way of looking at it, and 

(ii) the “technological” complexity of the system must be hidden to the user-

physicians, through a user-friendly and easy-to-use interface; 

(iii) to be easily extendable. Indeed, physicians should be provided with plenty of 

facilities concerning CIGs. Thus, the system architecture must be modular and 

easily extendable. 

2.1 GLARE’s kernel 

The core of GLARE (see the box on the left of Fig. 1) is based on a modular architec-

ture. CG_KRM (Clinical Guidelines Knowledge Representation Manager) is the main 

module of the system: it manages the internal representation of CIG, and operates as a 

domain-independent and task-independent knowledge server for the other modules; 

moreover, it permanently stores the acquired CIG in a dedicated Clinical Guidelines 

Database (CG-DB).  

The Clinical Guidelines Acquisition Manager (CG_AM) provides expert-physi-

cians with a user-friendly graphical interface to introduce the CIG into the CG_KRM 

and to describe them. It may interact with four databases: the Pharmacological DB, 

storing a structured list of drugs and their costs; the Resources DB, listing the resources 

that are available in a given hospital; the ICD DB, containing an international coding 

system of diseases; the Clinical DB, providing a “standard” terminology to be used 
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when building a new CIG, and storing the descriptions and the set of possible values of 

clinical findings.  

GLARE’s acquisition module provides expert-physicians with a user-friendly and 

easy-to-use tool for acquiring a CIG. In order to achieve these goals, GLARE provides: 

(i) a graphical interface, which supports primitives for drawing the control information 

within the CIGs, and ad-hoc windows to acquire the internal properties of the objects; 

(ii) facilities for browsing the CIGs; (iii) an “intelligent” help and consistency-checking 

facilities including name and range checking, logical design criteria checks. 

The execution module (CG-EM) executes a CIG for a specific patient, considering 

the patient’s data (retrieved from the Patient DB). It adopts  the “agenda technique” 

(see [11]). Basically, through the “agenda technique”, GLARE is able to identify all the 

next actions to be executed in the current CIG, and the window of time when they have 

to be executed. 

Notably, the schema of the Patient DB mirrors the schema of the Clinical DB. 

Therefore, the interaction with the Clinical DB during the acquisition phase makes it 

possible to automatically retrieve data from the Patient DB at execution time. CG-EM 

stores the execution status in another DB (CG Instances) and interacts with the user-

physician via a graphical interface (CG-IM).  

Fig. 1. Architecture of GLARE. Rectangles represent computation modules, and ovals 

data/knowledge bases (original figure in [12]).  

2.2 GLARE’s Extended Architecture 

GLARE’s architecture is open: new modules and functionalities can be easily added 

if\when necessary. In the last years, several new modules and\or methodologies have 

been added to cope with different phenomena. 

The ADAPT module [13] copes with automatic resource-based contextualization. 

Indeed, contextualization is an essential step to be taken before a guideline manager is 

actually adopted in clinical practice. One of the most relevant obstacles to the exploita-

tion and dissemination of GLs is the gap between the generality of the GLs themselves 

(as defined, e.g., by physicians’ committees) and the peculiarities of the specific con-

texts of application. ADAPT supports the adaptation of general guidelines to the local 

setting, by (automatically) taking into account local resources (e.g. diagnostic instru-

mentation) unavailability, and locally applied procedures, which may require to discard 

some alternatives.   

The temporal reasoning module TR [11] deals with the temporal constraints in the 

CIGs. As already discussed in the introductory section, the temporal dimension is es-

sential in the management of CIGs. A detailed description of this module, and how it is 

exploited in the coordination process, is presented in Sections 4 and 5 of this paper. 
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 The decision making support module DECIDE_HELP [14] provides further sup-

port to physicians for their decision-making activities, focusing on therapy selection.  

In many cases, when executing a CIG on a given patient, a physician can be faced with 

a choice among different therapeutic alternatives, and identifying the most suitable one 

is often not straightforward. In several situations no alternative is actually “better” than 

the others from a strictly clinical viewpoint, and CIGs are only meant to present all the 

range of choices, leaving to the user the responsibility of selecting the “right” one.  

In clinical practice, various selection parameters (such as the costs and effectiveness 

of the different procedures) are sometimes available when executing a CIG, but the task 

of comparing and balancing them is typically left to the physician.  

Decision theory seems a natural candidate as a methodology for affording this anal-

ysis; to this end, we have realized a mapping between the CIG representation primitives 

and decision-theory concepts (in particular we represent CIGs as Markov Decision Pro-

cesses), and we have developed a decision-theory tool for supporting therapy selection 

in GLARE. In particular, the GLARE decision-theory facility enables the user to: (1) 

identify the optimal policy, and (2) calculate the expected utility along a path, by ex-

ploiting classical dynamic programming algorithms.  

The module VERIFY [15] supports model-based verification of CIGs. Indeed, CIGs 

are very large and complex bodies of knowledge, so that, after they have been acquired, 

it is important to be able to check automatically whether they satisfy different types of 

properties (e.g., their eligibility to treat specific classes of patients). The general meth-

odology we propose is to exploit the capabilities of a model checker (specifically, we 

adopt SPIN [16]) by loosely integrating with it a CIG system. Such a loose integration 

is achieved by defining a module for the automatic translation of any GLARE CIG into 

the corresponding CIG represented in the model-checker format. The translation of a 

CIG can be performed a priori and once and for all. After that, the model-checker can 

be used in a standard way in order to verify any property (that can be expressed in the 

model-checker property language) on any of the translated CIGs. It is important to 

stress that the properties need not to be defined a-priori: the user can directly express a 

new property and ask the model-checker to verify it. 

Finally, the COMORBID module [17, 18] is devoted to the treatment of comorbid 

patients, i.e., of patients having more than one disease. 

Computer Interpretable Guidelines (CIGs) are consolidated tools to support physi-

cians with evidence-based recommendations in the treatment of patients affected by a 

specific disease. However, the application of two or more CIGs on comorbid patients 

is critical, since dangerous interactions between (the effects of) actions from different 

CIGs may arise. COMORBID is the first tool supporting, in an integrated way, (i) the 

knowledge-based detection of interactions, (ii) the management of the interactions, and 

(iii) the final “merge” of (part of) the CIGs operating on the patient. COMORBID is 

characterized by being very supportive to physicians, providing them support for fo-

cusing, interaction detection, and for an “hypothesize and test” approach to manage the 

detected interactions. To achieve such goals, it provides advanced Artificial Intelli-

gence techniques. 

Testing. GLARE has been already tested considering different domains, including 

bladder cancer, reflux esophagitis, heart failure, and ischemic stroke. The acquisition 
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of a GL using GLARE is reasonably fast (e.g., the acquisition of the GL on heart failure 

required 3 days).  

2.3 GLARE REPRESENTATION FORMALISM 

In the GLARE project, a GL is represented through the set of actions composing it. 

GLARE distinguishes between atomic and composite actions. Atomic actions can be 

regarded as elementary steps in a CIG, in the sense that they do not need a further 

decomposition into sub-actions to be executed. Composite actions are composed by 

other actions (atomic or composite). Four different types of atomic actions can be dis-

tinguished in GLARE: work actions, query actions, decisions and conclusions. Work 

actions are basic atomic actions which must be executed on the patient, and can be 

described in terms of a set of attributes, such as name, (textual) description, cost, time, 

resources, goals. Query actions are requests of information, which can be obtained from 

the outside world (physicians, databases, knowledge bases). Decision actions are spe-

cific types of actions embodying the criteria which can be used to select alternative 

paths in a CIG. In particular, diagnostic decisions are represented as an open set of 

triples <diagnosis, parameter, score> (where, in turn, a parameter is a triple <data, at-

tribute, value>), plus a threshold to be compared with the different diagnoses’ scores. 

On the other hand, therapeutic decisions are based on a pre-defined set of parameters: 

effectiveness, cost, side-effects, compliance, duration. Finally, conclusions represent 

the output of a decision process. Composite actions are defined in terms of their com-

ponents, via the “has-part” relation. Control relations establish which actions might be 

executed next and in what order. We distinguish among four different control relations: 

sequence, constrained, alternative and repetition. The description of sequences usually 

involves the definition of the minimum and maximum delay between actions. Complex 

temporal constraints between actions (e.g., overlaps, during) can be specified using 

constrained control relations. In particular, action parallelism is also supported through 

this feature. 

