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Radial solutions for the bilaplacian equation with vanishing or

singular radial potentials

Marino Badialea,b - Stefano Greco - Sergio Rolandoc, b

Abstract

Given three measurable functions V (r) ≥ 0, K (r) > 0 and Q (r) ≥ 0, r > 0, we consider the bilaplacian

equation

∆2
u+ V (|x|)u = K(|x|)f(u) +Q(|x|) in R

N

and we find radial solutions thanks to compact embeddings of radial spaces of Sobolev functions into sum of

weighted Lebesgue spaces.

Keywords. Bi-laplacian operator, weighted Sobolev spaces, compact embeddings, unbounded or decaying po-

tentials

MSC (2010): Primary 35J91; Secondary 35J60, 46E35

1 Introduction

This paper is concerned with the following bilaplacian equation

∆2u+ V (|x|)u = K(|x|)f(u) +Q(|x|) in R
N (1.1)

where N ≥ 5, ∆2u = ∆(∆u) is the bilaplacian operator, the forcing term Q ≥ 0 and the potentials V ≥ 0 and

K > 0 satisfy suitable hypotheses, and f : R → R is a continuous function such that f(0) = 0. In particular we

are interested in allowing the potential V to be singular at the origin and/or vanishing at infinity.

Bilaplacian equations arise in describing different physical phenomena, such as the propagation of laser beams

in Kerr media or nonlinear oscillations in suspension bridges (see some references in [5, 13]), and have been

extensively studied in the last decades (see e.g. [5–7,9,13,14] and the references therein). In spite of that, equations

of type (1.1), namely with radial potentials possibly singular at the origin and vanishing at infinity, has been treated

only in [6, 7] (at least to our knowledge), where the authors essentially consider power type potentials.

For problem (1.1) we will obtain several kinds of existence results of radial solutions. The main technical

device for our results is given by some new theorems about compact embeddings of suitable Sobolev spaces into

sum of weighted Lebesgue spaces. The natural approach in studying Eq. (1.1) is variational, since its weak

solutions are (at least formally) critical points of a suitable Euler functional, as we will see. Then the problem
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cDipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Roberto Cozzi 53, 20125 Milano, Italy. e-mail:

sergio.rolando@unito.it. Member of the Gruppo Nazionale di Alta Matematica (INdAM).

1

http://arxiv.org/abs/1806.01311v1


2

of existence is easily solved if V does not vanish at infinity and K is bounded, because standard embeddings

theorems are available. As we will let V and K to vanish, or to go to infinity, as |x| → 0 and |x| → +∞, the

usual embeddings theorems for Sobolev spaces are not available anymore, and new embedding theorems must be

proved. This kind of work has been started in [6, 7] (for the bilaplacian equation) and we continue it here, using

some new ideas that has been introduced in [2–4].

The main novelty of our approach is two-folded. Firstly, we look for embeddings not into a Lebesgue space

but into a sum of Lebesgue spaces. This allows us to study separately the behavior of V and K at 0 and ∞, and

to assume different set of hypotheses about these behaviors. Secondly, we assume hypotheses not on V and K
separately but on their ratio, so allowing general kind of asymptotic behavior for the two potentials.

Thanks to this second novelty we obtain embedding results, and thus existence results for Eq. (1.1), which

extend the ones of [6, 7] to more general kinds of potentials. Moreover, thanks to the first novelty, we get new

results also for power type potentials (cf. Example 2.10 below).

The paper is organized as follows. In Sections 2 and 6 we give our results on compact embeddings and existence

of solutions to Eq. (1.1) respectively. The former will be proved in the Sections 3-5, the latter in Section 7.

Notations. We end this introductory section by collecting some notations used in the paper.

• We denote R+ := (0,+∞) and R− := (−∞, 0).
• For every R > 0, we set BR :=

{

x ∈ R
N : |x| < r

}

.

• For any subset A ⊆ R
N , we denote Ac := R

N \A.

• By → and ⇀ we respectively mean strong and weak convergence.

• C∞
c (Ω) is the space of the infinitely differentiable real functions with compact support in the open set Ω ⊆ R

N .

• If 1 ≤ p ≤ ∞ then Lp(A) and Lp
loc(A) are the usual real Lebesgue spaces (for any measurable set A ⊆ R

N ). If

ρ : A → R+ is a measurable function, then Lp(A, ρ (z) dz) is the real Lebesgue space with respect to the measure

ρ (z)dz (dz stands for the Lebesgue measure on R
N ).

• p′ := p/(p− 1) is the Hölder-conjugate exponent of p.

2 Main results

In this section we state our main results on compact embeddings, that we will prove in the following Sections 3-5.

Firstly, we introduce some basic concepts and results. Assume N ≥ 5 and define 2∗∗ := 2N
N−4 .

By usual Sobolev embeddings, there exists a suitable constant C > 0 such that for all u ∈ C∞
c (RN ) one has

‖u‖L2∗∗ ≤ C
∥

∥D2u
∥

∥

L2

where

‖D2u‖L2 :=





∑

|α|=2

‖Dαu‖2L2





1/2

. (2.1)

A basic space to work with is

D2,2(RN ) :=
{

u ∈ L2∗∗(RN ) :
∥

∥D2u
∥

∥

L2 < +∞
}

.

It is the closure of C∞
c (RN ) in L2∗∗(RN ) with respect to the norm

∥

∥D2u
∥

∥

L2 and, endowed with such a norm, it

is an Hilbert space. The bilinear form

(u, v) 7→
∫

RN

∆u∆v dx
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defines a scalar product on D2,2(RN ) and the associated norm, that is ‖u‖D2,2 := ‖∆u‖L2, is equivalent to (2.1)

(see for example [8]). Hence, one can also define D2,2(RN ) as the closure of C∞
c (RN ) in L2∗∗(RN ) with respect

to the norm ‖∆u‖L2 . We will be particularly interested in the subspace of radial functions, i.e.,

D2,2
r := D2,2

r (RN ) :=
{

u ∈ D2,2(RN ) : u(x) = u(|x|)
}

,

for which the pointwise estimates given in the following lemma hold (see [12] for a proof).

Lemma 2.1. For every u ∈ D2,2
r (RN ) we have

|u(x)| ≤ 2

N − 4

1√
NσN

‖∆u‖L2

|x|N−4
2

almost everywhere in R
N (2.2)

and

|∇u(x)| ≤ 1√
NσN

‖∆u‖L2

|x|N−2
2

almost everywhere in R
N (2.3)

where σN denotes the (N − 1)-dimensional measure of the unit sphere of RN .

For any measurable function V : R+ → [0,+∞], we define the space

H2
V (R

N ) :=

{

u ∈ D2,2(RN ) :

∫

RN

V (|x|)|u|2 dx < ∞
}

This is an Hilbert space with scalar product

(u, v) :=

∫

RN

∆u∆v dx+

∫

RN

V (|x|)uv dx (2.4)

and associated norm

‖u‖ :=

(∫

RN

|∆u|2 + V (|x|)|u|2 dx
)

1
2

.

We are interested in finding solutions of (1.1) in the radial subspace of H2
V (R

N ), i.e.,

H2
V,r = H2

V,r(R
N ) :=

{

u ∈ H2
V (R

N ) : u(x) = u(|x|)
}

.

Remark 2.2. By the Sobolev embedding, there is a constant SN > 0 such that

∀u ∈ H2
V (R

N ), ‖u‖L2∗∗ ≤ SN ‖u‖ . (2.5)

Remark 2.3. From the continuous embedding H2
V,r →֒ D2,2

r (RN ) and inequality (2.2), we deduce that there

exists a constant CN > 0 such that

∀u ∈ H2
V,r(R

N ), |u(x)| ≤ CN
‖u‖

|x|N−4
2

almost everywhere in R
N . (2.6)

We now introduce the sum of Lebesgue spaces. For any measurable function K : R+ → R+ and 1 < q1 ≤
q2 < ∞, we define

Lq1
K + Lq2

K := Lq1
K (RN ) + Lq2

K (RN ) :=
{

u1 + u2 : ui ∈ Lqi
K(RN ), i = 1, 2

}

.
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This space coincides with the set of measurable functions u : RN → R for which there exists a measurable set E ⊆
R

N such that u ∈ Lq1
K (E) ∩ Lq2

K (Ec) (where Lq1
K (E) := Lq1(E,K(|x|)dx) and Lq2

K (Ec) := Lq2(Ec,K(|x|)dx))
and it is a Banach space when endowed with the norm

‖u‖Lq1
K

+L
q2
K

:= inf
u1+u2=u

max
{

‖u1‖Lq1
K
, ‖u2‖Lq2

K

}

(see [1]). Note that Lq
K is continuously embedded into Lq1

K + Lq2
K for all q ∈ [q1, q2].

Our first result is Theorem 2.4 below. It provides sufficient condition to the embeddings we are interested in

and uses the following assumptions:

(V) V : R+ → [0,+∞] is a measurable function such that V ∈ L1
loc(R+)

(K) K : R+ → R+ is a measurable function such that K ∈ Ls
loc(R+) for some s > 1

(

S ′
q1,q2

)

∃R1, R2 > 0 such that S0 (q1, R1) < ∞ and S∞ (q2, R2) < ∞
(

S ′′
q1,q2

)

lim
R→0+

S0(q1, R) = lim
R→∞

S∞(q2, R) = 0

where q1, q2 will be specified each time and S0,S∞ are the functions of R > 0 and q > 1 defined as follows:

S0(q, R) := sup
u∈H2

V,r
, ‖u‖=1

∫

BR

K(|x|)|u|q dx, (2.7)

S∞(q, R) := sup
u∈H2

V,r
, ‖u‖=1

∫

RN\BR

K(|x|)|u|q dx. (2.8)

Notice that S0(q, ·) is increasing, while S∞(q, ·) is decreasing.

Theorem 2.4. Assume (V) and (K), and let q1, q2 > 1.

1. If
(

S ′
q1,q2

)

holds, then H2
V,r(R

N ) is continuosly embedded into Lq1
K (RN ) + Lq2

K (RN ).

2. If
(

S ′′
q1,q2

)

holds, then H2
V,r(R

N ) is compactly embedded into Lq1
K (RN ) + Lq2

K (RN ).

