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The progressive and increasing invasion of an opportunistic predator, the lionfish
(Pterois volitans) has become a major threat for the delicate coral reef ecosystem. The
herbivore fish populations, in particular of Parrotfish, are taking the consequences of the
lionfish invasion and then their control function on macro-algae growth is threatened. In

this paper, we developed and analyzed a stage-structured mathematical model including
P. volitans (lionfish), a cannibalistic predator, and a Parrotfish, its potential prey. As
control upon the over predation, a rational harvest term has been considered. Further,
to make the system more realistic a delay in the growth rate of juvenile P. volitans

population has been incorporated. We performed a global sensitivity analysis to identify
important parameters of the system having significant correlations with the fishes. We
observed that the system generates transcritical bifurcation which takes the P. volitans-
free equilibrium to the coexistence equilibrium on increasing the values of predation rate
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of adult P. volitans on Parrotfish. Further increase in the values of the predation rate of
adult P. volitans on Parrotfish drives the system into Hopf bifurcation, which induces
oscillation around the coexistence equilibrium. Moreover, the conversion efficiency due
to cannibalism also has the property to alter the stability behavior of the system through

Hopf bifurcation. The effect of time delay on the dynamics of the system is extensively
studied and it is observed that the system develops chaotic dynamics through period-
doubling oscillations for large values of time delay. However, if the system is already

oscillatory, then the large values of time delay causes extinction of P. volitans from the
system. To illustrate the occurrence of chaotic dynamics in the system, we drew the
Poincaré map and also computed the Lyapunov exponents.

Keywords: Trophic interactions, Stage-structured population dynamics, Cannibalism,

Harvesting, Chaos, Global sensitivity.

1. Introduction

Worldwide almost every organism goes through multiple stages in their life cycle.

A stage-structured mathematical model with two stages is identified as juvenile

and adult 1,2. Further, in a stage-structured predator-prey system cannibalistic

interactions are very common 3,4. As the cannibalistic predator invades upon its

own species, the predatory pressure on the prey population is reduced 5. To take

shelter by prey is another important phenomenon that has came into the scenario
6,7. In the coral reef ecosystem, for example, the prey population avoids excessive

predation by carnivorous fishes in the seabed by hiding themselves between the coral

branches. Based on observations from numerous field and laboratory experiments,

ratio-dependent predator-prey models are favored by many researchers 8,9,10,11,12.

Our model assumes as a predatory species the lionfish (Pterois volitans, Scor-

penidae), native to Indo-Pacific. Since 1992 lionfish invaded temperate and tropical

of Western Atlantic, starting from Florida through the Bahamas and Caribbean Sea

to the Northwestern U.S.A. coasts 13,14,15. Lionfish are opportunistic and generalist

carnivores 16. Being at the top level of the food chain in numerous reef conditions,

P. volitans possess a definite life cycle with two stages, juvenile and adult. Lionfish

can become mature within the first year of life (when they achieve the total length

of 120-200 mm) 15. Juvenile diet mainly based on shrimps shifts to fish preys when

lionfish attempt their sexual maturity 16. In Western Atlantic, adult diet is mainly

based on reef omnivore and carnivore fish some of which are key fishery species 14.

According to Peake et al. 16, minor is the impact of lionfish on herbivore preys,

but on some of them, like red band Parrotfish (Sparisoma aurofrenatum, Scaridae),

threatened by overfishing, the lionfish predation could cause a rapid decline. The

adult lionfish are known to exhibit a cannibalistic behavior, as they not only feed

on the fish preys (mainly Parrotfish), but also on the juveniles of their own species,

like many other carnivorous fish. Now-a-days, an acute disruption has shown up

in the western Atlantic coral reef ecosystem due to the invasion of lionfish 17,18,19.

Biologically, P. volitans show some extraordinary adaptive traits like cryptic form,

high competitive nature, fast growth, slow movement, low parasite load etc., which

have made them efficient predators and hard to prey on (lionfish are venomous).
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According to Albins 20, lionfish predation affects native fishes over 2.5 times than

that of similar native predator. Moreover, Benkwitt 21 suggest that lionfish, as their

density increases, could show a cooperative hunting behavior, then increasing their

efficiency. Lionfish can be an important cause of local or regional decline of her-

bivores where these latter were stressed by overfishing, like in the Caribbean 16.

As the herbivores feed on algae, loss of herbivores causes a huge spread in algae

over the coral reefs, which in turn decelerates the growth of corals 20,21,22,23,24. Her-

bivores such as Parrotfish have a key role in the tropical reef ecosystems as they

control excessive algae growth thus promoting the biodiversity of the system 17,25.

To control the lionfish invasion in the coral-reef ecosystem, despite the adoption of

several techniques of biological control such as introduction of harmful parasites,

pathogens and predators, the most effective way to limit their population seems to

harvest adults in a particular manner 26.

A recent study showed that as the herbivorous fish population drops drastically

as a consequence of the invasiveness of P. volitans, this latter showed a drastic de-

crease as well 21. By 2015, in a part of the Bahamas densities of lionfish are declined

on most of the reefs, despite of lack of fishing efforts. This oscillatory behaviour of

the predator-prey relationship is in accordance with the paradox of biological control

in which a system cannot have both a low and stable prey equilibrium density. Bhat-

tacharya and Pal 27 investigated the dynamics of a stage-structured predator-prey

reaction-diffusion system with Holling type III functional response. They found that

the system undergoes Hopf bifurcation when the intrinsic growth rate of herbivo-

rous prey crosses certain critical value. Further, they studied the effects of predation

and cannibalism of a top predator species with harvesting 28. Their analysis leads

to different thresholds in terms of the model parameters acting as conditions under

which the organisms associated with the system cannot thrive even in the absence of

predation. Moreover, they found that the system undergoes Hopf bifurcation when

the carrying capacity of macro-algae crosses its critical value.

The evidence of chaos in the real world is still far reaching, but the literature of

chaos and chaos control are vast in different fields such as biological systems, electri-

cal engineering, ecological models, and economics 35,36,37,38. The dynamic relation-

ship between predators and their preys is a dominant theme in both theoretical and

mathematical ecology. Without seasonality or structure, chaotic dynamics cannot

occur in continuous systems unless at least three species are included. Hastings and

Powell 38 suggested that chaos is common in natural systems (interacting tri-trophic

food chain). Occurrence of chaos in a simple ecological system produces chaos as a

subject of considerable interest among theoretical ecologists 39,40,41. However, there

is still lack of experimental evidences of chaos in the real world population dynamics.

Chaos detection in natural system is difficult due to the presence of observational

noise 42,43. Becks et al. 44 experimentally showed chaos in the predator-prey in-

teraction between bacterivorous ciliate and two bacterial prey species. Biswas et

al. 29 studied a cannibalistic predator-prey system with a transmissible disease in
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the predator population. They considered incubation delay in disease transmission,

and showed that cannibalism can control disease and population oscillations. Fur-

ther their model analysis reveals that incubation delay destabilizes the system and

produces chaos.

Time delay is a very important tool for investigating the real dynamic behavior

of a biological system 30. In reality, the behavior of a system is influenced by both

the current and past states of the dynamical variables (i.e., there exists an implicit

time lag in the system 31,32). Bhattacharya and Pal 33 proposed and analyzed

a three dimensional stage-structured predator-prey model to study the effect of

intraguild predation with harvesting of the adult predators. They considered time

lags in reproduction and maturation of the organisms and highlighted that the

system undergoes a Hopf-bifurcation when the time lags cross certain critical values.

Bhattacharya and Pal 34 studied a two-dimensional single-species stage-structured

model by considering time lags in reproduction (conversion due to cannibalism)

and maturation of the organism. They estimated the length of delay preserving the

stability of the system and found that stability switches occur for increasing the

values of time delays. In this paper, we have modified the model of Bhattacharya

and Pal 33 by considering the Beddington type functional response for interaction

between prey and the adult predator. We have considered only the gestation delay

and explored rich dynamics including period doubling bifurcation and chaos, which

was absent in earlier work. Numerically we have investigated the combined effects

of gestation delay and maturation delay on the stability dynamics and compare our

results with previous works.

