
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Static analysis of featured transition systems

Publisher:

Published version:

DOI:10.1145/3336294.3336295

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Association for Computing Machinery

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1716479 since 2023-01-19T14:05:35Z



Static Analysis of Featured Transition Systems
Maurice H. ter Beek

∗

ISTI–CNR, Pisa, Italy

maurice.terbeek@isti.cnr.it

Ferruccio Damiani
∗

University of Turin, Italy

ferruccio.damiani@unito.it

Michael Lienhardt
∗

ONERA, Palaiseau, France

michael.lienhardt@onera.fr

Franco Mazzanti
∗

ISTI–CNR, Pisa, Italy

franco.mazzanti@isti.cnr.it

Luca Paolini
∗

University of Turin, Italy

luca.paolini@unito.it

ABSTRACT

A Featured Transition System (FTS) is a formal behavioural model

for software product lines, which represents the behaviour of all the

products of an SPL in a single compact structure by associating tran-

sitions with features that condition their existence in products. In

general, an FTS may contain featured transitions that are unreach-

able in any product (so called dead transitions) or, on the contrary,

mandatorily present in all products for which their source state

is reachable (so called false optional transitions), as well as states

from which only for certain products progress is possible (so called

hidden deadlocks). In this paper, we provide algorithms to analyse

an FTS for such ambiguities and to transform an ambiguous FTS

into an unambiguous FTS. The scope of our approach is twofold.

First and foremost, an ambiguous model is typically undesired as

it gives an unclear idea of the SPL. Second, an unambiguous FTS

paves the way for efficient family-based model checking. We apply

our approach to illustrative examples from the literature.
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1 INTRODUCTION

Systems and Software Product Line Engineering (SPLE) advocates

the reuse of components (systems as well as software) throughout

all phases of product development. Following this paradigm, many
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businesses no longer develop single products, but rather a family or

product line of closely-related, customisable products. This requires

identifying the relevant features of the product domain to best

exploit their commonality and manage their variability. A feature

diagram or feature model defines those combinations of features

that constitute valid product configurations [2].

While automated analysis of such structural variability models

(e.g. the detection of anomalies like dead or false optional features)

has a 30-year history [13, 51], that of behavioural variability mod-

els has received considerable attention only during the last decade,

following the seminal paper by Classen et al. [25]. Given that SPLs

often concern massively (re)used and critical software (e.g. in smart-

phones and the automotive industry) it is important to demonstrate

not only their correct configuration, but also their correct behaviour.

A Featured Transition System (FTS) is a formal behavioural

model for SPLs, which represents the behaviour of all the products

of an SPL in a single compact structure by associating transitions

with features that condition their existence in products [23]. Quality

assurance by means of model checking or testing is challenging,

since ideally it must exploit the compact structure of the FTS to

reason on the entire SPL at once. This is called family-based analysis,

as opposed to enumerative product-based analysis in which every

product is examined individually [50]. During the past decade, FTSs

have shown to be amenable to family-based testing and model-

checking [6, 7, 21–25, 27, 33–38, 42].

In this paper, we are interested in automated static analysis of

FTSs. We want to catch (and offer a means to remove) possible

ambiguities in FTSs, mimicking the anomaly detection as typically

performed on feature models. In fact, an FTS may contain: dead

transitions (i.e. featured transitions that are unreachable in any

product); false optional transitions (i.e. featured transitions that are

mandatorily present in all products for which their source state is

reachable); and hidden deadlocks (i.e. states from which only for

certain products progress is possible).

The contribution of this paper is a formalisation of ambiguities

in FTSs and algorithms to analyse an FTS for such ambiguities

and to transform an ambiguous FTS into an unambiguous one,

as well as proofs of their correctness. The scope is twofold. First,

in analogy with the anomalies in feature models, an ambiguous

FTS is often undesired since it gives an unclear idea of the SPL.

Second, an unambiguous FTS paves the way for efficient family-

based model checking, because it has specific characteristics that

enable model checking of properties expressed in a rich, action-

based and variability-aware fragment of the well-known CTL logic

directly on the FTS such that validity is preserved in all products.

We apply our approach to illustrative examples from the literature.
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Related work. Static analysis of FTSs mimics the automated anal-

ysis of feature models [13, 51], by defining behavioural counterparts

of dead and false optional features. It is related to static (program)

analysis [17, 47], which includes the detection of bugs in the code

(like using a variable before its initialisation) but also the identifica-

tion of code that is redundant or unreachable. In [42], conventional

static analysis techniques are applied to SPLs represented in the

form of object-oriented programs with feature modules. The aim

is to find irrelevant features for a specific test in order to use this

information to reduce the effort in testing an SPL by limiting the

number of SPL programs to examine to those with relevant features.

In [16], several well-known static analysis techniques are lifted to

SPLs without the exponential blowup caused by generating and

analysing all products individually, by converting such analyses

to feature-sensitive analyses that operate on the entire SPL in one

single pass. In [41], static type checking is extended from single

programs to an entire SPL by extending the type system of a subset

of Java with feature annotations. This guarantees that whenever

the SPL is well-typed, then all possible program variants are well-

typed as well, without the need for generating and compiling them

first. An encompassing overview of (static) analysis strategies for

SPLs can be found in [50] and a recent empirical study on applying

variability-aware static analysis techniques to real-world config-

urable systems is presented in [48].

Outline. After providing some background (in Section 2), we de-

fine ambiguities in FTSs (in Section 3); provide criteria that enable

to identify them by static analysis (in Section 4); present a static

analysis algorithm to detect ambiguities in FTSs (in Section 5); illus-

trate the application of the algorithm on FTSs from the literature

(in Section 6); discuss scalability issues (in Section 7); and conclude

by briefly outlining some planned future work (in Section 8).

2 BACKGROUND

In this section, we provide some background needed for the sequel.

We recall LTSs as the underlying behavioural structure of FTSs.

Definition 2.1 (LTS). A Labelled Transition System (LTS) is a

quadruple (S, Σ, s0,δ ), where S is a finite (non-empty) set of states,

Σ is a set of actions, s0 ∈ S is an initial state, and δ ⊆ S × Σ × S is a

transition relation.

We call (s,a, s ′) ∈ δ an a-(labelled) transition (from source state s

to target state s ′) and we may also write it as s
a
−−→ s ′.

We recall classical notions for LTSs that we will use in the paper.

Definition 2.2 (reachability). Let L = (S, Σ, s0,δ ) be an LTS. A

sequencep = s0t1s1t2s2 · · · is a path ofL if ti = (si−1,ai , si ) ∈ δ for

all i > 0; p is said to visit states s0, s1, . . . and transitions t1, t2, . . .
and we denote its ith state by p(i) and its ith transition by p{i}.

A state s ∈ S is reachable (via p) in L if there exists a path p
that visits it, i.e. p(i) = s for some i ≥ 0; s is a deadlock if it has no

outgoing transitions, i.e. ∄ (s,a, s ′) ∈ δ , for all a ∈ Σ and s ′ ∈ S .
A transition t = (s,a, s ′) ∈ δ is reachable (via p) in L if there

exists a path p that visits it, i.e. p{i} = t , for some i > 0.

