Novel approach for characterising archaeological textiles exceptionally preserved in a mineralised form based on 2D and 3D synchrotron micro-imaging

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1720579 since 2019-12-27T16:54:22Z

Publisher:
Università di Torino

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Novel approach for characterising archaeological textiles exceptionally preserved in a mineralised form based on 2D and 3D synchrotron micro-imaging

Marta Bellato (a,b), Jiayi Li (b,c), Andrew King (d), Luc Robbiola (e), Mathieu Thoury (b), Christophe Moulhérat (f), Ariane Thomas (g), Pierre Guériau (b,d), Pierre Galtier (c), Monica Gulmini (a) & Loïc Bertrand (b,d)

(⁎) Università degli Studi di Torino, Dipartimento di Chimica, Via Giuria 5, 10124 Torino, Italy
(a) IPANEMA, CNRS, MIC, UVSQ, Université Paris-Saclay, 91192 Gif-sur-Yvette, France
(b) GEMac, UMR 8635 CNRS, UVSQ, 45 Avenue des Etats-Unis, 78035 Versailles, France
(c) Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
(d) TRACES, CNRS, MIC, Université Toulouse-Jean Jaurès, 31100 Toulouse, France
(e) Musée du Quai Branly Jacques-Chirac, 37 quai Branly, 75007 Paris, France
(f) Département des Antiquités Orientales, musée du Louvre, pavillon Mollien, 75058 Paris, France

Corresponding author: bellato.marta@gmail.com

As most organic materials, textiles fibres are perishable in archaeological contexts. Nevertheless, in specific environments they may be preserved over millennia, for example in contact with metal objects. The corrosion of the metal support can enable an exceptional preservation of textile remnants in a process called “mineralisation” by archaeologists. The underlying physico-chemical mechanisms have been the subject of a very limited number of studies. An in-depth understanding of the causes and the conditions of this phenomenon, as well as of the variability of the involved processes, is yet to be achieved.

We report the study of mineralised linen fabrics identified at the surface of copper-based artefacts coming from Mesopotamia (Telloh and Susa sites, 5th–2nd millennium BC) and in the Indus areas (Nausharo site, 4th millennium BC; Gonur-depe site 3rd–2nd millennium BC), currently conserved and under study at the Louvre and the Quai Branly museums. In Mesopotamia, these finds are major direct testimony of textile manufacturing from the corresponding cultures, otherwise uniquely known from cuneiform texts.

2D and 3D synchrotron-based micro-imaging techniques were carried out to characterise in a non-destructive way these organic textile remnants in connection with the inorganic corrosion compounds. We performed and optimised synchrotron X-rays micro-computed tomography to identify and locate the distinct copper corrosion phases formed, on the basis of difference in their density. Preliminary tests using high-spatially resolved synchrotron UV/visible photoluminescence spectral imaging were performed to investigate the heterogeneity of individual mineralised bundles of fibres. We reveal the internal structure of these mineralised textile fibres in connection with the corrosion phenomena, and discussed the different mineralisation facies observed.

The present work illustrates the potential of 2D and 3D synchrotron micro-imagery to study mineralised textiles in association with metal objects.

We acknowledge support from LabEx PATRIMA / Fondation des sciences du patrimoine.

References