

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Is the caudal auricular axial pattern flap robust? A multi-centre cohort study of 16 dogs and 12 cats (2005 to 2016)

 This is a pre print version of the following article:

 Original Citation:

 Availability:

 This version is available http://hdl.handle.net/2318/1722349

 since 2020-01-10T13:36:02Z

 Published version:

 DOI:10.1111/jsap.12946

 Terms of use:

 Open Access

 Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Is the caudal auricular axial pattern flap robust?

Journal:	Journal of Small Animal Practice	
Manuscript ID	JSAP-2018-0055.R1	
Manuscript Type:	Original Paper	
Keywords: Soft Tissue-Oncology, Soft Tissue-General, Canine, F		

SCHOLARONE[™] Manuscripts

1	Is the caudal auricular axial pattern flap robust?
2	A multi-centre cohort study of 16 dogs and 12 cats (2005-2016)
3	
4	
5	ABSTRACT
6	
7	Objective :
8	To determine the frequency and type of healing complications arising after the use
9	of the caudal auricular axial pattern flap to close defects on the head in dogs and
10	cats.
11	
12	Study Design
13	
14	Multi-centre retrospective cohort study
15	
16	Material and Methods
17	
18	Centres were recruited via the Association for Veterinary Soft Tissue Surgery (AVSTS)
19	Research Cooperative (ARC). Medical records of 11 centres were reviewed, and data
20	from all dogs and cats treated with a caudal auricular axial pattern flap were
21	retrieved. The following data were recorded: signalment, reason for reconstruction,
22	flap dimensions, anatomic landmarks used, histological diagnosis, flap healing, and
23	whether revision surgery was required.
24	

25 Results

- 26 28 cases were included: 16 dogs and 12 cats. Flap length:width ratio was
- approximately 3:1 and flap length extended to the scapular spine in most cases.
- 28 Optimal wound healing occurred in 5/16 (31%) dogs and 6/12 (50%) cats. Wound
- 29 dehiscence without flap necrosis occurred in 1/16 (6%) dogs and 1/12 (8%) cats.
- 30 Wound dehiscence with flap necrosis occurred in 10/16 (63%) dogs and 5/12 (42%)
- 31 cats. Revision surgery was performed in 8/16 (50%) dogs and 3/12 (25%) cats.
- 32
- 33
- 34 Conclusion and Clinical Relevance
- 35
- 36 The caudal auricular axial pattern flap can provide full thickness skin coverage for
- 37 large defects on the head in dogs and cats. Partial flap necrosis is a common
- 38 complication, and revision surgery may be required in order to achieve final wound
- 39 closure.
- 40
- 41
- 42 INTRODUCTION
- 43
- 44 Large skin defects in dogs and cats can be challenging to reconstruct and many
- 45 reconstructive techniques have been developed that allow tension-free closure,
- 46 including subdermal plexus and axial pattern flaps (Field and others (2015), (Hunt
- 47 **2012, Wardlaw and Lanz 2012).** Axial pattern flaps incorporate a direct cutaneous
- 48 artery and vein, which improves their perfusion and viability. The main advantage of

49	axial pattern flaps is that they are more robust and allow for greater mobilization of
50	a longer flap with higher survival rates compared to a subdermal plexus flap (Pavletic
51	1981, Smith and others 1991).
52	
53	Several axial pattern flaps have been described to cover large defects of the head in
54	dogs and cats, and they include the superficial temporal, omocervical, angularis oris,
55	and caudal auricular axial pattern flap (Fahie and Smith 1999, Losinski and others
56	2015, Pavletic 1981, Smith and others 1991). The caudal auricular axial pattern flap
57	was first described by Smith and others (1991) and is based on the
58	sternocleidomastoideus branches of the caudal auricular artery and vein originating
59	between the lateral aspect of the wing of the atlas and the vertical ear canal. These
60	branches course in a caudal and dorsal direction parallel to the central cervical
61	region and supply the cranial aspect of the cervical skin, the platysma muscle, and
62	subcutaneous fat, and eventually anastomose with the superficial cervical artery.
63	Smith and others (1991) described the flap base as the palpable depression between
64	the lateral aspect of the wing of the atlas and the vertical ear canal, centred on the
65	lateral aspect of the wing of the atlas. The flap runs caudally over the central neck,
66	between parallel dorsal and ventral lines extending from the flap base to the spine of
67	the scapula.
68	
69	There is limited published information regarding the clinical or experimental use of
70	the caudal auricular axial pattern flap. The available literature includes two
71	experimental studies (Smith and others 1991, Smith and others 1993), which
72	included the clinical use of the flap in two cats, both of which had complete flap