We now define two new functions of R > 0 and q > 1 as follows:

R0(q, R) := sup
u∈H2

V,r , h∈H2
V,r , ‖u‖=‖h‖=1

∫

BR

K(|x|)|u|q−1|h| dx, (2.9)

R∞(q, R) := sup
u∈H2

V,r , h∈H2
V,r , ‖u‖=‖h‖=1

∫

RN\BR

K(|x|)|u|q−1|h| dx. (2.10)

Note that R0(q, ·) is increasing, while R∞(q, ·) is decreasing. Furthermore, for any (q, R) we have S0(q, R) ≤
R0(q, R) and S∞(q, R) ≤ R∞(q, R), so that

(

S ′′
q1,q2

)

is a consequence of the following stronger condition:

(

R′′
q1,q2

)

lim
R→0+

R0(q1, R) = lim
R→∞

R∞(q2, R) = 0.
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In our next results we look for concrete conditions ensuring
(

R′′
q1,q2

)

and thus the compactness of the embedding

H2
V,r(R

N ) →֒ Lq1
K (RN ) + Lq2

K (RN ).
Our first results in this direction are Theorems 2.5 and 2.6 below. For any α ∈ R and β ∈ [0, 1], define the

functions

α∗(β) := max

{

4β − 2− N

2
,−(1− β)N

}

=

{

4β − 2−N/2 if 0 ≤ β ≤ 1/2

−(1− β)N if 1/2 ≤ β ≤ 1

and

q∗(α, β) := 2
α− 4β +N

N − 4
.

Theorem 2.5. Assume (V) and (K). Assume that ∃R1 > 0 such that V (r) < +∞ for almost every r ∈ (0, R1)
and

ess sup
r∈(0,R1)

K(r)

rα0V (r)β0
< +∞ for some 0 ≤ β0 ≤ 1 and α0 > α∗(β0). (2.11)

Then lim
R→0+

R0(q1, R) = 0 for all q1 ∈ R such that

max {1, 2β0} < q1 < q∗(α0, β0). (2.12)

Theorem 2.6. Assume (V) and (K). Assume that ∃R2 > 0 such that V (r) < +∞ for almost every r > R2 and

ess sup
r>R2

K(r)

rα∞V (r)β∞
< +∞ for some 0 ≤ β∞ ≤ 1 and α∞ ∈ R. (2.13)

Then lim
R→+∞

R∞(q2, R) = 0 for all q2 ∈ R such that

q2 > max {1, 2β∞, q∗(α∞, β∞)} . (2.14)

Note that for all (α, β) ∈ R× [0, 1], we have

max{1, 2β, q∗(α, β)} =

{

q∗(α, β) if α ≥ α∗(β)

max{1, 2β} if α ≤ α∗(β)
.

Remark 2.7. It is easy to check that the inequalities max {1, 2β0} < q∗(α0, β0) and α0 > α∗(β0) are equivalent.

Hence, in (2.12), the inequality max {1, 2β0} < q∗(α0, β0) is automatically satisfied.

In the next two theorems we assume stronger hypotheses than those of Theorems 2.5 and 2.6, and we get

stronger results. For all α ∈ R, β ≤ 1 and γ ∈ R, define

q∗(α, β, γ) := 2
α− γβ +N

N − γ
and q∗∗(α, β, γ) := 2

2α+ (1− 2β)γ + 2(N − 2)

2(N − 2)− γ
. (2.15)

Notice that q∗ is defined for γ 6= N , while q∗∗ for γ 6= 2(N − 2).

Theorem 2.8. Assume (V) and (K). Assume that ∃R2 > 0 such that V (r) < +∞ for almost every r > R2 and

ess sup
r>R2

K(r)

rα∞V (r)β∞
< +∞ for some 0 ≤ β∞ ≤ 1 and α∞ ∈ R (2.16)
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and

ess inf
r>R2

rγ∞V (r) > 0 for some γ∞ ≤ 4. (2.17)

Then lim
R→+∞

R∞(q2, R) = 0 for all q2 ∈ R such that

q2 > max {1, 2β∞, q∗, q∗∗} , (2.18)

where q∗ = q∗(α∞, β∞, γ∞) and q∗∗ = q∗∗(α∞, β∞, γ∞).

To give the statement of our last embedding result, we need to define a subset Aβ,γ of the plane (α, q). Recall-

ing the definitions of q∗ = q∗(α, β, γ) and q∗∗ = q∗∗(α, β, γ) in (2.15), we set

Aβ,γ := {(α, q) : max{1, 2β} < q < min{q∗, q∗∗}} if 4 ≤ γ < N,

Aβ,γ := {(α, q) : max{1, 2β} < q < q∗∗, α > −(1− β)N} if γ = N,

Aβ,γ := {(α, q) : max{1, 2β, q∗} < q < q∗∗} if N < γ < 2N − 4,

Aβ,γ := {(α, q) : max{1, 2β, q∗} < q, α > −(1− β)γ} if γ = 2N − 4,

Aβ,γ := {(α, q) : max{1, 2β, q∗, q∗∗} < q} if γ > 2N − 4. (2.19)

Theorem 2.9. Assume (V) and (K). Assume that ∃R1 > 0 such that V (r) < +∞ for almost every r ∈ (0, R1)
and

ess sup
r∈(0,R1)

K(r)

rα0V (r)β0
< +∞ for some 0 ≤ β0 ≤ 1 and α0 ∈ R (2.20)

and Then lim
R→0+

R0(q1, R) = 0 for all q1 ∈ R such that

(α0, q1) ∈ Aβ0,γ0 . (2.21)

We end this section with an example that might clarify how to use our results and compare them with the ones

of [6, 7]. Many other examples can be easily obtained by adapting the ones given in [2, Section 3].

Example 2.10. Consider the potentials

V (r) =
1

ra
, K (r) =

1

ra−1
, a ≤ 4.

Since V satisfies (2.17) with γ∞ = a , we apply Theorem 2.4 together with Theorems 2.5 and 2.8. Assumptions

(2.11) and (2.16) hold if and only if α0 ≤ aβ0 − a+ 1 and α∞ ≥ aβ∞ − a+ 1. According to (2.12) and (2.18),

it is convenient to choose α0 as large as possible and α∞ as small as possible, so we take

α0 = aβ0 − a+ 1, α∞ = aβ∞ − a+ 1.

Then q∗ = q∗ (α0, β0), q∗ = q∗ (α∞, β∞, a) and q∗∗ = q∗∗ (α∞, β∞, a) are given by

q∗ = 2
N − a+ 1− (4− a)β0

N − 4
, q∗ = 2

N − a+ 1

N − a
and q∗∗ = 2

2N − a− 2

2N − a− 4
, (2.22)

where a ≤ 4 implies q∗ ≤ q∗∗. Note that α0 > α∗ (β0) for every β0. Since q∗ is decreasing in β0 and q∗∗ is

independent of β∞, it is convient to choose β0 = β∞ = 0, so that Theorems 2.5 and 2.8 yield to exponents q1, q2
such that

1 < q1 < q∗ = 2
N − a+ 1

N − 4
, q2 > q∗∗ = 2

2N − a− 2

2N − a− 4
.
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If a < 4, one has q∗∗ < q∗ and therefore we get the compact embedding

H1
V,r →֒ Lq

K for 2
2N − a− 2

2N − a− 4
< q < 2

N − a+ 1

N − 4
. (2.23)

If a = 4, then q∗∗ = q∗ = 2 (N − 3) / (N − 4) and we have the compact embedding

H1
V,r →֒ Lq1

K + Lq2
K for 1 < q1 < 2

N − 3

N − 4
< q2.

Since V and K are power potentials, one can also apply the results of [7], finding two exponents s∗ and s∗ such

that the embedding H1
V,r →֒ Lq

K is compact if s∗ < q < s∗. These exponents are exactly q∗ and q∗ of (2.22)

respectively, so that one obtains (2.23) again, provided that a < 4. If a = 4, instead, one gets s∗ = s∗ and no

result is avaliable in [7].

3 Proof of Theorem 2.4

This section is devoted to the proof of Theorem 2.4, so let N ≥ 5, assume (V) and (K) and take q1, q2 > 1. We

begin with some preliminary results.

Lemma 3.1. Take R > r > 0 and 1 < q < ∞. Then there exist two constants C̃ = C̃(N, r,R, q, s) > 0 and

l = l(q, s) > 0 such that ∀u ∈ H2
V,r one has

∫

BR\Br

K(|x|)|u|q dx ≤ C̃ ‖K(| · |)‖Ls(BR\Br)
‖u‖q−2l

(

∫

BR\Br

|u|2 dx
)l

(3.1)

Furthermore, if s > 2N
N+4 in assumption (K), then there exists C̃1 = C̃1(N, r,R, q, s) > 0 such that ∀u ∈ H2

V,r

and ∀h ∈ H2
V we have

∫

BR\Br

K(|x|)|u|q−1|h| dx

C̃1 ‖K(| · |)‖Ls(BR\Br)

≤



























(

∫

BR\Br

|u|2 dx
)

q−1
2

‖h‖ if q ≤ q̃

(

∫

BR\Br

|u|2 dx
)

q̃−1
2

‖u‖q−q̃ ‖h‖ if q > q̃

where q̃ := 2
(

1 + 2
N − 1

s

)

.