FTSs were introduced in [23, 25] to concisely model the be-

haviour of all the products of an SPL in one transition system by

annotating transitions with conditions expressing their existence in

products. LetB = {⊤,⊥} denote the Boolean constants true (⊤) and
false (⊥), and let B(F ) denote the set of Boolean expressions over

a set of features F (i.e. using features as propositional variables).

We do not formalise a language for Boolean expressions in order to

allow the inclusion of all possible propositional connectives and, in

particular, we include the constants from B. The elements of B(F )
are also called feature expressions. An FTS is an LTS equipped with

a feature model and a function that labels each transition with a

feature expression. In the following definition, the feature model

is represented by the set of its (product) configurations, where

each configuration is represented by a Boolean assignment to the

features (i.e. selected = ⊤ and unselected = ⊥).

Definition 2.3 (FTS). A Featured Transition System (FTS) is a sex-

tuple (S, Σ, s0,δ , F ,Λ), where S is a finite (non-empty) set of states,

Σ is a set of actions, s0 ∈ S is the initial state, δ ⊆ S ×Σ×B(F )×S is

a transition relation, F is a set of features, and Λ ⊆ { λ : F → B } is
a set of (product) configurations. W.l.o.g., we assume that whenever

(s,a,ϕ, s ′), (s,a,ϕ ′, s ′) ∈ δ , then ϕ = ϕ ′ (transition injectivity).

We call (s,a,ϕ, s ′) ∈ δ , for some feature expression ϕ ∈ B(F ), a
featured transition (labelled with a and limited to configurations

satisfying ϕ) and we call (s,a,⊤, s ′) ∈ δ a must transition. We may

also write featured transitions as s
a | ϕ
−−−−→ s ′.

The notions from Definition 2.2 (path, reachability, deadlock)

are carried over to FTSs by ignoring the feature expressions. The

transition injectivity in Definition 2.3, guaranteeing that a transition

identifies a unique feature expression (as in [14, 52]), turns out to

be useful for some of the technical results in this paper. Moreover,

we know from [23] (Theorem 8) that restricting feature expressions

to singleton features does not affect expressiveness.

A configuration λ ∈ Λ satisfies a feature expression ϕ ∈ B(F ),
denoted by λ |= ϕ, whenever the interpretation of ϕ via λ is true,

i.e. if the result of substituting the value of the features occurring

as variables in ϕ according to λ is ⊤. By definition, λ |= ⊤.

Definition 2.4 (product). Let F = (S, Σ, s0,δ , F ,Λ) be an FTS. The

LTS specified by a particular configuration λ ∈ Λ, denoted by F |λ ,

is called a product of F . It is obtained from F by first removing all

featured transitions whose feature expressions are not satisfied by λ
(resulting in the LTS (S, Σ, s0,δ

′), with δ ′ = { (s,a, s ′) | (s,a,ϕ, s ′) ∈
δ and λ |= ϕ}), and then removing all unreachable states and their

outgoing transitions. The set of products of F is denoted by lts(F ).

Note that, by construction: (i) each product does nor contain

unreachable states or transitions; (ii) each must transition of the

FTS is maintained in the products in which it is reachable; and

(iii) each product does not contain states or actions that were not

originally present in the FTS.

We let fmF denote the feature model expression of F , i.e. a feature

expression that represents Λ (like, e.g., the formula, in conjunctive

normal form,

∨
λ∈Λ (

∧
f ∈F ({ f | λ(f ) = ⊤ } ∪ { ¬f | λ(f ) = ⊥ })).

We may write fm instead of fmF if no confusion can arise.

Example 2.5. In Fig. 1, we depict an FTS F , modelling the be-

haviour of a product line of coffee machines, adapted from [6]. It

has transitions labelled with features $ and e, representing prod-

ucts for either the American or the European market, respectively,

and a must transition that must be present in every product. Its
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s0 s1 s2

F fmF = $ ⊕ e

ins |⊤

std |e

ins |$

xxl |$

Figure 1: FTS of a product line of coffee machines

s0 s1 s2

F |λ
1

ins ins

xxl

s0 s1

F |λ
2

ins

std

Figure 2: LTSs of products λ1 and λ2 of the FTS of Fig. 1

feature model can thus be represented by the feature expression

fmF = $ ⊕ e, where ⊕ denotes the exclusive disjunction operation.

Hence the product configurations of F are Λ = {λ1, λ2}, where
λ1($) = ⊤, λ1(e) = ⊥, λ2($) = ⊥, and λ2(e) = ⊤.

The FTS has actions to insert coins (ins) and to pour standard (std)

or extra large (xxl) coffee. Extra large coffee is exclusively available

for the American market (for two dollars), while standard coffee is

exclusively available for the European market (for one euro). The

LTSs F |λ1 and F |λ2 , depicted in Fig. 2, model the behaviour of the

two products of F : configuration λ1 for the American market and

configuration λ2 for the European market.

3 AMBIGUITIES IN FTSs

Some of the better known analysis operations that are typically

performed as part of the automated analysis of feature models con-

cern the detection of anomalies (cf., e.g., [13, 51]). These anomalies

reflect ambiguous or even contradictory information. Examples

include so-called dead and false optional features. A feature is dead

if it is not contained in any of the products of the SPL, typically

due to an incorrect use of cross-tree constraints, whereas a feature

is false optional if it is contained in all the products of the SPL even

though it is not a designated mandatory feature.

In this section, we capture equivalent notions in a behavioural

setting, by adapting them to (featured) transitions of an FTS: we

define ambiguous FTSs (Section 3.1); show how to transform an

ambiguous FTS into an unambiguous one (Section 3.2); and discuss

the usefulness of unambiguous FTSs (Section 3.3).

3.1 Behavioural Ambiguities

Definition 3.1 (dead transition). We define a transition (of an FTS)

to be dead if it is not reachable in any of the FTS’ products.

Definition 3.2 (false optional transition). A featured transition (of

an FTS) is false optional if: (i) it is not annotated with the feature

expression ⊤ and (ii) it is present in all the FTS’ products in which

its source state is reachable.

An important safety property of reactive systems concerns dead-

lock freedom, i.e. the system should not reach a state in which

no further action is possible, thus guaranteeing progress or live-

ness [1, 45]. In case of configurable reactive systems, like SPLs, this

notion can be extended to guaranteeing liveness for each system

variant (product). Recall from Section 2 that a state of an FTS is

said to be a deadlock if it has no outgoing transitions and from Def-

inition 2.4 that all states of a product (LTS) of an FTS are reachable.

Definition 3.3 (hidden-deadlock state). We define a state (of an

FTS) to be a hidden deadlock if: (i) it is not a deadlock in the FTS

and (ii) it is a deadlock in one or more of the FTS’ products (LTSs).

Definition 3.4 (ambiguous FTS). An FTS is said to be ambiguous

if any of its states is a hidden deadlock or if any of its transitions is

dead or false optional.

Example 3.5. In Fig. 3(left), we depict an FTS F with features f1
and f2 and feature model fm = f1 ⊕ f2.