73	survival, and three reports of its clinical use (Field and others 2015, Spodnick and
74	others 1996, Stiles and others 2003). In the Spodnick and others (1996) clinical
75	series, the caudal auricular axial pattern flap was utilized in three cats and no
76	complications or flap necrosis were reported. Stiles and others (2003) used this flap
77	in three cats and one dog following orbital exenteration and described flap necrosis
78	in two cats, both requiring revision surgery. In a more recent study by Field and
79	others (2015) looking at 73 axial pattern flaps in dogs and cats, the caudal auricular
80	axial pattern flap was used in two dogs, but no specific information was reported
81	regarding flap survival or outcome.
82	
83	The aim of this study was to determine how frequently complications arise after use
84	of the caudal auricular axial pattern flap to close defects on the head in dogs and
85	cats.
86	
87	
88	
89	MATERIAL AND METHODS
90	
91	This study was approved by the Association for Veterinary Soft Tissue Surgery
92	(AVSTS) Research Cooperative (ARC) and by the Animal Health Trust (UK) Clinical
93	Research Ethics Committee. Centres were invited to participate via ARC's list server
94	and via direct contact with the authors.
95	

96	Medical records from contributing institutions were reviewed and data were
97	retrieved for every dog or cat treated with a caudal auricular axial pattern flap
98	between 2005 and 2016 with at least 4 weeks follow-up. Exclusion criteria were
99	previous irradiation of the donor or recipient site. The following data were recorded,
100	where available: breed; sex; neutering status; age; reason for reconstruction; specific
101	location of the defect; histological diagnosis; flap dimensions (cm width and length);
102	anatomic landmarks used; use of surgical drain; flap healing (optimal flap healing
103	defined as flap healing without necrosis or dehiscence; wound dehiscence without
104	flap necrosis; wound dehiscence with flap necrosis); location (flap divided into nine
105	zones; dorsal-middle-ventral thirds, and rostral-middle-caudal thirds, according to
106	the harvested but unrotated flap) and extent of necrosis (cm width and length; and
107	estimate of proportion of flap involved (<10%, 10-<25%, 25-<50%, 50-<75%, 75-
108	100%); and revision surgery performed (yes/no).
109	
110	RESULTS
111	Data were available for all cases unless otherwise stated.
112	
113	Dogs
114	Data were available for 17 dogs (Table 1). One dog was excluded as the flap was
115	used to reconstruct a non-healing wound secondary to radiation necrosis after
116	surgical resection and irradiation of a multilobular osteochondrosarcoma. The
117	remaining 16 dogs had caudal auricular axial pattern flap reconstruction after

- 118 tumour excision. For the six dogs with specific flap dimension data available, the
- median (range) flap length used was 19.3cm (10.0-27.0cm). The median (range) flap

120	width used was 6.5cm (4.5-10.0cm). For the eight dogs with specific anatomic
121	landmark data available, 5/8 (62.5%) extended caudally to the scapular spine and
122	3/8 (37.5%) did not extend to the scapular spine; and 8/8 involved the central third
123	(dorsoventrally) of the neck skin. Three (18.8%) cases included use of an active
124	suction drain. Histological diagnosis included soft tissue sarcoma (8, of which two
125	were low grade, four were intermediate grade, and two were of unknown grade),
126	squamous cell carcinoma (2), mast cell tumour (3, of which two were grade II and
127	one was unknown grade), and malignant melanoma (3). The most common location
128	of the defect was the orbital area following exenteration (11/16 dogs) followed by
129	defects on the frontal area (2/16), the cheek (2/16), and the ear base (1/16).
130	
131	Outcome in dogs is summarised in Table 2. Optimal healing occurred in 5/16 (31.3%)
132	dogs; dehiscence without flap necrosis occurred in 1/16 (6.3%) dogs; and wound
133	dehiscence with flap necrosis occurred in 10/16 (62.5%) dogs. For seven dogs with
134	data available, the median (range) length of the region of necrosis was 4.0cm
135	(2.0cm-10.0cm) and the width of necrosis was 5.0cm (0.5cm-10.0cm). For the seven
136	dogs with data available, the median (range) estimated proportion of flap necrosis
137	was 10-<25% (range <10% to 75-100%). The regions of the flap that underwent
138	necrosis were always at the distal tip (caudal-dorsal, caudal-middle, and caudal-
139	ventral regions of the flap), and with more extensive cases of necrosis, also involved
140	the middle-dorsal, middle-middle, and middle-ventral regions. Revision surgery was
141	performed in 8/16 dogs (50.0%). Of the 10 dogs with wound dehiscence and flap
142	necrosis, 7 (70.0%) underwent revision surgery. The dog that had wound dehiscence
143	without flap necrosis also underwent revision surgery. For the seven dogs with

