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ABSTRACT
We investigate the linear and non-linear evolution of current-carrying jets in a periodic config-
uration by means of high-resolution three-dimensional numerical simulations. The jets under
consideration are strongly magnetized with a variable pitch profile and initially in equilib-
rium under the action of a force-free magnetic field. The growth of current-driven (CDI) and
Kelvin–Helmholtz (KHI) instabilities is quantified using three selected cases corresponding
to static, Alfvénic and super-Alfvénic jets. During the early stages, we observe large-scale
helical deformations of the jet corresponding to the growth of the initially excited CDI mode.
A direct comparison between our simulation results and the analytical growth rates obtained
from linear theory reveals good agreement on condition that high-resolution and accurate
discretization algorithms are employed. After the initial linear phase, the jet structure is sig-
nificantly altered and, while slowly moving jets show increasing helical deformations, larger
velocity shear are violently disrupted on a few Alfvén crossing time leaving a turbulent flow
structure. Overall, kinetic and magnetic energies are quickly dissipated into heat and during
the saturated regime the jet momentum is redistributed on a larger surface area with most of
the jet mass travelling at smaller velocities. The effectiveness of this process is regulated by the
onset of KHI instabilities taking place at the jet/ambient interface and can be held responsible
for vigorous jet braking and entrainment.
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1 IN T RO D U C T I O N

The investigation of instabilities on the propagation of collimated
magnetized flows has been an outstanding research subject during
the last 30 years (Cohn 1983; Ferrari & Trussoni 1983; Hardee et al.
1992; Todo et al. 1993; Appl 1996). These instabilities have a sub-
stantial importance in characterizing the mechanism of formation
and evolution of various observed structures in such flows (Bahcall
et al. 1995; Biretta 1996; Raga & Noriega-Crespo 1998; Rosado,
Raga & Arias 1999; Nakamura & Meier 2004; Nakamura, Li & Li
2007; Mignone et al. 2010). Broadly speaking, instabilities in as-
trophysical jets fall in two classes: external instabilities (caused by
the relative motion between jet and external medium) and intrinsic
instabilities (related to the toroidal component of magnetic fields).

One of the most important external instabilities is the Kelvin–
Helmholtz instability (KHI), responsible for the interaction and
mixing between the jet and ambient medium as well as the transfer
of linear momentum and jet braking (Bodo et al. 1995; Hardee,
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Clarke & Howell 1995; Bodo et al. 1998; Rossi et al. 2008). The
KHI generally leads to distortions of the interface between the jet
and the ambient fluids, eventually producing shocks and turbulent
mixing with ambient material. Analyses of the KHI have been exten-
sively accomplished by many researchers either in a linear regime
(Turland & Scheuer 1976; Payne & Cohn 1985; Hardee et al. 1992;
Bodo et al. 1996; Hardee 2000; Perucho et al. 2004a; Perucho &
Lobanov 2007; Osmanov et al. 2008) or a non-linear regime (Bodo
et al. 1994, 1998; Hardee, Clarke & Rosen 1997; Rosen et al.
1999; Perucho, Martı́ & Hanasz 2004b; Rossi et al. 2004, 2008;
Perucho et al. 2005). For example, the linear analysis by Perucho
et al. (2004a) showed that the linear growth of KH modes is smaller
for faster and colder relativistic jets. Perucho & Lobanov (2007)
indicated that the growth rates of KHI modes are significantly re-
duced by the presence of a thick shear-layer. This important result
was confirmed by numerical simulations as well (see, e.g. Perucho,
Martı́ & Hanasz 2005; Perucho et al. 2007). Some results have been
derived for cylindrical relativistic jets that clarified the importance
of the non-linear evolution of KHI in the dichotomy of FR I/FR II
extragalactic radio sources (Rossi et al. 2004, 2008). In this respect,
the hydrodynamic simulations performed by Rossi et al. (2008)
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on relativistic light jets have shown that the non-linear growth of
KHI promotes a strong interaction between the jet and the external
medium with a consequent mixing and remarkable deceleration.

On the other hand, intrinsic instabilities are generally related
to the magnetohydrodynamic (MHD) structure of the jet. In this
sense, a key role is played by the relative strength between the
poloidal and toroidal (or azimuthal) components of magnetic field.
This ratio, referred to as the magnetic pitch parameter, plays an im-
portant role in triggering the socalled current-driven instabilities or
CDI. According to the mechanisms responsible for jet acceleration
and collimation (Blandford & Payne 1982; Romanova & Lovelace
1992), the toroidal magnetic field is a significant component that
is expected to dominate far from the central engine. Its destabi-
lizing action is at the base of the CDI (Bateman 1980) and can
deeply affect the morphological structure of jets (Ferrari, Mignone
& Campigotto 2011). In this respect, the observations and analyti-
cal models presented for the jet in M87 (Sikora et al. 2005; Hardee
2006, 2011; Walker et al. 2008, 2009) confirm the role of the CDI in
conversion Poynting flux to kinetic flux flow within a few hundred
gravitational radii. Nevertheless, there it has been suggested over
the years that this flux conversion process may be accompanied
by other efficient mechanisms such as matter entrainment and jet
expansion that can significantly change the nature of jets from mag-
netically (sub-Alfvénic) to kinetically (super-Alfvénic) dominated
(Hardee 2006, 2011).

Among CDI, the |m| = 1 (or kink) mode is the most important one
and grows faster than the other modes (Appl, Lery & Baty 2000;
Nakamura & Meier 2004). In the kink instability, magnetic field
lines are compressed on the inner side of a deformed cylindrical
flux tube and the magnetic pressure exerted by toroidal component
becomes larger than the net magnetic tension. Thus, the jet curva-
ture magnifies so that some of the magnetic energy accumulated
by the twisting is released by a kink (Spruit 1996). Eventually,
the hoop stress provided by the toroidal field is reduced (Eichler
1993) and leads to a whole helical deformation jet (Mizuno et al.
2009; Mizuno, Hardee & Nishikawa 2011) and/or even jet complete
disruption (Nakamura & Meier 2004).