Proof. Take u ∈ H2
V,r and fix t ∈ (1, s) such that t′q > 2 (where t′ = t/(t− 1)). Then, by Hölder inequality and

(2.6), we get

∫

BR\Br

K(|x|)|u|q dx ≤
(

∫

BR\Br

K(|x|)t dx
)

1
t
(

∫

BR\Br

|u|t′q dx
)

1
t′

≤ |BR \Br|
1
t
− 1

s ‖K(| · |)‖Ls(BR\Br)

(

∫

BR\Br

|u|t′q−2|u|2 dx
)

1
t′

≤ |BR \Br|
1
t
− 1

s ‖K(| · |)‖Ls(BR\Br)

(

CN ‖u‖
r

N−4
2

)q− 2
t′

(

∫

BR\Br

|u|2 dx
)

1
t′

.
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This proves (3.1). To prove the second statement, take u ∈ H2
V,r and h ∈ H2

V . Let σ := 2N
N+4 be the Hölder

conjugate exponent of 2∗∗. Notice that s
σ > 1. From Hölder inequality and (2.5) we deduce

∫

BR\Br

K(|x|)|u|q−1|h| dx ≤
(

∫

BR\Br

K(|x|)σ|u|(q−1)σ dx

)
1
σ
(

∫

BR\Br

|h|2∗∗ dx
)

1
2∗∗

≤





(

∫

BR\Br

K(|x|)s dx
)

1
σ
(

∫

BR\Br

|u|(q−1)σ( s
σ )

′

dx

)
1

( s
σ )

′





1
σ

SN ‖h‖

≤ SN ‖K(| · |)‖Ls(BR\Br)
‖h‖

(

∫

BR\Br

|u|2
q−1
q̃−1 dx

)
q̃−1
2

,

thanks to the fact that σ
(

s
σ

)′
= 2Ns

(N+4)s−2N = 2
q̃−1 . If q ≤ q̃ we have

∫

BR\Br

K(|x|)|u|q−1|h| dx ≤ SN ‖K(| · |)‖Ls(BR\Br)
‖h‖



|BR \Br|1−
q−1
q̃−1

(

∫

BR\Br

|u|2 dx
)

q−1
q̃−1





q̃−1
2

= SN ‖K(| · |)‖Ls(BR\Br)
‖h‖ |BR \Br|

q̃−q
2

(

∫

BR\Br

|u|2 dx
)

q−1
2

.

On the other hand, if q > q̃, from (2.6) we get

∫

BR\Br

K(|x|)|u|q−1|h| dx ≤ SN ‖K(| · |)‖Ls(BR\Br)
‖h‖

(

∫

BR\Br

|u|2
q−1
q̃−1−2|u|2 dx

)
q̃−1
2

= SN ‖K(| · |)‖Ls(BR\Br)
‖h‖

(

CN ‖u‖
r

N−4
2

)q−q̃
(

∫

BR\Br

|u|2 dx
)

q̃−1
2

.

Hence the thesis follows.

We will also need the following result about the convergence in Lq1
K + Lq2

K . It is proved in [1].

Lemma 3.2. Let {un} ⊆ Lq1
K+Lq2

K be a sequence such that ∀ǫ > 0 there are nǫ > 0 and a sequence of measurable

sets Eǫ,n ⊆ R
N satisfying

∀n > nǫ,

∫

Eǫ,n

K(|x|)|un|q1 dx+

∫

Ec
ǫ,n

K(|x|)|un|q2 dx < ǫ.

Then un → 0 in Lq1
K + Lq2

K .

We can now prove Theorem 2.4. The arguments are similar to those of [2], so we will skip the details.

Proof of Theorem 2.4. 1. We can choose R1 < R2 in hypothesis
(

S ′
q1,q2

)

. If u ∈ H2
V,r, u 6= 0, we get

∫

BR1

K(|x|)|u|q1 dx = ‖u‖q1
∫

BR1

K(|x|) |u|
q1

‖u‖q1 dx ≤ ‖u‖q1S0(q1, R1) (3.2)
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and similarly
∫

Bc
R2

K(|x|)|u|q2 dx ≤ ‖u‖q2S∞(q2, R2). (3.3)

Furthemore, from Lemma 3.1 and the continuous embedding D2,2
r (RN ) →֒ L2

loc(R
N ), we obtain that there

is a constant C1 > 0, independent from u, such that

∫

BR2\BR1

K(|x|)|u|q1 dx ≤ C1‖u‖q1 . (3.4)

Hence u ∈ Lq1
K (BR2) ∩ Lq2

K (Bc
R2

), so that u ∈ Lq1
K + Lq2

K . Moreover, by (3.2)-(3.4) and Lemma 3.2, one

obtains that un → 0 in H2
V,r implies un → 0 in Lq1

K + Lq2
K .

2. Assume
(

S ′′
q1,q2

)

, fix ǫ > 0 and choose a sequence un ⇀ 0 in H2
V,r. From (3.2), (3.3), Lemma 3.1 and the

compactness of the embedding D2,2
r (RN ) →֒ L2

loc(R
N ), we obtain

∫

BRǫ

K(|x|)|u|q1 dx+

∫

BRc
ǫ

K(|x|)|u|q2 dx < ǫ

for any n large enough. By Lemma 3.2, this implies that un → 0 in Lq1
K +Lq2

K , which gives the compactness

of the embedding.

4 Proofs of Theorems 2.5 and 2.6

In this section we let N ≥ 5 and prove Theorems 2.5 and 2.6. The first step is the following lemma, which will be

also useful in the proofs of Theorems 2.8 and 2.9.

Lemma 4.1. Let Ω ⊆ R
N a nonempty measurable set such that V (|x|) < +∞ almost everywhere on Ω and

assume that

Λ := ess sup
x∈Ω

K(|x|)
|x|αV (|x|)β < +∞ for some 0 ≤ β ≤ 1 and α ∈ R.

Take u ∈ H2
V and assume that there exist ν ∈ R and m > 0 such that

|u(x)| ≤ m

|x|ν for almost every x ∈ Ω.

Then ∀h ∈ H2
V and ∀q > max{1, 2β}, we have

∫

Ω

K(|x|)|u|q−1|h| dx ≤



































Λmq−1S1−2β
N

(∫

Ω

|x|
α−ν(q−1)
N+4(1−2β)

2N dx

)

N+4(1−2β)
2N

‖h‖ if 0 ≤ β ≤ 1
2

Λmq−2β

(∫

Ω

|x|
α−ν(q−2β)

1−β dx

)1−β

‖u‖2β−1 ‖h‖ if 1
2 < β < 1

Λmq−2

(∫

Ω

|x|2α−2ν(q−2)V (|x|)|u|2 dx
)

1
2

‖h‖ if β = 1.
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Proof. We consider several cases.

• Case β = 0. One has

1

Λ

∫

Ω

K(|x|)|u|q−1|h| dx ≤
∫

Ω

|x|α|u|q−1|h| dx ≤
(∫

Ω

(|x|α|u|q−1)
2N

N+4 dx

)
N+4
2N
(∫

Ω

|h|2∗∗ dx
)

1
2∗∗

≤ SNmq−1

(∫

Ω

|x|
α−ν(q−1)

N+4 2N dx

)
N+4
2N

‖h‖ .

• Case 0 < β < 1
2 . We have 1

β > 1 and
1−β
1−2β 2

∗∗ > 1 with Hölder conjugate exponents ( 1β )
′ = 1

1−β and
(

1−β
1−2β 2

∗∗
)′

= 2N(1−β)
N+4(1−2β) . Then we get

1

Λ

∫

Ω

K(|x|)|u|q−1|h| dx ≤
∫

Ω

|x|αV (|x|)β |u|q−1|h| dx

≤
(∫

Ω

(

|x|α|u|q−1|h|1−2β
)

1
1−β dx

)1−β (∫

Ω

V (|x|)|h|2 dx
)β

≤





(∫

Ω

(

|x|α|u|q−1
)

2N
N+4(1−2β) dx

)

N+4(1−2β)
2N(1−β)

(∫

Ω

|h|2∗∗ dx
)

(1−2β)
(1−β)2∗∗





1−β

‖h‖2β

≤ mq−1

(∫

Ω

|x|
α−ν(q−1)
N+4(1−2β)

2N dx

)

N+4(1−2β)
2N

S1−2β
N ‖h‖1−2β ‖h‖2β

= mq−1S1−2β
N

(∫

Ω

|x|
α−ν(q−1)
N+4(1−2β)2N dx

)

N+4(1−2β)
2N

‖h‖ .

• Case β = 1
2 . We have

1

Λ

∫

Ω

K(|x|)|u|q−1|h| dx ≤
∫

Ω

|x|α|u|q−1V (|x|) 1
2 |h| dx ≤

(∫

Ω

|x|2α|u|2(q−1) dx

)
1
2
(∫

Ω

V (|x|)|h|2 dx
)

1
2

≤ mq−1

(∫

Ω

|x|2α−2ν(q−1) dx

)
1
2

‖h‖ .
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• Case 1
2 < β < 1. We have 1

2β−1 > 1 with Hölder conjugate exponent
(

1
2β−1

)′

= 1
2(1−β) . Hence

1

Λ

∫

Ω

K(|x|)|u|q−1|h| dx ≤
∫

Ω

|x|αV (|x|)β |u|q−1|h| dx

≤
(∫

Ω

|x|2αV (|x|)2β−1|u|2(q−1) dx

)
1
2
(∫

Ω

V (|x|)|h|2 dx
)

1
2

≤
(∫

Ω

|x|2α|u|2(q−2β)V (|x|)2β−1|u|2(2β−1) dx

)
1
2

‖h‖

≤
[

(∫

Ω

|x| α
1−β |u|

q−2β
1−β dx

)2(1−β)(∫

Ω

V (|x|)|u|2 dx
)2β−1

]
1
2

‖h‖

≤ mq−2β

[

(∫

Ω

|x| α
1−β

−ν q−2β
1−β dx

)2(1−β)(∫

Ω

V (|x|)|u|2 dx
)2β−1

]
1
2

‖h‖

≤ mq−2β

(∫

Ω

|x|
α−ν(q−2β)

1−β dx

)1−β

‖u‖2β−1 ‖h‖ .

• Case β = 1. As q > max{1, 2β}, in this case we have q > 2. Hence

1

Λ

∫

Ω

K(|x|)|u|q−1|h| dx ≤
∫

Ω

|x|αV (|x|)|u|q−1|h| dx

≤
(∫

Ω

|x|2αV (|x|)|u|2(q−1) dx

)
1
2
(∫

Ω

V (|x|)|h|2 dx
)

1
2

≤
(∫

Ω

|x|2α|u|2(q−2)V (|x|)|u|2 dx
)

1
2

‖h‖

≤ mq−2

(∫

Ω

|x|2α−2ν(q−2)V (|x|)|u|2 dx
)

1
2

‖h‖ .

We can now give the proofs of Theorems 2.5 and 2.6.

