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Abstract 8 

The conversion of natural lands in urban areas is exponentially increasing worldwide, causing a major 9 

decline in biodiversity. Environmental alterations caused by urbanization, such as land conversion and 10 

isolation of natural patches, favour tolerant and generalist species, causing both species loss and 11 

replacement. In addition, selective pressure is exerted on particular functional traits, driving a functional 12 

homogenization or turnover of biotic communities. We sampled ground arthropods within the municipality 13 

of Turin (NW-Italy), wherein an isolated and a connected control subplot were repeatedly sampled at 15 14 

stations distributed along a gradient of increasing urbanization. Such a nested sampling design allowed us 15 

to investigate the taxonomic and the functional responses of carabids and spiders to both the urbanization 16 

level and patch isolation. First, we highlighted the dominant role played by species homogenization 17 

(nestedness) in explaining both taxonomic and functional variation in both groups of arthropods. Secondly, 18 

we showed that urbanization causes simultaneously functional homogenization and replacement in both 19 

carabid and spider assemblages, whereas patch isolation influences carabid species composition and 20 

homogenizes and shifts spider taxonomic and functional composition. Lastly, by relating community-21 

weighted means of body length, dispersal capacity and trophic strategy to the urbanization and isolation 22 

gradients, we demonstrated that urbanization alters the trophic structure of both taxonomic groups and 23 

increases the average dispersal capacity of spiders. On the other hand, patch isolation affected the 24 
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functional composition of spiders only, reducing the body size and increasing dispersal capacity and the 25 

proportion of web-builder species. Our results demonstrate that both urbanization and patch isolation alter 26 

species composition by causing functional and taxonomic homogenization. In addition, they exert a strong 27 

filtering effect on community functional traits, increasing the proportion of phytophagous species in 28 

carabids, and increasing dispersal capacity and web-builders occurrence in spiders, while reducing spider 29 

body size. 30 

Keywords: taxonomic homogenization; functional homogenization; carabids; spiders; traits 31 
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Introduction 33 

Throughout recent human history, the conversion of natural lands in urban areas increased exponentially 34 

everywhere in the world (Seto et al., 2011), representing today one of the main anthropogenic impacts on 35 

natural ecosystems (Grimm et al., 2006). In particular, the process of urbanization induces major 36 

detrimental effects on the environment, as a result of the severe and fast changes in landscape structure 37 

and physical conditions (Parris, 2016). These alterations are common to all urban settlements, and they are 38 

expected to drastically affect biodiversity in all continents (McKinney, 2006). However, although an 39 

increasing number of studies investigated the relationship between urbanization and species richness, the 40 

underlying mechanisms that drive biodiversity patterns in urban areas are not fully understood (but see 41 

Shochat et al., 2006, 2010; Pickett et al., 2011; Turrini & Knop, 2015), with inconsistent results among the 42 

studied taxa (see Chace & Walsh, 2006; McKinney, 2008; Niemela & Kotze, 2009; Luck & Smallbone, 2010; 43 

Jones & Leather, 2012; Ramirez-Restrepo & MacGregor-Fors, 2017, Piano et al., 2019). 44 

From an evolutionary point of view, urbanization represents a primary selective pressure on biotic 45 

communities, especially when considering the hindrance to the establishment and/or survival of certain 46 

species (McKinney, 2002). Such a strong environmental filter is expected to differentially affect species 47 

from the regional pool, by either favouring tolerant taxa or disfavouring the most sensitive ones, with 48 

subsequent changes in species composition, mostly due to species loss (Sadler et al., 2006; Magura et al., 49 

2008; Niemelä & Kotze, 2009; Piano et al., 2017) or to species replacement (Sattler et al., 2010; Vergnes et 50 

al., 2014; Knop, 2016) along the urbanization gradients. As a result, both phenomena result in biotic 51 

homogenization, due to the loss of rare and specialised species, and the gain of widespread tolerant ones 52 

(McKinney, 2006).  53 

In this context, a prerequisite to properly describe the mechanisms that drive variations in taxonomic and 54 

functional community composition (β-diversity) is the evaluation of the relative contribution of turnover 55 

and nestedness, whereby turnover measures the degree to which species are replaced by others—species 56 

replacement—and nestedness measures the degree to which communities of species-poor sites are a 57 

subset of those in species-rich sites—i.e. species loss (Ulrich, Almeida-Neto & Gotelli, 2009). To our 58 
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knowledge, this approach has never been applied to investigate ground arthropod communities in urban 59 

areas (but see Brice, Pellerin & Poulin, 2017 and Gianuca et al., 2017 as examples in other contexts).  60 