2.4 META-GLARE 

In the last years, a new CIG system, META-GLARE, has been designed, on top of 

GLARE. Basically, METAGLARE takes in input a CIG formalism (based on the Task-

Network Model approach), and provides as output a CIG system for acquiring and ex-

ecuting CIGs expressed through the input language. The core idea of our meta-approach 

is: 

(i) To define an open library of elementary components (e.g., textual attribute, Bool-

ean condition, Score-based decision), each of which is equipped with methods for 

acquiring, consulting and executing them, 

(ii) To provide system-designers with an easy way of aggregating such components 

to define node and arc types (constituting the representation formalism of a new 

system), 

(iii) To devise general and basic tools for the acquisition, consultation and execution 

of CIGs, represented by hierarchical directed graphs which are parametric over 
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the node and arc types (in the sense that the definitions of node and arc types are 

an input for such tools). 

In such a way, META-GLARE provides users with several advantages: 

- Using META-GLARE, users can easily define their own systems, basically by 

defining the nodes and arcs types as an aggregation of components (called at-

tributes) from the library. No other effort (e.g., building acquisition or execution 

modules) is needed. 

- The extension of a system can be easily achieved by adding new node/arc types, 

or adding components to already existing types (with no programming effort at 

all). 

- User programming is needed only in case a new component (attribute type) has 

to be added to the component library. However, this addition is modular and 

minimal: the programmer has just to focus on the component to be added, and 

to provide the code for acquiring, consulting, and (if needed) executing it (while 

the “general” acquisition, consultation and execution engines have not to be 

modified). 

In short, META-GLARE is a “meta” system, in that it takes in input a CIG repre-

sentation formalism, and automatically generates a CIG system to acquire and execute 

CIGs expressed in the input formalism. To test it, an extended formalism has been used 

(see [8]). In the following, we refer to such an extended formalism as “META-GLARE 

formalism”. In particular, the META-GLARE formalism extends GLARE’s one with 

the possibility of specifying not only 1:1 arcs (i.e., arcs with just one input action and 

one output action), but also 1:n, n:1 and n:n arcs. Such an additional feature is very 

useful to easily model the parallelism between actions. 

GLARE and META-GLARE have been developed in Java, to take advantage of its 

portability. As a consequence, GLARE can run similarly on any hardware/operating-

system platform. 

3 CIG annotations 

Our approach aims at supporting the coordination of multiple healthcare agents in the 

execution of a CIG on a given patient, granting at the same time that each action is 

managed by “proper” agents.  To achieve such a goal, each action has to specify a set 

of properties (that we call annotations), to specify what are the characteristics of a 

“proper” execution in terms of (i) what are the “proper” (in terms of qualification and 

competences) agents that can manage the action (either the responsible, or the execu-

tor), (ii) what are the “proper” execution contexts, and (iii) when applicable, also addi-

tional constraints to cope with the continuity of treatments (in terms of the agents man-

aging them). In META-GLARE, such properties are managed as additional attributes 

to be added to the description of actions. 

In the following, we describe such additional attributes in detail. 

First of all, META-GLARE actions can be annotated with the possible contexts in 

which they can be executed. 

• Context annotation: it specifies where the action can be executed (e.g. in-pa-

tient care, community medicine). Notably, a context is not necessarily a physical 
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place, but it might also indicate an operative environment. For example, commu-

nity medicine can refer to the patient’s home or to the general practitioner’s ambu-

latory. In META-GLARE, each action can be annotated with a set of contexts. In 

such a case, we intend that the action can be executed in any one of the contexts in 

the set; 

Regarding the agents that have to take care of a given action (or set of actions) in a 

CIG, META-GLARE supports the distinction among three different roles: responsible, 

delegate, and executor. 

The responsible of an action (or of a whole part of a CIG; for instance, the head 

physician of a hospital department) is, indeed, the agent that retains the whole respon-

sibility of the management of the action, and who also has the responsibility of deter-

mining the responsible of the next actions. Of course, a responsible can delegate an 

action (or a set of actions) to a delegate agent. A delegate has the “local” responsibility 

of the action, but, after managing it, s\he has to return the responsibility to the respon-

sible of the action. Both responsibles and delegates are not necessarily the physical 

executors of actions. Indeed, in many cases, the responsibility (and, possibly, the dele-

gation) is given to physicians, but the physical execution is demanded to nurses or lab 

technicians. 

To be a “proper” responsible, delegate or executor of an action, an agent must have 

a given qualification, and, possibly, some specific competences. To cope with such 

issues, we extended the META-GLARE formalism with six additional annotations: 

• responsible_qualification (e.g. neurologist, gastroenterologist, …), dele-

gate_qualification (e.g. neurologist, gastroenterologist, …), executor_qualifica-

tion (e.g., nurse):  such annotations specify what the qualification of the responsi-

ble, delegate, and executor of the action must be. A list of qualifications can be 

specified, meaning that the agent must have (at least) one of the qualifications in 

the list; 

• responsible_competence, delegate_competence, executor_competence: 

they specify that the agent must have specific abilities (e.g. expert in the alcohol-

related disorders management). Such an attribute is optional. A list of competences 

can be specified, meaning that the agent must have all the competences in the list. 

When a CIG is being acquired, we impose that each action in it is annotated with a 

specification of a list of possible contexts and of a list of possible qualifications of re-

sponsibles and executors. This is mandatory, and the acquisition module is extended to 

support the acquisition of such annotations (see Section 4). On the contrary, compe-

tence annotations are optional. In case the competence list is empty, no specific re-

striction needs to be applied; otherwise, only the agents having the required compe-

tences are allowed to be responsible for or to execute the action at hand.  

Example 1. The action “Brief intervention for hazardous and harmful drinking” 

(see action 11 in Fig. 4) in the alcohol-related disorders treatment GL [10] is described 

as follows: 

• responsible_qualification: physician 

• responsible_competence: \ 

• delegate_qualification: physician 

• delegate_competence: \ 

• executor_ qualification: physician, nurse 

• executor_competence: \ 
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• context: community medicine, SERT medicine (SERT is the acronym for 

“SERvizio per le Tossicodipendenze”, an Italian service similar to the Mental 

Health Service in U.S.A.), in-patient care, hospital ambulatory care. 

In many practical cases, behind coordination of agents, it is also important to sup-

port the continuity of treatments. Indeed, it is preferable to assign “homogeneous” sets 

of actions in a CIG to the same responsible (or, in some cases, executor). For instance, 

it might be preferable that the same neurologist is responsible of all the neurological 

activities performed on a given patient, and that the different EMG examinations of a 

patient are executed by the same specialist. Notably, continuity constraints are inter-

preted as “preferential” constraints by our system (see Section 4), and admit violations 

(e.g., after a period, a physician may, for any reason, be unable to continue to treat a 

given patient). In META-GLARE, we support such a need through an independent data 

structure, which annotates CIGs with “continuity constraints”, which specify sets of 

actions that should have (preferably) the same responsible, delegate and\or executor. 

In the next sections, we will present how annotations are formalized in our ap-

proach, and how they are treated by META-GLARE. 

3.1 Ontology of annotations 

GL annotations can be modeled on the basis of three taxonomies, and of the relations 

between them. Part of the taxonomies and relations are graphically shown in Fig. 2. 

The ontology of contexts is a “part-of” taxonomy, in which each context can be further 

specified by its components. For instance, in Fig. 2, FAMILY, HOSPITAL and 

COMMUNITY MEDICINE are three possible contexts, and NEUROLOGY, 

GASTROENTOROLOGY and INTERNAL MEDICINE are some of the departments 

that are part of a hospital. Qualifications can be modeled through a standard “isa” tax-

onomy, in which each qualification can be further refined (isa relation) by its speciali-

zations. For instance, in Fig. 2, NURSE and PHYSICIAN are two possible qualifica-

tions. In turn, NEUROLOGIST, GASTROENTEROLOGIST and INTERNIST are 

specializations of PHYSICIAN. Analogously, also competences are modeled by an “is-

a” taxonomy. For instance, in Fig. 2, (the competence in) PERIPHERAL 

NEUROPATHY is a specialization of (competence in) NEUROLOGY, which is a spe-

cialization of MEDICAL COMPETENCE. 