2. The mathematical model

Two fishes, Parrotfish and P. volitans are considered for the study of interactions

within and among the stage-structured populations. Let U(t), V (t) andW (t) be the

abundances of Parrotfish, juvenile P. volitans and adult P. volitans, respectively, at

any time t > 0. P. volitans are one of the top levels of the food web in many coral

reef environments. They are known to feed mostly on small fishes, which include

juveniles of their own species. We assume that in the absence of P. volitans, the

growth of Parrotfish population follows logistic law. Apart from preying on Parrot-

fish, adult P. volitans exhibits a distinct cannibalistic attitude towards its juvenile

species; the juvenile P. volitans does not attack Parrotfish and has no reproductive

ability. We consider that the adult P. volitans prey on both Parrotfish and juve-

nile P. volitans following the Beddington type 45 and Holling type II interactions,

respectively. The proliferation of predatory P. volitans reduces the population den-

sity of herbivorous Parrotfish by changing the community structure of coral reefs

for which corals decline with an increase in abundance of seaweeds 20. Moreover,

commercial harvesting of adult P. volitans is required to reduce the numbers of

P. volitans to mitigate their impact on coral reef ecosystems 26. We consider non-

constant harvesting of the adult P. volitans 46,47. In particular, for a more realistic
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approach, a rational harvesting function has been considered in the model which

provides diminishing marginal returns of the harvesting organization. The juvenile

and adult P. volitans experience natural mortality. Based upon the observations of

Castillo-Chavez et al. 48, it is reasonable to assume that the mortality and matu-

rity rates of fishes are proportional to the number of fishes present in the system.

We assume that the reproduction of adult P. volitans after uptake of Parrotfish is

not instantaneous, but is mediated by some discrete time delay required for egg

deposition, embryo development, and hatching 49.

The schematic diagram for the interplay among all the considered dynamical

variables is depicted in Fig. 1. In view of the above ecological assumptions, we have

the following system of delay differential equations,

dU

dt
= rU

(
1− U

K

)
− m1UW

a1W + b1U + c1
,

dV

dt
=

α1m1U(t− τ)W (t− τ)

a1W (t− τ) + b1U(t− τ) + c1
− (µ+D1)V − (1− α)m2VW

a2 + V
, (2.1)

dW

dt
= µV −D2W − hW

c+W
.

Here, a2 represents the abundance of juvenile P. volitans at which reduction in

juvenile P. volitans is half of the maximum possible reduction that can be ever

achieved due to cannibalism. The biological meanings of all the variables and pa-

rameters involved in the system (2.1) are given in Table 1. In system (2.1), we have

0 < α1, α < 1 50. The initial conditions for the system (2.1) take the form

U(ϕ) = ψ1(ϕ), V (ϕ) = ψ2(ϕ),W (ϕ) = ψ3(ϕ),−τ ≤ ϕ ≤ 0,

where ψ = (ψ1, ψ2, ψ3)
T ∈ C+ such that ψi(ϕ) ≥ 0, i = 1, 2, 3 ∀ ϕ ∈ [−τ, 0]

and C+ denotes the Banach space C+([−τ, 0],R3
+0) of continuous functions map-

ping the interval [−τ, 0] into R3
+0 and denotes the norm of an element ψ in C+

by ∥ψ∥ = sup
−τ≤ϕ≤0

{| ψ1(ϕ) |, | ψ2(ϕ) |, | ψ3(ϕ) |}. For biological feasibility, we further

assume that ψi(0) ≥ 0 for i = 1, 2, 3.

3. Model without time delay

In this section, we restrict ourselves to analyze the model in the absence of delay.

In the absence of time delay, system (2.1) takes the following form:

dU

dt
= rU

(
1− U

K

)
− m1UW

a1W + b1U + c1
≡ F1(U, V,W ),

dV

dt
=

α1m1UW

a1W + b1U + c1
− (µ+D1)V − (1− α)m2VW

a2 + V
≡ F2(U, V,W ), (3.1)

dW

dt
= µV −D2W − hW

c+W
≡ F3(U, V,W ).
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Fig. 1. Schematic diagram of the system (2.1).

Table 1. Biological meanings of variables and parameters in the system (2.1)

Variables/ Descriptions Units Values
Parameters

U Abundance of Parrotfish mg/L —
V Abundance of juvenile P. volitans mg/L —
W Abundance of adult P. volitans mg/L —
r Intrinsic growth rate of Parrotfish population 1/day 0.3
K Carrying capacity of the system mg/L 10
1/µ Total time spent by P. volitans in its juvenile stage day 5
h Maximum harvesting rate of adult P. volitans mg/L/day 0.04
c Saturation constant for harvesting of adult P. volitans mg/L 0.4
α1 Growth efficiency of juvenile P. volitans population due to predation — 0.5

of Parrotfish by adult P. volitans
α P. volitans growth efficiency due to cannibalism — 0.2
m1 Maximum uptake rate of adult P. volitans on Parrotfish 1/day 0.5
m2 Maximum uptake rate of adult P. volitans on juvenile P. volitans 1/day 0.21
a1 Scaling the impact of the predator interference — 0.1
b1 Food weighting factor — 1
c1 Saturation constant for the uptake of Parrotfish mg/L 1

by adult P. volitans
a2 Saturation constant for uptake of juvenile P. volitans mg/L 1

by adult P. volitans
D1 Natural death rate of juvenile P. volitans 1/day 0.005
D2 Natural death rate of adult P. volitans 1/day 0.1

All parameters involved in the system (3.1) are positive constants. System (3.1) is

to be analyzed with the following initial conditions:

U(0) > 0, V (0) > 0, W (0) > 0. (3.2)
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Since all the parameters of system (3.1) are non-negative, the right hand side is a

smooth function of the variables U , V and W in the positive region

Θ = {(U, V,W ) : U, V,W ∈ R+}.

4. Mathematical analysis

4.1. Existence, positive invariance, boundedness and persistence of

solutions

Persistence is often a better measure of the type of stability, which is a point of

interest of most ecologists, and can be applied under both equilibrium and non-

equilibrium conditions. Persistence means that the minimal densities of all species

in the focal food web are bounded away from zero, and that they can therefore

coexist for a long period of time.

Definition 4.1 System (3.1) is said to be uniformly persistent if there exist finite

positive real numbers M1 and M2 such that each solution of the system (3.1) with

positive initial values satisfies

M1 ≤ lim
t→∞

infX(t) ≤ lim
t→∞

supX(t) ≤M2, X(t) = (U(t), V (t),W (T )).

Theorem 4.1 Every solution of system (3.1) with initial conditions (3.2) exists

and unique in some interval [0, κ), where U(t) > 0, V (t) > 0, W (t) > 0, ∀ t ≥ 0.

The feasible region for system (3.1) is given in the following theorem.

Theorem 4.2 All non-negative solutions of model (3.1) that start in R3
+ are uni-

formly bounded, and the feasible region for system (3.1) is given by the following

set

Ω =

{
(U, V,W ) : 0 ≤ U +

1

α1
(V +W ) ≤M

}
,

which is compact and invariant with respect to system (3.1).

The following theorem rules out the possibility of extinction of any organism in

the system under suitable conditions.

Theorem 4.3 For large t, if r >
m1

a1
, then there exist

u1 > K

(
1− m1

ra1

)
, v1 >

1

µ
(D2M2+h), w1 >

M1(µ+D1)(a1M2 + b1K + c1)

α1m1u1 −m2(1− α)(a1M2 + b1K + c1)

such that

u1 ≤ U(t) ≤ K, v1 ≤ V (t) ≤M1, w1 ≤W (t) ≤M2.

For proofs of Theorems 4.1, 4.2 and 4.3, see Appendix A.
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4.2. System’s equilibria

Due to nonlinearity of system (3.1), it is not possible to find exact solutions to the

system. Instead, we settle for determining the long-term behavior of the system.

In general, a nonlinear system either gravitates towards an equilibrium point or it

blows up. The equilibrium points are those states of dynamical system at which

system does not move. Once the system reaches at an equilibrium state, it freeze at

this state for all future times. These points can be obtained by putting the growth

rate of different variables of model system equal to zero.

System (3.1) has the following three non-negative equilibria:

(1) Organism-free equilibrium E0 = (0, 0, 0), which is always feasible.

(2) P. volitans-free equilibrium E1 = (K, 0, 0), which is always feasible.

(3) Coexistence equilibrium E∗ = (U∗, V ∗,W ∗), where U∗ is a positive root of the

following algebraic equation:

α1m1Uθ(U)

a1θ(U) + b1U + c1
− (µ+D1)ϕ(U)− (1− α)m2ϕ(U)θ(U)

a2 + ϕ(U)
= 0, (4.1)

with

θ(U) =
r(K − U)(b1U + c1)

m1K − ra1(K − U)
, ϕ(U) =

θ(U)

µ

(
D2 +

h

c+ θ(U)

)
; W ∗ = θ(U∗), V ∗ = ϕ(U∗).