According to the “habitat templet theory” (Southwood, 1977, 1988), the above-mentioned selection 61 

process may have major effects on particular functional traits, like morphological or physiological 62 

attributes, or it could affect the realized niche of a certain species (Webb et al., 2010). Interestingly, several 63 

studies confirmed this hypothesis, providing evidence that, by filtering species according to their life-history 64 

traits and ecological needs, urbanization often determines shifts in life-history community traits, i.e. 65 

functional replacement (e.g. Vergnes et al., 2014; Concepción et al., 2015; Gianuca et al., 2017; Merckx et 66 

al., 2018), or deletions of some functional groups, i.e. functional loss (e.g. La Sorte et al., 2014; Piano et al., 67 

2017). As a consequence, urbanization may favour species with common traits conferring positive fitness 68 

under local conditions, causing the overall functional homogenization of urban communities (Olden et al., 69 

2004).  70 

The study of urban-rural gradients has been successfully used to highlight the effects of urbanization on 71 

biotic communities (McDonnell & Hahs, 2008). However, urbanization gradients are indirect and complex, 72 

since they include different types of disturbance acting at different spatial scales (Pickett et al., 2011; Parris, 73 

2016), and changes in community may depend on several factors associated with urbanization (Rebele, 74 

1994; Seto et al., 2011). For instance, urbanization correlates with a higher presence of impervious 75 

surfaces, which are known to have an effect on temperature, soil nutrient cycling and gas exchange and 76 

other physical or chemical parameters (Parris, 2016). In addition, the growth of urban areas is responsible 77 

for natural and semi-natural habitat fragmentation, which creates small and isolated residual patches, 78 

which are typically highly dynamic and impermanent ecosystems (Parris, 2016). Accordingly, since physical 79 

and landscape alterations are strongly correlated, even acting synergistically along urbanization gradients 80 

with similar demographic consequences, it is often difficult to distinguish their effects on biotic 81 

communities. Therefore, in order to isolate and describe their effects on biodiversity, a hierarchical 82 

approach is required, taking into consideration the nested nature of ecological systems (McDonnell & Hahs, 83 

2008). 84 
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In this research, we aimed to assess which mechanisms are involved in shaping ground arthropod 85 

assemblage composition in urban areas, focusing on the role of taxonomic/functional turnover and/or 86 

nestedness, and how functional traits respond to urbanization. Spiders (Araneae) and carabids (Coleoptera, 87 

Carabidae) were selected as model groups, because of their well-defined ecology and taxonomy, together 88 

with their well-known response to urbanization, both in terms of taxonomic and functional diversity (e.g. 89 

Niemelä & Kotze, 2009; Sattler et al., 2010; Vergnes, Le Viol & Clergeau, 2012; Vergnes et al., 2014; Piano et 90 

al., 2017; Buchholz et al., 2018). The assemblages of the two selected groups were investigated by means 91 

of a hierarchical sampling design, combining data from isolated and connected control environmental 92 

patches along an urbanization gradient. The inner areas of traffic roundabouts were selected as isolated 93 

plots, while control patches were established on green areas connected with the surrounding 94 

environmental matrix. Specifically, we investigated whether: i) nestedness and turnover components 95 

differentially explain total variation (β-diversity) in taxonomic and functional diversity; ii) the urbanization 96 

level and patch isolation affect taxonomic and functional composition of carabid and spider communities, 97 

both in terms of homogenization (nestedness) and shift (turnover); and iii) functional traits show differential 98 

responses to the urbanization level and patch isolation.  99 

 100 

Materials and methods 101 

Sampling design 102 

The study was carried out in 15 sampling plots (Fig. S1), randomly selected along an urbanization gradient 103 

in the municipality of Torino (about 880,000 inhabitants, NW-Italy). The average distance between the 104 

centre of sampling plots was 8,878 m (sd = ±1,705.6), ranging from 1,408 to 18,512 m. In order to test the 105 

effects of patch isolation on spiders and carabids, in each plot two sampling subplots were identified: i) one 106 

in an isolated patch, within a traffic roundabout; and ii) the other in the nearest green area, connected with 107 

the surrounding environmental matrix (connected control patch) (Fig. 1). Sampling plots consisted in 108 

circular areas of 150 m diameter (approximately 18,000 m2), centred on the roundabout. Roundabouts 109 

ranged from 6 to 30 m radius (i.e. approximately from 150 to 2,500 m2 of surface area), and we evaluated 110 
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their age using historical aerial maps on Google Earth (https://www.google.com/earth/download/ge/). 111 