144	necrosis, the following revisions were performed: debridement and local side-to-side
145	closure (n=2), debridement and closure using either the original flap (n=1) or an
146	extension of the original flap (n=1), debridement and closure using a combination of
147	side-to-side closure and an extension of the original flap (n=1), and debridement and
148	closure using a local subdermal plexus flap harvested from the ventral neck (n=2)
149	(one of which had incomplete closure with the open wound healing by second
150	intention).
151	
152	Cats
153	Data were available from 12 cats (Table 1). No cases were excluded. The reason for
154	the use of the caudal auricular axial pattern flap was reconstruction after tumour
155	resection in all cats, with the orbital area being the most common location of the
156	defect (10) followed by the temporal region (1) and ear base (1). For eight cats with
157	data available, median (range) flap length was 16.0cm (7.0-18.0cm) and flap width
158	was 5.0cm in all cases. For cases with specific anatomic landmark data available, 7/9
159	(77.8%) extended caudally to the scapular spine and 2/9 (22.2%) did not; all involved
160	the central third (dorsoventrally) of the neck skin. One case (8.3%) had a passive
161	drain placed at surgery <mark>. Histological diagnosis was soft tissue sarcoma (7, of which</mark>
162	two were low grade, three were intermediate grade, one was high grade, and one
163	was of unknown grade), squamous cell carcinoma (4), and mast cell tumour (1).
164	
165	The outcome in cats is summarised in Table 3. There was optimal wound healing in
166	6/12 (50.0%) cats. Wound dehiscence with and without flap necrosis occurred in
167	5/12 (41.7%) and 1/12 (8.3%), respectively. The median (range) length of the region

168	of necrosis was 5.0cm (4.0-8.0cm) and the width was 5.0cm in all five cats. The
169	estimated proportion of the flap undergoing necrosis was 25-<50% in all five cats
170	with necrosis. The regions of the flap undergoing necrosis were always the distal tip
171	(the caudal-dorsal, caudal-middle and caudal-ventral regions) and extended to
172	include the middle-dorsal, middle-middle, and middle-ventral regions in cases with
173	more extensive necrosis. Revision surgery was performed in 3/12 (25.0%) cats. Of
174	the five cats with wound dehiscence and flap necrosis, three (60.0%) had revision
175	surgery and two (40.0%) healed by second-intention without the need for further
176	anaesthesia or surgery. The following revision surgeries were performed: surgical
177	debridement and primary closure of the wound (n=1), debridement and closure
178	using advancement of the flap (n=1), and debridement and closure using a local
179	subdermal plexus flap derived from the ventral neck skin (n=1). One cat with wound
180	dehiscence without flap necrosis healed by second intention without revision
181	surgery.
182	
183	
184	DISCUSSION
185	
186	The main finding of this retrospective study of 16 dogs and 12 cats treated with a
187	caudal auricular axial pattern flap was the relatively high complication rate. The most
188	common complications were necrosis of various lengths of the distal aspect of the

- 189 flap, which was reported in 62.5% of dogs and 41.7% of cats and isolated dehiscence
- 190 of the flap in 6.3% of dogs and 8.3% of cats.
- 191

192	The mean length of survival of the caudal auricular axial pattern flap was 85% in two
193	experimental studies (Smith and others 1991, Smith and others 1993). In these
194	studies, the flap was created, elevated, and then sutured back in place at the donor
195	site without rotation or transposition. In addition, the authors did not always extend
196	the flap up to the scapular spine. However, 67% of both canine and feline caudal
197	auricular axial pattern flaps underwent necrosis of varying degrees. Furthermore,
198	optimal healing, namely full flap survival with no necrosis or wound dehiscence, was
199	reported in 31.3% of dogs and 50.0% of cats in the present study. In previous
200	experimental and clinical studies, optimal healing was reported in 33% to 100% of
201	dogs and 33% to 75% of cats (Smith and others (1991), (1993), Spodnick and others
202	1996, Stiles and others 2003). These results, in combination with the findings of the
203	study reported herein, suggest that some degree of necrosis of the caudal auricular
204	axial pattern flap is common.
205	
206	The flap dimensions used were not known for all cases in this study, but the majority
207	of the flaps with specific data available in this study extended to the scapular spine.
208	Although this is reported as the appropriate caudal limit of the caudal auricular axial