Proof of Theorem 2.5. Let u ∈ H2
V,r and h ∈ H2

V such that ‖u‖ = ‖h‖ = 1. Let 0 < R ≤ R1. Thanks to (2.6)

and

ess sup
x∈BR

K(|x|)
|x|α0V (|x|)β0

≤ ess sup
r∈(0,R1)

K(r)

rα0V (r)β0
< +∞,

we can apply Lemma 4.1 with Ω = BR, α = α0, β = β0, m = CN and ν = N−4
2 . In the following C is any
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positive constant independent from u, h and R. If 0 ≤ β0 ≤ 1
2 we get

∫

BR

K(|x|)|u|q1−1|h| dx ≤ C

(

∫

BR

|x|
α0−

N−4
2

(q1−1)

N+4(1−2β0)
2N

dx

)

N+4(1−2β0)
2N

≤ C

(

∫ R

0

r
2α0−(N−4)(q1−1)

N+4(1−2β0)
N+N−1

dr

)

N+4(1−2β0)
2N

= C

(

R
2α0−8β0+2N−(N−4)q1

N+4(1−2β0)
N

)

N+4(1−2β0)
2N

,

because

2α0 − 8β0 + 2N − (N − 4)q1 = (N − 4)

(

2
α0 − 4β0 +N

N − 4
− q1

)

= (N − 4) (q∗(α0, β0)− q1) > 0.

If 1
2 < β0 < 1 we get

∫

BR

K(|x|)|u|q1−1|h| dx ≤ C

(∫

BR

|x|
α0−

N−4
2

(q1−2β0)

1−β0 dx

)1−β0

≤ C

(

∫ R

0

r
2α0−(N−4)(q1−2β0)

2(1−β0) +N−1
dr

)1−β0

= C

(

R
2α0−(N−4)(q1−2β0)

2(1−β0)
+N

)1−β0

,

because

2α0 − (N − 4)(q1 − 2β0)

2(1− β0)
+N =

(N − 4)

2(1− β0)

(

2
α0 − 4β0 +N

N − 4
− q1

)

=
(N − 4)

2(1− β0)
(q∗(α0, β0)− q1) > 0.

If β0 = 1 we get

∫

BR

K(|x|)|u|q1−1|h| dx ≤ C

(∫

BR

|x|2α0−(N−4)(q1−2)V (|x|)|u|2 dx
)

1
2

≤ C

(

R2α0−(N−4)(q1−2)

∫

BR

V (|x|)|u|2 dx
)

1
2

≤ C R
2α0−(N−4)(q1−2)

2 ,

because

2α0 − 8 + 2N − (N − 4)q1 = (N − 4)

(

2
α0 − 4 +N

N − 4
− q1

)

= (N − 4) (q∗(α0, 1)− q1) > 0.

Hence, in any case, we get R0(q1, R) ≤ CRδ for some δ = δ(N,α0, β0, q1) > 0, which gives the result.

Proof of Theorem 2.6. Let u ∈ H2
V,r and h ∈ H2

V such that ‖u‖ = ‖h‖ = 1. Let R ≥ R2. By (2.6) and

ess sup
x∈BC

R

K(|x|)
|x|α∞V (|x|)β∞

≤ ess sup
r>R2

K(r)

rα∞V (r)β∞
< +∞,
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we can apply lemma 4.1 with Ω = Bc
R, α = α∞, β = β∞, m = CN and ν = N−4

2 . Hereafter C denotes any

positive constant independent form u, h and R. If 0 ≤ β∞ ≤ 1
2 we get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|
α∞−

N−4
2

(q2−1)

N+4(1−2β∞)
2N dx

)

N+4(1−2β∞)
2N

≤ C

(∫ +∞

R

r
2α∞−(N−4)(q2−1)

N+4(1−2β∞)
N+N−1 dr

)

N+4(1−2β∞)
2N

= C
(

R
2α∞−8β∞+2N−(N−4)q2

N+4(1−2β∞)
N
)

N+4(1−2β∞)
2N

,

because

2α∞ − 8β∞ + 2N − (N − 4)q2 = (N − 4)

(

2
α∞ − 4β∞ +N

N − 4
− q2

)

= (N − 4) (q∗(α∞, β∞)− q2) < 0.

If 1
2 < β∞ < 1 we have

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|
α∞−

N−4
2

(q2−2β∞)

1−β∞ dx

)1−β∞

≤ C

(∫ +∞

R

r
2α∞−(N−4)(q2−2β∞)

2(1−β∞)
+N−1 dr

)1−β∞

= C
(

R
2α∞−(N−4)(q2−2β∞)

2(1−β∞)
+N
)1−β∞

,

because

2α∞ − (N − 4)(q2 − 2β∞)

2(1− β∞)
+N =

(N − 4)

2(1− β∞)

(

2
α∞ − 4β∞ +N

N − 4
− q2

)

=
(N − 4)

2(1− β∞)
(q∗(α∞, β∞)− q2) < 0.

If β∞ = 1 we get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|2α∞−(N−4)(q2−2)V (|x|)|u|2 dx
)

1
2

≤ C

(

R2α∞−(N−4)(q2−2)

∫

BC
R

V (|x|)|u|2 dx
)

1
2

≤ C R
2α∞−(N−4)(q2−2)

2 ,

because

2α∞ − 8 + 2N − (N − 4)q2 = (N − 4)

(

2
α∞ − 4 +N

N − 4
− q2

)

= (N − 4) (q∗(α∞, 1)− q2) < 0.

So, in any case, we get R∞(q2, R) ≤ CRδ for some δ = δ(N,α0, β0, q1) < 0. Hence the thesis follows.
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5 Proofs of Theorems 2.8 and 2.9

Let N ≥ 5. To prove Theorems 2.8 and 2.9 we need some preliminary results about pointwise estimates of radial

Sobolev functions.

For any open interval I ⊂ R, we will consider the space

W 2,1(I) :=
{

u ∈ L1(I) : Dαu ∈ L1(I), ∀|α| ≤ 2
}

.

The proof of the following lemma can be easily derived from the arguments of [3, Appendix], so we skip it.

Lemma 5.1. Let u ∈ D2,2
r (RN ) and define ũ : R+ → R such that u(x) = ũ(|x|) for almost every x ∈ R

N . Then

ũ ∈ W 2,1(I) for every open bounded interval I ⊂ R+ such that inf I > 0.

Proposition 5.2. Assume that there exists R2 > 0 such that V (r) < +∞ for almost every r > R2 and

λ∞ := ess inf
r>R2

rγ∞V (r) > 0 for some γ∞ ≤ 14

3
.

Then ∀u ∈ H2
V,r we have

|u(x)| ≤ c∞λ
− 1

4
∞

‖u‖
|x| 2(N−2)−γ∞

4

almost everywhere in Bc
R2

, (5.1)

where c∞ =
1√
σN

(

8

N(2(N − 2)− γ∞)

)
1
4

.

Notice that 2(N − 2)− γ∞ > 0 in (5.1).

Proof. Let u ∈ H2
V,r. Define ũ : R+ → R as the continuous function such that u(x) = ũ(|x|) for almost every

x ∈ R
N . Define

v(r) := r
N
2 −1− γ∞

4 ũ(r)2 for every r > 0.

If λ := lim infr→+∞ v(r) > 0, then for r large enough we get

rN−1−γ∞ ũ(r)2 ≥ λ

2r
3
4γ∞−N

2

and from this we get the following contradiction:

∫

Bc
R2

V (|x|)u2 dx ≥ λ∞

∫

Bc
R2

u2

|x|γ∞
dx = λ∞σN

∫ +∞

R2

ũ(r)2

rγ∞
rN−1 dr ≥ λ∞σN

∫ +∞

R2

λ

2r
3
4γ∞−N

2

dr = +∞

where the last integral diverges because N ≥ 5 and γ∞ ≤ 14/3. Hence, it must be λ = 0 and therefore there is a

sequence rn → +∞ such that v(rn) → 0. From lemma 5.1 we get v ∈ W 2,1((r, rn)) for all R2 < r < rn < +∞,

whence

v(rn)− v(r) =

∫ rn

r

v′(s) ds.
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Furthermore, for all s ∈ (r, rn) we have

v′(s) =

(

N

2
− 1− γ∞

4

)

s
N
2 −2−γ∞

4 ũ(s)2 + 2s
N
2 −1−γ∞

4 ũ(s)ũ′(s) ≥ 2s
N
2 −1− γ∞

4 ũ(s)ũ′(s)

≥ −2s
N
2 −1− γ∞

4 |ũ(s)||ũ′(s)|.

The first inequality derives from N
2 − 1− γ∞

4 > N
2 − 13

6 > 0. Then we get

v(rn)− v(r) =

∫ rn

r

v′(s) ds ≥ −2

∫ rn

r

s
N
2 −1− γ∞

4 |ũ(s)||ũ′(s)| ds.

Now from (2.3) we deduce that

v(r) − v(rn) ≤ 2

∫ rn

r

s
N
2 −1− γ∞

4 |ũ(s)||ũ′(s)| ds ≤ 2√
NσN

∫ rn

r

s
N
2 −1−γ∞

4 |ũ(s)| ‖∆u‖2
s

N−2
2

ds

=
2 ‖∆u‖2√

NσN

∫ rn

r

|ũ(s)|
s

γ∞
2

s
N−1

2
1

s
N
2 − 1

2−
γ∞
4

ds

≤ 2 ‖∆u‖2√
NσN

(∫ rn

r

ũ(s)2

sγ∞
sN−1 ds

)
1
2
(∫ rn

r

1

sN−1−γ∞
2

ds

)
1
2

≤ 2 ‖∆u‖2√
NσN

(∫ +∞

R2

ũ(s)2

sγ∞
sN−1 ds

)

1
2
(∫ +∞

r

1

s2(
N
2 −1− γ∞

4 )+1
ds

)

1
2

≤ 2 ‖∆u‖2√
NσN

(

1

λ∞

∫ +∞

R2

V (s)ũ(s)2sN−1 ds

)

1
2





[

s−2(N
2 −1− γ∞

4 )

−2
(

N
2 − 1− γ∞

4

)

]+∞

r





1
2

≤ 2 ‖∆u‖2√
NσN

(

1

λ∞σN

∫

RN

V (|x|)u2 dx

)
1
2 r−(

N
2 −1− γ∞

4 )
√

2
(

N
2 − 1− γ∞

4

)

.

Since it is easy to see that ‖∆u‖2 ‖u‖V ≤ ‖u‖2, we obtain

v(r) − v(rn) ≤
1

σN

√

8

λ∞N [2(N − 2)− γ∞]

‖u‖2

r(
N
2 −1− γ∞

4 )
.

