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Abstract: Background

The osteoconductive properties of bone grafting materials represent one area of
research for the management of bony defects found in the fields of periodontology and
oral surgery. From a physico-chemical aspect, the wettability of the graft has been
demonstrated to be one of the most important factors for new bone formation. It is also
well-known that Argon plasma treatment (PAT) and ultraviolet irradiation (UV) may
increase the surface wettability and, consequently, improve the regenerative potential
of the bone grafts. Therefore, the aim of the present in vitro study was to evaluate the
effect of PAT and UV treatment on the osteoconductive potential of various bone
grafts.

Materials & Methods

The following four frequently used bone grafts were selected for this study: synthetic
hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical
xenogenic bone matrices (CaBM, CoBM). Sixty-six serially numbered disks 10mm in
diameter were used for each graft material and randomly assigned to the following
three groups: test 1 (PAT), test 2 (UV) and control (no treatment). Six samples
underwent topographic analysis using SEM pre- and post-treatments to evaluate
changes in surface topography/characteristics. Additionally, cell adhesion and cell
proliferation were evaluated at 2 and 72 hours respectively following incubation in a
three-dimensional culture system utilizing a bioreactor. Furthermore, the effects of PAT
and UV on immune cells were assessed by measuring the viability of human
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macrophages at 24 hours.

Results

The topographic analysis showed different initial morphologies of the commercial
biomaterials (e.g. Mg-HA and BCP showed flat morphology, BM samples were
extremely porous with high roughness). The surface analysis following experimental
treatments did not demonstrate topographical difference when compared to controls.
Investigation of cells demonstrated that PAT treatment significantly increased cell
adhesion of all 4 evaluated bone substitutes, whereas UV failed to show any
statistically significant differences. The viability test revealed no differences in terms of
macrophage adhesion on any of the tested surfaces.

Conclusion

Within their limitations, the present results suggest that treatment of various bone
grafting materials with PAT appears to enhance the osteoconductivity of bone
substitutes in the early stage by improving osteoblast adhesion without concomitantly
affecting macrophage viability.

Clinical Relevance

Treatment of bone grafts with PAT appears to result in faster osseo-integration of the
bone grafting materials and may thus favorably influence bone regeneration.
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Abstract 

Background: The osteoconductive properties of bone grafting materials represent one area of 

research for the management of bony defects found in the fields of periodontology and oral surgery. 

From a physico-chemical aspect, the wettability of the graft has been demonstrated to be one of 

the most important factors for new bone formation. It is also well-known that Argon plasma 

treatment (PAT) and ultraviolet irradiation (UV) may increase the surface wettability and, 

consequently, improve the regenerative potential of the bone grafts. Therefore, the aim of the 

present in vitro study was to evaluate the effect of PAT and UV treatment on the osteoconductive 

potential of various bone grafts. 

Materials & Methods: The following four frequently used bone grafts were selected for this study: 

synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical 

xenogenic bone matrices (CaBM, CoBM). Sixty-six serially numbered disks 10mm in diameter were 

used for each graft material and randomly assigned to the following three groups: test 1 (PAT), test 

2 (UV) and control (no treatment). Six samples underwent topographic analysis using SEM pre- and 

post-treatments to evaluate changes in surface topography/characteristics. Additionally, cell 

adhesion and cell proliferation were evaluated at 2 and 72 hours respectively following incubation 

in a three-dimensional culture system utilizing a bioreactor. Furthermore, the effects of PAT and UV 

on immune cells were assessed by measuring the viability of human macrophages at 24 hours. 

Results: The topographic analysis showed different initial morphologies of the commercial 

biomaterials (e.g. Mg-HA and BCP showed flat morphology, BM samples were extremely porous with 

high roughness). The surface analysis following experimental treatments did not demonstrate 

topographical difference when compared to controls. Investigation of cells demonstrated that PAT 

treatment significantly increased cell adhesion of all 4 evaluated bone substitutes, whereas UV failed 

to show any statistically significant differences. The viability test revealed no differences in terms of 

macrophage adhesion on any of the tested surfaces. 

Conclusion: Within their limitations, the present results suggest that treatment of various bone 

grafting materials with PAT appears to enhance the osteoconductivity of bone substitutes in the 

early stage by improving osteoblast adhesion without concomitantly affecting macrophage viability. 