- 209 pattern flap, it is interesting to note that the Smith and others (1991) often used
- shorter flaps than this. Although it is not clear which of their cases involved a shorter
- 211 flap, the extra length of the flap used may have contributed to tip necrosis in this
- 212 study.

213

214 It is of interest to note that in this study, the dogs with flap necrosis had a greater
215 variety of necrosis and seemed to have a smaller proportion of necrosis (10-<25%)

- than the cats with necrosis, all five of which had 25%-<50% necrosis. These data
- should not be seen as reliable, but could reflect anatomic differences between the
- 218 species. Future studies are warranted to investigate this further.
- 219
- 220 While it is unknown why many of these flap tips had inadequate blood supply for
- 221 survival and underwent necrosis, the authors speculate that various factors could
- have been involved, such as: tension (including that caused by seroma fluid, and by
- 223 patient movement); anatomical variation of vascular anatomy; torsion of the flap
- 224 pedicle; surgeon's experience or qualification; surgery time (thrombosis and/or
- 225 infection); location of the tumour; co-morbidities; other unknown factors. With
- 226 regards to surgeon's experience, it is important to note that all but two procedures
- 227 were carried out by a boarded surgeon or a supervised resident. Both of the
- 228 procedures carried out by non-boarded/non-resident surgeons healed either
- 229 uneventfully or with minor wound dehiscence not requiring revision surgery. Surgery
- time is another known risk factor for surgical site infection (Brown and others (1997)
- 231 but unfortunately this was inconsistently recorded in the medical records and could
- 232 not be evaluated further.
- 233
- Revision surgery was felt (by the attending surgical team) to be necessary in 8/11
- 235 (72.7%) of the dogs with healing complications and 3/6 (50.0%) of the cats with
- healing complications. There were four dogs and three cats in this study whose
- 237 wound dehiscence was not felt to warrant revision surgery. Unfortunately, this study
- 238 design does not allow for detailed understanding of the decisions involved in these
- 239 cases. Revision surgery was successful in all cases, and mostly involved simply pulling

240	the surrounding skin together	(with or	without pulling the	remaining flap further
-----	-------------------------------	----------	---------------------	------------------------

- across, or raising further flap tissue) over the defect left by the necrosis, after
- 242 debridement. In three cases, revision surgery included a local subdermal plexus flap,
- 243 which was derived from the ventral neck skin.
- 244
- 245 Surgical margins have not been reported in this study as specific data were not
- 246 available. The decision-making process regarding individual cancer care is complex
- 247 and this study was not designed to investigate it. Another alternative approach for
- 248 some of these cases might have been planned marginal excision followed by
- radiotherapy. This could have resulted in a smaller surgical defect needing only local
- 250 closure. The surgical teams at the centres involved in this study came to a decision
- 251 with the owner at the time, taking into account all local factors and balancing
- 252 logistics, complication risk, overall treatment costs, and prognosis. This includes
- 253 cases such as Case 23, where this surgical dose was recommended as part of a multi-
- 254 modal treatment plan. Specific, strong, data regarding these treatment choices for
- 255 the various cancer types is sparse in the veterinary literature, and further studies are
- 256 warranted.
- 257
- 258 It is important to note that in this study wound dehiscence and flap necrosis did not
- always require revision surgery, and that all patients healed eventually with one
- 260 revision surgery. This is consistent with 2 large retrospective studies by Field and
- others (2015) and Trevor and others (1992) that reported high complication rates
- but also a high overall success rate. The findings of this study are supportive of these
- two studies and they reinforce that axial pattern flaps in general and caudal auricular