Remark 4.1 In the equilibrium E0, where there is no species in the system, it

should not be possible to observe it i.e., this equilibrium point should be unstable. In

the equilibrium E1, where there is no P. volitans in the system, it should be possible

to observe it in some special circumstances i.e., this equilibrium can be stable under

certain conditions. Finally, the equilibrium E∗, where all species are present, is very

common in nature, thus it should be stable in some ecosystems.

4.3. Local stability of equilibria

In this section, we perform the local stability analysis of the equilibria of system

(3.1). This analysis provides excellent information about the behavior of a dynamical

system. The local stability analysis characterizes whether or not the system settles

to the equilibrium point if its state is initiated close to, but not precisely at a given

equilibrium point. The equilibrium point is said to be locally asymptotically stable

if there is a neighborhood of the equilibrium point such that for all initial starts in

this neighborhood, the system approaches to the equilibrium point as t→ ∞. The

local stability of an equilibrium can be investigated by determining the sign of the

eigenvalues of Jacobian matrix evaluated at the equilibrium.

Regarding local stability of equilibria of the system (3.1), we have the following

theorem.

Theorem 4.4 (1) The equilibrium E0 = (0, 0, 0) is always unstable. Thus, under

no circumstances the system (3.1) collapses.
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(2) The equilibrium E1 = (K, 0, 0) is stable if m1 < m∗
1 and unstable if m1 > m∗

1,

where m∗
1 =

(b1K + c1)(µ+D1)

µα1K

(
D2 +

h

c

)
. Thus, with low uptake rate of

adult P. volitans on Parrotfish (or with high harvesting rate of adult P. volitans),

the system stabilizes at the equilibrium E1.

(3) The equilibrium E∗ = (U∗, V ∗,W ∗), if feasible, is locally asymptotically stable

provided the following conditions are satisfied:

A1 > 0, A2 > 0, A1A2 −A3 > 0, (4.2)

where Ai’s are defined in the proof.

For proof of this theorem, see Appendix B.

Remark 4.2 The last point of Theorem 4.4 tells that if the initial state of system

(3.1) is near the equilibrium point E∗, then the solution trajectories not only stay

near E∗ for all t > 0 but also approaches to E∗ as t→ ∞. Thus, if the initial value

of state variables U , V and W are close to U∗, V ∗ and W ∗, respectively, then the

system (3.1) will eventually get stabilized provided condition (4.2) holds.

We proved in Theorem 4.4 that ifm1 < m∗
1, the P. volitans-free equilibrium E1 is

locally asymptotically stable. When the condition is reversed, then the equilibrium

E1 losses stability and one can prove the feasibility of a coexistence equilibrium.

Theorem 4.5 System (3.1) has a coexistence equilibrium if m1 > m∗
1.

Proof. We observed from Theorem 4.2 that the system (3.1) is dissipative. On the

other hand, whenever m1 > m∗
1, Theorem 4.4 implies that the P. volitans-free equi-

librium E1 is unstable, and therefore the solutions move away from the equilibrium

E1, which is equivalent to uniform persistence of the system (3.1) (see Theorem

4.3 in Freedman et al. 51, where the equilibrium E1 plays the role of the invariant

set N ; and invariant set N refers to the maximal invariant set on the boundary).

Consequently, according to Theorem D.3 in Smith and Paul 52, the invariance of Ω

and the uniform persistence guarantee the feasibility of the coexistence equilibrium,

E∗. One can easily check that {E1} is the maximal invariant set on ∂Ω.

4.4. Transcritical bifurcation

In the context of a biological system, bifurcations describe how the system dynamics

may qualitatively drastically change if a parameter varies. A transcritical bifurcation

is a local bifurcation, in which a fixed point exists for all values of a parameter and is

never destroyed. However, such a fixed point interchanges its stability with another

fixed point as the parameter is varied. In other words, both before and after the

bifurcation, there is one unstable and one stable fixed point. However, their stability

is exchanged when they collide; so, the unstable fixed point becomes stable and vice

versa.
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In the previous section, we proved that when m1 < m∗
1, then the P. volitans-free

equilibrium E1 is a stable equilibrium of system (3.1). If the condition is reversed,

then the P. volitans-free equilibrium losses its stability and the coexistence equi-

librium E∗ emerges. That is, if we consider m1 as a bifurcation parameter, then at

m1 = m∗
1, it is to be expected an exchange of stability properties between these two

equilibria. This is a clear indication of the presence of a transcritical bifurcation

when m1 = m∗
1. In the following, we prove that indeed the system (3.1) undergoes

a transcritical bifurcation around the equilibrium E1 at m1 = m∗
1.

As observed previously, the equilibrium E1 is locally stable if m1 < m∗
1 and

unstable if m1 > m∗
1. As a consequence, the critical value m1 = m∗

1 is a bifurcation

value. The next step is to investigate the nature of the bifurcation involving E1 at

m1 = m∗
1. In view of previous considerations, we have the following theorem.

Theorem 4.6 Consider system (3.1) and let a and b as given by (6.4), where b > 0.

The local dynamics of system (3.1) around the equilibrium E1 are totally determined

by the sign of a.

(1) If a < 0, when m1 < m∗
1 with m1 ≈ m∗

1, the equilibrium E1 is locally asymptoti-

cally stable, and there exists a negative unstable equilibrium E∗; when m1 > m∗
1

with m1 ≈ m∗
1, the equilibrium E1 is unstable, and there exists a positive locally

asymptotically stable equilibrium E∗.

(2) If a > 0, when m1 < m∗
1 with m1 ≈ m∗

1, the equilibrium E1 is locally asymptot-

ically stable, and there exists a positive unstable equilibrium E∗; when m1 > m∗
1

with m1 ≈ m∗
1, the equilibrium E1 is unstable, and there exists a negative locally

asymptotically stable equilibrium E∗.

Proof. It follows from Castillo-Chavez and Song 53 Theorem 4.1 pp. 373, and

Remark 1 pp. 375.

Corollary 4.1 Consider system (3.1) and let a and b as given by (6.4) where b > 0.

At m1 = m∗
1, system (3.1) undergoes a transcritical bifurcation. If a < 0, the

bifurcation at m1 = m∗
1 is supercritical (or forward). On the other hand, if a > 0,

the bifurcation at m1 = m∗
1 is subcritical (or backward) bifurcation.

Proof. It is a straightforward application of Theorem 4.6.

The expressions for quantities a and b used in Theorem 4.6 are derived in Ap-

pendix C.

4.5. Nonexistence of periodic solutions and global stability

It is important to observe whether there is any periodic solution of an ecological

system as the existence of periodic solution can derive complex ecological phenom-

ena. On the other hand, nonexistence of periodic solution can enable to make a
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locally stable equilibrium into a globally stable equilibrium. In this section, we ex-

tend our stability analysis beyond the small region near equilibrium point to the

whole region of attraction using Lyapunov’s second method. The basic idea of this

technique for verifying nonlinear stability of equilibrium point is to seek an energy

function that decreases with time along the trajectories of the system.

The following theorem states the condition for the nonexistence of periodic so-

lutions of the system (3.1) around the coexistence equilibrium E∗.

Theorem 4.7 The system (3.1) has no periodic solution around the equilibrium

E∗ if

µ+
m1U

∗[2b1W
∗ + (α1 + 1)(b1U

∗ + c1)] + α1m1W
∗(a1W

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
<

min

{
µ+D1 +

rU∗

K
+
m2a2(1− α)W ∗

(a2 + V ∗)2
+
m2(1− α)V ∗

a2 + V ∗ , D2 +
rU∗

K
+

hc

(c+W ∗)2
,

µ+D1 +D2 +
hc

(c+W ∗)2
+
m2a2(1− α)W ∗

(a2 + V ∗)2

}
. (4.3)

Regarding global stability of the equilibrium E∗, we have the following theorem.

Theorem 4.8 The coexistence equilibrium E∗, if feasible, is globally asymptotically

stable inside the region of attraction Ω if the following conditions hold,[
α2
1m1M(a1W

∗ + c1)

c1(a1W ∗ + b1U∗ + c1)

]2
< (µ+D1)

[
r

K
− m1b1α1M

c1(a1W ∗ + b1U∗ + c1)

]
, (4.4)[

m1(b1M + c1)

c1(a1W ∗ + b1U∗ + c1)

]2
<

[
r

K
− m1b1α1M

c1(a1W ∗ + b1U∗ + c1)

] [
D2 +

hc

(c+ α1M)(c+W ∗)

]
,[

µ+
α1m1U

∗(b1M + c1)

c1(a1W ∗ + b1U∗ + c1)
− m2(1− α)V ∗

a2 + V ∗

]2
< (µ+D1)

[
D2 +

hc

(c+ α1M)(c+W ∗)

]
.