 Fig. 2. Ontology of contexts, qualifications and competences and their instances (original figure 

in [12]). 
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Besides concepts, which denote classes of entities, the ontology also includes in-

stances, denoting specific entities. Each instance is connected to its class through an 

“instance-of” relation. For example, in Fig. 2, Neuro2 is an instance of NEUROLOGY 

in Azienda Ospedaliera San Giovanni Battista (which is an instance of Hospital); Mario 

Rossi is an instance of NEUROLOGIST (thus, given the transitivity of the isa relation, 

Mario Rossi is also an instance of PHYSICIAN). It is worth noticing that, while the 

entities in the context and qualification taxonomies have instances, competences do not 

have them (they are individual concepts). Besides part-of, isa and instance-of relations, 

other relations are useful to represent the domain. Agents (which are instances of Qual-

ifications) are related to the contexts they belong to by the belong-to relation. Addition-

ally, agents may have competences, and this fact is represented by the has-competence 

relation. For instance, in Fig. 2, Mario Rossi belongs to Neuro2, and has specific com-

petence about Peripheral Neuropathy. Contexts and persons have contacts (usually 

phone numbers).  

Continuity constraints model the fact that, preferably, “homogeneous” sets of actions 

in a GL should be performed by the same agent. Such constraints are typically GL-

dependent, and can be easily formalized in an independent data structure, to store three 

different partitions of the GL actions into subsets, to model: 

(i) the sets of actions which should (preferably) have the same responsible; 

(ii) the sets of actions which should (preferably) have the same delegate; 

(iii)  the sets of actions which should (preferably) have the same executor. 

The definition of continuity constraints is a refinement process. First, the users can 

define the continuity constraints concerning the responsibles. Then, within each respon-

sible-level continuity group, they can further specify continuity groups for possible del-

egates. Finally, continuity execution groups can be defined, within the delegate-level 

continuity groups.  

Temporal constraints play a fundamental role in clinical guidelines. For example, 

temporal indeterminacy, constraints about duration, delays between actions, and peri-

odic repetitions of actions are essential in order to cope with clinical therapies. As a 

matter of fact, in most therapies, actions have to be performed according to a set of 

temporal constraints concerning their relative order, their duration, and the delays be-

tween them. Additionally, in many cases, actions must be repeated at regular (i.e., pe-

riodic) times. For instance, consider Ex.1. In Ex. 1, the instances of the melphalan treat-

ment must respect the temporal pattern “twice a day, for 5 days”, but such a pattern 

must be repeated for six cycles, each one followed by a delay of 23 days, since the 

melphalan treatment is part of the general therapy for multiple myeloma. 

Example 2. The therapy for multiple myeloma is made by six cycles of 5-day treat-

ments, each one followed by a delay of 23 days (for a total time of 24 weeks). Within 

each cycle of 5 days, two inner cycles can be distinguished: the melphalan treatment, 

to be provided twice a day, for each of the 5 days, and the prednisone treatment, to be 

provided once a day, for each of the 5 days. These two treatments must be performed 

in parallel. 
Coping with such temporal constraints involves two main challenges: 

(1) Developing a representation formalism to capture them, 
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(2) Developing temporal reasoning algorithms to reason with them (e.g., to check 

their consistency, and to make explicit the implied constraints). 
Notably, only in case the temporal reasoning algorithms are proved to be correct 

and complete (with respect to the representation formalism) one can assure that: 

(i) the constraints are consistent (notably, if they are not, there is no execu-

tion of the CIG containing them that can satisfy all of the constraints) 

(ii) the window of time associated with CIG actions are correct with respect 

to the constraints (i.e., do not contain any time that is not “legal”, given 

the temporal constraints in the CIG 
(see the discussion in [11] for more details). 

As a consequence, a fundamental step in the development of a manager for temporal 
constraints is the analysis of the trade-off between the expressiveness of the represen-
tation formalism and the tractability of correct and complete temporal reasoning algo-
rithms [19]. 

4 Temporal Reasoning 

4.1 Representing CIG temporal constraints  

As regarding the representation formalism, the main challenge is how to represent the 

constraints about repetitions, and how to integrate such a representation with the repre-

sentation of the “standard” temporal constraints (i.e., the temporal constraints between 

non-repeated actions). 

“Standard” temporal constraints. We have chosen to model the temporal con-

straints concerning “standard” (i.e., non-repeated) actions in the CIGs, using a well-

known and widely-used AI framework, namely STP [20]. 

In STP, a set of constraints is modeled as a conjunction of bounds on differences of 

the form c  ≤  x – y  ≤  d, which have an intuitive temporal interpretation, namely that 

the temporal distance between the time points x and y is between c (minimum distance) 

and d (maximum distance). In STP the correct and complete propagation of the con-

straints (e.g., for consistency checking) can be performed in a time cubic in the number 

of time points, and the minimal network of the constraints is provided as output (i.e., 

the minimum and maximum distance between each pair of points) [20]. The minimal 

network can be computed by an “all-to-all shortest paths” algorithm such as the Floyd-

Warshall’s one. The STP framework can be used to model precise or imprecise tem-

poral locations (dates), durations, delays between points, and different forms of quali-

tative temporal constraints between time points and/or time intervals (see [21, 22]).  

Unfortunately, constraints about repeated actions cannot be easily captured by the STP 

framework. 

Temporal constraints about repetitions. In our approach, the constraints on repe-

titions and periodicities are temporal constraints of the form 

<nRepetitions, I-Time, repConstraints, conditions>. 

nRepetitions represents the number of times that the action must be repeated; I-

Time represents the time span in which the repetitions must be included; repCon-

straints may impose a pattern that the repetitions must follow; conditions allows to 
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express conditions that must hold so that the repetition can take place. Informally, we 

can roughly describe the semantics of the quadruple as the natural language sentence 

“repeat the action nRepetitions times in exactly I-Time according to repConstraints, 

if conditions hold”. 

repConstraintsi is a (possibly empty) set of pattern constraints, representing possi-

bly imprecise repetition patterns. Pattern constraints may be of type: 

- fromStart(min, max), representing a (possibly imprecise) delay between the 

start of the I-Time and the beginning of the first repetition; 

- toEnd(min, max), representing a (possibly imprecise) delay between the end of 

the last repetition and the end of the I-Time; 

- inBetweenAll(min, max) representing the (possibly imprecise) delay between 

the end of each repetition and the start of the subsequent one; 

- inBetween((min1, max1), …, (minnRepetitionsi-1, maxnRepetitionsi-1)), representing 

the (possibly imprecise) delays between each repetition and the subsequent one.  

For example, the temporal constraint modeling the repetition of the chemotherapy 

(as a whole) in Ex.1 is 

<6, 6wk, {inBetweenAll(23d, 23d), toEnd(23d, 23d)}, >. 

 Notably, our formalism to represent repetitions is recursive, in the sense that one can 

specify repetitions of repetitions, as a list of specifications <<nRepetitions1, I-Time1, 

repConstraints1, conditions1>, … ,<nRepetitionsk, I-Timek, repConstraintsk, con-

ditionsk>> as above. 

For example, the temporal constraint modeling the melphalan cycle is the following: 

  <<5, 5d, , >, <2, 1d, , >>. 

Integrated representation of temporal constraints. The formalism we propose to 

consider both “standard” constraints and constraints about repetitions is the STP-tree 

[11]. In an STP-tree, we model the constraints regarding repeated actions into separate 

STPs, one for each repeated action. The root of the tree (node N1 in the example in Fig. 

3) is the STP which homogeneously represents the constraints (including the ones de-

rived from the control-flow of actions in the guideline) between all the actions in the 

guideline (e.g., in N1, the fact that the duration of the chemotherapy is 168 days), except 

repeated actions. Each node in the tree is an STP, and has as many children as the 

number of repeated actions it contains. Each edge in the tree connects a pair of end-

points in an STP (the starting and ending point of a repeated action) to the STP con-

taining the constraints between its subactions, and it is labeled with the list of properties 

describing the temporal constraints on the repetitions. For example, in Fig. 3, we show 

the STP-tree representing the temporal constraints involved by the example Example 2 

above. 

Additionally, an independent STP must be used in order to represent the temporal 

constraints about the specific instances of the actions of the guidelines, as emerging 

from the executions of the guidelines on specific patients. 
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Fig. 3. STP-tree for the multiple myeloma chemotherapy guideline in Example 2. Edges inside 

STPs represent STP constraints; edges between STPs represent repetitions. Sch, Ech, Smc, Emc, 

Spc, Epc, Sm, Em, Sp and Ep stand for the starting (S) and ending (E) points of chemotherapy, 

melphalan cycle, prednisone cycle, melphalan treatment and prednisone treatment, respectively. 