Linear perturbative analysis of the CDI in MHD jets has been
largely performed under different physical conditions by several
groups (Cohn 1983; Appl & Camenzind 1992; Eichler 1993; Appl
1996; Appl et al. 2000; Wanex 2005; Bonanno & Urpin 2011). In
most of them the force-free limit is considered for helical magnetic
field. For instance, Appl et al. (2000) showed that for cold super-
magnetosonic jets with dominant azimuthal fields, the CD modes
are confined to the jet interior and develop quickly on a time-scales
of the order of Alfvén crossing time in a frame of reference comov-
ing with the jet. Wanex (2005) demonstrated that jets with axial
sheared flow and sheared magnetic fields reduced the linear growth
of CD modes at constant magnetic pitch. In addition, Bonanno &
Urpin (2011) considered the case with both azimuthal and axial
magnetic fields and showed that the length-scale of CD kink modes
is strongly sensitive to the magnetic pitch parameter. In the rela-
tivistic MHD jets, the linear analysis of CDI by Istomin & Pariev
(1994, 1996) demonstrated that cylindrical jets with constant axial
(poloidal) magnetic fields are stable against kink CD modes. More
recently, the studies by Bodo et al. (2013) on the non-rotating mag-
netized jets revealed the splitting of the CD kink modes into an
inner and outer modes at high magnetization.

On the other side, several numerical studies have concentrated
on the non-linear development of CD instabilities in MHD jets
under various physical assumptions (Todo et al. 1993; Lery & Frank
2000; Lery, Baty & Appl 2000; Baty & Keppens 2002; Nakamura

& Meier 2004; Nakamura et al. 2007; Carey & Sovinecy 2009). In
the work by Lery et al. (2000), the non-linear analyses of CDI for
cold superfast magnetosonic jets demonstrates that the CDI play
a significant role in redistributing the current density in the inner
parts of the jet. Baty & Keppens (2002) considered the non-linear
interaction between CDI and KHI surface modes on the propagation
of supersonic jets showing that CDI prevent the development of KH
vortices at the jet surface. According to their results, the magnetic
field deformations induced by the non-linear growth of CDI modes
provide a stabilizing factor on the KHI-driven vertical structures
leading to a substantial decrease in the mixing process between jets
and ambient medium and preventing disruptive effects.

More recently, Mizuno et al. (2009) studied the development of
kink instabilities on helically magnetized relativistic static columns
showing that, for small pitch values, the growth rate of instability
rapidly increases during the linear stages and that the non-linear
evolution features a continually growing helically twisted column.
These authors further outstretched this work by considering a sub-
Alfvénic velocity shear surface (Mizuno et al. 2011), showing that
the temporal evolution of the CDI is dramatically reduced with
respect to the static column. Additionally, O’Neill, Beckwith &
Begelman (2012) assumed a similar approximation to that of
Mizuno et al. (2009) and studied various local models of comov-
ing magnetized plasma columns in force-free, rotational, pressure-
confined equilibrium configurations and found that the details of
initial force balance strongly affect the resulting column morphol-
ogy.

In this work, we investigate the stability of strongly magnetized
jets with initial equilibrium structure described by a force-free heli-
cal magnetic field. We adopt a periodic configuration representative
of a jet section far from the launching region and consider radi-
ally sheared, axial flows with different velocities (Section 2). The
configurations are destabilized using an exact eigenfunction corre-
sponding the fastest growing m = 1 CDI mode of the linearized
MHD equations and the evolution is followed through the linear
and non-linear phases using three-dimensional numerical simula-
tions (Section 3). We first assess the impact of grid resolution on
the growth of the CDI mode during the linear phase by performing
a close comparison with the results from normal mode analysis.
Hence, we explore the non-linear behaviour in terms of jet mor-
phology, shear-induced effects triggered by the onset of KHI modes
with particular attention to jet braking and momentum transfer from
the jet to ambient medium as the system approaches the saturated
regime. Contrary to previous studies, our results are relevant to jets
with a smaller plasma-β (β ≈ 10−2) and are based on much larger
numerical resolutions (�20 zones on the jet radius). Finally, our
findings are summarized in Section 4.

2 M O D E L S E T U P

2.1 Equations and method of solution

In the following, we will investigate the dynamical evolution of
current-carrying jets by means of three-dimensional numerical
simulations. The simulations are performed by solving the time-
dependent ideal MHD equations in Cartesian coordinates

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂(ρv)

∂t
+ ∇ · [ρvv − B B] + ∇pt = 0 , (2)
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∂E
∂t

+ ∇ · [(E + pt)v − (v · B)B] = 0 , (3)

∂B
∂t

+ ∇ · (vB − Bv) = 0 , (4)

∂(ρT )

∂t
+ ∇ · (ρT v) = 0 , (5)

where ρ, v and B denote the mass density, bulk velocity and mag-
netic field, respectively. Note that a factor 1/

√
4π has been absorbed

in the definition of B. The total (gas + magnetic) pressure pt is de-
noted with pt = p + B2/2 while the total energy density includes
internal, kinetic and magnetic contributions as

E = p

� − 1
+ ρv2

2
+ B2

2
, (6)

where the internal energy obeys the perfect gas law with specific
heat ratio � = 5/3. Equation (5) sets the evolution of a dynamically
passive scalar field that is used to track fluid elements initially
residing in the jet (Tjet = 1 for R < 1 and Tjet = 0 otherwise) or
to mark surfaces of constant magnetic flux which, for our case, are
initially concentric cylinders (Tmag = R).