Clinical Relevance: Treatment of bone grafts with PAT appears to result in faster osseo-integration 

of the bone grafting materials and may thus favorably influence bone regeneration.  

 

Keywords: bone graft, plasma of Argon, bio-activation, osseointegration, osteoconductivity 
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Introduction 

Bone substitutes/bone grafting materials are frequently used to reconstruct various types of 

periodontal and bone defects to improve tooth prognosis or accommodate dental implants [1, 2]. 

The main indications for using bone substitutes are extraction-sockets preservation, as well as 

lateral/horizontal and vertical bone augmentation [3]. Therefore, filling extraction sockets with 

slowly-resorbable bone grafts/bone substitutes enables better ridge preservation and improves the 

conditions for future implant placement [4] Moreover, the use of bone substitutes in conjunction 

with guided bone regeneration (GBR) is considered a standard treatment modality for lateral bone 

augmentation, particularly when used in conjunction with implant placement [3]. Furthermore, the 

use of bone substitute materials provides the stability for immediately placed implants and, by 

stabilizing soft tissues, contributes also to improvements in aesthetic outcomes [5-7]. 

 

Regarding the choice of an ideal bone substitute, a mixture of autogenous bone and 

synthetic material has previously been suggested in order to reduce the excessive morbidity of the 

donor site and to compensate for the fast resorption rate of autogenous bone [8, 9]. During lateral 

augmentations, the additional use of a resorbable membrane has also been recommended to cover 

the grafts [2]. Similarly, autogenous bone mixed with xenografts and/or alloplastic materials has 

also been demonstrated efficient for vertical bone regeneration in combination with non-

resorbable membranes [10]. In contrast, in case of limited anatomical conditions associated with 

bone deficiency such as for sinus floor elevation, the use of allografts and xenografts with slower 

resorbability have been suggested as an optimal choice [11].  

 

Globally, the use of biomaterial-supported reconstructive approaches provides substantially 

higher clinical improvements in intrabony defects when compared to the open flap debridement 

(OFD) alone [12]. From a clinical point of view, reconstructive procedures including the use of bone 

grafting materials, have demonstrated higher clinical attachment level gains, probing depth 

reductions and defect fill than with OFD alone [13]. However, it was recently emphasized that 

despite the observed clinical improvement, the clinical and radiographic parameters may not 

necessarily reflect true histological regeneration [1].  

Bone regeneration is a very challenging clinical endeavor since bone cells proliferate 

substantially slower than fibroblasts and epithelial cells, and thus, bone regeneration can be 

jeopardized by the ingrowth of non-osseous tissues. Hence, one of the major requests for bone 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

 

 

 

grafts is the property to maintain the space for the new bone and to prevent fibrous healing [14]. 

Additionally, differentiation of pre-osteoblasts is regulated by many chemical factors such as partial 

oxygen pressure and many other signaling factors, indicating that inappropriate local conditions 

may also negatively affect osseous healing [15]. It has been demonstrated that the healing of bone 

defects, following the use of bone grafting materials, depends greatly on the interaction between 

the bone graft and the bone cells of the host, being influenced by the individual bone regenerative 

potential, defect morphology, and physico-chemical properties of the biomaterial surface [16, 17]. 

Regarding the physico-chemical surface characteristics of the bone substituents, many factors such 

as crystallinity, crystal size, particle size, porosity and surface roughness affect the biological 

behavior of the biomaterial [18]. It has been shown that surface wettability represents the crucial 

factor for osteoconductivity since the amount of growth factors and proteins on the material 

particles proportionally increase migration and adhesion of bone cells. In brief, during healing, the 

bone cells are attracted to the biomaterial surface by the proteins absorbed on the biomaterial 

surface and further adhere to gradually replace the biomaterial with newly formed bone. The 

extension and strength of such protein adhesion plays a role in regulating proliferation and 

differentiation of cells involved in the regeneration process [19]. Highly hydrophilic surfaces have 

been shown to adsorb these molecules in a denatured and rigid state while highly hydrophobic 

materials prevent the adsorption of proteins. Moreover, positively charged surfaces have been 

demonstrated to promote optimal adhesion levels [20]. 