Finally, recalling the definition of v(r) e the fact that v(rn) → 0, we conclude

|x|(N
2 −1− γ∞

4 )|u(x)|2 ≤ 1

σN

√

8

λ∞N [2(N − 2)− γ∞]

‖u‖2

|x|(N
2 −1− γ∞

4 )

and hence |u(x)| ≤ c∞λ
− 1

4
∞ ‖u‖ |x|− 2(N−2)−γ∞

4 .

We now prove a second pointwise estimate.

Proposition 5.3. Assume there exists R > 0 sucht that V (r) < +∞ almost everywhere on (0, R) and

λ0 := ess inf
r∈(0,R)

rγ0V (r) > 0 for some γ0 ≥ 4.
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Then ∀u ∈ H2
V,r we have

|u(x)| ≤ c0

(

1√
λ0

+
R

γ0−4
2

λ0

)
1
2 ‖u‖
|x| 2N−4−γ0

2

almost everywhere in BR, (5.2)

where c0 =

√

max{2/
√
N,N − 7/2}
σN

.

Proof. Let u ∈ H2
V,r and define ũ : R+ → R as the continuous function such that u(x) = ũ(|x|) for almost every

x ∈ R
N . Define

v(r) := r
2N−3−γ0

2 ũ(r)2 for all r > 0.

If λ := lim infr→+∞ v(r) > 0, then for all r large enough we have

rN−1−γ0 ũ(r)2 ≥ λ

2r
γ0
2 − 1

2

,

from which we derive a contradiction as follows:

∫

BR

V (|x|)u2 dx ≥ λ∞

∫

BR

u2

|x|γ0
dx = λ0σN

∫ R

0

ũ(r)2

rγ0
rN−1 dr ≥ λ0σN

∫ R

0

λ

2r
γ0−1

2

dr = +∞

where the last integral diverges because γ0 ≥ 4. This proves that λ = 0 and thus implies that there exists a

sequence rn → 0+ tale che v(rn) → 0. From lemma 5.1 we get v ∈ W 2,1((rn, r)) for all 0 < rn < r < R,

whence

v(r) − v(rn) =

∫ r

rn

v′(s) ds.

Furthemore for all s ∈ (rn, r) we have

v′(s) =

(

2N − 3− γ0
2

)

s
2N−5−γ0

2 ũ(s)2 + 2s
2N−3−γ0

2 ũ(s)ũ′(s) =

(

2N − 3− γ0
2

)

I(s) + 2J(s)

with obvious definitions of I(s) and J(s), on which we obtain the following estimates:

∫ r

rn

I(s)ds =

∫ r

rn

s
2N−5−γ0

2 ũ(s)2 ds =

∫ r

rn

ũ(s)2

sγ0
sN−1s

γ0−3
2 ds ≤ r

γ0−3
2

∫ R

0

ũ(s)2

sγ0
sN−1 ds

≤ r
γ0−3

2
1

λ0

∫ R

0

V (s)ũ(s)2sN−1 ds ≤ r
γ0−3

2
‖u‖2
λ0σN

≤ R
γ0−4

2
‖u‖2
λ0σN

r
1
2
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and, by (2.3),

∫ r

rn

J(s)ds =

∫ r

rn

s
2N−3−γ0

2 ũ(s)ũ′(s) ds ≤
∫ r

rn

s
2N−3−γ0

2 |ũ(s)||ũ′(s)| ds

≤ ‖∆u‖2√
NσN

∫ r

rn

s
2N−3−γ0

2 |ũ(s)| 1

s
N−2

2

ds =
‖∆u‖2√
NσN

∫ r

rn

|ũ(s)|
s

γ0
2

s
N−1

2 ds

≤ ‖∆u‖2√
NσN

(∫ r

rn

ũ(s)2

sγ0
sN−1 ds

)
1
2
(∫ r

rn

ds

)
1
2

≤ ‖∆u‖2√
NσN

(

1

λ0

∫ R

0

V (s)ũ(s)2sN−1 ds

)
1
2 (∫ r

0

ds

)
1
2

≤ ‖∆u‖2
σN

√
N

‖u‖V√
λ0

r
1
2 ≤ ‖u‖2

σN

√
Nλ0

r
1
2 .

Now, if 4 ≤ γ0 ≤ 2N − 3, we get

v(r) − v(rn) =

∫ r

rn

v′(s) ds ≤
(

2N − 3− γ0
2

)∫ r

rn

I(s)ds+ 2

∫ r

rn

J(s)ds

≤
(

2N − 3− γ0
2

)

R
γ0−4

2
‖u‖
λ0σN

r
1
2 +

2 ‖u‖2

σN

√
Nλ0

r
1
2

≤
(

N − 7

2

)

R
γ0−4

2
‖u‖2
λ0σN

r
1
2 +

2 ‖u‖2

σN

√
Nλ0

r
1
2

On the other hand, if γ0 ≥ 2N − 3, we get

v′(s) =

(

2N − 3− γ0
2

)

I(s) + 2J(s) ≤ 2J(s)

and thus

v(r) − v(rn) =

∫ r

rn

v′(s) ds ≤ 2

∫ r

rn

J(s)ds ≤ 2 ‖u‖2

σN

√
Nλ0

r
1
2 .

So, in any case, we have

v(r) − v(rn) ≤
1

σN

[

2√
Nλ0

+

(

N − 7

2

)

R
γ0−4

2

λ0

]

‖u‖2 r 1
2 .

Hence, recalling the definition of v(r) and the fact that v(rn) → 0, we deduce

|x|
2N−3−γ0

2 |u(x)|2 ≤ 1

σN

[

2√
Nλ0

+

(

N − 7

2

)

R
γ0−4

2

λ0

]

‖u‖2 |x| 12 ,

which gives (5.2).

We will also need the following lemma.
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Lemma 5.4. Assume that there exists R > 0 be such that V (r) < +∞ almost everywhere on (0, R) and

Λα,β(R) := ess sup
r∈(0,R)

K(r)

rαV (r)β
< +∞ for some

1

2
≤ β ≤ 1 and α ∈ R (5.3)

and

λ(R) := ess inf
r∈(0,R)

rγ0V (r) > 0 for some γ0 > 4.

Assume also that ∃q > 2β such that (2N − 4 − γ0)q < 4α+ 4N − 2(γ0 + 4)β. Then ∀u ∈ H2
V,r and ∀h ∈ H2

V

we have
∫

BR

K(|x|)|u|q−1|h| dx ≤ cq−2β
0 a(R)R

4α+4N−2(γ0+4)β−(2N−4−γ0)q

4 ‖u‖q−1 ‖h‖ ,

where a(R) := Λα,β(R)

(

1
√

λ(R)
+

R
γ0−4

2

λ(R)

)(q−2β)/2

and c0 is given in Proposition 5.3.

Proof. Take u ∈ H2
V,r and h ∈ H2

V . Thanks to assumption (5.3) and Proposition 5.3, we can apply Lemma 4.1

with Ω = BR, Λ = Λα,β(R), ν = 2N−4−γ0

4 and

m = c0

(

1
√

λ(R)
+

R
γ0−4

2

λ(R)

)
1
2

‖u‖ .

If 1
2 ≤ β < 1 we have

∫

BR

K(|x|)|u|q−1|h| dx ≤ Λmq−2β

(∫

Ω

|x|
α−ν(q−2β)

1−β dx

)1−β

‖u‖2β−1 ‖h‖

= cq−2β
0 a(R)

(∫

BR

|x|
4α−(2N−4−γ0)(q−2β)

4(1−β) dx

)1−β

‖u‖2β−1 ‖u‖q−2β ‖h‖

≤ cq−2β
0 a(R)

(

R
4α−(2N−4−γ0)(q−2β)

4(1−β) +N
)1−β

‖u‖q−1 ‖h‖ ,

because

4α− (2N − 4− γ0)(q − 2β)

4(1− β)
+N =

4α+ 4N − 2(γ0 + 4)β − (2N − 4− γ0)q

4(1− β)
> 0

If β = 1 we get

∫

BR

K(|x|)|u|q−1|h| dx ≤ Λmq−2

(∫

Ω

|x|2α−2ν(q−2)V (|x|)|u|2 dx
)

1
2

‖h‖

= cq−2β
0 a(R)

(
∫

BR

|x|
4α−(2N−4−γ0)(q−2)

2 V (|x|)|u|2 dx
)

1
2

‖u‖q−2 ‖h‖

≤ cq−2β
0 a(R)

(

R
4α−(2N−4−γ0)(q−2)

2

∫

BR

V (|x|)|u|2 dx
)

1
2

‖u‖q−2 ‖h‖

≤ cq−2β
0 a(R)R

4α−(2N−4−γ0)(q−2)
4 ‖u‖q−1 ‖h‖ ,

because 4α− (2N − 4− γ0)(q − 2) = 4α+ 4N − 2(γ0 + 2)− (2N − 4− γ0)q > 0.
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We can now give the proofs of Theorems 2.8 and 2.9. For convenience, define three functions α1 = α1(β, γ),
α2 = α2(β) and α3 = α3(β, γ) as follows:

α1(β, γ) := −(1− β)γ, α2(β) := −(1− β)N, α3(β, γ) := −N + (1− 2β)γ

2
. (5.4)

Proof of Theorem 2.8. For brevity, define

Λ∞ := ess sup
r>R2

K(r)

rα∞V (r)β∞
and λ∞ := ess inf

r>R2

rγ∞V (r).

Take u ∈ H2
V,r and h ∈ H2

V such that ‖u‖ = ‖h‖ = 1. Let R ≥ R2. Hereafter C denotes any positive constant

independent from u, h and R. For all ξ ≥ 0 we have

ess sup
r>R

K(r)

rα∞+ξγ∞V (r)β∞+ξ
≤ ess sup

r>R2

K(r)

rα∞V (r)β∞(rγ∞V (r))ξ
≤ Λ∞

λξ
∞

≤ +∞. (5.5)

We now distinguish several cases. In each of them we will choose a suitable ξ ≥ 0 and we will apply Lemma 4.1

with Ω = Bc
R, α = α∞ + ξγ∞, β = β∞ + ξ, m = c∞λ

−1/4
∞ ‖u‖ = c∞λ

−1/4
∞ , ν = 2(N−2)−γ∞

4 and

Λ = ess sup
r>R

K(r)

rα∞+ξγ∞V (r)β∞+ξ
.