Alternatively to equation (3) we also solve, during the initial
stages of evolution for t < 35, the entropy equation away from
shocks

∂s

∂t
+ v · ∇s = 0 , (7)

where s = p/ρ� . In a highly magnetized plasma, solving equation
(7) instead of equation (3) has the advantage of being more accurate
and preventing the occurrence of negative pressure values which
could otherwise be triggered by the truncation error of the scheme
when retrieving p from equation (6).

The numerical computations are carried using the MHD module
of the PLUTO code for astrophysical gas dynamics (Mignone et al.
2007). In order to solve equations (1)–(4), we use a third-order
algorithm based on a second-order Runge–Kutta time stepping,
piecewise linear/parabolic reconstruction and the HLL Riemann
solver. The employment of a more accurate Riemann solver such
the Roe or HLLD Riemann solver (see the discussion in O’Neill
et al. 2012) leads, unfortunately, to severe numerical difficulties
when dealing with such low-beta plasma configurations.

2.2 Initial condition

Our initial condition consists of an infinitely long axisymmetric jet
moving in the vertical direction. The jet has an initial equilibrium
structure that depends on the cylindrical radius r only and char-
acterized by a force-free magnetic field B(r) = Bφ(r)φ̂ + Bz(r) ẑ,
constant gas pressure and absence of rotations (vφ = vr = 0). In such
a way, the toroidal and poloidal magnetic field components obey
the time-independent radial component of the momentum equation
(equation 2)

1

r2

d(r2B2
φ)

dr
+ dB2

z

dr
= 0 , (8)

while density and vertical velocity can be chosen arbitrarily as they
do not explicitly appear in the radial balance equation. Here, we
set

ρ = ρ0

[
η + 1 − η

cosh(r/rj)6

]
, vz = vz0

cosh(r/rj)6
, (9)

where ρ0 is the on-axis density, rj is the jet radius, η is the ambient
to jet density contrast and vz0 is the jet axial velocity. Gas pressure
is initially constant and equal to p(r) = ρ0c

2
s where cs is the speed

of sound.
Following Bodo et al. (2013), we prescribe the azimuthal com-

ponent of magnetic field to be

Bφ = −Hc

rj

r

√
1 − exp

(
− r4

a4

)
, (10)

where a = 0.6rj is the magnetization radius and Hc determines the
maximum field strength. The chosen profile corresponds to a current
mainly distributed inside the jet and peaked on the axis. Equation
(10) yields a current-free field at large distances as Bφ ∼ 1/r for
r → ∞ and a linear profile, Bφ ∼ r, for r → 0.

The poloidal component of the field is readily obtained by inte-
grating equation (8) and reads

Bz = Hc

rj

a

√
P 2

c

a2
− √

πerf

(
r2

a2

)
, (11)

where erf() is the error function while

Pc = lim
r→0

∣∣∣∣ rBz

Bφ

∣∣∣∣ (12)

is the magnetic pitch parameter on the axis.
The strength of the magnetic field is controlled by the value of

Hc which, without loss of generality, is fixed by the condition that
the average Alfvén speed over the jet beam is always unity

v̄A ≡
√

2

r2
j ρ0

∫ rj

0
(B2

φ + B2
z ) r dr = 1 . (13)

Likewise, we take the jet density and radius to be our reference
density and length, i.e. ρ0 = 1 and rj = 1.

Our equilibrium jet model is thus written in terms of the pitch
parameter Pc, the jet velocity vz0 (in units of the Alfvén speed),
the jet density contrast η and the sound speed cs. In the remainder
of this paper, we will set η = 1 and cs = 1/10 corresponding to
highly magnetized jets with β = 2p/B2 ≈ 10−2 and density equal
to that of the ambient medium. Also, we take Pc = 0.8 which is
close to the lower bound permitted by our equilibrium model, see
equation (11). The radial profiles of axial velocity, magnetic field
components and magnetic pitch are shown in the three panels of
Fig. 1 for the different simulation cases. Note that Bz(r) and Bφ(r)
(and the pitch) are the same in all cases.

We consider three simulation cases with different values of the
axial velocity vz0 = 0, 1, 10 corresponding, respectively, to the static
jet case, a trans-Alfvénic jet and to a super-Alfvénic flow. The three
cases will be referred to as A0, A1 and A10 and are listed, together
with specific simulation parameters in Table 1. Each simulation case
is repeated twice using low and high resolution.

The computational domain is the Cartesian box defined by x, y ∈
[ − Lmax , Lmax ] and z ∈ [0, Lz], where Lz = 2π/k0 corresponds to
one wavelength of the chosen eigenmode (see Section 2.3). The total
number of zones in the three directions is given by Nx, Ny and Nz,
respectively, and is given in Table 1 for low- and high-resolutions
runs. The grid has uniform spacing �x = �y = �z = Lz/Nz in
the vertical direction and in the region x, y ∈ [ − Lh, Lh], where
Lh < Lmax (see Table 1). Outside of this region, for |x|, |y| ∈ [Lh,
Lmax ], the mesh spacing increases in geometrical progression. In
order to obtain cubic cells in the central region of the domain,
the number of zones in the x and y directions is chosen to be
2NzLh/Lz while the stretched portions of the grid are discretized
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Figure 1. Radial profile of the jet axial velocity (left-hand panel), poloidal and toroidal magnetic field Bz and Bφ (middle panel) and magnetic pitch P = rBz/Bφ

(right-hand panel). The solid, dotted and dashed lines in the left-hand panel refer to A10, A1, A0 cases, respectively.

Table 1. Simulation cases and parameters describing the initial jet configuration. Here, Ms ≡ vz0/cs and MA ≡ vz0/v̄A are, respectively,
the sonic and Alfvénic Mach numbers, Lh and Lmax define the horizontal extent of the computational domain (see the text), Lz = 2π/k0 is
the vertical domain extent (equal to one perturbation wavelength). The number of points in the three directions together with the number
of zones per jet radius (Nj) are given in columns 8 and 9, and columns 10 and 11 for low- and high-resolution computations, respectively.
Finally, k0 and −Im(ω) represents the wavenumber and growth rate of the fastest growing CDI mode shown in Fig. 2.