Based on the year of construction, we equally distributed them among three age classes (1 = less than 10 112 

years; 2 = 10 years (built in 2007); 3 = more than 10 years) (see Appendix A: Table S1). Given that both 113 

taxonomic groups were not affected by these factors, namely the area and the age of the roundabouts, we 114 

did not include this information in our subsequent analyses. Connected control subplots were placed in the 115 

closest green area within the sampling plot, being represented by small green urban patches (1,000 m2), 116 

urban parks or seminatural areas at the city borders (up to a few hundreds of hectares). The isolated patch 117 

(roundabout) within a certain sampling plot was always smaller than the green area encompassing the 118 

connected control subplot. In all sampling plots, subplots were located in comparable semi-natural 119 

grassland habitats, maintained by regular mechanical mowing (see Fig. S2 for real examples). Roundabouts 120 

were assumed to represent a good approximation of isolated patches, since they are completely 121 

surrounded by roads, which likely constitute a selective barrier for our targeted arthropod groups.  122 

The urbanization level was assessed in each sampling plot by extrapolating the impervious surface coverage 123 

(ISA, Elvidge et al., 2007) from aerial images of the study area. We used the proportion (%) of impervious 124 

surfaces as a proxy for the urbanization level, which was calculated from updated digital maps (year 2017) 125 

by means of the QGIS software (QGIS Development Team, 2018) in a buffer of 1,600 m radius (see Fig. S1). 126 

We tried as much as possible to avoid overlapping buffer areas. However, due to logistic constraints related 127 

to permissions issued by the local authorities to access the areas of the roundabouts, our final design 128 

implied an overlap of 9.6 km2 between buffer areas, corresponding to about 8% of the total area covered 129 

by the buffers (approximately 120 km2). Given that carabid beetles and spiders often respond to factors at 130 

different scales (Braaker et al., 2014; 2017), we checked whether this spatial scale represents the best 131 

option to evaluate the response of ground arthropods to urbanization in the investigated area (see 132 

Supplementary Materials).  133 

Data collection 134 

Ground-active arthropods were captured in each sampling subplot within a sampling section 30 m long 135 

using three pitfall traps (5-10 m apart), placed at least 20 cm from the patch border, and at least 5 m apart 136 
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to increase catch efficiency (Ward, New & Yen, 2001). Plastic jars (diameter 90 mm, length 110 mm) were 137 

dug into the ground so that the upper edge of the glass was flush with the soil surface, and filled with 20 ml 138 

of 50% propylene glycol solution. All traps were emptied every three weeks, in three sampling sessions 139 

between the 16th of May and the 18th of July 2017. The collected material was preserved in a 70% ethanol 140 

solution. Spiders and carabids were sorted, identified and counted in the laboratory according to the keys 141 

provided by Pesarini & Monzini (2010) and Boeken et al. (2002) for carabids, and by Nentwig et al. (2018) 142 

for spiders. Data from pitfall traps collected in the same subplot were pooled together for subsequent 143 

analyses.  144 

It should be pointed out that pitfall traps provide data on activity density rather than real abundances of 145 

species, thus overestimating extremely active species. Although the pitfall trap-based sampling method 146 

introduces some bias in relative species abundances, the extent of the bias should be similar for each 147 

sampling site.  148 

Functional traits 149 

Body length, dispersal capacity and trophic requirements – hunting mode for spiders and trophic level for 150 

carabids – were considered as key functional traits, based on Buchholz et al. (2018).  151 

Carabid species were assigned to two trophic groups (1 = zoophagous; 2 = phytophagous) according to 152 

Vanbergen et al. (2010), and to three dispersal groups based on wing development (1 = brachypterous; 2 = 153 

dimorphic; 3 = macropterous) according to Desender et al. (2008). The average body size was assigned to 154 

each species according to Desender et al. (2008). Spider species were assigned to functional groups 155 

reflecting their strategy of food provision, according to Cardoso et al. (2011). In order to obtain a 156 

comparable number of species among categories, we referred to a broader classification (1 = hunters; 2 = 157 

web-builders), without considering in detail the specific hunting strategies. Spiders were assigned to three 158 

dispersal groups (1 = non- or sporadic ballooners; 2 = ballooners at juvenile stages only; 3 = ballooners at 159 

juvenile and adult stages), based on Blandenier (2009), Bell et al. (2005) and Simonneau, Courtial and 160 

Pétillon (2016). Each species’ male and female average body sizes were extrapolated from Nentwig et al. 161 
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(2018). We retained only female’s data due to the high correlation between the two measures (Pearson’s 162 

correlation test: r = 0.97; P < 0.001). 163 

Data analysis 164 

All statistical analyses were performed using the R software (R Core Team, 2017).  165 