The LTSs F |λ1 and F |λ2 , depicted in Fig. 4(left and middle),

model the behaviour of its two valid product configurations: λ1 =
{ f1} and λ2 = { f2}. We immediately see that featured transition

s2
a | f2
−−−−−→ s2 is dead, featured transition s1

a | f1
−−−−−→ s2 is false optional,

and state s2 is a hidden deadlock. Hence F is an ambiguous FTS.

3.2 Removing Ambiguities

Any ambiguous FTS can be straightforwardly turned into an un-

ambiguous FTS by the following transformation:

(1) remove its dead transitions;

(2) turn its false optional transitions into must transitions; and

(3) make its hidden deadlocks explicit by adding to Q a distin-

guished deadlock state s† < Q and, for each hidden deadlock

state s , adding a new transition (which we call a deadlock

transition) with s as source, s† as target, and labelled by a

distinguished action † < Σ and by a feature expression that

negates the disjunction of the feature expressions of all its

source state’s outgoing transitions.

Note that step (3) needs to be performed only for those hidden

deadlock states that have not yet become explicit deadlock states

upon the removal of dead featured transitions in step (1).

Example 3.6. In Fig. 5(left), we depict an unambiguous FTS F∗

that was obtained by transforming the ambiguous FTS F of Fig. 3.

We removed dead featured transition s2
a | f2
−−−−−→ s2 and false optional

featured transition s1
a | f1
−−−−−→ s2 was turned into must transition

s1
a | ⊤
−−−−−→ s2. Note that there was no need to add an explicit deadlock

transition from the hidden deadlock state s2 to a newly added

explicit deadlock state, since s2 became an explicit deadlock state

upon removing the dead featured transition s2
a | f2
−−−−−→ s2.

Now consider the ambiguous FTS F ′ depicted in Fig. 3(right)

with features f1 and f2 and feature model fm = f1 ⊕ f2. The LTSs
F ′ |λ1 and F

′ |λ2 , depicted in Fig. 4(left and right), model the be-

haviour of its two valid product configurations: λ1 = { f1} and

λ2 = { f2}. Similar to Example 3.5, featured transition s2
a | f2
−−−−−→ s2

is dead. However, featured transition s1
a | f1
−−−−−→ s2 is no longer false

optional, since it is indeed not present in F ′ |λ2 even though its

source state s1 is reachable in that LTS. Moreover, not only state s2
is a hidden deadlock (for the same reason as before) but so is state

s1, since it is a deadlock in F ′ |λ2 . Hence also F
′
is ambiguous.

In Fig. 5(right), we depict an unambiguous FTS F ′∗ that was ob-

tained by transforming the ambiguous FTS F ′ of Fig. 3 as follows.

We removed the dead featured transition s2
a | f2
−−−−−→ s2 and we added

3



s0 s1 s2

F fm = f1 ⊕ f2

a |f1

a |f2

a |f1

a |f2

s0 s1 s2

F′ fm = f1 ⊕ f2

a |⊤

a |f2

a |f1

a |f2

Figure 3: Ambiguous FTSs

s0 s1 s2

F |λ
1
=F′ |λ

1

a a s0

F |λ
2

a

s0 s1

F′ |λ
2

a

a

Figure 4: LTSs of products λ1 and λ2 of the FTSs of Fig. 3

s0 s1 s2

F∗ fm = f1 ⊕ f2

a |f1

a |f2

a |⊤ s0 s1 s2

s†

F′∗ fm = f1 ⊕ f2

a |⊤

a |f2

a |f1

† |¬f1

Figure 5: Unambiguous FTSs obtained from the FTSs of Fig. 3

the explicit deadlock transition s1
† | ¬f1
−−−−−−→ s† from the hidden dead-

lock state s1 to the newly added explicit deadlock state s†. Note
that in this case, without adding this explicit deadlock transition,

state s1 would remain a hidden deadlock state in F ′∗ .

3.3 Usefulness of Unambiguous FTSs

In analogy with anomaly detection in feature models, dead featured

transitions in an FTS clearly indicate a modelling error, whereas

false optional featured transitions often provide a wrong idea of the

domain by giving the impression that certain behaviour is optional

while actually it is mandatory (i.e. it occurs in all products of the

FTS). However, the transformation of an ambiguous FTS into an

unambiguous FTS also serves another purpose, viz. to facilitate

family-based model checking of properties expressed in a fragment

of the variability-aware action-based and state-based branching-

time modal temporal logic v-ACTL and interpreted on so-called

‘live’ MTSs [4, 7–9]. AModal Transition System (MTS) is an LTS that

distinguishes admissible (‘may’), necessary (‘must’), and optional

(may but not must) transitions such that by definition all necessary

and optional transitions are also admissible [43, 44].

In [8], an MTS is defined to be live if all its states are live, where

a live state of an MTS is such that it does not occur as a final state in

any of its products (LTSs obtained from the MTS in a way similar to

Definition 2.4), resulting in an MTS in which every path is infinite.

Then it is proved that the validity of formulae expressed in a rich

fragment of v-ACTL is preserved in all products (cf. Theorem 4

of [8]), thus allowing family-based model checking of MTSs.

It is not difficult to see that this result continues to hold for

MTSs whose every state is either live or final.
1
Note that any FTS

can directly be interpreted as an MTS by considering its featured

transitions as optional transitions, its must transitions as necessary

1
Adding loops (labelled with a dummy symbol) to all final states makes the MTS live.

transitions, and all its transitions as admissible. If the FTS is un-

ambiguous, then the corresponding MTS is live because it has no

hidden deadlocks, and all transitions of the FTS that are mandatorily

present in all products moreover correspond to must transitions

in the MTS. This demonstrates that the above mentioned result

from [8] can be carried over to unambiguous FTSs, thus allowing

family-based model checking of such FTSs for the v-ACTL fragment

v-ACTLive
□
. Hence, the following result holds.

Proposition 3.7. Any formula ϕ of v-ACTLive
□
is preserved by

unambiguous FTSs: given an unambiguous FTS F , whenever F |= ϕ,
then F |λ |= ϕ for all products F |λ ∈ lts(F ).

In Section 6, we apply this result to an example FTS and provide

examples of v-ACTLive
□
formulae to illustrate its impact.

4 CRITERIA FOR AMBIGUITIES

The ambiguities in FTSs can be characterised by criteria that enable

the definition of the static analysis algorithm given in Section 5.

Our goal is to spot ambiguities by exploring once the whole FTS

in order to infer properties holding for all its products. It is worth

noting that the reachability of a state in an FTS (via a path) is not a

sufficient condition to ensure that there exist a product including

such a state (because the conjunction of the feature expressions

of the transitions in each path reaching the state may be false for

all configurations). Anyway, the set of configurations of the FTS

contains sufficient information to identify its products. In order to

circumvent the generation of all products and analyse them one by

one, we use Boolean formulae suitable for SAT solver processing.

Definition 4.1 (FTS notations). Let F = (S, Σ, s0,δ , F ,Λ) be an FTS.

(1) For a transition t = (s,a,ϕ, s ′) ∈ δ , we denote its source

state s by t .source, its target state s ′ by t .target, and its

feature expression ϕ by t .bx.
(2) We write Paths(s) to denote the set of all (finite) paths (start-

ing from the initial state s0 and) ending in state s ∈ S , and we
write Paths(t) to denote the set of all (finite) paths (starting

from the initial state s0 and) ending with transition t ∈ δ .
(3) For a pathp, we define its path expression, denoted by bxp , as

the formula

∧
t ∈p (t .bx), i.e. the conjunction of all formulae

labelling the transitions visited by p.