Low resolution High resolution
Case vz0 Ms MA Lh Lmax Lz Nx × Ny × Nz Nj Nx × Ny × Nz Nj k0 −Im(ω)

A0 0 0 0 8.1 20 5.4 288 × 288 × 64 ≈12 576 × 576 × 128 ≈24 1.164 0.2317
A1 1 10 1 9.1 20 7.8 320 × 320 × 96 ≈12 640 × 640 × 192 ≈25 0.806 0.2476
A10 10 100 10 8.85 30 29.5 320 × 320 × 320 ≈11 640 × 640 × 640 ≈22 0.213 0.3234

symmetrically with Nx/2 − NzLh/Lz and Ny/2 − NzLh/Lz zones on
each segment. The number of zones used to resolve the jet radius,
Nj, is reported in Table 1 and is, to the extent of our knowledge,
the largest one employed so far in simulations of low plasma-β
in periodic jet configurations. This provides finer resolution in the
neighbourhood of the jet where most of the dynamics is expected
to take place. Finally, we use periodic boundary conditions in the
vertical direction while outflow conditions hold at the remaining
boundaries.

2.3 Linear theory and choice of perturbation

In order to ease up the comparison with the predictions from global
normal mode stability analysis, we perturb the equilibrium config-
uration using an exact eigenmode of the linearized MHD equations
(Appl & Camenzind 1992). Setting V = (ρ, v, B, p) the array of
fluid variables, we perturb the initial condition as V = V 0 + δV ,
where V 0 are the equilibrium profiles described in Section 2.2
while

δV = εRe[Y (r) exp (iωt − ikz − imφ)] (14)

is the perturbation. Here, Re[ ] denotes the real part, Y (r) is a com-
plex eigenfunction, ω(k) is the corresponding (complex) eigenvalue,
k and m are the (real) axial and azimuthal wavenumbers and ε is
a small real number chosen in such a way that the transverse ve-
locity perturbation amplitude equals 0.01. The eigenfunction Y (r)
is determined by solving a boundary value problem with appropri-
ate conditions at small and large radii see, for instance, Appl &
Camenzind (1992); Appl et al. (2000) or Bodo et al. (2013) for the
relativistic treatment. Instability occurs when Im[ω(k)] < 0.

We point out that the choice of an exact eigenmode has revealed
to be crucial when comparing the correct growth rate of the desired
mode during the linear stages of the numerical computation. This is
particularly true when the system can be linearly destabilized by the
presence of additional modes in the same range of wavenumbers.
This conclusion has been confirmed by a few experiments (not
reported here) adopting simpler perturbation forms (e.g. Mizuno
et al. 2009; O’Neill et al. 2012) and yielding mixed growth rates
given by the simultaneous excitation of different modes.

We follow a temporal approach so that k and m are real numbers
while the growth rate of instability is given by the imaginary part of
the complex eigenvalue ω. A plot of the growth rate for m = 1 as a
function of k is given in Fig. 2 for different velocities. For vz0 = 0
(blue curve, first panel), only the CDI mode is present while the
appearance of a velocity shear (equation 9) triggers additional KHI
modes. When vz0 = 1, a new KH mode with comparable growth
rate appears at larger wavenumbers (red curve in the second panel
of Fig. 2) and partially overlaps with the CD mode. The CD and
KH growth rates curves intersect through an ‘X’ point at k ≈ 1 and,
with increasing jet velocity, the two modes become closer together.
Around t ≈ 3.8 the lower and upper branches detach from the ‘X’
point and the two modes exchange their topological structure. The
resulting structure (third panel in Fig. 2, showing the growth rates
for vz0 = 4) consists of a mode with larger growth rate and a second
mode with smaller amplitude with mixed CD/KH properties. By
further increasing the velocity they reach the configuration shown
in the right-hand panel of Fig. 2. In addition, we note that reflected
KH modes (Bodo et al. 1989) appear as well for vz0 = 10. Overall,
we expect both KH and CD modes to play a role although it may
not be possible to unequivocally isolate their contributions.

We choose the eigenfunction corresponding to the wavenumber
k = k0 at which the growth rate is approximately maximum (vertical
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Figure 2. Linear growth rates for m = 1 for different jet axial velocities as predicted from normal mode analysis. From left to right, we plot the CD
and KH growth rates as a function of wavenumber k for different jet axial velocity vz0 = 0, 1, 4, 10. The CD mode is plotted using the solid blue
line while the fundamental KH mode shows as a solid red line. The purple curves result from the merging and splitting of the CD and KH modes
through the ‘X’ point. The dot–dashed and dashed lines represent reflected modes while the vertical line gives the perturbation wavenumber used in the
numerical simulation.

Figure 3. The evolution of transverse velocity v̄tr as a function of time for Case A0 (left), Case A1 (middle) and Case A10 (right). Dashed and solid lines
represent the low-resolution and the high-resolution runs, respectively. Dotted line is the reference slope according to the linear theory. Velocity is in units of
the Alfvén speed vA while time is units of rj/vA.

dotted line in Fig. 2) and report the precise value in Table 1. Beware
that only modes with wavenumbers given by an integer multiple of
k0 can actually develop in our computational box.

Finally, since the perturbation Y (r) in equation (14) is known as
a function of the cylindrical radius, we use bilinear interpolation to
obtain the values on our discrete Cartesian domain at t = 0.