Remark 4.3 If conditions in (4.4) are satisfied, then it guarantees that for every

initial start within the region of attraction Ω, solution trajectories will reach to

the equilibrium state E∗ (i.e. the abundances of Parrotfish and P. volitans will get

stabilized). Note that for the set of parameter values given in Table 1 except c = 0.05,

the conditions in (4.3) are satisfied, which guarantee that there exists no periodic

solution of the system (3.1) for this set of parameter values.

For proofs of Theorems 4.7 and 4.8, see Appendix D.

4.6. Existence of Hopf bifurcation

In this section, we investigate for the possibility of Hopf bifurcation from the coex-

istence equilibrium E∗ by taking the uptake rate of P. volitans on Parrotfish (m1)

as bifurcation parameter and keeping other parameters fixed. A Hopf bifurcation is

a critical point where a system’s stability switches and a periodic solution arises.

We have the following result regarding the existence of Hopf-bifurcation.
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Theorem 4.9 The necessary and sufficient conditions for the occurrence of Hopf

bifurcation from the coexistence equilibrium E∗ is that there exists m1 = mc
1 such

that

(i) H(mc
1) = A1(m

c
1)A2(m

c
1)−A3(m

c
1) = 0,

(ii)

[
d

dm1
(A1A2 −A3)

]
m1=mc

1

̸= 0.

For proof of this theorem, see Appendix E.

4.7. Stability analysis in the presence of time delay

In this section, we study the local stability of the delayed system (2.1) around the

coexistence equilibrium point only. The following theorem gives a criterion for the

switching in the stability behavior of equilibrium E∗ in terms of the delay parameter

(τ).

Theorem 4.10 Suppose that the coexistence equilibrium point E∗ is feasible and

locally asymptotically stable for τ = 0. Also, let θ0 = ω2
0 be a positive root of

(6.18), then there exists τ = τ∗ such that the coexistence equilibrium point E∗ of

the delay system (2.1) is asymptotically stable when 0 ≤ τ < τ∗ and unstable for

τ > τ∗. Furthermore, the system will undergo a Hopf bifurcation at the equilibrium

E∗ when τ = τ∗, provided U(ω)R(ω)− S(ω)W (ω) > 0.

For proof of this theorem, see Appendix F.

5. Numerical simulation

Here, we report the simulations to investigate the behavior of systems (2.1) and

(3.1), performed using MatLab. The set of parameter values are chosen within the

range prescribed in various previous literature sources 24,27,28,33,34, and are given

in Table 1. Values of parameters are arbitrary and have been used for illustration

purpose only. Unless it is mentioned, the values of parameters used for numerical

simulations are the same as in Table 1.

5.1. Sensitivity analysis

To identify the most influential parameters that have significant impact on out-

put variables of the system (3.1), we perform global sensitivity analysis 54,55. We

calculate partial rank correlation coefficients (PRCCs) between the parameters m1,

a1, α1, α, m2, a2, h and c from system (3.1) with Parrotfish, juvenile P. volitans

and adult P. volitans. Nonlinear and monotone relationships are observed with the

input parameters of the model (3.1), which is a prerequisite for computing PRCCs.

Then a total of 200 simulations of the model per LHS run were carried out, using
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Table 2. Ranges of variability of the considered sensitive parameters of the system (3.1)

Parameters Baseline values Minimum values Maximum values

m1 0.52 0.39 0.65

a1 0.1 0.075 0.125

α1 0.5 0.375 0.625

α 0.2 0.15 0.25

m2 0.21 0.1575 0.2625

a2 1 0.75 1.25

h 0.04 0.3 0.05

c 0.4 0.3 0.5
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Fig. 2. Effect of uncertainty of the model (3.1) on (a) Parrotfish, (b) juvenile P. volitans and (c)

adult P. volitans. Each bar represents the uncertainty of the populations with respect to particular
parameters for the model (3.1). 200 samples for each parameter were drawn using Latin Hypercube
Sampling technique; parameter ranges are given in Table 2. Significant parameters are marked by
∗.

the baseline values tabulated in Table 2 and the ranges as 25% from the baseline

values (in either direction). Note that the PRCC values lie between -1 and 1. Pos-

itive (negative) values indicate a positive (negative) correlation of the parameter

with the model output. A positive (negative) correlation implies that a positive

(negative) change in the parameter will increase (decrease) the model output. The

larger the absolute value of the PRCC, the greater the correlation of the parameter
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with the output. The bar diagram of the PRCC values of Parrotfish, juvenile P.

volitans and adult P. volitans against the parameters is depicted in Fig. 2. PRCC

values of parameters with the responses suggest that the parametersm1, α1,m2, a2,

h and c have significant correlations with Parrotfish and juvenile P. volitans. The

parameters α1, m2, a2, h and c have significant correlations with adult P. volitans.

The parameters a2 and h have positive correlations with the Parrotfish while other

parameters have negative correlations. In contrast, a2 and h have negative corre-

lations with juvenile and adult P. volitans while other parameters have positive

correlations with these populations.

5.2. Dynamics of system in the absence of time delay
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Fig. 3. Equilibrium E1 is achieved at m1 = 0.2. Rest of the parameter values are same as in Table
1.

In this section, we see how different dynamics occur by varying two parameters

of the system (3.1): predation rate of adult P. volitans on Parrotfish (m1) and the

conversion efficiency due to cannibalism (α), fixing the values of rest of the param-

eters as in Table 1. We observe that for the set of parameter values given in Table

1, system (3.1) possesses unique positive equilibrium E∗ = (5.7258, 1.0482, 1.7703).

At m1 = 0.2, we get that the equilibrium E1 = (10, 0, 0) is stable (see Fig. 3) but

losses its stability with increase in the values of m1 and the equilibrium E∗ becomes

feasible. With high invasiveness of adult P. volitans, the maximal uptake rate of
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Fig. 4. Equilibrium E∗ is stable at m1 = 0.5. Rest of the parameter values are same as in Table 1.

adult P. volitans on Parrotfish becomes high. At m1 = 0.5, the equilibrium E∗ is

stable focus (see Fig. 4) but when we increase the values of m1 to m1 = 0.54, the

system (3.1) develops limit cycle oscillations, Fig. 5. This confirms that the system

(3.1) undergoes Hopf bifurcation through equilibrium E∗. The occurrence of Hopf

bifurcation might be a warning that the ecosystem could become endangered, if the

amplitude of these oscillations grows. Indeed, if the troughs become too low and

are thus close to zero, environmental stochastic perturbations may push the oscil-

lating population to extinction, in spite of the fact that mathematically it should

continue to oscillate. Next, we keep m1 fixed at m1 = 0.5 (where the equilibrium

E∗ is stable focus) and increase the values of α. We find that at α = 0.35, the

system (3.1) shows limit cycle oscillations around the equilibrium E∗, Fig. 6. Thus,

the parameters m1 and α can change the stability behaviors of the system (3.1).

To be more clear about the roles of m1 and α on the change of stability, we draw

bifurcation diagrams of the system (3.1) with respect to m1 and α, Figs. 7 and 8,

respectively. From Fig. 7, it is evident that for low values of m1, the equilibrium E1

is stable but losses its stability and the equilibrium E∗ becomes stable with increase

in the values of m1. Further increase in the values of m1 makes the equilibrium E∗

unstable. The critical value ofm1 at which transcritical and Hopf bifurcations occur

are m∗
1 ≈ 0.426 and mc

1 ≈ 0.528, respectively. Next, we fix m1 = 0.5 and gradually

increase the values of α. We find that for low values of α, the equilibrium E∗ is

stable but losses its stability after a threshold value of α. The critical value of α at

which stability changes is αc ≈ 0.305. Previously existence of Hopf bifurcation is
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Fig. 5. Equilibrium E∗ is unstable at m1 = 0.54. Rest of the parameter values are same as in

Table 1.

shown by taking the intrinsic growth rate 27 and carrying capacity 28 of Parrotfish

as bifurcation parameters. In these studies, Holling type III and ratio-dependent

interactions were considered.

5.3. Dynamics of the system in the presence of time delay

To see the effect of time delay involved in the growth of juvenile P. volitans, we

set the system (2.1) at stable focus in the absence of time delay. We gradually

increase the values of time delay (τ) and plotted the solution trajectories of the

system (2.1). We observe that the system (2.1) is stable focus at τ = 1, Fig. 9.

Now, we increase the values of time delay to τ = 60 and find that the system (2.1)

exhibits limit cycle oscillations, Fig. 10. Next, we increase the values of time delay

to τ = 125 and get that the system exhibits period doubling oscillations, Fig. 11.