 Irradiation through plasma has become a valuable option among the technologies capable 

of increasing surface wettability and reactivity of materials [21, 22]. From a physicochemical point 

of view, the effect of plasma is mediated by the surface activation at the atomic and molecular level, 

which produces hydrophilic surfaces; thus, enhancing their wettability [23, 24]. In addition, this 

process has been demonstrated to remove all chemical traces left from former treatments, 

effectively producing cleaner and better controlled surfaces than with other preparation methods 

[25, 26]. Consistently, plasma application has been shown to enhance tissue adhesion [27].  

Based on these combined previous findings, it was hypothesized that treatments capable of 

increasing surface wettability may improve the regenerative potential of the bone grafts used in 

reconstructive surgery of periodontal and bone defects [28]. However, until now limited data are 

available on the potential influence of PAT and UV treatment on the osteoconductivity of various 

bone grafts used in reconstructive periodontal and implant surgery [29]. 
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Therefore, the aim of the present in vitro study was to evaluate the effect of PAT and UV treatment 

on the osteoconductivity of bone grafts by assessing osteoblast adhesion and proliferation, surface 

topography and macrophage adhesion. 

 

Materials and methods 

The present in vitro study was designed to estimate the effect of two experimental treatments 

including Argon plasma treatment (PAT) and ultraviolet irradiation (UV) on osteoconductivity of the 

following four different bone grafts used in reconstructive periodontal and implant surgery: 

1. Synthetic pure hydroxyapatite disks (Mg-HA, Sintlife, Finceramica, Faenza Italy) 

2. Biphasic calcium phosphate disks (BCP, SUNSTAR Degradable Solutions AG, Schlieren, 

Switzerland) 

3. Cancellous animal bone matrix disks (CaBM, Sp-Block, Tecnoss, Coazze, Italy) 

4. Cortical animal bone matrix disks (CoBM, Coritical Lamina, OsteoBiol, Tecnoss, Coazze, Italy) 

 

A power analysis was estimated on the pilot samples [28] using the mean cell adhesion values of 

167.7±28.1 cells/field (control) vs 384.5±38.8 cells/field (test) at 2 hours (P =0.0001) will be projected 

by setting effect size dz = 1.438, error probability a = 0.05, and power = 0.95 (1-b error probability), 

resulting in 4 samples from each sub-group (G* Power 3.1.7 for Mac OS X Yosemite, version 10.10.3). 

 

Experimental design 

The synthetic graft material disks were specially designed for research use within this study. They 

were pressed from spherical granules and demonstrated a flat surface (size: 600-900 microns for 

Magnesium-enriched-Hydroxyapatite; size: 450-1000 microns for BCP, made of 60% HA, 40% β-TCP). 

Xenograft disks (non-commercial products) were produced by trimming from an organic porcine 

bone maintaining collagen and their porous structure. One-hundred-ten serially numbered blocks 

10mm in diameter for each graft material were used in the present study. The blocks were divided 

into 5 groups of 9 samples each. For each group, four blocks were randomly allocated as test group 

1 and underwent Argon plasma treatment (10 W at 1 bar for 20 minutes) in a plasma reactor (Plasma 

R, Sweden & Martina, Padua, Italy). Additional four graft blocks for each group were allocated as test 

group 2 and left UV light (Toshiba, Tokyo, Japan) for 20 min (15 W) at ambient conditions (intensity: 

0.1 mW/cm2 [λ = 360 ± 20 nm] and 2 mW/cm2 [λ = 250 ± 20 nm]), as described by Aita [30]. The 
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remaining four graft blocks for each group non-treated disks of each sub-group were used as 

controls.  

Additionally, four samples for each graft material were used for topographic and surface analysis 

pre- and post-treatment. 

A flow diagram is depicted in Figure 1. 

 

Cell culture 

To characterize the biological response in vitro, two human osteoblast cell lines (MG63, Saos-2, 

ATCC), macrophages RAW 264.7 (ATCC) and Mesenchymal Stem Cells (D1 ORL-UVA ATCC) were 

used. Cells were maintained respectively in DMEM 10% Fetal bovine serum (FBS) (Gibco); McCoy's 

5a Medium Modified 15% FBS; RPMI-1640 Medium and DMEM 10% FBS adding 100 U/ml penicillin, 

100 μg/ml streptomycin, under a humidified atmosphere of 5% CO2 in air, at 37°C.  Cells were 

passaged at sub-confluency to prevent contact inhibition. 