3 R ESULTS

In the following sections, we present our simulation results sep-
arately according to their linear and non-linear evolution. Several
diagnostic are computed in a way similar to Mignone et al. (2013)
by introducing the horizontal average operator

Q̄(z, t) = 〈Q, χ〉 =

∫
Q(x, t)χ (x, t) dx dy∫

χ (x, t) dx dy

, (15)

where Q(x, t) is any flow quantity, χ (x, t) is a weight function and
x = (x, y, z) is the position vector. Likewise, we define the volume
average operator as

Q̄(t) = 〈〈Q, χ〉〉 =

∫
Q(x, t)χ (x, t) dx dy dz∫

χ (x, t) dx dy dz

. (16)

When averaging with χ = 1 we use the short-hand notation 〈〈Q〉〉 ≡
〈〈Q, 1〉〉.

3.1 Linear evolution

During the initial stages of the evolution, the perturbation grows
and the system slowly departs from equilibrium. As we shall
see, this phase is characterized by the dominance of the m = 1
CDI mode.

3.1.1 Comparison with linear theory

As an indicator of the growth of the instability, we use the volume-
average of the transverse velocity, defined by

v̄tr(t) =
〈〈√

v2
x + v2

y

〉〉
, (17)

where vx and vy are the horizontal components of velocity. Equation
(17) allows us to perform a direct comparison with the result of
linear stability analysis, as shown in Fig. 3 where we plot the time
history of the averaged transverse velocity v̄tr for both low- and
high-resolution computations.

Complementary, we also quantify the growth of the instability by
performing a Fourier decomposition of the quantity �Tmag(x, t) =
Tmag(x, t) − Tmag(x, 0) which, in the limit of small departures from
equilibrium, represents essentially the linear radial displacement. In
order to compute the discrete Fourier transform in the φ direction,
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Figure 4. Power spectra of the radial displacement for the Case A0 (left-hand panel), Case A1 (middle panel) and Case A10 (right-hand panel). The plot
shows

∑
k |Fmag(m, zk)|2/Nz and the discrete Fourier transform is taken using the perturbations of Tmag.

we consider all the zones lying in a small annular region satisfying
|
√

x2 + y2 − 1| < �x and then interpolate the resulting sequence
of values on an azimuthal 1D grid using Nφ regularly spaced points.
The discrete Fourier transform is then computed as

Fmag(m, zk) = 1

Nφ

Nφ−1∑
j=0

�Tmag(r0, φj, zk)e−imφj , (18)

where r0 = 1 is a fiducial radius, �Tmag(r0, φj, zk) represents the
regularly gridded data in the φ direction and m is the azimuthal
wavenumber. The power spectrum is then computed by averaging
in the vertical direction:

∑
k |Fmag(m, zk)|2/Nz and it is shown in

the three panels of Fig. 4.
In the static column case most of the main source of energy

is magnetic and only the CD mode is present. For t � 30 (left-
hand panel in Fig. 3) the perturbation grows exponentially and both
low- and high-resolution runs yield growth rates in accordance with
linear theory. The maximum is reached around (t ≈ 41 rj/v̄A) and
(t ≈ 51 rj/v̄A) for the low- and high-resolution runs, respectively,
and the measured growth rate (averaged between 6 < t < 10) is
ωLo ≈ 0.25 and ωHi ≈ 0.231, respectively, to be compared with the
exact value reported in Table 1 (ωA0 = 0.2317). From the left-hand
panel in Fig 4, showing the power-spectrum at t = 24, the prevalence
of the m = 1 mode is evident.

The evolution of the Alfvénic jet (Case A1) takes place on a
time-scale similar to the static column case and the duration of the
linear phase is approximately the same (t � 30). The agreement
with linear prediction is excellent and in both cases we measure a
growth rate ωLo ≈ 0.247 and ωHi ≈ 0.246 for (8 < t < 12) showing
convergence for finer mesh spacing (ωA1 = 0.2476). The power
spectrum for this case is shown in the middle panel of Fig. 4 at
t = 24 clearly showing that the kink mode dominates.

In the super-Alfvénic jet, the grid resolution plays a crucial role
in determining the numerical value of the growth rate (right-hand
panel in Fig. 3). Indeed, from several numerical experiments not
reported here, we found this particular case to be the most chal-
lenging one owing to the large discretization noise arising from the
truncation error of the scheme. The noise triggers grid-sized addi-
tional perturbations with sufficiently large amplitudes on top of the
initially chosen CDI eigenmode. We note that this spurious effect
could be reduced by the combined action of a higher order interpo-
lation scheme (PPM) and by solving for the entropy equation rather
than the total energy equation. In addition, the results obtained at
higher resolution improve appreciably over the low-resolution com-
putations. A linear phase is observed for t � 20 and the measured
growth rates are ωLo = 0.322 and ωHi = 0.321 for (3 < t < 9)
at low and high resolutions, respectively, to be compared with the

theoretical value of ωA10 = 0.3234. Similarly to the other two cases,
the dominance of the m = 1 mode is clear from the right-hand panel
of Fig. 4.

3.1.2 Three-dimensional structure

The three-dimensional structures of selected jet cases are visible in
the panels of Fig. 5 where density and magnetic pressure isosurfaces
(top) and magnetic flux surfaces defined by the condition Tmag =
const (bottom) are shown at t = 24 (for case A0 and A1) and t = 15
(for case A10).

In the static column case (left-hand panel), the initial displace-
ment grows into a twisted helical deformation of the column with
density enhancements corresponding to regions of smaller magnetic
perturbation and vice versa. This gives rise to a double-stranded spi-
ral structure in which the outward magnetic flux tube stretches and
its diameter widen progressively. Owing to the flux-freezing con-
dition, mass and internal energy inside the flux tube are depleted.
A similar structure has been also found by other authors (Baty &
Keppens 2002; Mizuno et al. 2009; O’Neill et al. 2012) using dif-
ferent setups. The end of the linear phase is marked by a density
build-up on the axis with flow velocities of the order of the Alfvén
speed.