In each case we will get
∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ CRδ

for some δ < 0, independent from R, whence the thesis follows. Recalling the definitions (5.4), we set α1 =
α1(β∞, γ∞), α2 = α2(β∞) and α3 = α3(β∞, γ∞) for brevity.

• Case α∞ ≥ α1. We take ξ = 1 − β∞ and apply Lemma 4.1 with β = β∞ + ξ = 1 and α = α∞ + ξγ∞ =
α∞ + (1− β∞)γ∞. We get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|2α−2ν(q2−2)V (|x|)|u|2 dx
)

1
2

≤ C

(

R2α−2ν(q2−2)

∫

Bc
R

V (|x|)|u|2 dx
)

1
2

≤ CRα−ν(q2−2),

because

α− ν(q2 − 2) = α∞ + (1− β∞)γ∞ − 2(N − 2)− γ∞
4

(q2 − 2)

=
2α∞ + γ∞ − 2β∞γ∞ + 2N − 4

2
− 2(N − 2)− γ∞

4
q2

=
2(N − 2)− γ∞

4

(

2
2α∞ + (1− 2β∞)γ∞ + 2(N − 2)

2(N − 2)− γ∞
− q2

)

=
2(N − 2)− γ∞

4
(q∗∗ − q2) < 0.
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• Case max{α2, α3} < α∞ < α1. We take ξ = α∞+(1−β∞)N
N−γ∞

and apply Lemma 4.1 with β = β∞ + ξ and

α = α∞ + ξγ∞. Notice that, if α3 < α∞ < α1, then

β = β∞ + ξ =
α∞ − γ∞β∞ +N

N − γ∞
∈
(

1

2
, 1

)

.

On the other hand, if α∞ = α2 (= max{α2, α3} when 1
2 < β∞ < 1), then ξ = 0 and

β = β∞ ∈
(

1

2
, 1

)

.

We obtain

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|
α−ν(q2−2β)

1−β dx

)1−β

≤ C
(

R
α−ν(q2−2β)

1−β
+N
)1−β

,

because

α− ν(q2 − 2β)

1− β
+N =

ν

1− β

(

2
α∞ − β∞γ∞ +N

N − γ∞
− q2

)

=
ν

1− β
(q∗ − q2) < 0.

• Case α∞ ≤ 0 = α2 (= max{α2, α3}) and β∞ = 1. We take ξ = 0 and apply Lemma 4.1 with β = β∞+ ξ = 1
and α = α∞ + ξγ∞ = α∞. We get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|2α∞−2ν(q2−2)V (|x|)|u|2 dx
)

1
2

≤ CRα∞−ν(q2−2),

because α∞ − ν(q2 − 2) ≤ −ν(q2 − 2) < 0.

• Case α∞ ≤ α2 (= max{α2, α3}) and 1
2 < β∞ < 1. We take ξ = 0 and apply Lemma 4.1 with β = β∞ ∈

(

1
2 , 1
)

and α = α∞ + ξγ∞ = α∞. We get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|
α∞−ν(q2−2β∞)

1−β∞ dx

)1−β∞

≤ C
(

R
α∞−ν(q2−2β∞)

1−β∞
+N
)1−β∞

,

because

α∞ − ν(q2 − 2β∞)

1− β∞
+N =

α∞ + (1 − β∞)N − ν(q2 − 2β∞)

1− β∞
=

α∞ − α2 − ν(q2 − 2β∞)

1− β∞
< 0.

• Case α∞ ≤ α3 (= max{α2, α3}) and β∞ ≤ 1
2 . We take ξ = 1−2β∞

2 ≥ 0 and apply Lemma 4.1 with

β = β∞ + ξ = 1
2 and α = α∞ + ξγ∞ = α∞. We get

∫

Bc
R

K(|x|)|u|q2−1|h| dx ≤ C

(

∫

Bc
R

|x|2α−2ν(q2−1) dx

)
1
2

≤ CRα−ν(q2−1)+N
2

because α− ν(q2 − 1) + N
2 = α∞ + 1−2β∞

2 γ∞ + N
2 − ν(q2 − 1) = α∞ − α3 − ν(q2 − 1) < 0.



21

Proof of Theorem 2.9. Define

Λ0 := ess sup
r∈(0,R1)

K(r)

rα0V (r)β0
and λ0 := ess inf

r∈(0,R1)
rγ0V (r).

If γ0 = 4 the thesis derives from Theorem 2.5, so we assume γ > 4. To prove the result, we want to find a function

b(R) > 0 such that b(R) → 0 when R → 0+ and

∫

BR

K(|x|)|u|q1−1|h| dx ≤ b(R)‖u‖q1−1‖h‖, ∀u ∈ H2
V,r, ∀h ∈ H2

V .

So we fix 0 < R ≤ R1. Then

λ(R) := ess inf
r∈(0,R)

rγ0V (r) ≥ λ0 > 0 (5.6)

and for all ξ ≥ 0 we have

Λα0+ξγ0,β0+ξ := ess sup
r∈(0,R)

K(r)

rα0+ξγ0V (r)β0+ξ
≤ ess sup

r∈(0,R1)

K(r)

rα0V (r)β0 (rγ0V (r))ξ
≤ Λ0

λξ
0

< +∞. (5.7)

We now consider several cases.

• Case 4 < γ0 < N . In this case (α0, q1) ∈ Aβ0,γ0 implies α0 > max{α2, α3} and

max{1, 2β0} < q1 < min

{

2
α0 − γ0β0 +N

N − γ0
, 2

2α0 + (1− 2β0)γ0 + 2N − 4

2N − 4− γ0

}

.

Hence, we can find ξ ≥ 0, independent from R, u and h, such that α = α0 + ξγ0 and β = β0 + ξ satisfy

1

2
≤ β ≤ 1 and 2β < q1 <

4α+ 4N − 2(γ0 + 4)β

2N − 4− γ0
. (5.8)

Recalling (5.6) and (5.7), we can apply Lemma 5.4 (with q = q1), whence ∀u ∈ H2
V,r and ∀h ∈ H2

V we get

∫

BR

K(|x|)|u|q1−1|h| dx ≤ cq1−2β
0 a(R)R

4α+4N−2(γ0+4)β−(2N−4−γ0)q1
4 ‖u‖q1−1‖h‖.

This implies the thesis because R4α+4N−2(γ0+4)β−(2N−4−γ0)q1 → 0 as R → 0+ and

a(R) = Λα0+ξγ0,β0+ξ(R)

(

1
√

λ(R)
+

R
γ0−4

2

λ(R)

)

q1−2β
2

≤ Λ0

λξ
0





1√
λ0

+
R

γ0−4
2

1

λ0





q1−2β
2

.

• Case N ≤ γ0 < 2N − 4. Again, (α0, q1) ∈ Aβ0,γ0 implies that we can find ξ ≥ 0 such that α = α0 + ξγ0 and

β = β0 + ξ satisfy (5.8). We get the thesis applying Lemma 5.4.

• Case γ0 = 2N − 4. In this case, from (α0, q1) ∈ Aβ0,γ0 we infer that there exists ξ ≥ 0 such that α = α0 + ξγ0
and β = β0 + ξ satisfy

1

2
≤ β ≤ 1, q1 > 2β and 0 < 2α+ 2N − (γ0 + 4)β.



22

As in the previous cases, the thesis follows from Lemma 5.4.

• Case γ0 > 2N − 4. In this case, the hypothesis (α0, q1) ∈ Aβ0,γ0 implies that we can find ξ ≥ 0 such that

α = α0 + ξγ0 and β = β0 + ξ satisfy

1

2
≤ β ≤ 1 and q1 > max

{

2β, 2
2α+ 2N − (γ0 + 4)β

2N − 4− γ0

}

.

Again, the thesis follows from Lemma 5.4.

6 Application to the bilaplacian equation

In this section we state our existence results for Eq. (1.1), which are Theorems 6.2 and 6.3 below (see also Remark

6.5). We let N ≥ 5 and assume that V , K and Q satisfy (V), (K) with s > 2N
N+4 (cf. Lemma 7.1 below) and the

following hypothesis:

(Q) Q : R+ → [0,+∞) is a measurable function such that the linear funtional h 7→
∫

RN Q (|x|)h dx is contin-

uous on H2
V .

We also assume that f : R → R is a continuous function satisfying the following condition, where q1, q2 will be

specified later:

(fq1,q2) ∃M > 0 such that |f (t)| ≤ M min
{

tq1−1, tq2−1
}

for all t ≥ 0.

Remark 6.1. 1. Assumption (Q) is quite abstract, but it is easy to find explicit conditions on Q ensuring it.

For example, by Rellich inequality, if Q ∈ L2(R+, r
N+3dr) then one has

∣

∣

∣

∣

∫

RN

Q (|x|)h dx
∣

∣

∣

∣

≤
(∫

RN

Q (|x|)2 |x|4 dx
)1/2

(

∫

RN

|h|2

|x|4
dx

)1/2

≤ (const.) ‖h‖ , ∀h ∈ H2
V .

In a similar way, (Q) holds true if Q ∈ L2N/(N+4)(R+, r
N−1dr) (by Sobolev inequality) or V −1/2Q ∈

L2(R+, r
N−1dr) (by definition of H2

V ). Other similar conditions ensuring the same result can be obtained

by the interpolation Hardy-Sobolev inequalities of [15, 16] (see also [11]).

2. Assumption (fq1,q2) implies |f (t)| ≤ M tq−1 for all t ≥ 0 and q ∈ [q1, q2], whence it is more stringent than

a single-power growth assumption if q1 6= q2. On the other hand we will never require q1 6= q2, so that our

results will also concern single-power nonlinearities as long as we can take q1 = q2 in (fq1,q2).

We are interested in finding radial weak solutions of Eq. (1.1), i.e., functions u ∈ H2
V,r such that

∫

RN

△u · △h dx+

∫

RN

V (|x|)uh dx =

∫

RN

K (|x|) f (u)h dx+

∫

RN

Q (|x|)h dx for all h ∈ H2
V . (6.1)

Our existence results are the following.

