
19 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Summary of: On the Expressiveness of Modal Transition Systems with Variability Constraints

Publisher:

Published version:

DOI:10.1007/978-3-030-34968-4_34

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1725808 since 2020-01-29T18:11:59Z



On the Expressiveness of MTS with Variability
Constraints

Journal First

Maurice H. ter Beek1, Ferruccio Damiani2, Stefania Gnesi1, Franco Mazzanti1,
and Luca Paolini2

1 ISTI–CNR, Pisa, Italy
{maurice.terbeek, stefania.gnesi, franco.mazzanti}@isti.cnr.it

2 University of Turin, Turin, Italy
{ferruccio.damiani, luca.paolini}@unito.it

Abstract. Modal transition systems and featured transition systems
are widely recognised as fundamental behavioural models for software
product lines. Modal transition systems with variability constraints are
equally expressive as featured transition systems. This is proved by pro-
viding transformation of the latter into the former, and a transformation
of the former into the latter which are both sound and complete. First,
our results contribute to the expressiveness hierarchy of such basic mod-
els studied in many papers. Second, it provides an automatic algorithm
from FTS to MTS that preserves the original (compact) branching struc-
ture, thus paving the way for using the model checking of FTSs with the
variability model checker VMC.

Keywords: Behavioural model · Formal specification · Featured tran-
sition system · Modal transition system.

1 Background

Software systems are more and more often developed and managed as software
product lines (SPLs) to tackle the variability inherent to a collection of individual
customization [27]. The variability among the instances of highly-configurable,
variant-rich systems is expressed in terms of features, which conceptualise pieces
of functionality or aspects of a system that are relevant to the stakeholders [1].
Formal models for the specification and verification of SPL behaviour have been
the subject of extensive research throughout the last decade [21, 23, 19, 22, 24,
14, 2, 18, 13, 28, 25, 26, 4, 7].

Behavioral models for SPL are based on the superimposition of multiple
Labeled Transition Systems (LTS), each of which represents a different variant
(a product model), in a single LTS enriched with feature-based variability (a
family model). A family’s products (ordinary LTS) can be derived from the
enriched LTS by resolving this variability. This boils down to deciding which
‘variable’ behavior to include in a specific product and which not, based on the
combination of features defining the product.



2 M. H. ter Beek et al.

In [11] three of the most fundamental behavioural models for SPLs were
compared with respect to their expressive power: MTSs, FTSs and so-called PL-
LTSs. @ALL: introdurre FTSs and MTSs They are the two models studied in [9].
While PL-LTSs form the semantic model of the product line process algebra PL-
CCS introduced in [22]. PL-CCS extends Milner’s calculus of communicating
systems with a variants operator XOR enabling the modelling of alternative
behaviour. The expressiveness results in [11] state that MTSs are less expressive
than PL-LTSs, which in turn are less expressive than FTSs.

In a very recent corrigendum to [11], contained in [29], the authors of [11]
reported that their definition of PL-LTSs is more restrictive than the one origi-
nally introduced in [22], upon which they have proved that adopting the original
and more liberal definition, PL-LTSs are equally expressive as FTSs.

It is important to note that the results in [11, 29] are based on LTS-based
SPL models with a possibly infinite number of states. Moreover, in [11] products
derived from an FTS do not need to preserve the FTS’ branching structure (viz.
a product may contain more states than the FTS it is derived from) and they
may be infinite in number.

2 Contributions of [9]

In [3], we informally presented an automatic technique to transform an FTS into
an MTSυ, but we merely sketched a proof of the soundness of this model trans-
formation. Subsequently, in [9], we contributed to the expressiveness hierarchy
of fundamental behavioral models for SPL studied in [11], by proving finite-state
MTSυ to be equally expressive as finite-state FTS. Formally:

– We prove that MTSυ are at least as expressive as FTS by defining an algo-
rithm that transforms any FTS into an MTSυ and by proving its soundness
and completeness (i.e. an MTSυ results with the same set of variant LTS as
the original FTS).

– We prove that MTSυ are even equally expressive as FTS by defining an algo-
rithm that transforms any MTSυ into an FTS and by proving its soundness
and completeness (i.e. an FTS results with the same set of variant LTS as
the original MTSυ).

Our paper complements the expressiveness hierarchy given in [11] with an ex-
pressiveness result for finite-state behavioural SPL models.

Since the transformation algorithm from FTS to MTSυ preserves the original
(compact) branching structure, we thus pave the way for using an (optimized)
algorithm to achieve family-based SPL model checking of FTS with the Vari-
ability Model Checker VMC [10, 5]. VMC is a tool for modeling and analyzing
behavioral SPL models, which currently accepts only MTSυ defined as MTS
(specified in a high-level modal process algebra) together with a set of variabil-
ity constraints (specified as propositional logic formulae).



On the Expressiveness of MTS with Variability Constraints 3

3 Conclusion and future works

In [9], we proved that finite-state MTSυs are equally expressive as finite-state
FTSs. This result complements the expressiveness results that were reported
in [11, 29] for behavioural SPL formalisms with possibly infinite states, viz. MTSs
are less expressive than FTSs (with a generalised product-derivation relation),
which are equally expressive as PL-LTSs.

In the future, we plan to implement such an optimized model transformation
as a front-end of VMC, which would allow VMC to offer SPL model check-
ing of temporal logic properties over either FTS or MTSυ. VMC is the most
recent member of the KandISTI product line of model checkers developed at
ISTI–CNR over the past decades, including UMC [8] and CMC [20]. KandISTI’s
model checkers offer explicit-state on-the-fly model checking of functional proper-
ties expressed in specific action- and state-based branching-time temporal logics
derived from ACTL [16], the action-based version of CTL [12]. Their common
model-checking engine has been highly optimised, due to which millions of states
can now be verified in minutes.