In the Alfvénic jet case, the three-dimensional structure at t = 24
(middle panel in Fig. 5) reveals some similarities with the static
column case although we observe the formation of fast magne-
tosonic disturbances propagating into the ambient medium. At later
stages these fronts steepen into weak shock waves. This configu-
ration makes the double-helix pattern more difficult to form owing
to the presence of the velocity shear. However, similarly to Mizuno
et al. (2011), a helical density structure stills persists surrounding
the central magnetic helix and propagates along the jet.

For the super-Alfvénic jet (case A10), the linear growth of the
perturbation is accompanied by the formation of strong waves prop-
agating obliquely away from the axis and later steepening into
shocks (see Section 3.2). The three-dimensional structure, rendered
in the right-hand panel of Fig. 5 at t = 15, shows a large wavelength
non-axisymmetric deformation as well as the presence of small-
scale surface modes not seen in the previous two cases. This can be
inspected from Fig. 6 for 15 � t � 20. Note also, that during this
phase, both low- and-high resolution computations show similar
trends.

3.2 Non-linear evolution

The transition from the linear to the non-linear phase leads to an
overall change of morphology characterized by large-scale energy
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Figure 5. Three-dimensional structures of the jets for Case A0 (left-hand panels), Case A1 (middle panels) and Case A10 (right-hand panels) for the high-
resolution runs. The top panels show magnetic pressure isosurfaces (Pm, blue–green) together with density isosurfaces (orange–red). Bottom panels display
magnetic flux surfaces (i.e. surface with constant Tmag) coloured by field intensity and superimposed on magnetic field lines.

and momentum redistribution. In general, the original equilibrium
configuration is destroyed after a few Alfvén crossing time follow-
ing the end of the linear phase although the different growth of CD
or KH modes deeply affects the evolutionary stages of the jets in
the three cases considered here.

3.2.1 Energetics

The energy initially carried by the jet is subject to considerable
variation as a result of the instability and the ensuing interaction
with the external medium. In the top panels of Fig. 6, we plot the
relative contributions of the volume-integrated kinetic, thermal and
magnetic energies of the jet

EX,jet(t) =
∫

EX Tjet dx dy dz , (19)

normalized to the initial total energy of the jet, Ejet(0) =∑
X EX,jet(0). Here, X = {kin, mag, th} is a short-hand notation used

to label the different contributions, i.e. Ekin = ρv2/2, Emag = B2/2
and Eth = p/(� − 1). Concurrently, to quantify the amount of en-
ergy gained or lost by the ambient medium we also plot (bottom
panels of Fig. 6) the increment �EX,amb = EX,amb(t) − EX,amb(0)
normalized to Ejet(0). Here, EX,amb is defined as in equation (19)
with Tjet → (1 − Tjet).

Although the three contributions remain approximately constant
during the initial evolutionary stages, the end of the linear phase is
marked by a rapid transfer of energy from the jet to the ambient
medium and, to a lesser degree, by a partial dissipation of magnetic
and kinetic energies into heat. In the static column case, a fraction
≈20–30 per cent of the initial jet magnetic energy is transferred
to the ambient medium thereby accelerating and ultimately heating
the surrounding gas. This transition occurs more violently when the
jet velocity increases and the beam becomes more kinetically dom-
inated. KH-driven fast magnetosonic disturbances are sheared by
the flow and later steepen forming shock waves that provide an effi-
cient dissipation mechanism of mechanical energy. This situation is
best depicted in Fig. 7 showing density, magnetic and thermal pres-
sure isosurfaces at different times for the super-Alfvénic jet which
becomes forcefully disrupted on a very rapid time-scale around
t ≈ 20. Here, the jet loses up to ≈80–90 per cent of its initial energy
which becomes then available to the ambient medium mostly in the
form of heat and, secondly, kinetic energy.

The employment of high-resolution introduces modest variations
during the onset of the non-linear phase and results, for sheared
jets, in a somewhat more efficient heat generation. Computations
performed at higher numerical resolution yield a larger energy gain
by the ambient medium and, most remarkably in Case A10, result
in an earlier onset of the non-linear phase. However, its effect is less
recognizable at later times.
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Linear and non-linear evolution of MHD jets 2235

Figure 6. Top panels: volume-integrated jet energy fractions as a function of time for the three simulation cases. Kinetic, magnetic and thermal contributions
are shown using blue, green and red coloured lines, respectively, while total jet energy is plotted in black. Dashed and solid line styles refer to low- and
high-resolution computations. Bottom panels: energy gain by the ambient normalized to the initial total jet energy. The thin vertical dotted line marks when
fluid material begins to leave the lateral side of the computational domain.

Note that the total energy is not strictly conserved since the
entropy equation is selectively used to evolve the internal energy
during the early stages (t < 35). However, we have verified that
this introduces fluctuations of few per cent of the initial value for
all simulation cases. In any way, conservation of energy holds until
fluid material starts escaping through the lateral boundaries of the
computational domain (thin dotted lines in Fig. 6).

3.2.2 Morphology

As demonstrated in Section 3.1, the different jet configurations
become linearly unstable to the growth of the m = 1 CDI mode
with wavelength equal to the vertical box size. This induces large-
scale helical displacements of the jet as already shown in Fig. 5.
In order to quantify the amount of jet deformation and distortion
we compute the barycenter coordinates as in Mignone et al. (2010,
2013)

x̄(z, t) = 〈x, χ〉 , ȳ(z, t) = 〈y, χ〉 , (20)

where χ = ρTjet is the jet mass density. In Fig. 8, we plot the radial
distance R̄(z, t) =