 

Cell adhesion 

Cell adhesion on grafts was evaluated using a 24 well plate at 2 hours after plating. Cells were 

detached using trypsin for 3 minutes, carefully counted and seeded at 2 x 103 cells/disk in 100μl of 

growth medium on the samples. The 24-well plates were kept at 37°C, 0,5%, CO2 for 15 min. The 

grafts were carefully washed with PBS and were treated with DAPI to stain cell nuclei (Mussano et 

al. 2017a, Genova et al. 2017) . The number of adherent cells was determined by counting the 

number of DAPI-positive nuclei.  

 

Bioreactor 

In order to obtain a proper cell growth on the graft materials, the LiveBox2 bioreactor (IVTech) was 

used. The bioreactor is composed of a peristaltic pump, a reservoir and a perfusion chamber. The 

perfusion chamber is composed of two chambers separated by a porous membrane (Fig. 2). The 

sigmoidal flux mode was implemented so as to achieve a medium flux from the upper chamber to 

the lower chamber, thus allowing a proper graft perfusion. The bioreactor was kept under a 

humidified atmosphere of 5% CO2 in air, at 37°C. 

 

Cell proliferation 
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To evaluate the effects of PAT and UV treatment on osteoblast proliferation, MG63 and Saos-2 

growth was tested by incubating osteoblasts on different graft materials chosen. In order to 

evaluate the cell proliferation rate, 5000 cells were seeded on each graft sample and incubated for 

72h in the bioreactor. Cell proliferation was measured using CellTiter GLO (Promega) following the 

manufacturer’s instructions [31]. 

 

Macrophage activation. 

Macrophages are widely accepted as regulators of wound healing [32] and play an important role 

in bone deposition and differentiation of mesenchymal progenitors [33, 34]. In this study, the 

macrophage response to Plasma and UV treatment was investigated by investigating their 

Macrophage activation. 

To this aim, RAW 264.7 cells were culture for 5 days on different samples (4 samples from each sub-

group). IL-1; IL-6; TNFα and TGFβ were analyzed. 

 

RNA extraction and real-time PCR analysis 

Total RNA was extracted using PureLink RNA Mini Kit (Ambion, Life Technologies Italy). For 

quantitative real-time polymerase chain reaction (qRT-PCR), 0.3 μg total RNA was transcribed into 

complementary DNA by MultiScribe® Reverse Transcriptase (High-Capacity cDNA Reverse 

Transcription Kit, Thermo Fisher Scientific) and PCR analysis was then assessed using TaqMan probes 

from Roche. Transcript abundance, normalized to 18s mRNA expression, is expressed as a fold 

increase over a calibrator sample. qRT-PCR was performed on a 7900HT Fast Real-Time PCR System 

(Applied Biosystems, Life Technologies Italy). (Petrillo at al. 2018) Specific primers and probes were 

designed using the Universal Probe Library - Assay Design Center - Roche Life Science software. 

 

Osteogenic differentiation 

To induce osteogenic differentiation, D1 cells were cultured in osteogenic media by supplementing 

the normal culture medium with 10 mM glycerophosphate and 50 ng/mL ascorbic acid. 

The osteogenic differentiation was evaluated measuring transcript level of RUNX2 and Collagen type 

1 at 3, 7 days by using qPCR. Moreover, Alkaline Phosphatase Activity and calcium deposition were 

measured respectively at 3, 7 and 21 days. 

 

Alkaline Phosphatase Activity 
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Alkaline Phosphatase Activity (ALP) was determined colorimetrically and assessed at day 7. Cells 

were lysed with 0.05% Triton X-100 and incubated with the reagent solution containing phosphatase 

substrate (Sigma-Aldrich, Milan, Italy) at 37 °C for 15 min. Alkaline phosphatase values were 

determined (OD 405 nm). 

 

Alizarin Red S quantification 

The extracellular matrix calcification was quantified by Alizarin Red staining. At day 21 cells were first 

incubated in a solution of 40 mM Alizarin Red (pH 4.2) and subsequently lysed with acetic acid. 

Absorbance of the lysates was finally measured at 405 nm. 