Finiteness of an FTS does not imply that the set Paths(s) is finite.
For instance, the FTS F of Fig. 1 is such that Paths(s0) contains an
infinite number of paths of the form s0t1s1t2s0 . . . s0t1s1t2s0, where
t1 = (s0, ins |⊤, s1) and t2 = (s1, std |e, s0).

Definition 4.2 (cycle-free path). Let F = (S, Σ, s0,δ , F ,Λ) be an
FTS. A path is cycle-free whenever it visits each state at most once.

Let cfPaths(s) denote the set of all cycle-free paths ending in state

s ∈ S . Let cfPaths(t) denote the set of all cycle-free paths ending
with transition t ∈ δ .

Since a cycle-free path visits each transition at most once, finite-

ness of an FTS ensures that cfPaths(t) is finite. A cycle-free path p
can be seen as the canonical representative of the equivalence class

of the paths that become p when removing the cycles.

Lemma 4.3. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let s ∈ S .
If p ∈ Paths(s), then the path q ∈ cfPaths(s) obtained from p by

removing its cycles is such that bxp ⇒ bxq .

4



Proof. By construction, for all transitions t it holds that t ∈ q
implies t ∈ p. Thus, by Definition 4.1, bxp ⇒ bxq holds. □

4.1 Dead Transitions Criterion

Dead transitions are defined in Definition 3.1. The next theorem

provides an equivalent definition that can be used as an effective

criterion to decide whether a transition is dead.

Theorem 4.4 (dead transitions criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let t ∈ δ , and let cfPaths(t) , ∅.
The transition t is dead if and only if fmF ∧ bxq is not satisfiable,

for all q ∈ cfPaths(t).

Proof. First, we prove a logical equivalence: for allp ∈ Paths(t),
fm ∧ bxp is not satisfiable if and only if, for all q ∈ cfPaths(t),
fm ∧ bxq is not satisfiable. The proof of the direction (⇒) is trivial,

because cfPaths(t) ⊆ Paths(t). The proof of the other direction
(⇐) follows by Lemma 4.3, we prove the contrapositive. If there is

a path p ∈ Paths(t) such that fm ∧ bxp is satisfiable, then we can

find a path q ∈ cfPaths(t) such that fm ∧ bxq is satisfiable.

The statement of the theorem follows by Lemma 4.5 below and

by the above logical equivalence. □

The next lemma formalises Definition 3.1 in terms of an FTS’

paths, explicating that to decide whether a transition is dead it

suffices to inspect the path expressions of all paths ending with

that transition.

Lemma 4.5. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let t ∈ δ , and let
Paths(t) , ∅. The transition t is dead if and only if fmF ∧bxp is not

satisfiable, for all p ∈ Paths(t).

Proof. (⇒) We prove the contrapositive. Let p∗ ∈ Paths(t) be
the path s0t1s1 . . . sn−1tnsn such that fm ∧ bxp∗ is satisfiable. A

formula is satisfiable whenever it can be made true by assigning

appropriate logical values to its variables; namely, there exists a

configuration λ∗ that assigns logical values to features such that

λ∗ |= fm∧bxp∗ ; namely, both λ∗ |= fm and λ∗ |= bxp∗ . But λ
∗ |= fm

simply means that λ∗ ∈ Λ. Moreover, λ∗ |= bxp∗ means that, for

all 1 ≤ i ≤ n, if ti = (si−1,ai ,ϕi , si ), then λ∗(ϕi ) = ⊤; this is trivial
in case ϕi = ⊤. Concluding, p

∗
identifies a path reaching t in the

product F |λ∗ defined by λ∗, so t is not dead and the proof is done.

(⇐) We prove the contrapositive. Let t = (s,a,ϕ, s ′) and assume

that t is not dead, i.e. t ′ = (s,a, s ′) is reachable in a product F |λ∗

defined by the configuration λ∗ ∈ Λ Namely, t ′ is visited by a

path p = s0t
′
1
s1t
′
2
s2 . . . sn−1t

′
nsn of F |λ∗ such that s = sn−1, s

′ =

sn , and t ′ = t ′n , for some n > 0. Then the transition injectivity

(cf. Definition 2.3) guarantees that there exists a unique list of

transitions t1, . . . , tn ∈ δ such that tn = t and, for all 1 ≤ i ≤ n,
ti = (si−1,ai ,ϕi , si ) for some ϕi such that λ∗(ϕi ) = ⊤. Thus the
path s0t1s1 . . . sn−1tnsn is included in Paths(t) by Definition 4.2

and λ∗ |= bxp . Since λ
∗ |= fm, we can conclude that fm ∧ bxp is

satisfiable. □

4.2 False Optional Transitions Criterion

False optional transitions are defined in Definition 3.2. The next

theorem provides an equivalent definition that can be used as an

effective criterion to decide whether a transition is false optional.

Theorem 4.6 (false optional transitions criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let t ∈ δ be such that

t .bx , ⊤. The transition t is false optional if and only if, for all

p ∈ cfPaths(t .source), fmF ⇒ (bxp ⇒ t .bx) is a tautology.

Proof. First, we prove the following logical equivalence: fm ⇒

(bxp ⇒ t .bx) is a tautology, for allp ∈ Paths(t .source), if and only
if fm ⇒ (bxq ⇒ t .bx) is a tautology, for all q ∈ cfPaths(t .source).

The proof of the direction (⇒) is trivial, because cfPaths(s) ⊆
Paths(s). The proof of the other direction (⇐) is proved by contra-

position. Let λ∗ be an assignment of logical values to all features

such that λ∗ ̸ |= fm ⇒ (bxp ⇒ t .bx), for somep ∈ Paths(t .source).
This means that λ∗ |= fm∧bxp and λ∗ ̸ |= t .bx. By Lemma 4.3, there

is a pathq ∈ cfPaths(t) such that λ∗ |= fm∧bxq but, still, λ∗ ̸ |= t .bx.
This proves the logical equivalence.

The statement of the theorem follows by Lemma 4.7 below and

by the above logical equivalence. □

The next lemma formalises Definition 3.2 in terms of an FTS’

paths, explicating that to decide whether a transition is false op-

tional it suffices to inspect the path expressions of all paths ending

in the source state of that transition.

Lemma 4.7. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS and let t ∈ δ be

such that t .bx , ⊤. The transition t is false optional if and only if,

for all p ∈ Paths(t .source), fmF ⇒ (bxp ⇒ t .bx) is a tautology.