The system shows chaotic behavior for further increase in time delay (τ = 139),

Fig. 12. For better visualization, we draw the bifurcation diagram of the system

(2.1) by varying the bifurcation parameter τ in the interval [1, 139], Fig. 13. It is

clear from the figure that the system shows stable focus for τ < 50, limit cycle

behaviour for 50 ≤ τ ≤ 121, period doubling oscillations for 121 ≤ τ ≤ 128, and

higher periodic and chaotic oscillations for τ ≥ 128. The chaotic regime is reached

via stable focus to limit cycle oscillation, period doubling oscillations and eventually

leads to chaos. Further, we draw the Poincaré map of the system (2.1) on V−W
plane (U = 4.5) for τ = 139, Fig. 14. The scattered distribution of the sampling
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Fig. 6. System (3.1) shows limit cycle oscillation around the equilibrium E∗ at α = 0.35. Rest of

the parameter values are same as in Table 1.

points implies the chaotic behavior of the system. We also draw the maximum

Lyapunov exponent of the system (2.1) for τ = 139, Fig. 15. To draw the maximum

Lyapunov exponent, we first simulate the delayed system (2.1), then considering

the time series solutions of each component, we compute the Lyapunov exponents
56,57. In the figure, positive values of the maximum Lyapunov exponent indicates

the chaotic regime of the system. Therefore, we can conclude that the system (2.1)

shows chaotic behavior for τ = 139.

Next, we see the effect of time delay in an oscillating system. We fixed the values

of m1 at m1 = 0.53 and vary the values of time delay, Fig. 16. We observe that at

τ = 0, the system shows oscillatory behavior; at τ = 10, oscillations are still there

but the period and amplitude of oscillations increase; at τ = 50, the P. volitans

populations extinct.

Earlier, Bhattacharya and Pal 33 investigated a similar stage-structured model

with gestation delay and maturation delay, and constant harvesting. They observed

that delay can destabilize the system by producing limit cycle oscillations, whereas

harvesting can stabilize the system. In the present work, for a different set of pa-

rameter values, we explored rich dynamics including chaos for gradual increase of

gestation delay. Analytically we have studied the stage-structured model with gesta-

tion delay only while harvesting follows a saturating functional response. To explore

the impact of maturation delay, we extend the model with maturation delay and
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Fig. 7. Bifurcation diagram of the system (3.1) with respect to m1. Rest of the parameter values

are same as in Table 1.

perform numerical simulations. The system with two delays becomes,

dU

dt
= rU

(
1− U

K

)
− m1UW

a1W + b1U + c1
,

dV

dt
=

α1m1U(t− τ1)W (t− τ1)

a1W (t− τ1) + b1U(t− τ1) + c1
− (µ+D1)V − (1− α)m2VW

a2 + V
, (5.1)

dW

dt
= µV (t− τ2)−D2W − hW

c+W
.

Note that here τ1 is τ in system (2.1). The dynamics of system (5.1) is depicted in

Fig. 17. We see that at τ1 = 0, system (2.1) is stable focus but introducing τ2 = 13.5

induces limit cycle oscillations in the system (5.1). Next, we set τ1 = 60, where

system (2.1) shows limit cycle oscillations, we see that at τ2 = 8, system (5.1) enters

into chaotic regime. Finally, we set τ1 = 139, where system (2.1) exhibits chaotic

dynamics, we see that system (5.1) shows extinction of P. volitans populations at

τ2 = 5.

6. Conclusions

In this paper, we proposed a stage-structured prey-predator model with stage-

structure of predator only. We considered cannibalism between adult and juvenile

predator and a non-constant harvesting policy of the adult predator. To make the

system more realistic, we considered delay in the growth rate of the juvenile preda-
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Fig. 8. Bifurcation diagram of the system (3.1) with respect to α. Rest of the parameter values

are same as in Table 1.

tor. The predation rate of the adult predator on prey population was assumed to

follow modified Beddington type interactions. We analyze the model and explore

the rich dynamics of the system in the absence and presence of the time delay.

Firstly, the equilibrium and stability analysis have been done to find the possibility

for stable coexistence of both prey and predator populations. Of the three feasible

equilibria, the population-free equilibrium E0 is unstable, only the P. volitans-free

equilibrium E1 and coexistence equilibrium E∗ can be attained by the system. A

sufficient condition for the local asymptotic stability of the equilibrium E1 imply

that with high harvesting rate (or low predation rate) of adult P. volitans, the

system stabilizes at the equilibrium E1. If instead harvesting rate is low (or preda-

tion rate is high), P. volitans-free equilibrium becomes unstable, then coexistence

occurs, either at equilibrium E∗ or through persistent oscillations of all the sys-

tem’s populations. Under suitable conditions, the coexistence point is shown to be

globally asymptotically stable. The stability and bifurcations affecting the stable

coexistence of prey and their predator are obtained analytically and supported by

numerical simulations. PRCC values of parameters of interest with these organisms

show that increasing the rate of harvesting of the adult P. volitans or decreasing the

rate of predation of P. volitans on Parrotfish or decreasing the rate of cannibalism

may be beneficial to the growth of Parrotfish in the system. As the Parrotfish feed

on the algae, loss of herbivore causes a huge spread in algal biomass over the coral

reefs, which in turn slows the growth of corals.
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Fig. 9. System (2.1) shows stable focus at τ = 1. Rest of the parameter values are same as in Table

1 except m1 = 0.52.

In the absence of time delay, we investigated how an increase in the predation

rate of P. volitans on Parrotfish and the conversion efficiency due to cannibalism

affected stability behaviour of the system. We found that the P. volitans-free and

coexistence equilibria of the system are related via transcritical bifurcation with the

predation rate of P. volitans on Parrotfish as a bifurcation parameter. The former

losses its stability and the latter arises when the parameter crosses its critical value

from below. Moreover, high rate of invasion of adult P. volitans on Parrotfish in-

duces oscillations around the positive equilibrium, leading to dynamic instability.

This represents the phenomenon of ecological imbalance due to the presence of the

invasive P. volitans in a coral reef ecosystem, justifying the observations of Albins

and Hixon 20 that high predation rates of adult P. volitans are detrimental to coral

reef ecosystems. Also, with high values of conversion efficiency due to cannibalism,

the coexisting populations show oscillatory dynamics, which supports the obser-

vations from previous modeling analyses by Diekmann et al. 58, Hastings 59, and

Magnusson 60 that high cannibalism level can have destabilizing effects leading to

oscillations. Coral reef ecosystems are subjected to a large number of factors in-

fluencing its dynamics. However, when or where the lionfish density is particularly

high, the controlled harvesting of adults could be one of the most useful method to

preserve or favor the reef ecosystems equilibrium as it allows an effective macroalgae

grazing by native fish populations 61.

In the study of Bhattacharya and Pal 33, it is shown that the system undergoes
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Fig. 10. System (2.1) shows limit cycle oscillations at τ = 60. Rest of the parameter values are

same as in Table 1 except m1 = 0.52.

limit cycle oscillations when the time lags (due to reproduction and maturation)

cross certain critical values. In the present investigation, we found that with an in-

crease in the values of time delay, the system undergoes chaotic dynamics through

period doubling oscillations. To find the expression for various threshold values, we

have plotted the bifurcation diagram of the system by varying the time delay. In

order to confirm the occurrence of chaos, we drew the Poincaré map and computed

the Lyapunov exponents. From ecological point of view, chaos has great biological

importance to the system dynamics. Many theoretical studies reveal that ecosys-

tem features such as predictability, species persistence 62 and bio-diversity 40 can

be affected by chaos. In our model system, we observe that longer delay in the

growth of juvenile P. volitans population is responsible for chaotic behavior of the

system. The main reason behind the occurrence of this situation is that as the delay

in the growth of juvenile P. volitans population increases, the growth of the adult

population declines, which leads to a rapid growth of Parrotfish population in the

system. This might be a benefit to the aquatic system as Parrotfish balance the

growth of macroalgae. We have also seen the effect of time delay in an oscillating

system. We observed that time delays increases the period and amplitude of oscil-

lations if the system is already oscillatory but for large values of time delay the P.

volitans populations extinct from the system. Further, we have seen the effects of

reproduction delay as well as maturation delay in the system. To observe the effect

of maturation delay, we choose the values of reproduction delay from the stable, un-
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Fig. 11. System (2.1) shows period doubling oscillations at τ = 125. Rest of the parameter values

are same as in Table 1 except m1 = 0.52.

stable and chaotic regions. We observed that maturation delay induced limit cycle

oscillations whenever reproduction delay has stabilizing effect. But, if the system is

oscillatory due to reproduction delay, in that case system exhibits chaotic dynamics

due to maturation delay. Further, maturation delay drives the system to the extinc-

tion of P. volitans populations if the system is chaotic due to reproduction delay.