Theorem 6.2. Assume Q = 0 and assume that there exist q1, q2 > 2 such that (fq1,q2) and
(

R′′
q1,q2

)

hold. Assume

furthermore that f satisfies:

(f1) ∃θ > 2 such that 0 ≤ θF (t) ≤ f (t) t for all t ≥ 0;
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(f2) ∃t0 > 0 such that F (t0) > 0.

If K (|·|) ∈ L1(RN ), we can replace assumptions (f1)-(f2) with the following one:

(f3) ∃θ > 2 and ∃t0 > 0 such that 0 < θF (t) ≤ f (t) t for all t ≥ t0.

Then Eq. (1.1) has a nonzero nonnegative radial weak solution.

Theorem 6.3. Assume that there exist q1, q2 ∈ (1, 2) such that (fq1,q2) and
(

R′′
q1,q2

)

hold. Assume furthermore

that either Q 6= 0 (meaning that Q does not vanish almost everywhere), or Q = 0 and f satisfies the following

condition:

(f4) ∃θ < 2 and ∃t0,m > 0 such that F (t) ≥ mtθ for all 0 ≤ t ≤ t0.

If Q 6= 0, we also allow the case max {q1, q2} = 2 > min {q1, q2} > 1. Then Eq. (1.1) has a nonzero nonnegative

radial weak solution.

The above existence results will be proved in Section 7 and can be generalized and complemented by other

results in different and quite standard ways (see Remark 6.5 below). They rely on assumption
(

R′′
q1,q2

)

, which

is rather abstract but, as already discussed in Section 2, it can be granted in concrete cases through Theorems

2.5-2.9, which ensure
(

R′′
q1,q2

)

for suitable ranges of exponents q1 and q2 by explicit conditions on the potentials.

Some basic examples of nonlinearities satisfying (fq1,q2) and the other assumptions of our results can be found

in [4, Example 4.11].

Remark 6.4. 1. In Theorem 6.2, the information K (|·|) ∈ L1(RN ) actually allows weaker hypotheses on the

nonlinearity, as assumptions (f1) and (f2) imply (f3).

2. In Theorem 6.3, the case max {q1, q2} = 2 > min {q1, q2} > 1 cannot be considered if (f4) holds, as (f4)
and (fq1,q2) imply max {q1, q2} ≤ θ < 2.

Remark 6.5. 1. Theorems 6.2 and 6.3 can be easily adapted to the case of Eq. (1.1) with a general right hand

term g (|x| , u) (see [3, Section 3] and [4, Section 4]). Moreover, they can be complemented with multiplicity

results by standard variational techniques (see again [3, Section 3] and [4, Section 4]).

2. Theorems 6.2 and 6.3 can be used to derive existence results for Eq. (1.1) with Dirichlet boundary conditions

in bounded balls or exterior radial domains, by suitably modifying the potentials V and K in order to

reduce the Dirichlet problem to the problem in R
N . In this cases, a single-power growth condition on the

nonlinearity is sufficient and, respectively, only assumptions on the potentials near the origin or at infinity

are needed. We leave the details to the interested reader, which we refer to [3, Section 5] for similar results

and related arguments.

3. Using some ideas of [7], we think that our compactness and existence results can be easily extended to the

case of inhomogeneous bilaplacian equations of the form

∆2u+ V (|x|)up−1 = K(|x|)f(u) +Q(|x|) in R
N

with 1 < p < N , p 6= 2.
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7 Proof of Theorems 6.2 and 6.3

In this section we apply the compactness results of Section 2 to prove the existence results of Section 6. Let

N ≥ 5 and assume that V , K and Q satisfy (V), (K) and (Q). Let f : R → R be a continuous function and set

F (t) :=
∫ t

0
f (s) ds.

The weak solutions of Eq. (1.1) are (at least formally) the critical points of the functional

I (u) :=
1

2
‖u‖2 −

∫

RN

K (|x|)F (u)dx−
∫

RN

Q (|x|)u dx. (7.1)

As a matter of fact, by the continuous embedding of Theorem 2.4 and the results of [1] about Nemytskiı̆ operators

on the sum of Lebesgue spaces, (7.1) defines a C1 functional on H2
V,r provided that (fq1,q2) and

(

S ′
q1,q2

)

hold for

some q1, q2 > 1. In this case, the Fréchet derivative of I at any u ∈ H2
V,r is given by

I ′ (u)h =

∫

RN

(△u · △h + V (|x|)uh) dx−
∫

RN

(K (|x|) f (u) +Q (|x|))h dx , ∀h ∈ H2
V,r , (7.2)

but I does not need to be well defined on the whole space H2
V , and therefore the classical Palais’ Principle of

Symmetric Criticality [10] does not actually ensure that the critical points of I : H2
V,r → R are weak solutions of

Eq. (1.1). This is the aim of our first lemma, which relies on the following stronger version of condition
(

S ′
q1,q2

)

:

(

R′
q1,q2

)

∃R1, R2 > 0 such that R0 (q1, R1) < ∞ and R∞ (q2, R2) < ∞.

Lemma 7.1. Assume s > 2N
N+4 in condition (K) and assume that there exist q1, q2 > 1 such that (fq1,q2) and

(

R′
q1,q2

)

hold. Then every critical point of I : H2
V,r → R is a weak solution to Eq. (1.1).

Proof. Let u ∈ H2
V,r and assume R1 < R2 in

(

R′
q1,q2

)

, which is not restrictive by the monotonicity of R0 and

R∞. By Lemma 3.1, there exists a constant C > 0 (also dependent on u) such that for all h ∈ H2
V we have

∫

BR2\BR1

K (|x|) |u|q1−1 |h| dx ≤ C ‖h‖

and therefore, by (fq1,q2), we get

∫

RN

K (|x|) |f (u)| |h| dx ≤ M

∫

RN

K (|x|)min{|u|q1−1
, |u|q2−1} |h| dx

≤ M

(

∫

BR1

K (|x|) |u|q1−1 |h| dx+

∫

Bc
R2

K (|x|) |u|q2−1 |h| dx+ C ‖h‖
)

≤ M
(

‖u‖q1−1 R0 (q1, R1) + ‖u‖q2−1 R∞ (q2, R2) + C
)

‖h‖ .

Together with assumption (Q), this gives that the linear operator

T (u)h :=

∫

RN

(△u · △h + V (|x|)uh) dx−
∫

RN

(K (|x|) f (u) +Q (|x|)) h dx

is well defined and continuous on H2
V . Hence, by Riesz representation theorem, there exists a unique ũ ∈ H2

V

such that T (u)h = (ũ, h) for all h ∈ H2
V , where (·, ·) is the scalar product defined in (2.4). By means of obvious

changes of variables it is easy to infer that ũ ∈ H2
V,r, so that T (u) = 0 on H2

V,r implies ũ = 0 and hence (6.1).
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Hereafter, we will assume that the hypotheses of Theorems 6.2 and 6.3 also include the following assumptions

respectively: f (t) = 0 for t < 0 in Theorem 6.2, and f is odd in Theorem 6.3. This can be done without

restriction, since Theorems 6.2 and 6.3 concern nonnegative solutions and all their assumptions still hold true if

we replace f (t) respectively with f (t)χR+ (t) and f (t)χR+ (t)− f (|t|)χR−
(t) (χR±

denotes the characteristic

function of R±).

With such additional assumptions, (fq1,q2) implies that there exists M̃ > 0 such that

|F (t)| ≤ M̃ min {|t|q1 , |t|q2} for all t ∈ R. (7.3)

Lemma 7.2. Let L0 be the norm of the linear continuous functional h ∈ H2
V 7→

∫

RN Q (|x|)h dx. If (fq1,q2) and
(

S ′
q1,q2

)

hold for some q1, q2 > 1, then there exist two constants c1, c2 > 0 such that

I (u) ≥ 1

2
‖u‖2 − c1 ‖u‖q1 − c2 ‖u‖q2 − L0 ‖u‖ for all u ∈ H2

V,r. (7.4)

If
(

S ′′
q1,q2

)

also holds, then ∀ε > 0 there exist two constants c1 (ε) , c2 (ε) > 0 such that (7.4) holds both with

c1 = ε, c2 = c2 (ε) and with c1 = c1 (ε), c2 = ε.

Proof. Let i ∈ {1, 2} and assume R1 < R2 in
(

S ′
q1,q2

)

, which is not restrictive by the monotonicity of S0 and

S∞. By Lemma 3.1 and the continuous embedding H2
V,r →֒ Lqi

loc(R
N ), there exists a constant c

(i)
R1,R2

> 0 such

that for all u ∈ H2
V,r we have

∫

BR2\BR1

K (|x|) |u|qi dx ≤ c
(i)
R1,R2

‖u‖qi

and therefore, by (7.3),

∣

∣

∣

∣

∫

RN

(K (|x|)F (u) +Q (|x|) u)dx
∣

∣

∣

∣

≤
∫

RN

K (|x|) |F (u)| dx+

∣

∣

∣

∣

∫

RN

Q (|x|)u dx
∣

∣

∣

∣

≤ M̃

∫

RN

K (|x|)min {|u|q1 , |u|q2} dx+ L0 ‖u‖

≤ M̃

(

∫

BR1

K (|x|) |u|q1 dx+

∫

Bc
R2

K (|x|) |u|q2 dx+

∫

BR2\BR1

K (|x|) |u|qi dx
)

+ L0 ‖u‖

≤ M̃
(

‖u‖q1 S0 (q1, R1) + ‖u‖q2 S∞ (q2, R2) + c
(i)
R1,R2

‖u‖qi
)

+ L0 ‖u‖ (7.5)

= c1 ‖u‖q1 + c2 ‖u‖q2 + L0 ‖u‖ ,

with obvious definition of the constants c1 and c2, independent of u. This proves (7.4). If
(

S ′′
q1,q2

)

also holds, then

∀ε > 0 we can fix R1,ε < R2,ε such that M̃S0 (q1, R1,ε) < ε and M̃S∞ (q2, R2,ε) < ε, so that inequality (7.5)

becomes
∣

∣

∣

∣

∫

RN

(K (|x|)F (u) +Q (|x|)u) dx
∣

∣

∣

∣

≤ ε ‖u‖q1 + ε ‖u‖q2 + c
(i)
R1,ε,R2,ε

‖u‖qi + L0 ‖u‖ .