4.2 Temporal reasoning 

In order to propagate the temporal constraints in the STP-tree, and to check their con-

sistency, it is not sufficient to check the consistency of each node separately. In such a 

case, in fact, we would neglect the repetition/periodicity information. Temporal con-

sistency checking, thus, proceeds in a top-down fashion, starting from the root of the 

STP-tree. Basically, the root contains a “standard” STP, so that the Floyd-Warshall’s 

algorithm can be applied to check its consistency. Thereafter, we proceed top-down 

towards the leaves of the tree. For each node X in the STP-tree (except the root), we 

progress as shown in the algorithm STPs_tree_consistency in Algorithm 1. 

function STP_tree_consistency(X: STPNode, RepSpec = (R1 = 

<nRepetitions1, I-Time1, repConstraints1, conditions1>, …, 

Rn = <nRepetitionsn, I-Timen, repConstraintsn, condi-

tionsn>)) : STP 

1. check that the repetition/periodicity constraint is 

well-formed (i.e., that repetitions nest properly) 

2. compute Max, i.e. the maximum duration of a single 

repetition of X according to RepSpec 

3. impose in X that the maximum distance between each 

pair of points is less or equals Max 

4. X  FloydWarshall(X) 

5. if X = INCONSISTENT then return INCONSISTENT else 

return X 

Algorithm 1. Algorithm for checking the consistency of a guideline (represented as an STP-

tree). 
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STP_tree_consistency takes in input the STP-node that must be checked (i.e. X) and 

the repetition/periodicity constraint (i.e., the repetition specification in the arc of the 

STP-tree entering node X), and gives as an output an inconsistency or, in the case of 

consistency, the local minimal network of the constraints in X considering also the rep-

etition/periodicity constraints. 

In step 1 it checks whether the repetition/periodicity constraint is “well-formed”, i.e. 

if it is consistent when it is taken in isolation (e.g., in a constraint such as R1 = <nRep-

etitions1, I-Time1, repConstraints1, conditions1> and R2 = <nRepetitions2, I-Time2, rep-

Constraints2, conditions2>, I-Time2 must be contained into I-Time1). In step 2 it com-

putes the maximum duration of a single repetition. This is obtained by considering the 

time that allows to perform a repetition assuming that all the other repetitions have the 

minimum possible duration. In step 3 it adds to the STP X the constraints stating that 

the maximum “duration” of X must be the computed maximum duration of a single 

repetition of X. Finally, in step 5 it checks the consistency of the “augmented” STP X 

via the Floyd-Warshall’s algorithm. 

Complexity. Considering that the number of nesting levels, in the worst case, is less 

than the number of classes, the algorithm is dominated by step 4, that is O(C3), where 

C is the number of actions in the guideline. 

Property 1. The top-down visit of the STP-tree is complete as regards consistency 

checking of the constraints in the STP-tree. 

Proof (sketch). The all-to-all-shortest-paths algorithm is complete for STP frame-

works.  The only constraints relating actions (or, better, time points) in different STPs 

in the tree are located on the arcs of the tree, and, by definition, the STP-tree does not 

allow loops between STPs. Since, in our approach, I-Times (if any) must be provided 

in a precise (exact) way, they cannot be further “restricted” by constraint propagation. 

Thus, there is no need to propagate forward and backward the constraints along the tree, 

and a top-down visit of the tree is sufficient1. 

5 Agent coordination facilities 

In the previous section, we have discussed the extensions to (i) the META-GLARE 

language and to (ii) the META-GLARE basic ontology to cope with the “annotations” 

required to support agent coordination. Indeed, such extensions to the knowledge rep-

resentation languages must be paired with software modules to acquire and navigate 

them, and to use them to support agents in the coordinated execution of CIGs. In the 

following, we detail such modules. In Section 5.1, we discuss the tools we provide to 

navigate the ontological knowledge. Such tools are exploited by the acquisition module 

(discussed in Section 5.2) to acquire proper and “standardized” annotations for the ac-

tions of the CIGs. In Section 5.3, we discuss how we have extended the META-GLARE 

execution engine in order to support agent coordination. Last, but not least, in Section 

5.4 we discuss the facilities we provide to the healthcare agents.  

                                                           
1 Notice, however, that the above reasoning mechanism does not provide the minimal network 

between all the actions in the STP-tree. 
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5.1 Navigation Module 

The ontology pointed out in Section 3.1 is important for two main tasks:  
(i) during the acquisition of CIGs, to support a “standardized” annotations of CIGs 

with qualifications, contexts and competences taken from the ontology, and  
(ii) during the execution of a CIG action, to support the search of agents having the 

properties required for the management (as a responsible, delegate, or executor) 
of such an action (as specified by the action’s annotations). 

To manage such needs, we have developed two different facilities to navigate the 

ontology: 
(1) schema browsing, 
(2) instance browsing. 

The schema browsing facility is used at acquisition time, and allows experts to nav-

igate the ontology (using the part-of and is-a relations) and to find qualifications/con-

texts/competences needed to annotate the CIG actions.  

The instance browsing facility is used at execution time to support agent coordina-

tion in the selection of “proper” agents. It allows users to find a specific agent on the 

basis of the relations part-of, is-a, instance-of, has-competence, belong-to. For exam-

ple, it supports the search of an agent on the basis of a qualification (e.g. Physician), a 

context (e.g. Neurology) and, possibly, a competence (e.g. Peripheral Neuropathy). 

This facility can give in output (i) one or more agents (and their contact information) 

satisfying the requirements, or (ii) one or more specific contexts, in which agents hav-

ing the required qualification and competences operate. 

5.2 Acquisition  

We have extended META-GLARE with an annotation support, supporting the acqui-

sition of CIG annotations. We have developed a user-friendly Graphical User Interface 

(GUI). Such a GUI takes advantage of the schema browsing facility discussed in Sec-

tion 5.1 to find in the ontology the proper qualifications, contexts and competences 

needed to annotate actions. 

Moreover, we have developed an ad-hoc module to support the definition and the 

acquisition of continuity constraints. The user can use this module to browse the CIG 

and to specify the set of actions in the CIG which belong to a continuity constraint by 

selecting such actions in the graphical representation of the CIG. 

5.3 Execution Engine 

The execution engine of META-GLARE has been deeply extended in order to support 

coordination in the execution of CIGs. Specifically, we provide facilities to support the 

identification of the responsible(s), of the delegate(s) and of the executor(s) for the next 

action(s) according to the CIG annotations, and to consider the window of time when 

the actions have to be executed, according to the temporal constraints in the CIG and 

to the times when the previous CIG actions have been executed.  

The main data structure supporting CIG execution  is an agenda  [13], containing a 

set of pairs {(A1,TA1), …,(Ak,TAk)} representing the actions to be executed next 
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(A1,…,Ak), and the window of time within which the actions have to be executed (TA1, 

…,TAk). Notably, (i) more than one pair may appear in the set, to support concurrent 

execution, and (ii) the time window of the action is evaluated by a temporal reasoner, 

as described in Section 4 above. 

To support the management of responsibilities\delegations\executions, the agenda 

has to be integrated with additional data structures. First of all, to grant the continuity 

of treatments (as modeled by the continuity constraints) at each time, the system has 

not only to support the management of the actions in the agenda, but also of each action 

belonging to the Responsibility Continuity Group (“RCG” in the following algorithm) 

of such actions. For each action A of such actions, a new data structure (called agent 

stack of A) has to be introduced, to store two different types of information: (i) the time 

window in which the action has to be executed, and (ii) a stack  of the form StackA: 

<(X1, role1), …,(Xk, rolej)> where Xi is a specific agent, and roleh her role in the man-

agement of the action A (i.e., responsible (R), delegate (D), or executor (E))2 storing 

the different agents involved in the management of such an action, and the window of 

time.  

An important issue regards the evaluation of the time windows associated with (i) 

the actions in the agenda, and with (ii) the actions in the RCG of the agenda actions. 

Both windows (i) and (ii) are evaluated by the temporal reasoner, as discussed in Sec-

tion 4. However, there is a subtle but important difference. The formers are evaluated 

whenever an action is entered in the agenda, i.e., whenever it has actually to be exe-

cuted. Therefore, the time window exactly indicates to the executor the range of time 

when the action has to be performed. On the other hand, the actions in the RCG groups 

are actions which do not necessarily have to be executed soon: for instance, the RCG 

of a neurologist visit may include all the following neurologist’s visits included in the 

CIG. From one side, it is important that the window of time in which such visits will 

have to be executed is evaluated soon. In such a way, when asking a neurologist to 

accept the responsibility\execution of such actions, we can also indicate her\him the 

(approximate) window of execution. This is an important information, since the agent 

may accept or reject also on the basis of her\him time availabilities.  However, such a 

window is generally a quite approximate one. Notably, in principle, whenever a new 

CIG action is executed, the temporal window of each RCG action can be restricted (by 

adding the time of execution of the action executed last to the previous set of con-

straints, and propagating the resulting set of constraints through the temporal reasoner). 