Preliminary Analyses. In order to identify the best scale of response to the urbanization level for carabids 166 

and spiders, we calculated the degree of urbanization for each station in three progressive larger buffers, 167 

defined as circles with a 100 m (small scale), 400 m (medium scale) and 1600 m (large scale) radius - with 168 

the roundabout as the centre. For each taxonomic group, we proceeded with fitting three separated 169 

models, one for each scale of the urbanization level, after eliminating outliers in our dependent variables 170 

following the standard protocol for data exploration proposed by Zuur et al. (2009). We tested the response 171 

of the total abundance of carabids and spiders against the urbanization level, patch isolation and their 172 

interaction by means of Generalized Linear Mixed Models (GLMMs) (Zuur et al. 2009), performed with the 173 

function “glmer.nb” in the lme4 package (Bates et al., 2015). We assumed a negative binomial distribution 174 

after checking for the overdispersion of our dependent variables. To account for the spatial and temporal 175 

dependency, a station (PlotID) and a session identifier (Session) were incorporated as random factors in the 176 

models. We selected the one with the lowest AICc and, given that the best response was observed at the 177 

large scale (see Appendix B: Table S2), our subsequent analyses were performed using the urbanization 178 

level measured in the buffer of 1,600 m of radius. We then tested whether the total abundance of carabids 179 

and spiders in the isolated patch is influenced by the area and the age of the roundabout and by the 180 

distance of the roundabout from the control patch with the same model structure. No corrections to the 181 

data from the isolated patches were introduced to keep into account the effects of the area and the age of 182 

the roundabout and the distance between the roundabout and the control patch, since both groups were 183 

not affected by these factors (see Appendix B: Table S3). 184 

Multivariate statistics. Firstly, we investigated the variation in taxonomic and functional composition in 185 

spider and carabid assemblages by calculating taxonomic and functional β-diversity across the study area. β-186 

diversity was here intended as dissimilarity among samples and it was calculated by means of the 187 
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complement of the Sørensen index, which ranges from 0 (samples are composed exactly by the same 188 

species or functional groups) to 1 (samples do not share any species or functional groups). We used the 189 

function “beta” in the BAT package (Cardoso, Rigal & Carvalho, 2015), which returns the overall β-diversity 190 

and the contribution of its components, namely turnover and nestedness.  191 

Secondly, we investigated the effects of the urbanization level and patch isolation on taxonomic and 192 

functional composition of both groups with multivariate statistics, performed with the vegan package 193 

(Oksanen et al., 2018). We first converted the urbanization level into a categorical variable by assigning 194 

sampling plots to one of three categories of urbanization: low (ISA < 50%), intermediate (ISA = 50-70%) and 195 

high (ISA > 70%). We then created a functional matrix, measuring the community-weighted means (CWM) 196 

of trait values with the function “functcomp” of the FD package (Laliberté & Legendre 2010; Laliberté, 197 

Legendre & Shipley, 2014). We built a site-by-trait matrix by multiplying the site-by-species matrix with a 198 

species-by-trait matrix resulting in the CWM trait values, which represent the mean trait value of all species 199 

in the community, weighted by their relative abundances, for body length (CWM-BL), dispersal (CWM-Disp) 200 

and trophic composition (CWM-Trophic). Increasing values in CWM-Trophic indicates a shift towards 201 

phytophagous species in carabids, and towards web-builders in spiders. 202 

Taxonomic and functional composition among the three urbanization levels, and between control and 203 

isolated patches, were visualized by means of a Principal Coordinate Analysis (PCoA). We then tested 204 

whether the urbanization level and patch isolation were responsible for either taxonomic or functional 205 

homogenization by means of the Test of Homogeneity for Multivariate Dispersion (Anderson, Ellingsen & 206 

McArdle, 2006). This test measures the distance of each site to its associated group median calculated on a 207 

site-by-site distance matrix and subjects these values to an ANOVA (9,999 permutations) to assess if the 208 

variance differed among groups. For taxonomic diversity, the site-by-site distance matrix was computed on 209 

the matrix of relative abundance of species using the Bray-Curtis distance, whereas the Gower distance was 210 

applied to the CWM matrix to obtain the site-by-site distance matrix for functional diversity. To detect 211 

possible shifts in taxonomic and functional composition among urbanization and isolation levels, we 212 

performed a Permutational Multivariate Analysis of Variance (PERMANOVA; Anderson, 2001), specifying 213 
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urbanization, isolation and their interaction as factors. Statistical significance was tested via 9,999 random 214 

permutations with the sampling session (Session) and the ID of each sampling plot (PlotID) as strata.  215 