  

Surface analysis 

Samples were washed in PBS, fixed in a mixture of 2% formaldehyde and 2% glutaraldehyde in 

0.15 M sodium cacodylate buffer, then dehydrated in a graded series of ethanol solutions (70%, 

80%, 95% ethanol 10 min and twice in 100% ethanol 15 min) and subsequently critical point dried 

in a CPD 030 unit (Balzers Union, Liechtenstein). Samples were mounted on stubs using double-

sided adhesive carbon disks and gold coated in an Emitech K550 (Emitech Ltd., Ashford, Kent, UK). 

Gold sputtered samples were analyzed with a Dualbeam FIB/SEM Helios Nanolab 600 microscope 

(FEI, Hillsboro, USA), an instrument that combines an electron beam (SEM column) with a focused 

gallium ion beam (FIB column), oriented at 52° and focusing on the same area of the specimen. 

Samples were examined by using the field emission SEM column of the dualbeam FIB/SEM, with 

secondary electrons, an operating voltage ranging from 2 KV to 5 kV and an applied current of 

0.17 nA or 0.34 nA [35, 36]. The evaluation of graft surfaces was carried out with 110, 500, 1000, 

2000, 5000 times magnification. 

 
Statistical analysis 

Differences between groups were analyzed using the ordinary one-way ANOVA with the Tukey’s 

multiple comparison test and Student t test by using GraphPad Prism software (GraphPad Software, 
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Inc., La Jolla, CA, USA). All of the statistical comparisons were conducted with a 0.05 level of 

significance.  
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Results 

 

Effect of experimental treatments on osteoblast adhesion on graft materials 

As reported in Tables 1 and 2, plasma treatment significantly increased the level of cell adhesion on 

all tested graft surfaces (Fig. 3). Interestingly, UV treatment did not statistically significantly influence 

cell adhesion.  

 

Effect of experimental treatments on osteoblast proliferation 

As outlined in Tables 3 and 4, no statistically significant difference in cell proliferation was observed 

72h following treatment among PAT, UV and controls in any of the tested parameters (Fig. 4). 

 

Effect of experimental treatments on macrophage activation 

In order to evaluate macrophage activation IL-1, IL-6, TNFα and TGFβ were analyzed on RAW 264.7 

cells growth on different graft materials in different conditions. As reported in figure 5 no significant 

differences were observed among different conditions except for IL-6 on MG-HA ctrl vs. MG-HA 

Plasma treatment. On the other hand, it is possible to appreciate a slight trend of increase of 

transcript levels of IL-1 and IL-6 in plasma treated grafts compared to their control conditions. (Fig. 

5). 

 

Effect of experimental treatments on osteogenic differentiation. 

To understand whether PAT and UV treatments were able to affect MSC differentiation, the 

transcription levels of two very well-known markers of osteodifferentiation (RUNX2 and Collagen 

type-I) 3 and 7 days after osteogenic induction were analyzed. 

As shown in figure 6 A, B, only PAT treatment was able to induce osteogenic differentiation in all 

considered condition at 3 days. However, these differences were not observed after 7 days. 

This behavior might suggest a role in early osteoinduction. 

To further address this phenomenon, the activity of Alkaline Phosphatase at 7 days was investigated. 

As shown in figure 7 A both PAT and UV treatment failed to exert a significant different compared 

to control conditions. 

The calcium deposition using Alizarin Red S staining 21 days after osteoinduction was then analyzed. 

The qualitative (Fig. 7 B) and quantitative (Fig. 7 C) results failed to show any difference in treated 

samples with both PAT and UV. 
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Biomaterial Topography following experimental treatments 

As highlighted in Figure 8, the morphological analysis of Mg-E-HAP samples showed no obvious 

differences between the treated (UV and Plasma) and untreated material as, in all three cases, the 

specimens appeared rather homogeneous and made of nanoparticles with a diameter ranging 

from 40nm to 80nm. 

Characterization of BCP compounds revealed that, while treatment with ultraviolet light failed to 

induce morphological alterations, treatment with Argon plasma caused some degree of 

modification to the nanoparticle shapes as they exhibit a polygonal shape that was completely 

different when compared to the more rounded appearance of the particles found in UV-treated and 

control samples. Moreover, after plasma treatment, the nanoparticles were greatly increased in size 

(roughly six times the volume of the UV-treated and untreated materials) and were often partially 

fused creating clusters of various dimensions. 