Thus, an important choice we have to take in our approach is whether and when we 

have to update the time windows associated with actions. Since temporal reasoning is 

quite computational expensive, we have chosen to evaluate such windows only twice:  
(i) First, they are evaluated whenever an action becomes part of an RCG 

group (so that we can show the window to agents while asking them to 
accept to manage them); 

                                                           
2 At the time of the execution of an action A, its agent stack StackA should contain the responsible 

(bottom of the stack), a certain number of delegates (zero delegates in case no delegation has 

been performed; more than one delegate is possible, to support delegation of delegations), and 

one executor (which might also be the last delegate, or the responsible). 
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(ii) Second, they are evaluated whenever actions enter into the agenda (i.e., 
when actions have actually to be executed next). At such a time, it is fun-
damental to give to the executor the precise window of execution (consid-
ering the constraints in the CIGs and its current execution status). 

The execution of a CIG starts with an initialization phase (see Algorithm 2 in the 

following). All the initial actions are inserted into the agenda, together with the window 

of time in which they must be executed. For each one of such actions, and for each 

action belonging to the Responsibility Continuity Group (“RCG” in the following al-

gorithm) of such actions, the approximate time window is evaluated, and the agent stack 

is initialized.  

Notably the responsibles of the first actions are predetermined and provided as input 

to the execution engine.  

The CIG execution engine operates as described by Algorithm 3. For each action A 

in the agenda, the CIG execution engine starts its execution by sending the execute 

message (line 2) to the agent on the top of the agent stack StackA, asking her to manage 

(according to her role) the action A in the time window TA. Notably, as discussed above, 

the time window TA is re-evaluated by META-GLARE at the time when A is inserted 

in the agenda (i.e., when the execution engine determines the CIG actions to be exe-

cuted next). In case action A is executed (line 3), A is removed from the Agenda (line 

4). Thus, the execution engine evaluates the set S of the next actions in the CIG to be 

executed, using the get_next function (line 5). Notably, identifying the next actions 

which have to be executed during the execution of a CIG is a standard operation (see 

[23]), and consider [24] as regards the META-GLARE approach).  

Each action B belonging to S is pushed onto the Agenda. Then, in the case that B 

has not yet a responsible (i.e., StackB has not been created yet), the responsible of A 

has to find the responsible for B, and for all the actions in RCG(B). To find such a 

responsible, we first call the temporal reasoner to evaluate, for each action C RCG(B), 

its temporal window. A message “next_responsible?” containing the resulting set of 

pairs (action, time-window)  (denoted by RCGT(B) in the algorithm -see line 12) is sent 

by the execution engine  to the responsible of A (i.e. the agent stored at the bottom of 

StackA) to advise her\him to search for a responsible for B and the other actions in 

RCGT(B) (line 12). Notably, since we manage continuity groups, the responsible of an 

action X in the CIG can be already determined before the time when X is inserted in 

the agenda (due to the fact that X belongs to the responsibility continuity group of an-

other action already inserted in the agenda). Finally, the stack of A is deleted (line 13). 
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1. let S={(A1,MA1), …, (Ak,MAk)} be the set of the start-

ing actions of CIG, and of their responsibles.  

2. for each action AiS  

    evaluate its temporal window Ti; 

      push (Ai,Ti) onto the Agenda  

3. for each (A, TA) in Agenda do 

    for each B  RCG(A) do 

     evaluate the temporal window TB 

     initialize(StackB, MA, “R”, TB) 

Algorithm 2. Pseudocode of the initialization of the CIG executor engine. 

1.   for each (A, TA) in Agenda do 

2.    OUTsend(top(StackA),execute(A,TA)) 

3.     if (OUT == OK) then 

4.        Remove A from Agenda 

5.        S  get_next(A) 

6.        for each B in S do 

7.            Evaluate the time window TB 

8.        push  (B, TB) onto the Agenda  

9.            if B has no responsible then 

10.              for each CRCG(B)  

11.         evaluate its time window 

12.            send(next_responsible?  

             (bottom(StackA), RCGT(B)) 

13.      Delete StackA   

14.   else  

15.     pop(stack of A) 

16.     goto 2 

Algorithm 3. Pseudocode of CIG executor engine. 

 

Otherwise, in case A is not executed (i.e. the agent on the top of StackA rejects its 

role), a pop on StackA is performed (line 15). Thus, A remains in Agenda and the engine 

executor has to handle it again sending an execute message to the new top of the stack 

of A.  

Notably, we support the fact that an agent accepts the responsibility, the delegation 

or the execution of a set of actions (all the actions in a continuity group) but, later on, 

stops to operate on some of the accepted actions. In such a case, the CIG execution 

engine “goes up” in the agent stack of the “rejected” actions to find new delegates or 

responsibles. Notably, though the current responsible may decide not to operate any 

more on the actions she previously accepted, before “retiring” she has to find a new 

responsible for them. 
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5.1 Support to Agents 

As discussed above, in META-GLARE we distinguish among three different “roles” 

that agents can play in the management of a CIG action: responsibles, delegates, and 

executors. Each role has different rights and duties, so that META-GLARE provides a 

different support for each role. 

A first set of facilities has the goal of supporting agents to find proper responsibles, 

delegates and executors of one or more CIG actions.  

The find_responsible function allows an agent to find a “proper” responsible for an 

action or a set of actions (in a continuity group). First of all, it calls the instance brows-

ing facility which returns the set of “candidate” agents that satisfy the requirements 

expressed by the CIG annotations (plus possible additional requirements introduced by 

the agent). The agent has to find in such a set a candidate willing to accept the new 

responsibility. Therefore, the agent selects one of the candidates and sends her\him an 

accept_responsibility?({(A1,TA1)…,(Ak,TAK)}) message,  indicating all the actions and 

their time windows. If the candidate accepts them, the agent stacks of A1, …, AK are 

created, specifying the new responsible, otherwise the search for a responsible goes on, 

considering (in the order chosen by the agent) the following candidate. 

The find_delegate? and find_executor? functions operate similarly, supporting the 

identification of appropriate delegates (if desired) and executors (compulsory) to ac-

tions (through the use of accept_delegation? and accept_execution? messages) and 

taking into account continuity groups. 

In our approach, each agent has the possibility to receive and send different types of 

messages, depending on her current role (responsible, delegate, executor). 

Responsible.  

Receipt of an execute(A,TA) message. In our approach, the CIG execution engine only 

sends execute(A,TA) messages to agents indicated in the agent stack of the action A, i.e., 

to agents that have already explicitly accepted to execute such an action.  However, the 

acceptance time could be long before the time when the execute message is received. 

As a matter of facts, an agent may have accepted to execute all the actions in a conti-

nuity group, along a quite long range of time. Therefore, despite the fact that the agent 

has already accepted, we also support the case that, for any reason, at the time when A 

must be executed, the responsible wants\needs to decline (e.g., the responsible of a pa-

tient with a chronic disease may retire or move away). We allow her to do so, but with 

a restriction: before “retiring”, the current responsible must find a new responsible for 

the action A and the other actions (not executed yet) in the responsibility continuity 

group of A (using the find_responsible function).  

On the other hand, if the responsible still retains her responsibility, she still has several 

options: she can  
(i) delegate DCG(A) (i.e., A and all the other actions in the Delegate Continuity 
Group of A), through the find_delegate function, 
(ii) find an executor for ECG(A) (i.e., A and all the other actions in the Executor 
Continuity Group of A, through the find_executor function, 
(iii) directly execute A herself. 
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Receipt of a next_responsible?({(A1,TA1),…, (Ak,TAk)} message. 

The current responsible is in charge of identifying an appropriate responsible for the 

actions A1… Ak. To support her in this task, we provide the find_responsible function, 

described above. 

Receipt of an accept_responsibility?({(A1,TA1),…, (Ak,TAk)} message.  

The agent may accept or reject the new responsibility. 