Proof. (⇒) We recall that t is false optional whenever for all
λ ∈ Λ, for all p ∈ Paths(t .source), λ |= bxp implies λ |= t .bx. We

assume that t is false optional and prove that fm ⇒ (bxp ⇒ t .bx)
is a tautology, for all p ∈ Paths(t .source). Let λ∗ be an assignment

of logical values to all features. We consider two sub-cases. First,

assume that λ∗ ̸ |= fm∧bxp . Then immediately λ∗ |= fm ⇒ (bxp ⇒

t .bx). Second, assume that λ∗ |= fm ∧ bxp . Clearly λ
∗ ∈ Λ, because

λ∗ |= fm. Moreover, λ∗ |= t .bx because λ∗ |= bxp and t is false
optional. Therefore, also in this case we conclude λ∗ |= fm ⇒

(bxp ⇒ t .bx). Summarising, fm ⇒ (bxp ⇒ t .bx) is a tautology.
(⇐) Assume that fm ⇒ (bxp ⇒ t .bx) is a tautology, for all

p ∈ Paths(t .source). If, for all p ∈ Paths(t .source), for all λ∗ ∈ Λ,
λ ̸ |= bxp , then t is trivially false optional. Hence, we assume that

λ∗ ∈ Λ is such that λ∗ |= bxp∗ for a p
∗ ∈ Paths(t .source) and we

aim to prove that λ∗ |= t .bx. Clearly, λ∗ |= fm by Definition 4.1.

Therefore λ∗ |= fm ⇒ (bxp ⇒ t .bx) implies λ∗ |= t .bx, which
completes the proof. □

4.3 Hidden Deadlock States Criterion

Hidden deadlock states are defined in Definition 3.3. The next theo-

rem provides an equivalent definition that can be used as an effec-

tive criterion to decide whether a state is a hidden deadlock.

Theorem 4.8 (hidden deadlock states criterion).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let s ∈ S , and let s .exit_trs
denote the set of transitions starting from s . The state s is a hidden

deadlock if and only if both s .exit_trs , ∅ and there exists a path

p ∈ cfPaths(s) such that fmF ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx)) is

not a tautology.

Proof. First, we prove a logical equivalence: for allp ∈ Paths(s),
fm ⇒ (bxp ⇒ (

∨
t ∈s .exit_trs t .bx)) is a tautology if and only if,
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for all q ∈ cfPaths(s), fm ⇒ (bxq ⇒ (
∨
t ∈s .exit_trs t .bx)) is a

tautology.

The proof of the direction (⇒) is trivial, because cfPaths(s) ⊆
Paths(s). The proof of the other direction (⇐) is proved by contra-

position. Let λ∗ be an assignment of logical values to all features

such that λ∗ ̸ |= fm ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx)), for some

path p ∈ Paths(s). This means that λ∗ |= fm ∧ bxp and λ∗ ̸ |=
(
∨
t ∈s .exit_trs t .bx). By Lemma 4.3, there is a path q ∈ cfPaths(s)

such that λ∗ |= fm ∧ bxq but, still, λ∗ ̸ |= (
∨
t ∈s .exit_trs t .bx). This

proves the logical equivalence.

The statement of the theorem follows by Lemma 4.9 below and

by the above logical equivalence. □

The next lemma formalises Definition 3.3 in terms of an FTS’

paths, explicating that to decide whether a state is a hidden deadlock

it suffices to inspect the path expressions of all paths ending with a

transition having such state as its source state.

Lemma 4.9. Let F = (S, Σ, s0,δ , F ,Λ) be an FTS, let s ∈ S , and let
s .exit_trs denote the set of transitions starting from s . The state s is
not a hidden deadlock if and only if, either s .exit_trs = ∅ or for all
p ∈ Paths(s), fmF ⇒ (bxp ⇒ (

∨
t ∈s .exit_trs t .bx)) is a tautology.

Proof. (⇒) A state s is not a hidden deadlock whenever, ei-

ther s .exit_trs = ∅ or for all configurations λ ∈ Λ and for all

paths p ∈ Paths(s), λ |= bxp implies that there exists a transi-

tion t ∈ s .exit_trs such that λ |= t .bx. Assume that s is not a

hidden deadlock. If s .exit_trs = ∅, then the proof is immediate;

hence we assume that for all λ ∈ Λ and for all p ∈ Paths(s),
λ |= bxp implies λ |= (

∨
t ∈s .exit_trs t .bx) and we aim to prove

that fm ⇒ (bxp ⇒
∨
t ∈s .exit_trs t .bx) is a tautology. The proof is

straightforward, because for all λ ∈ Λ we know that λ |= fm.

(⇐) If s is such that s .exit_trs = ∅, then the proof is immediate.

Let p ∈ Paths(s) be such that fm ⇒ (bxp ⇒ (
∨
t ∈s .exit_trs t .bx))

is a tautology. This means that for all assignments λ of logical

values to features, the following holds: if λ |= fm and λ |= bxp ,

then λ |= (
∨
t ∈s .exit_trs t .bx). Clearly, λ |= fm implies λ ∈ Λ, so

the proof is straightforward. □

4.4 SAT Solving

All criteria presented in this section are defined as deciding for a

given Boolean formula if it is a tautology or not satisfiable. Checking

these criteria are thus variations of the SAT problem [26], where

instead of finding whether or not a Boolean formula has a solution,

wewant to find if it has no solution (e.g. a formulaϕ is a tautology iff

¬ϕ has no solution). We can thus remark that these problems are co-

NP-complete. Additionally, SAT solvers can be used to solve these

problems. SAT solving is an active field of research [3, 15, 39, 40]

and tools exist that compute, more or less efficiently, a solution for

an input formula, or fail if the formula is not satisfiable. Hence, by

feeding the formula of a criterion to a SAT solver and checking if

it fails, we can conclude if the criterion is validated or not. In our

implementation, we used the Z3 SMT solver [31, 46] (that includes

a SAT solver) developed by Microsoft Research and freely available

under the MIT license.

5 STATIC ANALYSIS ALGORITHM

In this section, we present an algorithm that visits all cycle-free

paths (starting from the initial state) of an FTS in a depth-first order.

We describe the algorithm via python pseudocode that identifies

the bodies of functions, selection, and iteration operators, by means

of a suitable indentation, in place of the more common C-like curly

brackets (cf. Listings 1 and 2). The algorithm assumes that as input

is provided a suitable representation of an FTS. Then in a unique

FTS traversal it is able to identify all ambiguities: hidden deadlock

states (cf. Definition 3.3) and dead and false optional transitions (cf.

Definitions 3.1 and 3.2). We remark that our solution rests on the

use of a suitable SAT solver.

Listing 1: Ambiguities discovery algorithm

1 for t in fts.trs: // initialise transition deadness & optionality

2 t.dead ←true
3 if (t.bx ,true): t.false_opt == true
4 else: t.false_opt == false
5 for s in fts.states: s.live ←true // initialise state liveness

6 path_discover(fts.initial, true)
7 for s in fts.states: // set state hidden deadlockness

8 s.hDead ←(s.exit_trs , ∅ && not (s.live))

Listing 2: Depth-first visit procedure

1 def path_discover(s, bxp):
2 s.visited ←true
3 if(s.live == true && (s.exit_trs , ∅)):
4 s.live ←((fts.fm⇒ (bxp ⇒ (

∨
t∈s.exit_trs t.bx))) is tautology)

5 for t ∈ s.exit_trs:
6 if(t.false_opt == true)
7 t.false_opt ←((fts.fm⇒ (bxp ⇒ t.bx)) is tautology)
8 ext_bxp ←bxp && t.bx
9 validp ←((fts.fm && ext_bxp) is satisfiable)
10 if(t.dead == true): t.dead ←not(validp)
11 if((not t.exit_state.visited) && validp):

12 path_discover(t.exit_state, ext_bxp)
13 s.visited ←false

First of all, we introduce the structure of global variables. The

considered FTS is stored in the global variable fts. It has has four

(relevant) fields:

(1) trs is the set of all the transitions in the FTS;

(2) states is the set of all states in the FTS;

(3) initial is the initial state of the FTS;

(4) fm is the Boolean expression representing the feature model

of the FTS.