Plasma treatment on cortical bone proved to effectively cause a morphological alternation 

consisting of increased roughness of the bone surface due to the formation of cavities and porosities 

that were otherwise undetectable on the UV-treated and untreated tissues. On the contrary, when 

applied to trabecular bones, the plasma treatment did not seem to influence the morphology of the 

samples that remained identical to the ones observed in the control sample. Both Calcium 

Phosphate and hydroxyapatite samples seem to be suitable for the proliferation and colonization of 

bone cells; in fact, osteoblasts adhered to the sample surface, appearing evenly distributed, and 

showed a spread morphology with evidence of cell protrusions. 
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Discussion 

The results from the present study have shown that treatment with Argon plasma increased 

statistically significantly osteoblast adhesion on all four evaluated bone grafting materials, however 

no differences in osteoblast proliferation was observed. Most importantly, treatment with Argon 

plasma did not elicit any differences in macrophage number and it may therefore be expected that 

a potential inflammatory reaction caused by Argon plasma is low. Moreover, this work also 

suggested a role in early osteoinduction. The material topography remained almost unaltered 

suggesting the safety of this treatment modality in terms of biological effects and material integrity. 

On the contrary, UV light treatment failed to attain any effects (neither positive nor negative) on the 

properties in terms of biological responses or surface modification of any of the four tested grafting 

materials. 

 The present study was carefully designed to estimate the effect of Argon plasma on the 

osteoconductive potential of frequently utilized bone grafts by measuring osteoblast adhesion and 

proliferation on graft particles, as well as the effects of this treatment on macrophage viability and 

biomaterial topography. The design of the present study was based on the results of a previous 

experiment in murine cells which demonstrated enhanced cell response and protein adsorption on 

the tested surfaces following PAT [28].  

 To increase the reliability of the present study, a three-dimensional culture system 

(bioreactor) was utilized as opposed to a 2D culture system to better simulate physiological 

conditions. The two osteoblast cell lines were MG-63 and SaOs-2 offering reproducibility as 

previously discussed [37]. The former cell type represents an immature osteoblast phenotype, while 

the latter displays a mature osteoblast phenotype. SaOs-2 cells share with primary human 

mesenchymal cells a similar expression profile of chemokines, cytokines and growth factors [33], 

likewise both produce bone-like extracellular matrix. In the present study it was found that cell 

proliferation demonstrated a saturation effect after 72h due to the small surface of the experimental 

graft disks. This space limitation restricted the number of adherent cells/mm2, which was in line with 

previously published data on titanium disks [38, 39]. On the other hand, macrophages did not seem 

to be as sensitive towards PAT or UV treatment pointing to the biological safety of these investigated 

treatments.  
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In the present work, plasma of Argon was demonstrated to positively influence the early osseo-

differentiation of mesenchymal stem cells, although this effect seemed abolished when longer time 

points were considered. This difference could be related to the effect observed in cell adhesion. For 

a better comprehension of this phenomenon further studies using animal models are required. 

Indeed, in a more complex environment this early osteoinduction could achieve promising 

longitudinal outcomes. 

In the present study, different graft materials were analyzed and activated through PAT, which 

allowed, at least, 30% higher cell adhesion on all bone grafting material surfaces, independently of 

the biomaterial type. It is conceivable that PAT activation of the biomaterial surface increased the 

surface energy and hydrophilicity, thus improving the adsorption of bone attractant factors such as 

fibronectin, vitronectin, actin, vinculin as previously reported [28]. These proteins provide 

mechanical attachment sites for the extracellular matrix, which are mandatory for cell adhesion [40]. 

Moreover, these findings suggest that PAT also increased the surface properties of the biomaterial, 

as it was also shown to favor an increase in osteoblast adhesion in the present study. However, the 

different structural characteristics of the investigated bone grafts need also to be considered when 

interpreting the results, and might present a potential subject of future research aiming to clarify of 

the exact impact of PAT on surface-related factors. 

 Interestingly, the present data are not in accordance with a previously published study by 

Beutel [41]. In fact, this study reported in an animal model that TCP activated by Argon plasma failed 

to show any statistically significantly higher bone regeneration compared to an untreated graft 

material. It may therefore be speculated that this difference in outcomes may be dependent on not 

only the material surface but also on the type of used reactor. While in the present study the plasma 

was created in a vacuum, the bioactivation in the study by Beutel was created using a plasma beam 

which works at atmospheric pressure. In fact, as demonstrated by Moisan [24] and Duske [22], the 

effect of the plasma is associated with several factors: the gas utilized, the time of exposure, the 

power and the pressure.  