Notably, soon after the acceptance of the responsibility of a set of actions 

{(A1,TA1),…, (Ak,TAk)} (a Responsibility Continuity Group of actions), the new re-

sponsible can soon search for delegates or executors for such actions (considering their 

Delegate and Executor Continuity Groups respectively), using the find_delegate and 

find_executor facilities. In such a way, the mechanism of determining delegates and 

executors can proceed in a (partially) asynchronous way with respect to the actual exe-

cution of actions in the CIG. 

Delegate.  

When a delegate receives an execute(A,TA) message, she may decline. Such a situ-

ation is directly managed by the execution engine (see Algorithm 2), which pops the 

delegate from StackA and sends the execute(A,TA) message to the new top of the stack. 

On the other hand, if the delegate retains her role, she can delegate DCG(A), find an 

executor for ECG(A) or directly execute A herself. Additionally, she may accept or 

reject an accept_delegation?({(A1,TA1),…, (Ak,TAk)} request. 

Notably, as in the case of responsibles, soon after the acceptance of the delegation 

of a set of actions {(A1,TA1),…, (Ak,TAk)} the new delegate can look for delegates or 

executors for such actions. 

Executor.  

When an executor receives an execute(A,TA) message, she may decline. Such a sit-

uation is directly managed by the execution engine, as described above (concerning 

delegates). Otherwise, she must execute action A within the time interval TA. Addition-

ally, she may accept or reject an accept_execution?({(A1,TA1),…, (Ak,TAk)} request. 



22 

6 A Case Study 

In this section, we present an application of our approach to a GL for alcohol-related 

problems [10], adapted to the Italian context (see Figg. 4 and 5). First, we describe the 

first part of CIG that has been acquired in META-GLARE. Then, we show META-

GLARE in action.  

Fig. 4. META-GLARE graphical representation of part of the CIG on the treatment of alcohol-

related disorders (original figure in [12]). 

 

Fig. 5. The annotations of actions in Fig. 4 (original figure in [12]). 

The CIG starts with the collection of the patient clinical data (query action 1). The 

data are used to diagnose whether the patient is currently experiencing a crisis state 

(decision action 2). Since the management of an alcohol-related crisis is outside the GL 
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scope, the CIG ends. If, on the other hand, the patient is not experiencing a crisis, her 

clinical history is collected (query action 3), to distinguish whether it is the first time 

that the patient is in treatment for alcohol-related problems, or not (decision action 4). 

New patients require the collection of biological markers, blood alcohol concentration 

and anamnestic data (data request 5 and work action 6). On the other side, patients who 

were already cared for alcohol-related disorders need that only biological markers and 

blood alcohol concentration will be collected and examined (data request 12 and work 

action 13). For such patients, an evaluation of such data (decision action 14) is per-

formed to decide whether monitoring them or proceed with a detoxification. Focusing 

on new patients, after the collection of clinical information, a diagnostic decision about 

the presence of alcohol-related problems must be taken (decision action 7). In the case 

that the patient does not show alcohol-related problems, the CIG execution is ended. 

Otherwise, two different treatments can be applied, depending on the severity of alco-

hol-related problems; both start with a screening test (work actions 8 and 9 respec-

tively). Focusing on patients with a mild alcohol-dependence (work action 9), after 

evaluating the screening test results (decision action 10), the patient can be selected for 

a brief intervention for hazardous and harmful drinking (composite action 11), which 

basically consists in a set of motivational interviews.  

In Table 1 and Table 2 we show temporal information about the first part of the CIG 

that is used to exemplify the CIG execution. In particular, Table 1 shows the (minimal 

and maximal) duration of actions and Table 2 shows the (minimal and maximal) delay 

between actions (i.e. the delay between two actions is the (minimal/maximal) duration 

of the arc connecting them).  

Table 1. Duration of the actions in the CIG. 

Action number Duration (min-max) 

1 10-20 minutes 

2 10-20 minutes 

3 20-30 minutes 

4 10-20 minutes 

5 30-60 minutes 

6 1-3 days 

7 10-30 minutes 

8 20-40 minutes 

9 20-40 minutes 

10 10-30 minutes 

11 1-3 hours 

12 30-60 minutes 

13 1-3 days 

14 10-30 minutes 
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Table 2. Delay between actions in the CIG. 

Delay between actions (from - 

to) 

Duration (min-max) 

1– 2 0–20 minutes 

2– 3 0–30 minutes 

3 – 4 20–60 minutes 

4 – 5 1 - 2 days 

4 – 12 1 - 2 days 

5– 6 1 - 2 days 

6 – 7 1 – 2 days 

7– 8 1-6 hours 

8 – 9 1-6 hours 

9 – 10 1-2 hours 

10 – 11 1-3 days 

12 – 13 1 - 2 days 

13 – 14 1-3 days 

Exploiting the annotation support (see Section 4.2), we have annotated all the ac-

tions defining the possible qualification(s) of its responsible, delegate (if any) and ex-

ecutor. Moreover, we have identified and specified the continuity groups in the CIG. In 

this specific application, possible values for the attributes in the annotations are the 

following: 
• context: Community medicine (C1), SERT medicine (C2), in-patient care 
(C3), hospital ambulatory care (C4), social services (C5); 
• qualification: physician (R1), nurse (R2), healthcare assistant (R3), social as-
sistant (R4), laboratory technician (R5).  

The treatment continuity criteria demand that all the actions corresponding to the initial 

evaluation of the patient status (actions 1-4) must have a unique responsible (responsi-

bility continuity group RG1; see Fig. 5), which must be a physician (R1) or a social 

assistant (R4). The continuity group RG1 is further divided into two “subparts”, corre-

sponding to the two delegation continuity groups DG1 and DG2. In particular, DG1 

corresponds to the identification of a crisis currently in progress (actions 1 and 2) and 

DG2 corresponds to the identification of previous alcohol-related disorder treatments 

(actions 3 and 4). Moreover, due to the execution continuity constraints, action 1 and 

action 2 belong to a single execution continuity group (EG1) and the actions 3 and 4 

belong to a single execution continuity group (EG2). The executor of the actions in 

EG1 must be a physician (R1), or a social assistant (R4), or a nurse (R4). The actions 

in EG2 have the same constraints and the same annotations.  After action 4, there are 

two alternative treatment paths. One path manages patients who are treated for alcohol 

correlated problems for the first time. Such a path is annotated with a responsibility 

continuity group RG2 on the actions to evaluate the patient’s problem (action 5 and 7) 

and with a responsibility group RG3 on the exams needed for such an evaluation (action 

6). RG2 and RG3 require a physician (R1) as responsible. Notably, a continuity group 

can contain non-contiguous actions (e.g., RG2 is composed by actions 5 and 7 which 

are not contiguous in the CIG). 

In the following, we exemplify how META-GLARE extended execution engine can 

work on the above part of the CIG. 
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STEP 0: We suppose that the execution of the CIG starts at day 1 hour 10 minute 0. At 

the beginning, the META-GLARE executor engine identifies the first action (i.e. action 

1) and puts it in the agenda. We suppose that agent A, a social assistant in the social 

services SS1, is the responsible of action 1. Since action 1 is in RG1, the responsibility 

of A regards all the actions belonging to such a continuity group (i.e., actions 1, 2, 3 

and 4). Thus, the agent stacks of the four actions are created and initialized with X as 

responsible and with their time windows. In the initial step, the executor engine creates 

the agent stacks for actions 1-4 as follows (line 3 of Algorithm 1): 

agent stack1: (<(1, 10,0), (1, 10, 0), (1, 10, 10), (1, 10, 15)>,<(A,R)>);  

agent stack2: (<(1, 10, 10), (1, 10, 25), (1, 10, 20), (1, 10, 45)>,<(A,R)>); 

agent stack3: (<(1, 10, 20), (1, 11, 15), (1, 10, 50), (1, 11, 55)>,<(A,R)>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R)>).   

The agenda of the execution engine contains only action 1 and its temporal window, 

represented by the quadruple <(1, 10, 0), (1, 10, 0), (1, 10, 10), (1, 10, 15)>, that means 

that the action has to start between day 1 hour 10 minute 0 (i.e. the first triple) and day 

1 hour 0 minute 0 (i.e. the second triple) and has to end between day 1 hour 10 minute 

10 (i.e. the third triple) and day 1 hour 10 minute 15 (i.e. the last triple).  

Agenda: <1,<(1, 10,0), (1, 10, 0), (1, 10, 10), (1, 10, 15)>. 