The structure of states has four fields as well:

(1) visited is a Boolean value indicating if the state is included

in the path currently visited;

(2) exit_trs is the set of transitions exiting from this state;

(3) live is a Boolean flag that stores the discovery of products

with states (having at least one outgoing transition) that are

deadlocks;

(4) hDead is a Boolean flag meant to mark the hidden deadlock

status of states.
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The data structure of transitions is crucial:

(1) bx is a Boolean expression formalising the FTS logic con-

straint on features that identifies in which variants the tran-

sition has to be included;

(2) exit_state is the state to which the transition points;

(3) dead is a Boolean flag meant to mark the dead status of tran-

sitions;

(4) false_opt is a Boolean flag meant to mark the false optional

status of transitions.

It is worth to recall that, in accordance with Definition 2.2, we

are interested only in paths starting in the initial state of the FTS;

moreover, we focus on cycle-free paths that never cross twice the

same state or the same transition.

Definition 5.1 (path notations). LetF= (S, Σ, s0,δ , F ,Λ) be an FTS
represented in above data structures and let p = s0t1s1 . . . sn−1tnsn
(n ∈ N) be a cycle-free path of F .

• Let p.endState denote the final state of p, namely sn .
• Let p.endTrs denote the final transition of p, namely tn .
• Let VsTed(p) denote the predicate that holds whenever:

s.visited == true iff s = si , for all i ≤ n − 1.
• Let SaTed(p) denote the predicate that holds exactly when

fts.fm ∧ bxp is satisfiable.

• Let extp denote the set of all cycle-free paths extending p in

a product, i.e. all paths p′ = s0t1s1 . . . sn−1tnsn . . . tn+ksn+k
(k ≥ 0) such that SaTed(p′) holds.

We remark that VsTed(p) predicates that the states marked as

“visited”are exactly those in p, except for the last one. Moreover, as

stated by the following proposition, extp is closed under prefixes

extending p.

Proposition 5.2 (ext-closure). Let F = (S, Σ, s0,δ , F ,Λ) be
an FTS and let p be one of its cycle-free path. If p′ ∈ extp then

extp′ ⊆ extp .

Proof. If SaTed(p) is false then extp′ = extp = ∅. If there is

p′′ ∈ extp′ then p′′ extends p′ and SaTed(p′′) holds. Clearly p′′

extends also p, so we conclude p′′ ∈ extp . □

We first prove correctness of the procedure path_discover of List-

ing 2.

Lemma 5.3 (correctness of procedure path_discover).

Let F = (S, Σ, s0,δ , F ,Λ) be the FTS represented in the algorithm

data structures and let p = s0t1s1 . . . sn−1tnsn (n ∈ N) be a cycle-

free path such that both SaTed(p) and VsTed(p).

(1) The execution of path_discover(p .endState, bxp) recursively calls

the function path_discover(p′ .endState, bxp′) in a situationwhere

VsTed(p′) holds, for all and only p′ ∈ extp and p , p′.
(2) The execution of path_discover(fts.initial, true) always ends

in a finite number of steps.

(3) Let p′ ∈ extp and s ∈ p′.endState. If s.exit_trs , ∅ and
fmF ⇒ (bxp ⇒ (

∨
t ∈s .exit_trs t .bx)) is not a tautology,

then the execution of path_ discover(p .endState, bxp) ensures

that s.live is flagged false.

(4) Let p′ ∈ extp , s ∈ p
′.endState, and t ∈s.exit_trs. If fmF⇒

(bxp′ ⇒ t .bx) is not a tautology, then the execution of

path_discover(p .endState, bxp) ensures that t.false_opt is

flagged false.

(5) Let p′ ∈ extp be a path including at least a transition, and let

t be p′.endTrs. The execution of path_discover(p .endState, bxp)
ensures that t.dead is flagged false.

Proof. (1) First we show that, if p′ ∈ extp , then a recursive

call to path_discover(p′ .endState, bxp′) (in a situation in which

VsTed(p′) holds) is done. The proof is by induction on the

number of paths in extp . If extp = ∅, then the proof is

trivial; so, we assume p′ = s0t1s1 . . . sn−1tnsntn+1sn+1 ∈
extp extending p with the unique additional transition tn+1.
The execution of path_discover(p .endState, bxp) is driven by

the code of Listing 2. Line 2 predisposes the flag visited and

makes VsTed(p′) hold, so that a first statement requirement

is satisfied. Then, lines 11–12 concretely do the recursive call

path_discover(p′ .endState, bxp′) because p′ is cycle-free and

SaTed(p′) holds. Since extp′ ⊆ extp by Proposition 5.2, the

statement holds for all paths in extp′ by induction; so, the

proof follows.

Let assume that, by executing path_discover(p .endState, bxp) a

recursively calls to path_discover(p′ .endState, bxp′) is done, in

a situation in which VsTed(p′) holds. The proof is done by
induction on the number N of transitions of p′ not in p. The
call must be done by means of the lines 11–12 of Listing 2. If

N = 1 then line 11 ensures that p′ is still a cycle-free path
(properly extending p) and SaTed(p′); namely p′ ∈ extp . If
N ≥ 1 then the proof follows by induction.

(2) As usual, we defined FTSs without finiteness assumptions;

but as for SPLs, their practical interest implicitly assumes

that all constituents of F are finite (this allows to store F in

our algorithm’s data structure). First note that the number of

transitions starting from the nodes of the FTS is bounded by

maxs ∈S #(s .exit_trs) ∈ N. Thus, line 5 of the procedure in
Listing 2 does a finite number of recursive calls. Next, note

that the number of states visited==false is strictly decreased

at each of the previous calls. Thus, the proof follows.

(3) If p , p′ then, path_discover(p′ .endState, bxp′) is recursively
called by the point 1 of this lemma. Line 3 of the procedure

prevents the update of the flag (p′ .endState).live whenever it

is already set to false. Line 4, if necessary, updates this flag

in accordance to our statement.

(4) If p , p′ then, path_discover(p′ .endState, bxp′) is recursively
called by the point 1 of this lemma. Line 6 of the procedure

prevents the update of the flag (p′ .endTrs).false_optwhenever

it is already set to false. Line 7, if necessary, updates this flag

in accordance to our statement.

(5) p′ ∈ extp ensures that SaTed(p′), i.e. p is a path such that

fts.fm ∧ bxp is satisfiable. Line 9 of the procedure stores true in

validp . Line 10 prevents the update of the flag (p′ .endTrs).dead

whenever it is already false and, if necessary, updates this

flag in accordance to our statement. □

Next we prove correctness of the analysis algorithm in Listing 2.

Theorem 5.4 (correctness of algorithm).