On the other hand, irrespectively to the material analyzed, the second test group irradiated by UV, 

which was demonstrated to increase the surface energy on titanium surfaces [42], failed to show 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 

 

 

 

any significant effect on the graft material samples. This might be related to the fact that UV was 

able to activate only metal atoms, as documented by Hashimoto [43]. 

 It should be highlighted that, as demonstrated by the SEM analysis, both tested treatments 

only minimally affected the microscopic structure of all tested graft materials, including the collagen 

portion of the xenogenic materials. This minimal topographic modification might be due to the 

temperature/pressure increasing during the plasma process. However, these minor topographic 

modifications did not hinder the biologic properties of the grafting materials. 

One limitation of the present study is related to the difficulties of an in vitro model to simulate in 

vivo conditions where a great number of heterogeneous proteins interact simultaneously. 

Additionally, in the present study, a bi-dimensional analysis was performed which cannot assess tri-

dimensional interactions between osteogenic cells and scaffolds. 

Nevertheless, the present findings are encouraging and point to the potential biologic value of the 

plasma argon modality. Thus, further in vitro studies analyzing the tridimensional interactions 

between scaffolds and cells followed by preclinical and clinical testing are warranted in order to 

evaluate the potential clinical relevance and future safety of this method. 

 

Conclusion 

Within their limitations, the present results suggest that treatment of various bone grafting 

materials with PAT appears to enhance the osteoconductivity of bone substitutes by increasing cell 

adhesion and proliferation without affecting, at the same, time the number of adherent 

macrophages (cells known to promote and sustain inflammatory reactions). 
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Tables 

MG63  Adhesion 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

51.75 112.75 62.75 40 95 54.5 52.5 178.5 70.5 99 200.25 118.25 mean 

4.25 17.259 5.006 4.564 9.5655 12.841 10.507 9.869 15.3106 4.654 14.55 25.240 err.st. 

Tab.1 MG63 adhesion, data expressed as cell number/field. 

 

Saos-2 Adhesion 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

49.5 100 64.25 60.25 122.5 65.5 40.5 148.25 51 79 160.5 94.5 mean 

10.851 7.7028 16.079 8.9477 4.5 13.8413 10.77419 12.931 19.8871818 15.28 9.36 13.357 err.st. 

Tab.2 Saos-2 adhesion, data expressed as cell number/field. 

 

MG63  proliferation at 72h 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

6305 6917 7505.2 5056.5 4882.5 4635 10002.75 9579 9280.25 8673 9328.25 8634.25 mean 

318.46 757.32 609.4 722.36 548.687 616.564 619.934 978.684 911.080 436.5 720.252 593.03 err.st. 

Tab. 3 MG63 proliferation, data expressed as relative luminescent units. 

 

Saos-2 proliferation at 72h 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

4465.75 4535.75 3849.2 3735.75 3597.75 3423.5 8182.75 8516.75 7897.25 5608.25 6070.5 6398 mean 

717.616 807.7253 685.70 93.30 758.2216 455.9 997.899 1236.523 1165.79 720.40 572.7 1128.60 err.st. 

Tab.4 Saos-2 proliferation, data expressed as relative luminescent units. 

 

RUNX2 3 days 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

1,00 1,78 1,14 1,18 2,11 1,34 2,49 2,94 2,23 1,81 2,62 2,22 mean 

0,12 0,23 0,35 0,32 0,08 0,40 0,25 0,14 0,16 0,21 0,12 0,21 err.st. 

Tab.5 MSC expression of RUNX-2 at 3 days, data expressed as RQ. 
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RUNX2 7 days 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

2,78 2,88 2,69 2,90 2,73 2,77 2,84 2,79 2,70 2,73 2,69 2,59 mean 

0,45 0,22 0,42 0,38 0,27 0,55 0,28 0,42 0,40 0,39 0,52 0,69 err.st. 

Tab.6 MSC expression of RUNX-2 at 7 days, data expressed as RQ. 

 

COL1A 3 days 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

1,00 1,74 1,32 1,13 2,22 1,36 2,43 3,30 2,53 2,71 3,04 2,40 
mean 

0,16 0,25 0,10 0,32 0,07 0,27 0,46 0,29 0,17 0,21 0,37 0,26 
err.st. 