We hope that the findings of this article will certainly help the ecologists and as a

consequence, it may enrich theoretical ecology.
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Appendix A

Proof of Theorem 4.1 is as follows.

By setting X = (U, V,W )T ∈ R3 and F (X) = [F1(X), F2(X), F3(X)]T , with

F : C → R3 and F ∈ C∞(R3), equation (3.1) becomes

Ẋ = F (X), (6.1)

together with X(0) = X0 ∈ R3
+.

The vector function F is a locally Lipschitzian and completely continuous func-

tion of variables (U, V,W ) in

Θ = {(U(t), V (t),W (t)) : U > 0, V > 0, W > 0},

then any solution (U, V,W ) of system (3.1) with initial conditions (3.2) exists and

unique in some interval [0, κ) 63.

It is easy to check that whenever choosing X(0) ∈ R3
+ with Xi = 0 for i = 1, 2, 3,

then Fi(X)|Xi=0 ≥ 0. Due to lemma of Nagumo 64, any solution of system (6.1)

with X0 ∈ R3
+, say X(t) = X(t;X0) is such that X(t) ∈ R3

+ for all t > 0.

Proof of Theorem 4.2 is as follows.

Let us define a new variable P = U +
1

α1
(V +W ). For an arbitrary η > 0, by

summing up the equations in system (3.1), we find

dP

dt
+ ηP = (r + η)U − rU2

K
− (D1 − η)V

α1
− (D2 − η)W

α1
− (1− α)m2VW

α1(a2 + V )
− hW

α1(c+W )
.

After choosing η ≤ min{D1, D2}, we obtain the following upper bound:

dP

dt
+ ηP ≤ (r + η)U − rU2

K
≤ K(r + η)2

4r
= L.

Applying standard results on differential inequalities, we have

P (t) ≤ e−ηt

(
P (0)− L

η

)
+
L

η
≤ max

{
L

η
, P (0)

}
=M.

Thus, there exists an M > 0, depending only on the parameters of system (3.1),

such that P (t) < M for all t large enough. Hence, the solutions of system (3.1)

and consequently all the densities appearing in the system are ultimately bounded

above 63.

Proof of Theorem 4.3 is as follows.

Since lim
t→∞

sup

[
U(t) +

1

α1
(V (t) +W (t))

]
≤ M, it follows that lim

t→∞
[V (t) +

W (t)] ≤ M. Therefore, there exists T1 > 0 such that V (t) ≤ M1 and W (t) ≤ M2

for all t ≥ T1, where M1 and M2 are finite positive constants with M1 +M2 < M .
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Also, U(t) ≤ K as t → ∞. Therefore, there exists T2 > 0 such that U(t) ≤ K

for all t ≥ T2. For all t ≥ max{T1, T2}, we have
dU

dt
≥ rU

(
1− U

K

)
− m1U

a1
. This

implies
dU

dt

∣∣∣
u1

≥ 0 for all t ≥ max{T1, T2}, where u1 = K

(
1− m1

ra1

)
> 0 and

r >
m1

a1
. Therefore, there exists 0 < u1 ≤ K such that u1 ≤ U(t) ≤ K.

For t > max{T1, T2}, we have

dV

dt
≥ α1m1u1W

a1M2 + b1K + c1
− (µ+D1)M1 − (1− α)m2W

> 0 if W (t) >
(a1M2 + b1K + c1)(µ+D1)M1

α1m1u1 − (1− α)m2(a1M2 + b1K + c1)
and u1 >

m2(1− α)(a1M2 + b1K + c1)

α1m1
.

Thus, for all t > max{T1, T2}, if u1 >
m2(1− α)(a1M2 + b1K + c1)

α1m1
, then there

exists w1 > 0 such that
M1(a1M2 + b1K + c1)(µ+D1)

α1m1u1 − (1− α)m2(a1M2 + b1K + c1)
< w1 < M2.

Therefore, for all t > max{T1, T2},
dV

dt
> 0 for W (t) ≥ w1 > 0 and so in this

case there exists T3 > 0 and 0 < v1 < M1 such that V (t) ≥ v1 for all t ≥ T3. Also,

for all t > max{T1, T2, T3},
dW

dt
≥ µv1 −D2M2 − h > 0 if v1 >

D2M2 + h

µ
.

Therefore, for large values of t, if r >
m1

a1
holds, then there exist

u1 > K

(
1− m1

ra1

)
, v1 >

1

µ
(D2M2+h), w1 >

M1(µ+D1)(a1M2 + b1K + c1)

α1m1u1 −m2(1− α)(a1M2 + b1K + c1)

such that

u1 ≤ U(t) ≤ K, v1 ≤ V (t) ≤M1, w1 ≤W (t) ≤M2.

Appendix B

Jacobian of system (3.1) is given by

J =

J11 0 J13
J21 J22 J23
0 J32 J33

 ,

where

J11 = r

(
1− 2U

K

)
− m1W (a1W + c1)

(a1W + b1U + c1)2
, J13 = − m1U(b1U + c1)

(a1W + b1U + c1)2
, J21 =

α1m1W (a1W + c1)

(a1W + b1U + c1)2
,

J22 = −
(
µ+D1 +

m2a2(1− α)W

(a2 + V )2

)
, J23 =

α1m1U(b1U + c1)

(a1W + b1U + c1)2
− (1− α)m2V

a2 + V
,

J32 = µ, J33 = −
(
D2 +

hc

(c+W )2

)
.
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1. Jacobian J evaluated at the equilibrium E0 leads to the eigenvalues r, −(µ+D1)

and −
(
D2 +

h

c

)
. Since one eigenvalue is always positive, the equilibrium E0 is

unconditionally unstable.

2. Jacobian J evaluated at the equilibrium E1 immediately gives one eigenvalue

−r and two eigenvalues as roots of the quadratic

λ2 +

(
µ+D1 +D2 +

h

c

)
λ+ (µ+D1)

(
D2 +

h

c

)
− µα1m1K

b1K + c1
= 0. (6.2)

Define m∗
1 =

(b1K + c1)(µ+D1)

µα1K

(
D2 +

h

c

)
. Then both roots of equation (6.2)

are either negative or with negative real parts if m1 < m∗
1 and thus the equilibrium

E1 is stable. On the other hand, equation (6.2) has one positive and one negative

roots if m1 > m∗
1 and in this case the equilibrium E1 is unstable as one eigenvalue

is positive.

3. The Jacobian J evaluated at the equilibrium E∗ leads to the following matrix

JE∗ =

−a11 0 −a13
a21 −a22 a23
0 a32 −a33

 ,

where

a11 =

(
rU∗

K
− m1b1U

∗W ∗

(a1W ∗ + b1U∗ + c1)2

)
, a13 =

m1U
∗(b1U

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
, a21 =

α1m1W
∗(a1W

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
,

a22 =

(
µ+D1 +

m2a2(1− α)W ∗

(a2 + V ∗)2

)
, a23 =

α1m1U
∗(b1U

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
− (1− α)m2V

∗

a2 + V ∗ ,

a32 = µ, a33 =

(
D2 +

hc

(c+W ∗)2

)
.

The associated characteristic equation is

λ3 +A1λ
2 +A2λ+A3 = 0, (6.3)

where

A1 = a11 + a22 + a33, A2 = a11(a22 + a33) + a22a33 − a23a32,

A3 = a11(a22a33 − a23a32) + a13a21a32.

Using Routh-Hurwitz criterion, roots of equation (6.3) are either negative or have

negative real parts if and only if the conditions in (4.2) are satisfied.
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Appendix C

Observe that one eigenvalue of the Jacobian matrix

J(E1,m
∗
1) =


−r 0 −µ+D1

µα1

(
D2 +

h

c

)
0 −(µ+D1)

µ+D1

µ

(
D2 +

h

c

)
0 µ −

(
D2 +

h

c

)


is λ = 0. Hence, at m1 = m∗

1 the equilibrium E1 is non-hyperbolic and the assump-

tion (A1) of Theorem 4.1 in Castillo-Chavez and Song 53 is verified.