Let F = (S, Σ, s0,δ , F ,Λ) be an FTS represented in the algorithm data

structures. The execution of the ambiguities discovery algorithm (cf.
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Figure 6: FTS of the vending machine from [20]

Listing 1) sets the flags dead, false_opt, and hDead in the data structure

in accordance with the fact that a transition is dead, a transition is

false optional, and a state is not a hidden deadlock, respectively.

Proof. The algorithm of Listing 1 begins by executing some

initialisation, after which it calls path_discover(fts.initial, true).

Lemma 5.3 specifies the content of the flags dead, false_opt, and live

following the aforementioned procedure call. The algorithm ends

by setting the flags s.hDead as expected. Hence, the proof follows

by Theorems 4.4, 4.6 and 4.8. □

6 ILLUSTRATIVE EXAMPLES

The python code allowing the verification of the examples presented

in this section is publicly available [49].

In Fig. 6, we depict an example FTS modelling the behaviour of

a configurable vending machine selling soda and tea from [20], an

FTS benchmark which was used in numerous publications, among

which [4, 5, 7, 23, 25, 33–36, 38]. Its featuremodel can be represented

by the formula s ∨ t over the 4 features { f , c, s, t}, thus resulting in
12 products (i.e. 2

4 − 4, excluding ∅, { f }, {c}, { f , c}). The FTS of
the vending machine contains 9 states and 13 transitions.

Listing 3 reports the result of applying static analysis to this FTS:

no dead transitions and no hidden deadlocks, but 6 false optional

transitions, viz. (2, change,¬f , 3), (4, return, c, 1), (5, serveSoda, s, 7),
(6, serveTea, t , 7), (8, take,¬f , 9), and (9, close,¬f , 1). Hence the FTS
is ambiguous, but it suffices to turn its false optional transitions

into must transitions to make the FTS unambiguous.

Listing 3: Result of the static analysis on the FTS of Fig. 6

Vending Machine: live

LIVE STATES = [1,2,3,4,5,6,7,8,9]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(2,3),(4,1),(5,7),(6,7),(8,9),(9,1)]

HIDDEN DEADLOCK STATES = []

In Fig. 7, we depict an example FTS modelling the behaviour of

the so-called system FTS that models the logic of a configurable

controller of the mine pump system from [19, 20], a standard SPL

benchmark for FTSs which was used in numerous publications,

among which [6, 21, 23, 25, 28, 29, 34, 36–38]. The mine pump

system has to keep a mine safe from flooding by pumping water

from a shaft while avoiding a methane explosion. The reason we

use the version from [19, 20] is that it comes with detailed FTSs.

The feature model of the mine pump system can be represented

by the formula ϕ = (c ↔ (ct ∨ cp)) ∧ l over the feature set F =
{c, ct, cp,m, l , ll, ln, lh}, thus resulting in 64 products (i.e. 2

6
, since

ϕ is equivalent to considering features {ct, cp,m, ll, ln, lh} to be

optional). The system FTS of the mine pump contains 25 states and

41 transitions.
2
The controller of the mine pump system from [19,

20] is the parallel composition of the system FTS with the so-called

state FTS, not reproduced here.

Listing 4 reports the result of applying static analysis to the

system FTS: no dead transitions, but numerous false optional tran-

sitions, among which (s7, levelMsg, l , s20), and one hidden deadlock

state, viz. s20. Indeed, state s20 is reachable in all products upon the

execution of two must transitions (the second one being the false

optional transition (s7, levelMsg, l , s20)), while s20 is a deadlock in all
8 products that lack any of the features from the subset {ll, ln, lh}.

Hence the system FTS is ambiguous, but it suffices to turn its false

optional transitions into must transitions and to add an explicit

deadlock state s† and a transition (s20, †,¬ll∧¬ln∧¬lh, s†) to make

the system FTS unambiguous.

Listing 4: Result of the static analysis on the FTS of Fig. 7

Mine Pump: not live

LIVE STATES = [S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,

S21,S22,S23,S24,S25,S26,S27,S28,S29,S30]

DEAD TRANSITIONS = []

FALSE OPTIONAL TRANSITIONS = [(S10,S11),(S11,S12),(S13,S14),

(S13,S15,isReady),(S13,S15,isRunning),(S14,S15),(S16,S17),

(S16,S18),(S17,S18),(S18,S19),(S21,S22,isReady),

(S21,S26,isRunning),(S21,S26,isStopped),(S22,S23,setReady),

(S23,S24),(S23,S26),(S24,S25),(S25,S26),(S27,S28),(S27,S30),

(S28,S29),(S29,S30),(S7,S20),(S9,S10),(S9,S11)]

HIDDEN DEADLOCK STATES = [S20]

Actually, a deadlock often indicates an error in the modelling,

either in the feature model or in the behavioural model, i.e. the FTS.

In fact, another solution to make the system FTS unambiguous is to

slightly change the feature model, e.g. by requiring the presence of

at least one of the features ll, ln, or lh via an or-relationship. Doing

so, the feature model becomes ϕ = (c ↔ (ct∨cp)) ∧ l ∧ (ll∨ln∨lh),
thus resulting in 56 products (i.e. excluding the 8 products over F
that satisfy (c ↔ (ct ∨cp)) ∧ l , but lack any of the features from

the subset {ll, ln, lh}). In [19, 20, 25], instead, an alternative feature

model in which only c (and implicitly ct and cp) andm are optional

is considered, resulting in only the four products over F that satisfy

(c ↔ (ct ∧ cp)) ∧ l ∧ ll ∧ ln ∧ lh.
Yet another solution to make the system FTS unambiguous is to

slightly change the FTS itself, to make sure that it contains neither

a hidden nor an explicit deadlock state. In this case, it suffices to add

one or more transitions to leave state s20 in a meaningful way. This

is the solution opted for in [6, 23, 36–38], which use the specification

in fPromela of the complete mine pump system (see below) as

distributed with SNIP [21] (http://projects.info.unamur.be/fts/snip/)

and ProVeLines [27] (http://projects.info.unamur.be/fts/provelines/)

or translations thereof for mCRL2 [30] (http://www.mcrl2.org/) or

VMC [11] (http://fmtlab.isti.cnr.it/vmc/). Basically, three transitions

are added to the system FTS of Fig. 7 from state s20 to the initial state
s6 to cover the cases in which features from the subset {ll, ln, lh}

are missing, viz. (s20, highLevel,¬lh, s6), (s20, lowLevel,¬ll, s6), and
(s20, normalLevel,¬ln, s6)

3
.

In [19, 20], the controller of the mine pump system, composed

of the system and state FTSs, interacts with an environment: it

2
Transitions with more than one label are abbreviations for a transition for each label.

3
To satisfy the transition injectivity of Definition 2.3, in the FTS of Fig. 7 this results in

the substitution of transition (s20, normalLevel, ln, s6) with (s20, normalLevel, ⊤, s6).
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Figure 7: The system FTS of the mine pump system from [20] (we have labelled transitions that were unlabelled with τ |⊤)

s1 s2

methaneRise |⊤

methaneLower |⊤

palarmMsg |⊤

setMethaneStop |⊤

Figure 8: FTS of the methane level environment from [20]

operates a water pump based on methane and water level sensors,

modelled by three further FTSs. The parallel composition of these

five FTSs is the above mentioned complete mine pump system. We

depict the FTS of the methane level in Fig. 8 and refer to [19, 20] for

the remaining FTSs. Moreover, methaneRise and methaneLower are

local actions of this FTS that do not synchronise with any of the

other four FTSs. Hence, while the solutions presented above make

the system FTS of Fig. 7 unambiguous, it is immediately clear that

the FTS of the complete mine pump system is deadlock-free, since

it can indefinitely execute the sequence of actions methaneRise

followed by methaneLower. This demonstrates the usefulness of

analysing component FTSs in isolation. More on this in Section 7.