Currently, efficient SPL model checking over FTSs can be done by using
dedicated family-based model checkers like ProVeLines [15] or, alternatively, by
using highly optimized off-the-shelf model checkers like SPIN or mCRL2, which
have recently been made amenable to family-based SPL model checking over
FTS [17, 6].

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation. Springer (2013).
https://doi.org/10.1007/978-3-642-37521-7

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal Description of Variabil-
ity in Product Families. In: Proceedings of the 15th International Software Product
Lines Conference (SPLC’11). pp. 130–139. IEEE (2011)

3. ter Beek, M., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: From Featured
Transition Systems to Modal Transition Systems with Variability Constraints. In:
SEFM. LNCS, vol. 9276, pp. 344–359. Springer (2015)

4. ter Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing vari-
ability in product families: Model checking of modal transition systems with vari-
ability constraints. J. Log. Algebr. Meth. Program. 85(2), 287–315 (2016)

5. ter Beek, M., Mazzanti, F.: VMC: Recent Advances and Challenges Ahead. In:
SPLC. pp. 70–77. ACM (2014)

6. ter Beek, M., de Vink, E., Willemse, T.: Family-Based Model Checking with
mCRL2. In: FASE. LNCS, vol. 10202, pp. 387–405. Springer (2017)

7. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: A framework for quanti-
tative modeling and analysis of highly (re)configurable systems. IEEE Transactions
on Software Engineering (2018)

8. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)



4 M. H. ter Beek et al.

9. ter Beek, M., Damiani, F., Gnesi, S., Mazzanti, F., Paolini, L.: On the expres-
siveness of modal transition systems with variability constraints. Sci. Comput.
Program. 169, 1–17 (2019). https://doi.org/10.1016/j.scico.2018.09.006

10. ter Beek, M., Mazzanti, F., Sulova, A.: VMC: A Tool for Product Variability
Analysis. In: FM. LNCS, vol. 7436, pp. 450–454. Springer (2012)

11. Beohar, H., Varshosaz, M., Mousavi, M.: Basic behavioral models for software
product lines: Expressiveness and testing pre-orders. Sci. Comput. Program. 123,
42–60 (2016)

12. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program.
Lang. Sys. 8(2), 244–263 (1986)

13. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
Transition Systems: Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking. IEEE Trans. Softw. Eng. 39(8), 1069–
1089 (2013)

14. Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model Checking
Lots of Systems: Efficient Verification of Temporal Properties in Software Product
Lines. In: ICSE. pp. 335–344. ACM (2010)

15. Cordy, M., Classen, A., Heymans, P., Schobbens, P., Legay, A.: ProVeLines: A
Product Line of Verifiers for Software Product Lines. In: SPLC. pp. 141–146. ACM
(2013)

16. De Nicola, R., Vaandrager, F.W.: Action versus State based Logics for Transition
Systems. In: Guessarian, I. (ed.) Semantics of Systems of Concurrent Processes.
LNCS, vol. 469, pp. 407–419. Springer (1990)

17. Dimovski, A., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Family-Based Model
Checking Without a Family-Based Model Checker. In: SPIN. LNCS, vol. 9232, pp.
282–299. Springer (2015)

18. Erwig, M., Walkingshaw, E.: The Choice Calculus: A Representation for Software
Variation. ACM Trans. Softw. Eng. Methodol. 21(1), 6:1–6:27 (2011)

19. Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Pro-
ceedings of the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE’07). pp. 521–524. ACM (2007).
https://doi.org/10.1145/1287624.1287700

20. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
Logical Verification Methodology for Service-Oriented Computing. ACM Trans.
Softw. Eng. Methodol. 21(3), 16 (2012)

21. Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Con-
formance in Software Product Line Architectures. In: Hierons, R.M., Muccini, H.
(eds.) Proceedings of the ISSTA Workshop on Role of Software Architecture for
Testing and Analysis (ROSATEA’06). pp. 39–48. ACM (2006)

22. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and Model Checking Soft-
ware Product Lines. In: Barthe, G., de Boer, F.S. (eds.) Proceedings of the 10th
International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’08). LNCS, vol. 5051, pp. 113–131. Springer (2008)

23. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) Proceedings of the 16th European
Symposium on Programming (ESOP’07). LNCS, vol. 4421, pp. 64–79. Springer
(2007)



On the Expressiveness of MTS with Variability Constraints 5

24. Lauenroth, K., Pohl, K., Töhning, S.: Model Checking of Domain Artifacts in
Product Line Engineering. In: Proceedings of the 24th International Conference
on Automated Software Engineering (ASE’09). pp. 269–280. IEEE (2009)

25. Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: DeltaCCS: A Core Calculus
for Behavioral Change. In: Margaria, T., Steffen, B. (eds.) Proceedings of the 6th
International Symposium on Leveraging Applications of Formal Methods, Verifi-
cation and Validation (ISoLA’14). LNCS, vol. 8802, pp. 320–335. Springer (2014)

26. Muschevici, R., Proença, J., Clarke, D.: Feature Nets: behavioural modelling of
software product lines. Softw. Sys. Model. 15(4), 1181–1206 (2016)

27. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer (2005)

28. Tribastone, M.: Behavioral Relations in a Process Algebra for Variants. In: Pro-
ceedings of the 18th International Software Product Line Conference (SPLC’14).
pp. 82–91. ACM (2014)

29. Varshosaz, M.: Test Models and Algorithms for Model-Based Testing of Software
Product Lines, Licentiate thesis. Halmstad University Dissertations, vol. 30. Halm-
stad University Press (2017)