- axial pattern flaps specifically may not be as robust and revision surgery should be
- 265 expected and this should be communicated with the owner.
- 266
- 267 This delay in healing could also delay adjuvant treatment if this were indicated,
- 268 however subsequent review of case data made during the review process for this
- 269 manuscript showed 0/28 cases underwent adjuvant treatment with chemo- or radio-
- 270 therapy and 1 case with oral malignant melanoma received adjuvant
- 271 immunotherapy which was not delayed by the wound healing complications, as
- 272 expected by the protocol of Piras and others (2017) followed at this centre. The
- 273 reason for the lack of adjuvant treatment was either that it was not indicated, or
- 274 that the owner declined it.
- 275
- 276 Limitations of this study include those inherent to retrospective studies.
- 277 Perioperative management and the management of flap-related complications were
- 278 not standardized. The original flap limits and dimensions were infrequently included
- in the medical records. The degree of flap necrosis (when present) was also
- 280 infrequently recorded. However, despite these limitations, this study is currently the
- 281 largest collection of data regarding the clinical use of the caudal auricular axial
- pattern flap in dogs and cats, and found that this flap can provide full thickness skin
- 283 coverage for various large skin defects of the head in dogs and cats. Surgeons, and
- 284 owners, should be aware that flap necrosis should not be seen as an unexpected
- complication when this flap is used in clinical cases and revision surgery may well be
- required in order to achieve final wound closure.
- 287

288	CONFLICT OF INTEREST
289	There are no grants, financial support or conflicts of interest to declare
290	
291	
292	
293 294	References
295	Brown, D. C., Conzemius, M. G., Shofer, F. & Swann, H. (1997) Epidemiologic
296	evaluation of postoperative wound infections in dogs and cats. Journal of the
297	American Veterinary Medical Association 210, 1302-1306
298	Fahie, M. A. & Smith, M. M. (1999) Axial pattern flap based on the cutaneous branch
299	of the superficial temporal artery in dogs: an experimental study and case
300	report. Veterinary Surgery 28, 141-147
301	Field, E. J., Kelly, G., Pleuvry, D., Demetriou, J. & Baines, S. J. (2015) Indications,
302	outcome and complications with axial pattern skin flaps in dogs and cats: 73
303	cases. Journal of Small Anim Practice 56 , 609-706
304	Hunt, G. B. (2012) Local or Subdermal Plexus Flaps. In: Veterinary surgery : small
305	animal. 1st edn. Eds K. M. Tobias and S. A. Johnston. Elsevier, St. Louis, Mo.
306	pp 1243-1255
307	Losinski, S. L., Stanley, B. J., Schallberger, S. P., Nelson, L. L. & Millard, H. A. (2015)
308	Versatility of the Angularis Oris Axial Pattern Flap for Facial Reconstruction.
309	Veterinary Surgery 44 , 930-938
310	Pavletic, M. M. (1981) Canine axial pattern flaps, using the omocervical,
311	thoracodorsal, and deep circumflex iliac direct cutaneous arteries. American
312	Journal of Veterinary Research 42 , 391-406
313	Piras, L. A., Riccardo, F., Iussich, S., Maniscalco, L., Gattino, F., Martano, M., Morello,
314	E., Lorda Mayayo, S., Rolih, V., Garavaglia, F., De Maria, R., Lardone, E.,
315	Collivignarelli, F., Mignacca, D., Giacobino, D., Ferrone, S., Cavallo, F. &
316	Buracco, P. (2017) Prolongation of survival of dogs with oral malignant
317	melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen
318	electrovaccination. Veterinary Comparative Oncolology 15, 996-1013

319	Smith, M. M., Payne, J. T., Moon, M. L. & Freeman, L. E. (1991) Axial pattern flap
320	based on the caudal auricular artery in dogs. American Journal of Veterinary
321	Research 52 , 922-925
322	Smith, M. M., Shults, S., Waldron, D. R. & Moon, M. L. (1993) Platysma
323	myocutaneous flap for head and neck reconstruction in cats. Head Neck 15,
324	433-439
325	Spodnick, G. J., Hudson, L. C., Clark, G. N. & Pavletic, M. M. (1996) Use of a caudal
326	auricular axial pattern flap in cats. Journal of the American Veterinary
327	Medical, Association 208, 1679-1682
328	Stiles, J., Townsend, W., Willis, M., Moore, P. A. & Smith, E. (2003) Use of a caudal
329	auricular axial pattern flap in three cats and one dog following orbital
330	exenteration. Veterinary Ophthalmoly 6, 121-126
331	Trevor, P. B., Smith, M. M., Waldron, D. R. & Hedlund, C. S. (1992) Clinical evaluation
332	of axial pattern skin flaps in dogs and cats: 19 cases (1981-1990). Journal of
333	the American Veterinary Medical Association 201, 608-612
334	Wardlaw, J. L. & Lanz, O. (2012) Axial Pattern and Myocutaneous Flaps. In:
335	Veterinary surgery : small animal. 1st edn. Eds K. M. Tobias and S. A.
336	Johnston. Elsevier, St. Louis, Mo. pp 1256-1270
337	