STEP 1: the executor engine sends an execute message for each action in the agenda 

(line 2 on Algorithm 2). In the agent there is only action 1, therefore the executor engine 

sends a message to the agent in the top element of the stack1 (i.e., to A) to perform the 

execution of action 1. A receives the execute message and she decides to execute action 

1 (i.e. she takes also the role of executor). Thus, A is put in the agent stack of action 1 

as executor, and since actions 1 and 2 belong to the execution continuity group EG1, 

she has also the role of executor of action 2 (i.e. A is pushed as executor also onto the 

agent stack of action 2). At this point, the status of agent stacks and the agenda is the 

following:  

agent stack1: (<(1, 10,0), (1, 10, 0), (1, 10, 10), (1, 10, 15)>,<(A,R), (A,E)>);  

agent stack2: (<(1, 10, 10), (1, 10, 25), (1, 10, 20), (1, 10, 45)>,<(A,R), (A,E)>); 

agent stack3: (<(1, 10, 20), (1, 11, 15), (1, 10, 50), (1, 11, 55)>,<(A,R)>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R)>).  

A executes action 1 returning “OK” (line 2). The execution of action 1 lasts 10 

minutes. Since action 1 has been executed, the executor engine removes it from the 

agenda (line 4). Then (line 5), the next action of the CIG is found (i.e. action 2) and it 

is put in the agenda with its time window and the agent stack of action 2 is updated with 

such a new time window (line 8). Action 2 has already a responsible, thus the agent 

stack of action 1 is simply deleted. 

agent stack2: (<(1, 10, 10), (1, 10, 20), (1, 10, 20), (1, 10, 40)>,<(A,R), (A,E)>); 

agent stack3: (<(1, 10, 20), (1, 11, 15), (1, 10, 50), (1, 11, 55)>,<(A,R)>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R)>).  

Agenda: <2, <(1, 10, 10), (1, 10, 20), (1, 10, 20), (1, 10, 40)>>. 
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STEP 2: the above procedure is similarly repeated for action 2 in the Agenda. We sup-

pose that, after receiving the message, A, who is registered as executor of action 2, 

executes it. A decides that the patient is not experiencing a crisis. Action 2 starts at day 

1 hour 10 minute 10 and ends at day 1 hour 10 minute 30 (i.e. action 2 lasts 20 minutes). 

Thus, the next action is action 3 and then action 3 is put in the agenda with its time 

window and as consequence the time window in agent stack3 is updated. Also in this 

case, action 3 has its responsible already defined (i.e. A).  

agent stack3: (<(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>,<(A,R)>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R)>).  

Agenda: <3, <(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>>. 

STEP 3: Action 3 is the only action in the Agenda and is managed by sending an exe-

cute message to its responsible A (i.e. A is on the top of stack in agent stack3). In this 

case we suppose that A decides to delegate such an action. Exploiting the instance 

browsing facility of our navigation tool (see Section 4.1), A searches for an agent sat-

isfying the requirements for action 3 (i.e. a social assistant or a physician in her context). 

Through the navigation tool, A obtains a list of possible agents. She selects a preferred 

one from the list and asks for acceptance, until she receives a positive reply. We sup-

pose that (possibly after some negative replies of social assistants due to the time win-

dow associated to the action) the social assistant B accepts. Since actions 3 and 4 belong 

to the same delegation continuity group (i.e. DG2), B is also delegated for action 4. 

agent stack3: (<(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>,<(A,R), (B,D)>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R), (B,D)>).  

Agenda: <3, <(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>>. 

B decides to be the executor of action 3. Since actions 3 and 4 belong to the same 

execution continuity group EG2, B is nominated also as the executor of action 4 and 

she is put in the two stacks as executor.  

agent stack3: (<(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>,<(A,R), (B,D), (B,E))>);  

agent stack4: (<(1, 11, 10), (1, 12, 55), (1, 11, 20), (1, 13, 15)>,<(A,R), (B,D), (B,E)>).  

Agenda: <3, <(1, 10, 30), (1, 11, 0), (1, 11, 0), (1, 11, 50)>>. 

Y executes action 3. Action 3 starts at day 1 hour 10 minute 40 and lasts 40 minutes. 

Then action 4 is put in the agenda as next action with it is time window and as conse-

quence the time windows in agent stack4 are updated. 

agent stack4: (<(1, 11, 40), (1, 12, 20), (1, 11, 50), (1, 12, 40)>, <(X,R),(B,D),(B,E)>).  

Agenda: <4,<(1, 11, 40), (1, 12, 20), (1, 11, 50), (1, 12, 40)>>. 

STEP 4: the engine takes action 4 from the agenda, then it notifies to B (i.e. B is on the 

top of stack in agent stack4) to execute action 4. Exploiting the instance browsing facil-

ity B identifies the agent C as executor of action 4. C satisfies the action annotations 

(i.e. she is a nurse and operates in SS1). When she accepts the assignments, she is put 

on agent stack4 as executor. 

agent stack4: (<(1, 11, 40), (1, 12, 20), (1, 11, 50), (1, 12, 40)>, <(A,R),(B,D),(C,E)>).  

Agenda: <4, <(1, 11, 40), (1, 12, 20), (1, 11, 50), (1, 12, 40)>>. 



27 

C executes action 4 at day 1 hour 12 minute 0 and its execution lasts 20 minutes. C 

identifies that the patient is treated for alcohol-related problems for the first time (i.e. 

the next action is action 5). Thus, action 5 is put in the agenda with its time window. 

Action 5 has not yet a responsible (line 9), thus the system asks A, the responsible of 

action 4 (i.e., the element at the bottom of the stack in agent stack4) to find a responsible 

for such a new action. A must find a responsible who satisfies the action annotation (i.e. 

an agent who is a physician (R1) and works either in a Community medicine (C1) or in 

a SERT medicine (C2) or in-patient care (C3) or in a hospital ambulatory care (C4)). 

Using the instance browsing facilities, A finds a physician D, who works in the com-

munity medicine CM1, and asks her for the responsibility of action 5. D accepts the 

responsibility and, since action 7 belongs to the same responsibility continuity group 

(RG2), D is also nominated as responsible of both the actions in RG2.  

agent stack5: (<(2, 12, 00), (3, 12, 00), (2, 12, 30), (3, 13, 00), <(D,R)>);  

agent stack7:( <(5, 12, 30), (10, 13, 00), (5, 12, 40), (10, 13, 30), <(D,R)>).  

Agenda: <5,< <(2, 12, 00), (3, 12, 00), (2, 12, 30), (3, 13, 00)>. 

Then, the CIG execution goes on in a similar way. 

7 Comparisons and Conclusions 

Clinical guidelines encode the “best” evidence-based procedures to treat specific dis-

eases, and are important in order to ensure the quality of healthcare treatments. How-

ever, they usually involve the activity of multiple healthcare agents, operating in dif-

ferent contexts, having different qualifications and competences, and playing different 

roles (e.g., responsible vs. executor of an action). In our research, we have extended 

META-GLARE, our system to manage CIGs, to provide users with a comprehensive 

and homogeneous set of facilities to manage the above phenomena. In particular, 

META-GLARE allows to distinguish among different “roles” that an agent can play in 

the management of a CIG action:  responsible, delegate and executor. For each action, 

META-GLARE supports the specification of the qualification and of the specific com-

petences that each responsible, delegate and executor must have to manage it, as well 

as the context in which the action has to be managed. We also support a set of facilities 

for agent coordination to grant that, at each time during the execution of a CIG on a 

specific patient, each action to be executed “next” has a “proper” responsible and an 

executor (and, possibly, some delegate), and is executed in a “proper” context. Addi-

tionally, we also support “continuity constraints”, to grant that , whenever possible, 

actions requiring the same qualification and competences are managed by the same 

agent. Last, but not least, our approach deeply takes into account the temporal dimen-

sion. Temporal reasoning is exploited in order to indicate the time window when actions 

have to be executed. Such an information is provided to executors, but is also used to 

find responsibles and delegates (accepting to manage the actions in the indicated time 

window).   
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Notably, we have described our approach on the basis of META-GLARE, but it is 

worth stressing that our methodology is completely general and system\ application-

independent (i.e. other CIG systems can be extended applying our approach).  

The approach described in this paper is the result of a stream of research in the area 

of CIG agent coordination, that we started already in [25]. In such an approach, we only 

considered the responsibles of actions. We have proposed to annotate (colour, in the 

terminology in [25]) CIG actions with context, qualification and competences for the 

responsible, and we have proposed several facilities to acquire and query annotations, 

and to execute coloured CIGs. In [26] we have extended such an initial approach along 

two main directions: 
(1) we have considered the distinction between responsibles, delegates, and exec-

utor, and proposed facilities to support the coordination of such different 
“roles”; 

(2) we have taken into account continuity constraints, representing them and con-
sidering them in the agent coordination process. 