To identify which taxa are specifically linked to the urbanization level and patch isolation categories, an 216 

Indicator Species Analysis was performed through the calculation of the IndVal (Indicator Value) index 217 

(Dufrêne & Legendre, 1997), using the function “multipatt” in the indicspecies package (De Caceres & 218 

Legendre, 2009).  219 

Statistical models. The effects of the urbanization level, patch isolation and their interaction on community-220 

averaged functional traits were tested with Generalized Linear Mixed Models (GLMMs) (Zuur et al., 2009), 221 

performed with the function “glmer” in the lme4 package (Bates et al., 2015) assuming a normal error 222 

distribution. To account for the spatial and temporal dependency, a plot (PlotID) and a session identifier 223 

(Session) were incorporated as random factors in the models. The set of functional metrics employed in this 224 

analysis as dependent variables were extracted from the previously calculated functional matrices. In 225 

addition, in order to check for spatial autocorrelation, we calculated the observed Moran’s I for each 226 

model, comparing it with the expected values. 227 

 228 

Results 229 

A total of 215 out of 270 pitfall traps were retrieved during the whole sampling season. Overall, we 230 

collected a total of 1,722 carabids, belonging to 52 species, and 4,811 spiders, belonging to 66 species, with 231 

a mean of 5.28 ± sd = 3.49 (min = 4 and max = 13 species per subplot) and 6.86 ± sd = 3.57 (min = 1 and max 232 

= 19 species per subplot) species and 21.8 ± sd = 22.4 (min = 1; max = 126) and 34.9 ± sd = 32.6 (min = 3; 233 

max = 162) individuals per subplot respectively (see Appendix C: Tables S4-S5 for details on the recorded 234 

species of carabids; and Appendix D: Tables S6-S7 for details on the recorded species of spiders).  235 

The pairwise dissimilarity (Fig. 2) among carabid communities (total β-diversity) within the sampling area, 236 

was on average higher for taxonomic (0.84 ± sd = 0.15) than for functional diversity (0.62 ± sd = 0.12). The 237 

contribution of the nestedness component to total β-diversity was higher than the turnover component in 238 

both taxonomic diversity (turnover = 0.34 ± sd = 0.26; nestedness = 0.51 ± sd = 0.28) and functional diversity 239 
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(turnover = 0.12 ± sd = 0.21; nestedness = 0.51 ± sd = 0.28). Similarly, total β-diversity was on average 240 

higher for taxonomic diversity (0.77 ± sd = 0.17) than for functional diversity (0.55 ± sd = 0.21) among 241 

spider communities within the sampling area and again the nestedness component showed a higher 242 

contribution than the turnover one for both taxonomic diversity (turnover = 0.32 ± sd = 0.24; nestedness = 243 

0.44 ± sd = 0.27) and functional diversity (turnover = 0.10 ± sd = 0.10; nestedness = 0.44 ± sd = 0.27). 244 

The test of homogeneity for multivariate dispersion showed significant functional homogenization of both 245 

groups along the urbanization gradient (Table 1 and Fig. 3), whereas significant taxonomic homogenization 246 

was observed in isolated patches and urbanized plots for spiders (Table 1 and Fig. 4). The PERMANOVA 247 

revealed significant shifts in taxonomic and functional composition along the urbanization gradient for both 248 

groups. Spider taxonomic and functional composition was affected also by patch isolation and the 249 

interaction between urbanization and isolation, whereas carabid taxonomic composition showed a shift 250 

from connected to isolated patches (Table 2). 251 

The indicator species analysis highlighted no indicator species for urbanization categories in both groups. 252 

Some indicator species were identified for connected control subplots, namely Harpalus serripes (IndVal = 253 

0.562; P = 0.001) and Harpalus tardus (IndVal = 0.385; P = 0.043) for carabids; Trochosa ruricola (IndVal = 254 

0.549; P = 0.008), Thanatus arenarius (IndVal = 0.461; P = 0.036) and Pardosa tenuipes (IndVal = 0.366; P = 255 

0.049) for spiders. No indicator species were identified for isolated subplots. 256 

The response of carabid community-averaged functional traits revealed a significant increase of the 257 

proportion of phytophagous species with increasing urbanization level (range: 0.01-0.50), whereas no 258 

significant results were recorded for CWM-BL (body size) and CWM-Disp (Dispersal) (Table 3 and Fig. 5). 259 