338

339

	breed	age (in years)	sex and neutering status	Location of the defect	Cause of defect (ex trauma or neoplasia)	histological diagnosis
1	Labrador Retriever	6.5	MN	left orbital area	neoplasia	intermediate grade soft tissue sarcoma
2	Boxer	10	MN	Dorsal head, temporal region and nuchal crest	neoplasia	intermediate grade mast cell tumor
3	crossbreed	7	MN	left orbital area	neoplasia	undifferentated spindle cell sarcoma, neurofibrosarcoma
4	crossbreed	6	MN	left orbital area	neoplasia	low grade soft tissue sarcoma
5	Yorkshire Terrier	12	FN	Right cheek	neoplasia	aggressive malignant melanoma
6	Labrador Retriever	5	М	left orbital area	neoplasia	intermediate mast cell tumor
7	German Shepherd	9	FN	left cheeck	neoplasia	Melanoma
8	crossbreed	9	MN	right frontal area	neoplasia	Squamous cell carcinoma

				1		
9	Labrador Retriever	9	FN	left orbital area	neoplasia	soft tissue sarcoma unknown grade
10	Golden Retriever	5	FN	left orbital area	neoplasia	soft tissue sarcoma intermediate grade
11	Labrador Retriever	6	MN	left orbital area	neoplasia	soft tissue sarcoma low grade
12	Cocker Spaniel	1.5	FN	right orbital area	neoplasia	intermediate grade fibrosarcoma
13	Australian Cattle Dog	10	М	Base of right ear	neoplasia	intermediate grade mast cell tumour
		_				9 L
<u> 14</u> 15	Crossbreed crossbreed	6 years	FN	Right orbital area	Neoplasia neoplasia	Soft tissue sarcoma malignant melanoma
16	crossbreed	14	MN	left orbital area	neoplasia	Squamous cell carcinoma
17	domestic short hair	8	FN	defect involving left orbit and left	neoplasia	low grade fibrosarcoma

				temporal region		
	domestic					Soft tissue sarcoma grade
18	short hair	4	FN	left orbital area	neoplasia	II
				left		
	european			Supraorbital/orbi		Soft tissue sarcoma, grade
19	short hair	7	FN	t, frontal area	neoplasia	11
	european					
20	short hair	8	FN	left orbital area	neoplasia	Squamous cell carcinoma
	european			right orbital after		recurrence of a grade II
21	short hair	8	FN	enuleation	neoplasia	soft tissue sarcoma
	european			right temporal		
22	short hair	10	FN	region	neoplasia	Mast cell tumour
						Recurrent Grade III
	european					fibrosarcoma with lymph
23	short hair	15	MN	Region of the ear	neoplasia	node metastasis
				right orbital area		
	european			after		
24	short hair	15	FN	exenteration	neoplasia	Squamous cell carcinoma
	european					
25	short hair	9	FN	left orbital area	neoplasia	Squamous cell carcinoma
	domestic					low grade sot tissue
26	short hair	8	FN	right orbital area	neoplasia	sarcoma
	Domestic					
27	Shorthair	8	FN	left orbital area	neoplasia	Spindle Cell Sarcoma

	Domestic						
28	Shorthair	11.5	FS	Right orbit	neoplasia	Squamous cell carcinoma	

Table 1. Signalment, reason for reconstruction, histological diagnosis, location of defect of all patients.

Review Coy

	No wound	Wound	Wound	Total
	breakdown	breakdown no	breakdown	
		necrosis	with necrosis	
No revision	5	0	3	8
surgery				
Revision	0	1	7	8
surgery				
Total	5	1	10	16

Table 2: Showing flap outcome and revision surgery in dogs

Periez Cool

	No wound	Wound	Wound	Total
	breakdown	breakdown no	breakdown	
		necrosis	with necrosis	
No revision	6	1	2	9
surgery				
Revision	0	0	3	3
surgery				
Total	6	1	5	12

Table 3: Showing flap outcome and revision surgery in cats

Periez Cool