√
x̄2(z, t) + ȳ2(z, t) as a function of the verti-

cal coordinate for the selected cases at different simulation times
for high resolution (low-resolution computations behave similarly).
For the static column (left-hand panel), the initial magnetic sur-
face expands and stretches sideways while maintaining a simple
helical structure with constant growing radius up to t � 80 where
R̄ ≈ 1.8. At later times, the helical deformation stretches up R̄ ≈
2.5 but the radius does not remain constant and presents evidence

of deformations with smaller vertical wavenumber most likely due
to non-linear wave interactions. A similar behaviour is observed for
Case A1 although the departure from a simple constant-radius helix
occurs at much earlier times (t � 24, middle panel in Fig. 8). Here,
for t � 24, we see the development of an additional perturbation
mode with wavenumber k = 4k0, where k0 = 2π/Lz is the initial
perturbation wavenumber (see Section 2.3). This may be explained
by the fact that the initial equilibrium for the A1 jet is liable not only
to the CDI but also to the KHI mode that has comparable growth
rate (second panel of Fig. 2). This mode grows on top of the CDI
mode and it reaches a maximum amplitude at t ≈ 80 while it is
later modified by non-linear interactions. The same effect is also
found in the superfast jet, where large amplitude perturbations with
smaller wavelength begin to develop for t � 20 (see the right-hand
panel in Fig. 8).

The final configuration approaching the saturated state is shown
in Fig. 9 where we display both the fluid density ρ (red colour)
and jet density ρTjet (green isosurfaces) in the high-resolution sim-
ulations. At the centre of the domain, a central region with larger
magnetic energy and gas density is formed. This region, on the
other hand, contains very little of the initial jet material which has
been wrapped and twisted inside the helical magnetic flux tubes
stretching sideways. These magnetic surfaces enclose a progres-
sively larger volume thereby leading to a substantial dilution of
mass and magnetic energy contained therein, see Fig. 9. The same
behaviour has been described in the force-free simulation cases pre-
sented by O’Neill et al. (2012) with the only difference that, in our
case, the non-linear growth is not solely dominated by the m = 1
mode.
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Figure 7. Three-dimensional structure of the A10 jet (high-resolution case) at three different instants t = 17 (left), t = 19 (middle) and t = 22 (right) showing
magnetic pressure isosurfaces with density isosurfaces (top panels) and gas pressure (bottom panels). Steepening of waves into shocks is evident at t ≈ 19 in
the pressure structure.

Figure 8. Radial distance of the jet barycenter from the axis as a function of the vertical distance. From left to right: A0, A1 and A10. Different colours and
symbols refer to the simulation times described in the legend. Note that a perfect helical displacement is represented by a horizontal line.

A different evolution is observed in super-Alfvénic jet (case A10),
where the growth of instability goes along with the onset of small-
scale surface perturbations developing on top of the m = 1 CDI
mode. While the large-scale column deformation takes place on a
few Alfvén time-scale, these additional modes are triggered by the

velocity shear and grow as small ripples on the jet surface eventually
dominating the small-scale structure and leading to a quick violent
disruption of the initial cylindrical configuration. This transition is
mediated by the onset of KHI acting at the jet/ambient interface
and becoming very efficient in promoting entrainment, momentum
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Figure 9. Three-dimensional renderings for Case A0 (left-hand panels), Case A1 (middle) and Case A10 (right-hand panels) at the end of the simulations. In
the top panels, we display fluid density (sliced plane, red colour) and jet density ρTjet (green isosurfaces). In the bottom panels, we show magnetic energy in
the sliced planes (blue-green) while velocity vector field is given by the arrows.

transfer and mixing. Indeed, by t > 30, the jet has completely lost
its initial coherent structure and settles into a turbulent chaotic state
characterized by a much wider surface area (right-hand panels in
Fig. 9).

3.2.3 Mass–velocity distribution.

Since the three components of momentum are conserved, it is in-
structive to compute how the total jet mass is redistributed as a
function of the velocity during the evolution. To this end, we par-
tition the velocity value range in small intervals of width �v and
compute the mass–velocity density function as

δm

δv
(v, t) = 1

�v

〈〈

(v), ρTjet

〉〉
, (21)

where v ∈ [vx, vy, vz] is a velocity component while 
(v) = 1
when the local zone velocity falls inside the given velocity bin:
|vi, j, k − v| < �v/2 and 
(v) = 0 otherwise. In other words,
the numerator of equation (21) picks out those computational cells
having velocity between v − �v/2 and v + �v/2 where �v is the
width of the velocity bin. Note also that

∑
v�vδm/δv = 1. Using

the mass distribution function defined by equation (21), we compute
the average and variance as

v̄(t) =
∑

v

v
δm

δv
(v, t)�v , (22)

σv(t) =
∑

v

(v − v̄)2 δm

δv
(v, t)�v , (23)

respectively.

Fig. 10 shows the distributions of mass as a function of v ≡ vz

at different times for Cases A0, A1 and A10 in the high-resolution
simulations. At t = 0 the distributions are strongly peaked around
the initial jet velocity with small dispersion around the mean value
meaning that most of the jet mass moves at the same speed. As the
system evolves, the net effect of the instabilities taking place inside
the jet is that of spreading and redistributing the initial jet material
and momentum over a much wider surface area with consequent
reduction of the average jet velocity.

For Case A0, the mass–velocity density function remains sym-
metric around the initial central value (v̄z ≈ 0) and spreads progres-
sively forming a sequence of distributions characterized by different
modes and dispersion widths (0.01 � σvz � 0.05). During the ini-
tial linear stages (t � 40) two secondary lateral peaks corresponding
to regions of enhanced vertical velocity perturbation appear (blue
line in Fig. 10). These structures are then quickly dissipated leaving
an almost-stationary jet configuration (green line). After this phase,
we observe, for 120 � t � 220, the formation of a more chaotic ve-
locity pattern characterized by a scattered distribution with a larger
tail (orange line in Fig. 10). Finally, as the system approaches the
final state, most of the jet mass has reduced its velocity and the
distribution attains a larger peak and smaller dispersion (red line).