6.1 Family-Based Model Checking

We have seen in this paper how to transform an ambiguous FTS

into an unambiguous one. Furthermore, as mentioned in Section 3.3,

an FTS can be interpreted as an MTS by considering its featured
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Figure 9: MTS obtained from the FTS of Fig. 6

transitions as optional transitions, its must transitions as necessary

transitions, and all its transitions as admissible. In Fig. 9, we depict

the MTS that is obtained in this way from the unambiguous FTS

(described above) that corresponds to the FTS of Fig. 6.

We know from Section 3 that the resulting MTS is live, thus

allowing family-based model checking for v-ACTLive
□
(cf. Proposi-

tion 3.7). Example formulae of properties that can now be verified

in a family-based manner on the MTS of Fig. 9 are the following:

(1) AG AF
pay∨free ⊤: infinitely often, either action pay or action

free is executed.
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(2) AG [open] AF
close
⊤: it is always the case that the execution

of action open is eventually followed by that of action close.

(3) AG AF
cancel∨serveSoda∨serveTea ⊤: infinitely often, either action

cancel or action serveSoda or action serveTea is executed.

(4) ¬E [⊤ ¬teaUserveTea ⊤]: it is not possible that action serveTea is

executed without being preceded by an execution of action tea.

(5) [pay] AF
take∨cancel ⊤: whenever action pay is executed, even-

tually also either action take or action cancel is executed.
4

Such formulae can efficiently be verified on MTSs with the va-

riability model checker VMC, which is a tool for the analysis of

behavioural SPL models specified as an MTS together with a set of

logical variability constraints (akin to feature expressions) [11, 12].

VMC is the most recent member of the KandISTI product line of

model checkers developed at ISTI–CNR over the past decades [9, 10].

The KandISTI toolset offers explicit-state on-the-fly model check-

ing of functional properties expressed in specific action-based and

state-based branching-time temporal logics derived fromACTL [32],

which is the action-based version of the well-known logic CTL [18].

We envision to implement the static analysis algorithm pre-

sented in Section 5 and the transformation defined in Section 3.2

in a new KandISTI tool, tailored for family-based model check-

ing of temporal logic properties on FTSs. At present, efficient SPL

model checking against FTSs can be achieved by using dedicated

family-based model checkers such as the ProVeLines [27] tool suite

(including its predecessor SNIP [21]) or, alternatively, by using one

of the highly optimised off-the-shelf classical model checkers such

as SPIN or mCRL2, which have recently been made amenable to

family-based SPL model checking against FTSs [6, 37].

7 SCALABILITY

From our experience, the bottleneck of the static analysis algorithm

presented in this paper, as far as computational scalability is con-

cerned, is the identification of all possible cycle-free paths of the

FTS under scrutiny. While the static analyses performed on the

exempla FTSs reported in the previous section required a negligible

amount of time, it is clear that this no longer holds for FTSs with

hundreds of states and thousands of transitions. For instance, the

FTS of the complete mine pump system of [19, 20] has 457 states

and 1306 transitions, which already are too many to efficiently visit

all cycle-free paths in a depth-first manner. We plan to investigate

optimisations of the static analysis algorithm that allow to reduce

the impact of this bottleneck.

However, it is not very likely that a system of a size like that of the

complete mine pump is modelled as one monolithic FTS. Typically,

a (large) system is designed in a modular way, as a composition

of (smaller) components. A more promising strategy is thus to

analyse FTS components in isolation and study the implications

that ambiguities detected at the component level have for the entire

system. This is confirmed by our analyses of the mine pump system

in Section 6, where we have seen that the complete mine pump

system is deadlock-free (i.e. live) even if the system FTS is not,

simply because progress is guaranteed by the presence of a cycle

of local actions in another component FTS.

4
Abusing notation, this concerns execution of transition (8, take, 9), not of (7, take, 1).

Wedid not yet study in detail what can be said about the preserva-

tion of ambiguities in a parallel composition of FTSs, either bottom-

up, i.e. from the component FTSs to their parallel composition,

or top-down, i.e. from the parallel composition to its constituting

component FTSs. We conjecture that applying the static analysis al-

gorithm to individual component FTSs, and consequently removing

dead transitions and turning false optional transitions into must

transitions, will not affect the behaviour of the parallel composition

of these FTSs. On the contrary, it can be shown that in general

the parallel composition of two unambiguous FTSs may result in a

composed FTS with dead or false optional transitions, and, more-

over, that the parallel composition may result in a composed FTS

with more or less hidden deadlock states than in the individual

component FTSs.

The application of the static analysis algorithm to individual

component FTSs is surely desirable as it results in less ambiguous

specifications of the components constituting a composed system,

and it possibly also allows more efficient model checking of the

composed system (cf. Section 6.1). Instead, the application of the

static analysis algorithm to a composed FTS resulting from the

parallel composition of several FTSs is less desirable for at least two

reasons. On the one hand, it risks to become problematic due to the

exponential growth of the number of paths that need to be taken

into consideration. On the other hand, the benefits of detecting

ambiguities are greatly reduced because of the lack of a detailed

specification of the composed FTS, which is merely a semantic

model without a matching syntactic system specification.

We conclude this section with two ideas to improve the algo-

rithm, based on the fact that even though the number of paths in a

graph can be exponentially larger than its size, several heuristic-

based optimisations can be implemented to reduce the complexity

of our algorithm in many cases. Firstly, paths must be computed

only for transitions whose Boolean formula is not true (i.e. those

that could be false optional or that cannot easily be stated as dead),

and only for states whose live status is not trivial, i.e. states that have

input and output transitions, and none of their output transitions’

Boolean formula is true. For FTSs with very simple constraints on

their transitions, this could greatly reduce the search space when

traversing them. Secondly, checking the ambiguity criteria in a

cycle-free FTS can be performed with a linear traversal, following

the topological order of the FTS. It could be possible to extend

this principle to FTSs with cycles, by using the topological order

traversal only on the DAG subgraphs of an FTSs and thus greatly

improving the efficiency of our algorithm on FTSs with few cycles.

8 CONCLUSION

In this paper, we have introduced several static analyses that can

be performed over an FTS, we have given an effective algorithm for

these analyses and demonstrated its correctness and completeness,

and we have shown example applications (whose python code is

publicly available [49]).

In future work we plan to: (i) investigate the improvements

suggested in the previous section, and (ii) evolve the prototype into

a tool that supports to perform the static analysis of generic FTSs

(specified in some standard format), to automatically disambiguate

them, and to apply v-ACTL model checking to generic FTSs.
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