Now, denote by w = (w1, w2, w3)
T a right eigenvector associated with the zero

eigenvalue λ = 0. To determine the components of w, we solve the following system

of equations:

−rw1 −
µ+D1

µα1

(
D2 +

h

c

)
w3 = 0,

−(µ+D1)w2 +
µ+D1

µ

(
D2 +

h

c

)
w3 = 0,

µw2 −
(
D2 +

h

c

)
w3 = 0,

to obtain w1 = −µ+D1

rµα1

(
D2 +

h

c

)
w3 and w2 =

1

µ

(
D2 +

h

c

)
w3.

Furthermore, the components of the left eigenvector v = (v1,v2,v3) can be

determined by solving the following system of equations:

−rv1 = 0,

−(µ+D1)v2 + µv3 = 0,

−µ+D1

µα1

(
D2 +

h

c

)
v1 +

µ+D1

µ

(
D2 +

h

c

)
v2 −

(
D2 +

h

c

)
v3 = 0,

to obtain v1 = 0 and v3 =
µ+D1

µ
v2. We choose w3 =

µ

µ+D1 +D2 +
h
c

and

v2 = 1, so that w.v = 1.

Now, the coefficients a and b defined in Theorem 4.1 of Castillo-Chavez and

Song 53

a =

3∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E1,m
∗
1), b =

3∑
k,i=1

vkwi
∂2fk

∂xi∂m1
(E1,m

∗
1),



October 8, 2019 15:48

Effect of time delay in a cannibalistic stage-structured predator-prey model 33

may be explicitly computed. Taking into account system (3.1), it follows that

a =
2µ(

µ+D1 +D2 +
h
c

)2 [
h(µ1 +D1)

c2
− a1(µ+D1)

b1K + c1

(
D2 +

h

c

)

− (µ+D1)
2

rKµα1(b1K + c1)

(
D2 +

h

c

)2

− m2(1− α)

a2

(
D2 +

h

c

)]
,

b =
µα1K

(b1K + c1)(µ+D1 +D2 +
h
c )

> 0. (6.4)

Appendix D

Proof of Theorem 4.7 is as follows.

The second additive compound matrix of the Jacobian of the system (3.1) is

given by

J [2] =

−a11 − a22 a23 a13
a32 −a11 − a33 0

0 a21 −a22 − a33

 .

Let |X|∞ = supi |Xi|. The logarithmic norm µ∞(J [2]) of J [2] endowed with the

vector norm |X|∞ is the supremum of −a11 − a22 + |a23| + |a13|, |a32| − a11 − a33
and |a21| − a22 − a33.

Now, −a11 − a22 + |a23|+ |a13| < 0 if

m1U
∗[b1W

∗ + (α1 + 1)(b1U
∗ + c1)]

(a1W ∗ + b1U∗ + c1)2
< µ+D1 +

rU∗

K
+
m2a2(1− α)W ∗

(a2 + V ∗)2
+
m2(1− α)V ∗

a2 + V ∗ = L1.

Also, −a11 − a33 + |a32| < 0 if

µ+
m1b1U

∗W ∗

(a1W ∗ + b1U∗ + c1)2
< D2 +

rU∗

K
+

hc

(c+W ∗)2
= L2.

Again, −a22 − a33 + |a21| < 0 if

α1m1W
∗(a1W

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
< µ+D1 +D2 +

hc

(c+W ∗)2
+
m2a2(1− α)W ∗

(a2 + V ∗)2
= L3.

Thus, if µ+
m1U

∗[2b1W
∗ + (α1 + 1)(b1U

∗ + c1)] + α1m1W
∗(a1W

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
< L, then

µ∞(J
[2]
E∗) < 0, where L = min{L1, L2, L3}.

Following Li and Muldowney 65, the system (3.1) has no periodic solutions

around E∗ provided condition (4.3) is satisfied.

Proof of Theorem 4.8 is as follows.

Consider the following positive definite function:

F =

(
U − U∗ − U∗ ln

U

U∗

)
+
p1
2
(V − V ∗)2 +

p2
2
(W −W ∗)2,
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where p1 and p2 are positive constants, which will be chosen appropriately below.

The function ‘F ’ represents a Lyapunov function candidate corresponding to the

equilibrium E∗ of the system (3.1).
Differentiating above equation with respect to time ‘t’ along the solution trajec-

tories of the system (3.1), we get

dF

dt
= −

[
r

K
− m1b1W

(a1W + b1U + c1)(a1W ∗ + b1U∗ + c1)

]
(U − U∗)2

−p1

[
µ+D1 +

(1− α)m2a2W

(a2 + V )(a2 + V ∗)

]
(V − V ∗)2 − p2

[
D2 +

hc

(c+W )(c+W ∗)

]
(W −W ∗)2

+p1

[
α1m1W (a1W

∗ + c1)

(a1W + b1U + c1)(a1W ∗ + b1U∗ + c1)

]
(U − U∗)(V − V ∗)

−
[

m1(b1U + c1)

(a1W + b1U + c1)(a1W ∗ + b1U∗ + c1)

]
(U − U∗)(W −W ∗)

+

[
p1

{
α1m1U

∗(b1U + c1)

(a1W + b1U + c1)(a1W ∗ + b1U∗ + c1)
− m2(1− α)V ∗

a2 + V ∗

}
+ p2µ

]
(V − V ∗)(W −W ∗).

Choose p1 = p2 = 1, then
dF

dt
can be made negative definite inside the region Ω

under the conditions stated in Theorem 4.8. In this way, we have found the appro-

priate values for the constants in the Lyapunov function. Therefore, we conclude

that the coexistence equilibrium E∗ is globally asymptotically stable.

Appendix E

Let at a critical value of m1, say mc
1, A1(m

c
1)A2(m

c
1) − A3(m

c
1) = 0. Thus, at

m1 = mc
1, the characteristic Eq. (6.3) can be written as

(λ+A1)(λ
2 +A2) = 0.

This equation has three roots λ1,2 = ±i
√
A2 and λ3 = −A1.

Thus, at m1 = mc
1, the characteristic Eq. (6.3) has a pair of purely imaginary

roots while the third root is negative. To show the transversality condition, let at

any point m1 of ϵ− neighborhood of mc
1, λ1,2 = κ(m1)± iρ(m1). Substituting this

in Eq. (6.3) and separating real and imaginary parts, we have

κ3 − 3κρ2 +A1(κ
2 − ρ2) +A2κ+A3 = 0, (6.5)

3κ2ρ− ρ3 + 2A1κρ+A2ρ = 0. (6.6)

As ρ(m1) ̸= 0 from Eq. (6.6), we have

ρ2 = 3κ2 + 2A1κ+A2.

Substituting this in Eq. (6.5), we have

8κ3 + 8A1κ
2 + 2κ(A2

1 +A2) +A1A2 −A3 = 0. (6.7)

From the above equation, we get[
dκ

dm1

]
m1=mc

1

= −
[

1

2(A2
1 +A2)

d

dm1
(A1A2 −A3)

]
m1=mc

1

̸= 0 provided

[
d

dm1
(A1A2 −A3)

]
m1=mc

1

̸= 0.
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To better understand the nature of the instability, we determine the initial period

and the amplitude of the oscillatory solutions. Set A3 = ψA1A2 in equation (6.3).

Assuming that λ depends continuously on ψ, we rewrite equation (6.3) as

λ3 +A1λ
2 +A2λ+ ψA1A2 = 0. (6.8)

At A3 = A1A2, ψ = ψ∗ = 1, equation (6.8) factors to (λ + A1)(λ
2 + A2), which

has solutions λ(ψ∗) = −A1 or λ(ψ∗) = ±i
√
A2. This confirms the existence of

Hopf-bifurcation.

Observe that in this new setting, 0 ≤ ψ ≤ ψ∗ is equivalent to 0 ≤ m1 ≤ mc
1,

0 ≤ ψ = ψ∗ is equivalent to m1 = mc
1, and ψ ≥ ψ∗ is equivalent to m1 ≥ mc

1. If we

set ψ = ψ∗ + ϵ2ξ, where |ϵ| ≪ 1 and ξ = ±1, then λ(ψ) = λ(ψ∗ + ϵ2ξ) so that the

linear portion in ϵ2ξ of the Taylor series expansion of λ about ψ∗ is

λ(ψ) = λ(ψ∗) + λ′(ψ∗)ϵ2ξ +O(ϵ4), (6.9)

where prime denotes differentiation with respect to ψ. Differentiating and simplify-

ing equation (6.9) yields

λ′(ψ) ≡ A1A2

2(A2
1 +A2)

± i
A2

1

√
A2

2(A2
1 +A2)

. (6.10)

Using the fact that ℜ(λ(ψ∗)) = 0 and ℜ(λ′(ψ∗)) =
A1A2

2(A2
1 +A2)

> 0, and substitut-

ing λ(ψ∗) and λ′(ψ) in equation (6.9), we obtain the approximation

λ(ψ) = λ(ψ∗) + λ′(ψ∗)ϵ2ξ

=
A1A2ϵ

2ξ

2(A2
1 +A2)

± i
√
A2

(
1 +

A2
1ϵ

2ξ

2(A2
1 +A2)

)
+O(ϵ4). (6.11)

Thus, the initial period and amplitude of the oscillations associated with the loss

of stability when ψ > ψ∗ are
2π

√
A2

(
1 +

A2
1ϵ

2ξ

2(A2
1+A2)

) and exp

(
A1A2ϵ

2ξ

2(A2
1 +A2)

)
, respec-

tively where ϵ =

√
|ψ − ψ∗|

|ξ|
.