For Case A1, the jet gradually slows down as the mass–velocity
density function shifts its peak from the initial velocity to smaller
values. This transition is particularly effective within the range 10
� t � 40 and gives rise to a sequence of non-symmetric and highly
irregular distribution profiles (blue and green lines in Fig. 10).
During the final steady state the jet mass is again characterized by a
symmetric distribution peaked around v̄z ≈ 0.012 with σvz ≈ 0.022
(red line).

MNRAS 442, 2228–2239 (2014)

 at U
niversity of T

orino on July 16, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


2238 M. Anjiri et al.

Figure 10. Mass–velocity density distribution as function of the vertical velocity vz for the three different configurations. In each panel, we plot δm/δv at
different times using the coloured solid lines shown in the legend.

Figure 11. Relative contributions of the volume-integrated jet momentum
(solid lines) and ambient momentum (dashed lines) for Case A1 (black) and
A10 (red) as functions of time.

A similar shift in velocity can be observed for the super-fast jet
(Case A10) although the transition occurs on an even faster time-
scale. By t ≈ 20, in particular, the jet average velocity has already
halved and, by t ≈ 30, most of the jet mass moves at a much
smaller velocity (v̄z < 0.2). As the system approaches the saturated
regime, the mass–velocity density function is well described by a
symmetric distribution with average value v̄z ≈ 0.086 and small
dispersion (variance σvz ≈ 0.1).

Since the average velocity defined by equation (22) gives basi-
cally the volume-integrated jet momentum, it is legitimate to ask
what is its relative contribution to the total (i.e. jet+ambient) con-
served vertical momentum qtot = ρvz. In Fig. 11, we plot q̄jet/q̄tot

and q̄amb/q̄tot as a function of time for Cases A1 and A10 in the high-
resolution simulations where the volume-integrated jet and ambient
momenta are, respectively, defined as

q̄jet(t) = 〈〈
ρvzTjet

〉〉
, q̄amb(t) = 〈〈

ρvz(1 − Tjet)
〉〉

, (24)

while q̄tot = q̄jet + q̄amb. As expected, the end of the linear phase
is distinguished by a net transfer of momentum from the jet to the
ambient medium. The time-scale of this transition closely reflects
the changes observed in the mass–velocity distribution profiles and

occurs faster in the superfast jet case. Indeed, for Case A1 and
t � 100, the jet has lost most of its momentum while for Case A10
the jet has exhausted its momentum already for t � 30.

4 SU M M A RY

In this work, we have presented 3D numerical simulations of magne-
tized jets evolving from an initial cylindrical equilibrium configura-
tion described by uniform density, small magnetic pitch and highly
magnetized plasma (β ≈ 10−2). Three cases have been considered
corresponding to a static, trans-Alfvénic and a super-Alfvénic jet
with Alfvénic Mach number MA = 0, 1, 10, respectively. Simu-
lations have been performed by perturbing the initial equilibrium
state with the exact eigenfunction of linear perturbative theory cor-
responding to one wavelength of the fastest growing CDI mode with
m = 1.

Our results demonstrate that the predicted linear growth rate is
well reproduced using a high-order reconstruction method and a grid
resolution of at least ≈10 zones per jet radius. Higher resolution
may be needed in the case of superfast jets to reduce grid-induced
numerical noise.

Overall, the linear evolution is characterized by large-scale grow-
ing helical deformations of the plasma column triggered by the ex-
citation of the CDI mode. The instability breaks the initial axial
symmetry and develops on a few tens of Alfvén crossing times
while proceeding faster for the superfast jet. Density and magnetic
field tend to form a double-helix pattern featuring regions of alter-
nating enhanced density and magnetic field. The magnetic flux tube
stretches sideways and wrap regions of depleted mass and internal
energy. As the flow velocity is increased, the jet deformation is ac-
companied by the propagation of strong fast magnetosonic waves
later steepening into shocks. During this phase, the energy bud-
get remains essentially constant and little energy and momentum
exchange are observed.

After the initial transient phase, the equilibrium is considerably
altered and the final structure strongly depends on the velocity shear
layer which inevitably introduces coupling between CDI and KHI
modes. When a velocity-shear is not present, the growth of the CDI
mode result in large-scale helical deformations that do not lead to
complete disruption. In this sense, our findings favourably compare
to the force-free configuration of O’Neill et al. (2012) who accom-
plished 3D simulations of local comoving jets. However, despite
the fact that all magnetized columns under consideration are unsta-
ble to CDI modes, the presence of KH surface modes leads to the
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formation of small-scale distortions that may eventually crumble
and destroy the helical structure. This effect becomes more pro-
nounced at larger velocities and, in the most severe case, leads to
the complete jet disruption and the formation of a chaotic turbulent
flow on a very short time-scale. These results are in contrast with
the findings of Baty & Keppens (2002) who considered periodic
jet configurations threaded by weaker magnetic fields than the ones
considered here and found that the presence of CDI modes pro-
vides a stabilizing non-linear interaction mechanism weakening the
disruptive effect of KHI perturbations.

The onset of the non-linear phase is marked by a net dissipation
of energy into heat, a process that proceeds gradually for slowly
moving jets but becomes violently amplified by the formation of
strong magnetosonic shocks for fast jets. Concurrently, as the sys-
tem evolves towards the saturated regime, the instabilities act so as
to spread and redistribute the initial jet material and momentum over
a larger surface area with consequent reduction of the jet average
velocity and hence favouring jet braking in few Alfvén time-scales.
We have verified that, for configurations with non-vanishing initial
axial velocity, a large fraction (�80 per cent) of the initial jet mo-
mentum is transferred to the ambient medium. The redistribution
process is efficiently regulated by the presence of KHI operating
at the jet/ambient interface and can thus be held responsible for
promoting entrainment, momentum transfer and mixing.

Future extension of this work will enlarge this analysis to global
jet simulations in both classical and relativistic regimes.
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