In this paper we propose a further step forward of our approach: to make our support 

fully applicable in the real practice, we also considered the temporal dimension. Con-

sidering time is essential for the practical applicability of CIG systems, but deeply af-

fects the complexity of the phenomena to be coped with. First of all, we had to enrich 

our approach with temporal reasoning capabilities, to evaluate the window of time in 

which the CIG actions have to be managed, according with the temporal constraints in 

the CIG, and with the time of execution of the previously executed CIG actions. Sec-

ond, we had to properly integrate such temporal reasoning capabilities within the agent 

coordination process. Indeed, we suggest the agent coordination process is deeply af-

fected by the temporal analysis, since the temporal windows of execution have to be 

evaluated not only when actions enter in the agenda (i.e., when actions have to be ac-

tually executed), but also at coordination time, when agents are requested to accept the 

responsibility, delegation, or execution of CIG actions, so that they can accept or reject 

also considering the estimated time when such actions will have to be carried on. To 

consider such fundamental issues, in this paper we have proposed the temporal reason-

ing facility (Section 4), and we have deeply extended the coordination facilities (Sec-

tion 5), and the CIG executor engine (Section 5) presented in our previous work in [26]. 

While in the literature there is no other approach to CIGs that has provided a support 

considering all the aspects above, several approaches have faced at least few of them.  

First of all, the treatment of the temporal dimension of CIG has attracted quite a lot 

of attention within the medical informatics community. For instance, GLIF [27, 28] 

deals both with temporal constraints on patient data elements and with duration con-

straints on actions and decisions. In PROforma [29], guidelines are modelled as plans, 

and each plan may define constraints on the accomplishment of tasks, as well as task 

duration and delays between tasks. Moreover, temporal constructs can also be used in 

order to specify the preconditions of actions. DILEMMA and PRESTIGE [30] model 

temporal constraints within conditions. EON [31] uses temporal expressions to allow 

the scheduling of guideline steps, and deals with duration constraints about activities. 

Moreover, by incorporating the RESUME system, it provides a powerful approach to 

cope with temporal abstraction. In EON, the Arden Syntax allows the representation of 
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delays between the triggering event and the activation of a Medical Logic Module 

(MDL), and between MDLs [32]. 
Within the AI community, it is widely recognized that temporal constraints are al-

most useless if they are not paired with adequate temporal reasoning mechanism to 
draw proper inferences from them [19], and many temporal reasoning approaches have 
been devised (see, e.g. the survey in [19]. Indeed, also the authors of this paper have 
been very active in the area [33–42]).  However, the CIG community has paid only a 
(very) limited attention to temporal reasoning. This is quite surprising to us since, as 
discussed in [11] and in this paper, temporal reasoning is necessary to determine the 
time when next actions have to be executed (given the temporal constraints in the 
CIGs). Notable exceptions are represented by the approaches by Shahar [43] and by 
Duftschmid et al.  [44]. 

In Shahar’s approach, the goal of temporal reasoning is not to deal with temporal 
constraints (e.g., to check their consistency), but to find out proper temporal abstrac-
tions to data and properties. Therefore, temporal reasoning is not based on constraint 
propagation techniques, in fact, e.g., interpolation-based techniques and knowledge-
based reasoning are used. 

Miksch et al. have proposed a comprehensive approach based on the notion of tem-
poral constraint propagation [43, 44]. In particular, in Miksch et al.’s approach, differ-
ent types of temporal constraints – deriving from the scheduling constraints in the 
guideline, from the hierarchical decomposition of actions into their components and 
from the control-flow of actions in the guideline – are mapped onto an STP framework 
[20]. Temporal constraint propagation is used in order to (1) detect inconsistencies, and 
to (2) provide the minimal constraints between actions. In [44], there is also the claim 
that (3) such a method can be used by the guideline interpreter in order to assemble 
feasible time intervals for the execution of each guideline activity. Moreover, advanced 
visualization techniques are used in order to show users the results of temporal reason-
ing [45]. 

Notably, however, none of the above approaches have considered temporal reason-

ing in conjunction with the agent coordination phenomena discussed in this paper. 

Moreover, while several approaches to agent coordination have been proposed in the 

CIG literature (as widely discussed below), none of them takes into account the tem-

poral reasoning facilities we propose in this paper. 

In the formalism in [46], Fox’s group has proposed an extension of the PROforma 

formalism to specify who will execute an action. However, the authors do not focus on 

agent coordination and action execution in different contexts. The goal of such a work 

is that of exploiting the pieces of information concerning agents for the sake of CIG 

contextualization (considering local human resources), and for flexibly adjusting them 

through delegation. 

[47] have proposed a workflow-based solution to manage chronic patients over long 

time periods. Such an approach aims at allowing patients to obtain the necessary 

healthcare services by accessing different locations/organizations, which have to ex-

change/communicate health data whenever needed. The final goal of such an approach 

is to support cooperative work between different healthcare organizations; moreover, 

the authors model organizational knowledge (i.e. qualifications, resources etc.) by 

means of ontologies – as we do. However, their approach is not as flexible as ours, 
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because interactions between agents, and allocations of the next action to a specific 

responsible, are strictly predetermined by a contract and cannot be determined dynam-

ically during the CIG execution. On the other hand, we allow the responsible of the 

current action to navigate the ontology, and to dynamically and freely identify the re-

sponsible and\or the executor of the next action on the basis of the available knowledge 

and constraints. Moreover, they do not support delegation, and do not take into account 

temporal reasoning issues. 

[48] propose an ontology-driven execution of CIGs. Their approach relies on a multi-

agent system, where agents in a medical center include not only persons, but also struc-

tures. In such an approach, the description of each CIG action includes a  hasRespon-

sible relation relating the action to one agent or to a set of agents. The main contribution 

of such an approach regards the delegation issue in a supervised fashion and the auto-

mation of the coordination of internal activities using a medical-organisational ontol-

ogy. Since their approach is meant to be applied within a specific medical centre, it is 

focused on supporting interaction in a distributed environment, where the coordination 

between actors cannot be managed automatically.  

Grando et al. [49] formalize cooperative work in CIG execution (but not distributed 

executions across different contexts). Their approach mainly focuses on the delegation 

of tasks to specific members of the working team, on the basis of their competences. 

Specific attention is devoted to cope with the assignment of the responsibility to enact 

services, and to exception handling. Specifically, they extend the design pattern frame-

work introducing the types role (qualification in our approach) and actor, and a set of 

relations between key concepts. Since actors have roles and competences, they recall 

our notion of agent. Therefore, the authors take into account notions that are quite sim-

ilar to our annotations. However, they do not consider the use of an ontology to formal-

ize and standardize them. On the other hand, Grando et al. do not consider contexts: in 

this sense, their approach is more limited than ours, and not straightforwardly extenda-

ble to deal also with distributed (and not just cooperative) CIG executions. Moreover, 

temporal reasoning issues are not taken into account by Grando et al.  

[50] have proposed a framework to support coordinated CIG execution by interdis-

ciplinary healthcare teams. They distinguish among team managers, practitioner assis-

tants, patient representatives (notably, such classes do not correspond either to our qual-

ification classes, or to our roles). They have the concept of capability, which strictly 

resembles the notion of competence in our approach. They annotate actions, but their 

annotations are only related to the capability requirements. A main difference with re-

spect of our approach is that Wilk et al. only consider CIG action executors, while they 

do not take into account responsibles and delegates. Moreover, they have the concept 

of team, i.e. a set of agents (defined using a hybrid approach) who manage the execution 

and are coordinated by a team manager, i.e. the responsible of execution for the whole 

CIG. The identification of executor of an action is not as general as the one in our 

approach: only the team manager can identify the executors and she has to take into 

account the agents in her team first. Only in the case that there are not any suitable and 

available agents in the team, she can search an external agent to execute the action and 

can add it to the team. Additionally, they do not cope with the notion of context of 

execution, as well as with temporal reasoning.  
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In summary, despite a huge interest of the Medical Informatics community in the 

CIG agent coordination phenomena, no approach in the literature has been devised until 

now coping with all the different issue covered by the approach we have proposed in 

this paper. In particular, to the best of our knowledge, our approach is the first CIG 

approach to agent coordination facing the temporal dimension through temporal rea-

soning, to determine the execution time of CIG actions. 
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