We investigate the orbital stability of Hopf-bifurcating periodic solution by using

Poore’s sufficient condition 66. The supercritical and subcritical nature of Hopf-

bifurcating periodic solution is determined by the positive/negative sign of the real

part of Φ, where

Φ = −alGl
ujumus

bjbmb̄s+2alG
l
ujum

bj(J
−1
E∗ )mrG

r
upuq

bq b̄q+alG
l
ujuk

b̄j [(JE∗−2iω0)
−1]krG

r
upuq

bpbq.

Here, the repeated indices within each term imply a sum from 1 to 3 and all the

derivatives of Gl are evaluated at the equilibrium E∗ with u1 = U , u2 = V , u3 =

W , and JE∗ is the Jacobian matrix of system (3.1) calculated at E∗. [(JE∗)−1]mr

denotes the element in row m and column r of (JE∗)−1. Here, a = (a1, a2, a3) and

b = (b1, b2, b3)
T are left and right normalized eigenvectors of JE∗ with respect to

the eigenvalues ±iω0 at m1 = mc
1 so that a.b = 1.
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The left and right normalized eigenvectors are given by

a =
ξ1
µG2

U

(µG2
U , µ(iω0 −G1

U ), (G
1
UG

2
V − ω2

0)− iω0(G
1
U +G2

V ))

and

b =
ξ2

µG1
W

(µG1
W , (G1

UG
3
W − ω2

0)− iω0(G
1
U +G3

W ), µ(iω0 −G1
U ))

T

where ξ1 and ξ2 are complex numbers.

Using a.b = 1, we obtain ξ1ξ2. If [Φ]m1=mc
1
> 0, the system (3.1) undergoes a

supercritical Hopf-bifurcation as m1 increases through mc
1, so that the bifurcating

periodic orbit is asymptotically orbitally stable.

Appendix F

Jacobian of the system (2.1) evaluated at E∗ leads to the following characteristic

equation:

det(J0 + e−λτJτ − λI3) = 0,

where I3 is an identity matrix of order 3 and

J0 =

V1 0 V2
0 V3 V4
0 V5 V6

 , Jτ =

 0 0 0

M1 0 M2

0 0 0

 ,

with

V1 = −
(
rU∗

K
− m1b1U

∗W ∗

(a1W ∗ + b1U∗ + c1)2

)
, V2 = − m1U

∗(b1U
∗ + c1)

(a1W ∗ + b1U∗ + c1)2
,

V3 = −
(
µ+D1 +

m2a2(1− α)W ∗

(a2 + V ∗)2

)
, V4 = −m2(1− α)V ∗

a2 + V ∗ , V5 = µ,

V6 = −
(
D2 +

hc

(c+W ∗)2

)
, M1 =

α1m1W
∗(a1W

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
, M2 =

α1m1U
∗(b1U

∗ + c1)

(a1W ∗ + b1U∗ + c1)2
.

Now the Jacobian matrix of the delay model (2.1) around the equilibrium point E∗

is

JE∗ =

 V1 − λ 0 V2
M1e

−λτ V3 − λ V4 +M2e
−λτ

0 V5 V6 − λ

 .

The characteristic equation of the delay system at the equilibrium point E∗ is

λ3 + C1λ
2 + C2λ+ C3 = [D1λ+D2]e

−λτ , (6.12)

where

C1 = −(V1 + V2 + V3), C2 = V1(V3 + V6) + V3V6 − V4V5, C3 = V1(V4V5 − V3V6),

D1 = V5M2, D2 = V5(V2M1 − V1M2).
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The coexistence equilibrium point E∗ will be locally asymptotically stable if all roots

of the corresponding characteristic equation (6.12) are negative or having negative

real parts. The classical Routh-Hurwitz criterion cannot be used to investigate the

stability of the system (2.1) as Eq. (6.12) is a transcendental equation, and it has

infinitely many roots. To determine the nature of the stability, we require the signs

of the real parts of the roots of the characteristic equation (6.12). Let λ(τ) =

β(τ) + iω(τ) be eigenvalue of the characteristic equation (6.12). Substituting this

value in Eq. (6.12), we obtain real and imaginary parts, respectively as

β3 − 3βω2 + C1(β
2 − ω2) + C2β + C3 = [(D1β +D2) cos(ωτ) +D1ω sin(ωτ)]e−βτ ,

(6.13)

−ω3 + 3β2ω + 2C1βω + C2ω = [D1ω cos(ωτ)− (D1β +D2) sin(ωτ)]e
−βτ .

(6.14)

A necessary condition for a stability change of E∗ is that the characteristic equation

(6.12) should have purely imaginary roots. Putting β = 0 in Eqs. (6.13) and (6.14),

we have

−C1ω
2 + C3 = D2 cos(ωτ) +D1ω sin(ωτ), (6.15)

−ω3 + C2ω = D1ω cos(ωτ)−D2 sin(ωτ). (6.16)

Eliminating τ by squaring and adding Eqs. (6.15) and (6.16), we get the algebraic

equation for determining ω as

ω6 + (C2
1 − 2C2)ω

4 + (C2
2 − 2C1C3 −D2

1)ω
2 + (C2

3 −D2
2) = 0. (6.17)

Substituting ω2 = θ in Eq. (6.17), we obtain the following cubic equation:

κ(θ) = θ3 + σ1θ
2 + σ2θ + σ3 = 0, (6.18)

where

σ1 = C2
1 − 2C2, σ2 = C2

2 − 2C1C3 −D2
1, σ3 = C2

3 −D2
2.

Now, if σ1 and σ3 are of opposite signs then by Descarte’s rule of sign, Eq. (6.18)

has at least one positive root for either sign of σ2.

Since ω0 is a solution of Eq. (6.17), the characteristic equation (6.12) has pair of

purely imaginary roots ±iω0. From Eqs. (6.15) and (6.16), we have τ∗p is a function

of ω0 for p = 0, 1, 2, · · · , which is given by

τ∗p =
1

ω0
arccos

[
D1ω0(C2ω0 − ω3

0) +D2(C3 − C1ω
2
0)

D2
1ω

2
0 +D2

2

]
+

2πp

ω0
. (6.19)

Now, the system will be locally asymptotically stable around the coexistence equilib-

rium E∗ for τ = 0 if σ1σ2−σ3 > 0. In that case by Butler’s lemma, the equilibrium

E∗ will remain stable for τ < τ∗, such that τ∗ = min
p≥0

τ∗p and the equilibrium E∗

will be unstable for τ ≥ τ∗, provided the transversality condition holds.
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Now, we verify the transversality condition[
dRe(λ)

dτ

]
τ=τ∗

> 0.

Differentiating Eqs. (6.13) and (6.14) with respect to τ and putting β = 0, we obtain

R(ω)
dβ

dτ
+ S(ω)

dω

dτ
= U(ω), (6.20)

−S(ω)dβ
dτ

+R(ω)
dω

dτ
= W (ω), (6.21)

where

R(ω) = −3ω2 + C2 −D1 cos(ωτ) + τ [D2 cos(ωτ) +D1ω sin(ωτ)],

S(ω) = −2C1ω +D2τ sin(ωτ)−D1 sin(ωτ)−D1τω cos(ωτ),

U(ω) = −D2ω sin(ωτ) +D1ω
2 cos(ωτ),

W (ω) = −D1ω
2 sin(ωτ)−D2ω cos(ωτ).

Solving the above Eqs., we have[
dRe(λ)

dτ

]
τ=τ∗

=

[
U(ω)R(ω)− S(ω)W (ω)

R2(ω) + S2(ω)

]
τ=τ∗

,

which shows that

[
dRe(λ)

dτ

]
τ=τ∗

> 0 if U(ω)R(ω) − S(ω)W (ω) > 0. Thus, Hopf

bifurcation occurs at τ = τ∗ 30.