Regarding spiders, body size was negatively affected by patch isolation, whereas the interaction term 260 

showed a significant positive effect, underlying that CWM-body size of spiders in isolated patches increases 261 

with increasing urbanization (Table 3). Both dispersal and trophic groups were significantly affected by all 262 

terms (Table 3). CWM-Disp (dispersal) showed an increasing trend along the urbanization gradient, ranging 263 

from 2.06 to 2.64, and higher values in the isolated (2.26 ± sd = 0.25) than in the control (2.16 ± sd = 0.34) 264 

subplots (Fig. 5), while the interaction factor displayed a negative effect. Regarding CWM-Trophic, the 265 
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relative proportion of web-builders significantly increased along the urbanization gradient (range = 0.27-266 

0.82) and it was significantly higher in isolated (0.68 ± sd = 0.27) than in control (0.69 ± sd = 0.30) subplots, 267 

while a negative effect was observed for the interaction factor (Fig. 5). 268 

Lastly, Moran’s I revealed that CWM-Disp and CWM-Trophic, but not CWM-BL, of both carabids and spiders 269 

show significant spatial autocorrelation (Table 4). 270 

 271 

Discussion 272 

In this work, we analyzed how urbanization and fragmentation drive the turnover and nestedness patterns 273 

of taxonomic and functional diversity within two taxonomic groups of ground arthropods, namely carabids 274 

and spiders. Since we consistently sampled the same habitat type (i.e. semi-natural grasslands) exposed to 275 

the same management practices, we could clearly depict the effect of site location within the conurbation, 276 

without confounding factors due to local habitat characteristics.  277 

Our results showed that taxonomic variation was higher than functional variation within both carabid and 278 

spider communities along the urbanization and isolation gradients. This is in accordance with the functional 279 

redundancy concept (Lawton & Brown, 1993) stating that multiple species perform similar roles in 280 

communities and ecosystems (e.g. Petchey et al., 2007). This would guarantee high ecological resilience to 281 

disturbance, which is particularly crucial for the maintenance of ecosystem functions in extremely altered 282 

habitats, like urban areas. Decomposing β-diversity into its components revealed that the same 283 

mechanisms drive variation in taxonomic and functional composition in the two taxa studied. Since 284 

nestedness was the dominant component, some sampling plots host a subset of species of other sites. We 285 

can hypothesize that both carabid and spider communities are composed of both specialized species, 286 

surviving only in few localities, and generalist species, which can exploit a broad range of ecological 287 

conditions. In the same way, some functional traits are removed from some sites without being replaced, 288 

with possible repercussions on ecosystem functionality. 289 

Results of the test of homogeneity for multivariate dispersion showed that spiders were more affected by 290 

the urbanization level and patch isolation than carabids. Taxonomic homogenization (i.e. nestedness) was 291 
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observed only in spiders and it was explained by both the urbanization level and patch isolation. In 292 

addition, the role of isolation as a driver of taxonomic homogenization was further confirmed by the 293 

indicator species analysis that revealed indicator species for connected control subplots only. According to 294 

these results, we may hypothesize that connected control subplots could provide source populations for 295 

the isolated ones, guaranteeing their survival in disturbed habitats, likely recalling the island biogeographic 296 

model in fragmented landscapes (MacArthur & Wilson, 1967; Leibold & Chase, 2017). However, no 297 

indicator species were identified for the urbanization categories. Indicator species may not have been 298 

detected because they are too scarce and irregularly distributed among the subplots within each category. 299 

This result may however suggest that the observed nestedness pattern along the urbanization gradient may 300 

be due to varying relative abundances, instead of an effective substitution of species.  301 

Regarding functional composition, the urbanization level causes functional homogenization in both 302 

communities. This may be due mainly to a filtering process, supporting the hypothesis that urbanization 303 

alters the functional community composition by shifting species composition towards more functionally 304 

homogeneous assemblages. Conversely, patch isolation did not significantly affect the functional 305 

composition of both carabid and spider communities, underpinning how the urbanization level alone may 306 

explain functional variation among samples. This corroborates the hypothesis that stochastic events, like 307 

dispersal-related processes or ecological drift, determine species richness in isolated patches for both 308 

carabids and spiders (Chase & Myers, 2011; Leibold & Chase, 2017). These outcomes parallel Concepción et 309 

al. (2017) who found functional homogenization with increasing urbanization in vascular plants and birds. 310 

On the contrary, our results are in contrast with those reported by Brice, Pellerin and Poulin (2017), who 311 

observed both taxonomic and functional differentiation with increasing urbanization in plant communities. 312 