Tab.7 MSC expression of Collagen Type 1 at 3 days, data expressed as RQ. 

 

COL1A 7 days 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

3,72 3,38 3,22 3,14 3,28 3,38 5,32 5,22 5,11 4,94 4,71 5,23 
mean 

0,45 0,50 0,43 0,16 0,59 0,38 0,50 0,81 0,80 0,93 1,03 0,82 
err.st. 

Tab.8 MSC expression of Collagen Type 1 at 7 days, data expressed as RQ. 

 

ALP Activity Assay 

BCP 

CTRL 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

0,43 0,40 0,43 0,28 0,31 0,33 0,54 0,58 0,54 0,63 0,62 0,60 
mean 

0,03 0,07 0,07 0,04 0,05 0,08 0,08 0,11 0,07 0,10 0,07 0,09 
err.st. 

Tab.9 ALP Activity assay at 7 days, data expressed as OD 405 nm. 

 

Alizarin Red S Quantification 

BCP 

PLASMA 

BCP 

UV 

MG-HA 

CTRL 

MG-HA 

PLASMA 

MG-HA 

UV 

Cancellous 

BM  

CTRL 

Cancellous 

BM 

PLASMA 

Cancellous 

BM UV 

Cortical 

BM 

CTRL 

Cortical 

BM 

Plasma 

Cortical 

BM UV 

 

0,56 0,61 0,61 0,77 0,74 0,75 1,67 1,71 1,60 1,41 1,38 
mean 

0,07 0,15 0,10 0,15 0,14 0,17 0,22 0,30 0,24 0,17 0,13 
err.st. 

Tab.10 Alizarin Red S Quantification at 21 days, data expressed as OD 405 nm. 
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Figure legend 

Fig. 1: Flow diagram of the randomization sequence 

Fig. 2: Bioreactor chamber architecture. Representation of the bioreactor used to culture MG63 

and Saos-2. The bioreactor is composed by two chambers separated by a porous membrane. The 

graft material is kept in the upper chamber and it is properly perfused by culture media. 

Fig. 3: Cell adhesion. Cell adhesion was evaluated on MG63 (A) and on Saos-2 (B) 15 min after 

seeding. The level of cell adhesion was measured counting the number of cellular nuclei stained 

with DAPI. Values represent mean ± SEM; for each graft material, the symbol (*) indicates a 

statistically significant difference with the relative control condition (CTRL), considering a p-value < 

0.05. 

Fig. 4: Cell proliferation. Cell proliferation was evaluated on MG63 (A) and on Saos-2 (B) 72h after 

seeding and keeping the graft materials in the bioreactor. The rate of cell proliferation was 

measured using CellTiter GLO (Promega). Values represent mean ± SEM.  

Fig. 5: Expression profile of IL-1 IL-1, IL-6, TNFα and TGFβ. qRT-PCR analysis of IL-1, IL-6, TNFα and 

TGFβ performed on RAW 264.7 cells growth for 5 days on different graft materials in control 

condition, plasma treatment and UV treatment. Statistical analysis was performed using ordinary 

one-way ANOVA using Tukey’s multiple comparison test. A p value >0.05 was considered significant. 

Values represent mean ± SEM. 

Fig. 6: Expression profile of RUNX-2 and Collagene Type 1. qRT-PCR analysis of RUNX-2 (A) and 

Collagene Type 1 (B) performed on MSC growth in osteodifferentiating media for 3 and 7 days on 

different graft materials in control condition, plasma treatment and UV treatment. A p value >0.05 

was considered significant. Values represent mean ± SEM. 

Fig. 7: ALP activity Mineralization. Alkaline Phosphatase Activity (A), Alizarin red S (B,C) was 

determined and assessed respectively at 7 and 21 days after osteoinduction on different graft 

materials in control condition, plasma treatment and UV treatment. Statistical analysis was 

performed using ordinary one-way ANOVA using Turkey’s multiple comparison test. A p value >0.05 

was considered significant. Values represent mean ± SEM. 

Fig. 8: Microscopic analysis of the surfaces pre- and post- treatments.  
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Fig.3 
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Fig.4 
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Fig.5
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Fig.6
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Fig.7
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Fig.8
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