The conclusion thus ensues by taking i = 1 and c1 (ε) = ε+ c
(1)
R1,ε,R2,ε

, or i = 2 and c2 (ε) = ε+ c
(2)
R1,ε,R2,ε

.

Lemma 7.3. Under the assumptions of Theorem 6.2, the functional I : H2
V,r → R satisfies the Palais-Smale

condition.
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Proof. By (f1) or (f3) together with the additional assumption f (t) = 0 for t < 0, we have that either (f1) holds

for all t ∈ R, or K (|·|) ∈ L1(RN ) and f satisfies

θF (t) ≤ f (t) t for all |t| ≥ t0. (7.6)

Let {un} be a sequence in H2
V,r such that {I (un)} is bounded and I ′ (un) → 0 in the dual space of H2

V,r. Then

1

2
‖un‖2 −

∫

RN

K (|x|)F (un) dx = I (un) +

∫

RN

Q (|x|)undx = O (1) +O (1) ‖un‖

and

‖un‖2 −
∫

RN

K (|x|) f (un)undx = I ′ (un)un +

∫

RN

Q (|x|)undx = o (1) ‖un‖+O (1) ‖un‖ .

If f satisfies (f1), we get

1

2
‖un‖2 +O (1) +O (1) ‖un‖ =

∫

RN

K (|x|)F (un) dx

≤ 1

θ

∫

RN

K (|x|) f (un)undx =
1

θ
‖un‖2 + o (1) ‖un‖+O (1) ‖un‖ ,

which implies that {‖un‖} is bounded since θ > 2. If K (|·|) ∈ L1(RN ) and f satisfies (7.6), we have

∫

{|un|≥t0}

K (|x|) f (un)undx ≤
∫

RN

K (|x|) f (un)undx+

∫

{|un|<t0}

K (|x|) |f (un) un| dx

≤
∫

RN

K (|x|) f (un)undx+M

∫

{|un|<t0}

K (|x|)min {|un|q1 , |un|q2} dx

≤
∫

RN

K (|x|) f (un)undx+M min {tq10 , tq20 } ‖K‖L1(RN ) ,

and then, using (7.3), we get

1

2
‖un‖2 +O (1) +O (1) ‖un‖

=

∫

{|un|<t0}

K (|x|)F (un) dx+

∫

{|un|≥t0}

K (|x|)F (un) dx

≤ M̃

∫

{|un|<t0}

K (|x|)min {|un|q1 , |un|q2} dx+
1

θ

∫

{|un|≥t0}

K (|x|) f (un)undx

≤ M̃ min {tq10 , tq20 } ‖K‖L1(RN ) +
1

θ

∫

RN

K (|x|) f (un)undx+
M

θ
min {tq10 , tq20 } ‖K‖L1(RN )

=

(

M̃ +
M

θ

)

min {tq10 , tq20 } ‖K‖L1(RN ) +
1

θ
‖un‖2 + o (1) ‖un‖+O (1) ‖un‖ .

This yields again that {‖un‖} is bounded. Now, thanks to assumption (Q) and since the embedding H2
V,r →֒

Lq1
K + Lq2

K is compact by Theorem 2.4 and the functional u 7→
∫

RN K (|x|)F (u) dx is C1 on Lq1
K + Lq2

K by [1,

Proposition 3.8], it is a standard exercise to conclude that {un} has a strongly convergent subsequence in H2
V,r.
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Proof of Theorem 6.2. We mean to apply the Mountain-Pass Theorem. To this end, from (7.4) of Lemma 7.2,

where L0 = 0 and q1, q2 > 2, we readily infer that ∃ρ > 0 such that

inf
u∈H2

V,r
, ‖u‖=ρ

I (u) > 0 = I (0) . (7.7)

Now we check that ∃ū ∈ Wr such that ‖ū‖ > ρ and I (ū) < 0. To this end, from (f3) (which holds in any

case, as (f1) and (f2) imply (f3)), we deduce that F (t) ≥ t−θ
0 F (t0) t

θ for all t ≥ t0. Then, taking into account

assumption (V), we fix a nonnegative function u0 ∈ C∞
c (RN ) ∩H2

V,r such that the set {x ∈ R
N : u0 (x) ≥ t0}

has positive Lebesgue measure. We now distinguish the case of assumptions (f1) and (f2) from the case with

K (|·|) ∈ L1(RN ). In the first one, for every λ > 1 we have

∫

RN

K (|x|)F (λu0) dx ≥
∫

{λu0≥t0}

K (|x|)F (λu0) dx ≥ λθF (t0)

∫

{λu0≥t0}

t−θ
0 uθ

0dx

≥ λθF (t0)

∫

{u0≥t0}

t−θ
0 uθ

0dx ≥ λθF (t0)

∫

{u0≥t0}

dx > 0

and therefore, since θ > 2, we get

lim
λ→+∞

I (λu0) ≤ lim
λ→+∞

(

λ2

2
‖u0‖2 − λθF (t0)

∫

{u0≥t0}

dx − λ

∫

RN

Q (|x|)u0dx

)

= −∞.

If K (|·|) ∈ L1(RN ), we observe that (7.3) implies F (t) ≥ −M̃ min {tq10 , tq20 } for all 0 ≤ t ≤ t0, so that, arguing

as above about the integral over {λu0 ≥ t0}, for every λ > 1 we obtain

∫

RN

K (|x|)F (λu0) dx =

∫

{λu0<t0}

K (|x|)F (λu0) dx+

∫

{λu0≥t0}

K (|x|)F (λu0) dx

≥ −M̃ min {tq10 , tq20 }
∫

{λu0<t0}

K (|x|) dx+ λθF (t0)

∫

{u0≥t0}

dx,

which implies

I (λu0) ≤
λ2

2
‖u0‖2 + M̃ min {tq10 , tq20 } ‖K‖L1(RN ) − λθF (t0)

∫

{u0≥t0}

dx− λ

∫

RN

Q (|x|)u0dx → −∞

as λ → +∞. So, in any case, we can take ū = λu0 with λ sufficiently large. As a conclusion, taking into account

Lemma 7.3, the Mountain-Pass Theorem provides the existence of a nonzero critical point u ∈ H2
V,r for I , which

is a weak solutions to Eq. (1.1) by Lemma 7.1. Since the additional assumption f (t) = 0 for t < 0 implies

I ′ (u)u− = −‖u−‖2 (where u− ∈ H2
V,r is the negative part of u), one has u− = 0 and thus u is nonnegative.

Lemma 7.4. Under the assumptions of Theorem 6.3, the functional I : H2
V,r → R is bounded from below and

coercive. In particular, if Q = 0 and f satisfies (f4), then

inf
v∈H2

V,r

I (v) < 0. (7.8)
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Proof. I is bounded below and coercive on H2
V,r thanks to Lemma 7.2. Indeed, the result readily follows from

(7.4) if q1, q2 ∈ (1, 2), while, if max {q1, q2} = 2 > min {q1, q2} > 1, we fix ε < 1/2 and use the second part of

the lemma in order to get

I (u) ≥
(

1

2
− ε

)

‖u‖2 − c (ε) ‖u‖min{q1,q2} − L0 ‖u‖ for all u ∈ H2
V,r,

which yields again the conclusion. In order to prove (7.8) if Q = 0 and (f4) holds, we use assumption (V) to fix

a nonzero function u0 ∈ C∞
c (RN ) ∩H2

V,r such that 0 ≤ u0 ≤ t0. Then, by (f4), for every 0 < λ < 1 we get that

λu0 ∈ H2
V,r satisfies

I (λu0) =
1

2
‖λu0‖2 −

∫

RN

K (|x|)F (λu0) dx ≤ λ2

2
‖u0‖2 − λθm

∫

RN

K (|x|)uθ
0dx.

Since θ < 2, this implies I (λu0) < 0 for λ sufficiently small and therefore (7.8) ensues.

Proof of Theorem 6.3. Recall Lemma 7.4 and let {vn} be any minimizing sequence for µ := infv∈H2
V,r

I (v) ∈
R. As F is even and Q is nonnegative, we have

I (|vn|) =
1

2
‖vn‖2 −

∫

RN

K (|x|)F (|vn|) dx−
∫

RN

Q (|x|) |vn| dx (7.9)

=
1

2
‖vn‖2 −

∫

RN

K (|x|)F (vn) dx −
∫

{vn≥0}

Q (|x|) vndx+

∫

{vn<0}

Q (|x|) vndx

= I (vn) + 2

∫

{vn<0}

Q (|x|) vndx ≤ I (vn) ,

so that |vn| ∈ H2
V,r is still a minimizing sequence. Hence we can assume vn ≥ 0. Since {vn} is bounded in

H2
V,r by Lemma 7.4 and the embedding H2

V,r →֒ Lq1
K + Lq2

K is compact by assumption
(

S ′′
q1,q2

)

and Theorem

2.4, we can assume that there exists u ∈ H2
V,r such that (up to a subsequence) vn ⇀ u in H2

V,r and vn → u in

Lq1
K +Lq2

K and almost everywhere. Hence u is nonnegative and, thanks to (Q) and the continuity of the functional

v 7→
∫

RN K (|x|)F (v) dx on Lq1
K + Lq2

K (which follows from (fq1,q2) and [1, Proposition 3.8]), we have

∫

RN

K (|x|)F (vn) dx+

∫

RN

Q (|x|) vndx →
∫

RN

K (|x|)F (u) dx+

∫

RN

Q (|x|)u dx.

By the weak lower semi-continuity of the norm, this implies

I (u) ≤ lim
n→∞

(

1

2
‖vn‖2 −

∫

RN

K (|x|)F (vn) dx +

∫

RN

Q (|x|) vndx
)

= µ

and thus I (u) = µ. So u is a critical point for I and thus a weak solutions to Eq. (1.1) by Lemma 7.1. It remains

to show that u 6= 0. This is obvious if Q = 0 and f satisfies (f4), since µ < 0 by Lemma 7.4. If Q 6= 0, assume

by contradiction that u = 0. From (7.2) we get
∫

RN Q (|x|)h dx = 0 for all h ∈ H2
V,r and therefore Q = 0, which

is a contradiction.
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