These contrasting results are likely due to the fact that plant diversity often increases in urban habitats 313 

because of the unique abiotic conditions and disturbance regimes, favoring exotic species (McKinney, 314 

2008). In our case, we did not record any exotic species in the examined communities, thus, at least from 315 

this point of view, our results seem to reflect the filtering effect of urbanization without confounding 316 

factors. However, increasing differentiation might also emerge from differential human activities in urban 317 
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green spaces, facilitating certain species in some places or eliminating others elsewhere. This could have 318 

also happened in our case with spiders and carabid beetles, which could be easily transported in the soil or 319 

in plant pots as eggs, juvenile stages or even as adults.  320 

The results of the PERMANOVA performed on taxonomic composition pointed out a combined effect of the 321 

urbanization level and patch isolation on the taxonomic shift—i.e. turnover component in both taxonomic 322 

groups. The role of urbanization as a driver of this process has already been pointed out by Knop (2016) for 323 

canopy insects, who observed true species replacement in terms of relative abundances in three insect 324 

groups, including ground beetles, when comparing rural against urban areas. Regarding functional 325 

composition, urbanization caused a shift in both examined groups, whereas patch isolation affected only 326 

spiders, and these trends are confirmed by the analysis of the response of functional traits.  327 

Dispersal capacity significantly increased along the urbanization gradient for spiders. In particular, this 328 

increasing trend was clear in connected control subplots, while isolated subplots hosted highly dispersive 329 

species, regardless of the urbanization level. High dispersal capacity is essential in disturbed habitats in 330 

order to escape adverse environmental conditions and to enhance population survival in the area; vice-331 

versa in stable, late-successional habitats more energy can be invested in reproduction, favoring the 332 

establishment of less dispersive species (Roff, 1975). Hence, the observed decline in low-dispersive species 333 

appears in accordance with the dynamic nature of urban environments, where human activities result in 334 

high turnover rates of suitable habitat patches (Parris, 2016). The observed high dispersal capacity of 335 

spiders in isolated subplots can be explained in the framework of the theory of island biogeography 336 

(MacArthur & Wilson, 1967), which predicts that isolation of suitable patches increases extinction rates. 337 

Therefore, only highly dispersive species can support viable populations in isolated patches, due to the 338 

continuous immigration of new individuals, increasing the average dispersal capacity of the community.  339 

Surprisingly, we did not record any effect of the urbanization level or patch isolation on carabid dispersal 340 

capacity, in contrast with the available literature (Piano et al., 2017). The differential response obtained for 341 

the two examined arthropod groups might be due to their different dispersal mode, i.e. active dispersal in 342 

carabids and passive dispersal in spiders. The peculiar dispersal mode of spiders, i.e. ballooning, requires 343 
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particular physical conditions to occur (Weyman, 1993; Simonneau, Courtial & Pétillon, 2016) and 344 

dispersing individuals have no control over the flight direction (Compton, 2002). In heavily fragmented 345 

landscapes, the probability to reach isolated patches is therefore strictly related to the ballooning 346 

performance, which is maximized in highly dispersive species (Bonte et al., 2003). Conversely, carabid 347 

dispersal, either cursorial or by flight, is active and not constrained by the physical environment, therefore 348 

all species likely have the same probability to reach isolated patches.  349 

The analysis of the trophic structure revealed how urbanization strongly acts on both examined taxa. 350 

Regarding carabids, we observed a significant replacement of zoophagous with phytophagous species. 351 

Phytophagous carabids are specialized on seeds from ruderal plants (Thiele, 1977; Honek et al. 2007; 352 

Honek, Martinkova & Saska, 2011), which typically occur in highly impermanent sites (Ribera et al., 2001). 353 

Phytophagous species can therefore be considered adapted to ruderal habitats (Vanbergen et al., 2010), 354 

likely supporting viable populations within urban sites in our study. Concerning spiders, the proportion of 355 

web-builders significantly increases with increasing the urbanization level in connected control subplots. 356 

Conversely, in isolated subplots, web-builder proportion is higher than connected control subplots 357 

regardless of the urbanization level, suggesting how the effect of patch isolation overrides urbanization in 358 

determining the trophic structure of spiders. This may be due to the fact that patch isolation may 359 

negatively affect preys of cursorial spiders (Hawn et al., 2018) with consequent negative effects on hunters 360 

(Gravel et al., 2011; Zalewski et al., 2018). However, it should be pointed out that this shift from hunters to 361 

web-builders in isolated patches might also be a consequence of the dispersal-based selection, since, in our 362 

study, web-builders include most of the highly dispersive species (i.e. linyphiids). 363 

Contrary to our expectations, body size did not respond to the urbanization gradient in our study for both 364 

taxonomic groups, in accordance with Buchholtz et al. (2018). However, we observed a significant decrease 365 

of spider body size along the urbanization gradient in connected control patches, but not in isolated ones. It 366 

has been demonstrated that community-wide body-size shifts occur in urban communities as a 367 

consequence of increased temperatures due to the urban heat-island effect, but these shifts are mediated 368 

by the dispersal capacity of each taxon (Merckx et al., 2018). Thus, this lack of response may result from the 369 
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dispersal-mediated effect, since higher dispersal capacity of spider species recorded in roundabouts may 370 

dampen the urban heat-island effect on body size.  371 

Results of the Moran’s I test revealed that there is high spatial autocorrelation among sampling plots in 372 

terms of dispersal capacity and trophic composition, but not of body size, for both groups. These patterns 373 

underlie the role of the spatial arrangement of individuals in a landscape, which is rarely random (McGlinn 374 

et al., 2019). Instead, most individuals are spatially clustered or aggregated in some way, with 375 

repercussions also on the functional traits, as demonstrated by our results. 376 

 377 

Conclusions 378 

Overall, we here highlighted differential mechanisms underlying the selective pressure exerted by 379 

urbanization and fragmentation on ground arthropods, showing a more evident response in spiders than 380 

carabids. This is in accordance with literature, which highlighted how top predators are usually more 381 

sensitive to urbanization than lower trophic levels (Egerer et al., 2017; El-Sabawii, 2018). 382 

We have demonstrated that nestedness more than turnover explains taxonomic and functional variation in 383 

the examined communities, indicating a loss of species and functionality among sampling plots. This 384 

homogenization process is mainly due to urbanization, which filters species based on their functional traits 385 

in both the examined groups. 386 

In addition, the high spatial autocorrelation among sampling plots identified for dispersal capacity and 387 

trophic composition underlies that stochastic factors, e.g. source-sink dynamics, also play a role in driving 388 

the functional composition of examined communities. Stochastic events, like those caused by human 389 

activities, may cause the extinction of some species in the examined sampling plots, potentially 390 

compromising the species survival in the whole sampling area. This may have repercussions on ecosystem 391 

functionality if key stone species are removed from the landscape.  392 

Our approach, thus, proved to be particularly useful to understand how different facets of urbanization 393 

affect biodiversity, providing a valuable framework to predict how biotic communities will respond to 394 

increasing anthropogenic pressures associated with urbanization. In the next future, further investigations 395 
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should be performed to highlight alterations at the ecosystem level in order to provide management 396 

suggestions aiming at reducing negative effects caused by urbanization. 397 
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FIGURE CAPTIONS 602 

Fig. 1. Schematic representation of the nested sampling design adopted in this research. Sampling plots 603 

were placed along an urbanization gradient, each one being composed of two subplots (I = isolated; C = 604 

connected control). In each sub-plot, three pitfall traps were activated during the sampling period (black 605 

dots). 606 

Fig. 2. Barplot representing the contribution of turnover (dark grey) and nestedness (light grey) to the total 607 

taxonomic and functional β-diversity for carabids (left panel) and spiders (right panel). 608 

Fig. 3. Ordination of carabid (left) and spider (right) communities, according to the first two PCoA axes 609 

performed on taxonomic (upper panel) and functional (lower panel) composition. Ellipses represent 610 

standard deviations around the medians of urbanization levels (green = low; orange = intermediate; purple 611 

= high). Different symbols represent sampling subplots belonging to different urbanization levels (circles = 612 

low; squares = intermediate; triangles = high). The animal silhouettes are from PhyloPic 613 

(http://www.phylopic.org). 614 

Fig. 4. Ordination of carabid (left) and spider (right) communities, according to the first two PCoA axes 615 

performed on taxonomic (upper panel) and functional (lower panel) composition. Ellipses represent 616 

standard deviations around the medians of isolation levels (blue = connected control; brown = isolated). 617 

Different symbols represent sampling subplots belonging to different isolation categories (circles = 618 

connected control; squares = isolated). The animal silhouettes are from PhyloPic 619 

(http://www.phylopic.org). 620 

Fig. 5. Predicted CWM values (CWM-Trophic = trophic composition; CWM-BL = body length; CWM-Disp = 621 

dispersal) and confidence intervals along the urbanization gradient for carabids and spiders (light blue line = 622 

connected control patch data; orange line = isolated patch data). Only significant trends are reported. The 623 

animal silhouettes are from PhyloPic (http://www.phylopic.org). 624 
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