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1. Introduction

Recently, as a consequence of the increasing interest in tachyon condensation, String Field

Theory (SFT) has received a renewed attention. There is no doubt that the most complete

description of tachyon condensation and related phenomena has been given so far in the

framework of Witten’s Open String Field Theory, [1]. This is not surprising, since the study

of tachyon condensation involves off–shell calculations, and SFT is the natural framework

where off–shell analysis can be carried out.

All these developments can be described along the blueprint represented by A.Sen’s

conjectures, [2]. The latter can be summarized as follows. Bosonic open string theory

in D=26 dimensions is quantized on an unstable vacuum, an instability which manifests

itself through the existence of the open string tachyon. The effective tachyonic potential

has, beside the local maximum where the theory is quantized, a local minimum. Sen’s

conjectures concern the nature of the theory around this local minimum. First of all, the

energy density difference between the maximum and the minimum should exactly compen-

sate for the D25–brane tension characterizing the unstable vacuum: this is a condition for

the stability of the theory at the minimum. Therefore the theory around the minimum

should not contain any quantum fluctuation pertaining to the original (unstable) theory.

The minimum should therefore correspond to an entirely new theory, the bosonic closed

string theory. If so, in the new theory one should be able to explicitly find in particular all

the classical solutions characteristic of closed string theory, specifically the D25–brane as

well as all the lower dimensional D–branes.

The evidence that has been found for the above conjectures does not have a uniform

degree of accuracy and reliability, but it is enough to conclude that they provide a correct

description of tachyon condensation in SFT. Especially elegant is the proof of the existence

of solitonic solutions in Vacuum String Field Theory (VSFT), the SFT version which is

believed to represent the theory near the minimum.

The aim of this review is not of giving a full account of the entire subject of SFT

and tachyon condensation. In this regards there are already several reviews, [3, 4, 10, 5].

We will rather concentrate on some specific topics which are not covered in other reviews.

The first part of this article is devoted to the operator formulation of SFT. The reason for

this is that the latest developments in VSFT and especially in supersymmetric SFT (see

in particular [3, 4]), have brought up aspects of the theory that had not been analyzed in

sufficient detail in the existing literature. We refer in particular to the ghost structure of

SFT and the relation between the operator formulation and the (twisted) conformal field

theory formulation. To clarify this issue we extensively use the CFT interpretation of SFT,

advocated especially by [6, 7].

The second part of this review is a synopsis of D–branes in VSFT and noncommutative

solitons. Our main purpose is finding families of tachyonic lumps that can consistently be

interpreted as D–branes and studying their low energy limit. We do so by introducing a

constant background B field, with the purpose of smoothing out some singularities that

appear in the low energy limit when the B field is absent. The result is rewarding: we find

a series of noncommutative solitons (the GMS solitons) that were found some time ago by
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studying noncommutative effective field theories of the tachyon.

2. A summary of String Field Theory

The open string field theory action proposed by E.Witten, [1], years ago is

S(Ψ) = − 1

g20

∫ (

1

2
Ψ ∗QΨ+

1

3
Ψ ∗Ψ ∗Ψ

)

(2.1)

In this expression Ψ is the string field, which can be understood either as a classical

functional of the open string configurations or as a vector in the Fock space of states of

the open string. We will consider in the following the second point of view. In the field

theory limit it makes sense to represent it as a superposition of Fock space states with

ghost number 1, with coefficient represented by local fields,

|Ψ〉 = (φ(x) +Aµ(x)a
µ†
1 + . . .)c1|0〉 (2.2)

The BRST charge Q has the same form as in the first quantized string theory. The star

product of two string fields Ψ1,Ψ2 represents the process of identifying the right half of

the first string with the left half of the second string and integrating over the overlapping

degrees of freedom, to produce a third string which corresponds to Ψ1 ∗ Ψ2. This can

be done in various ways, either using the classical string functionals (as in the original

formulation), or using the three string vertex (see below), or the conformal field theory

language [6]. Finally the integration in (2.1) corresponds to bending the left half of the

string over the right half and integrating over the corresponding degrees of freedom in such

a way as to produce a number. The following rules are obeyed

Q2 = 0
∫

QΨ = 0

(Ψ1 ∗Ψ2) ∗Ψ3 = Ψ1 ∗ (Ψ2 ∗Ψ3)

Q(Ψ1 ∗Ψ2) = (QΨ1) ∗Ψ2 + (−1)|Ψ1|Ψ1 ∗ (QΨ2) (2.3)

where |Ψ| is the Grassmannality of the string field Ψ, whic, for bosonic strings, coincides

with the ghost number. The action (2.1) is invariant under the BRST transformation

δΨ = QΛ+Ψ ∗ Λ− Λ ∗Ψ (2.4)

Finally, the ghost numbers of the various objects Q,Ψ,Λ, ∗,
∫

are 1, 1, 0, 0,−3, respectively.
Following these rules it is possible to explicitly compute the action (2.1). For instance,

in the low energy limit, where the string field may be assumed to take the form (2.2), the

action becomes an integrated function F of an infinite series of local polynomials (kinetic

and potential terms) of the fields involved in (2.2):

S(Ψ) =

∫

d26xF (ϕi, ∂ϕi, ...) (2.5)

– 3 –



2.1 Vacuum string field theory

The action (2.1) represents open string theory about the trivial unstable vacuum |Ψ0〉 =
c1|0〉. Vacuum string field theory (VSFT) is instead a version of Witten’s open SFT which

is conjectured to correspond to the minimum of the tachyon potential. As explained in

the introduction at the minimum of the tachyon potential a dramatic change occurs in the

theory, which, corresponding to the new vacuum, is expected to represent closed string

theory rather that the open string theory we started with. In particular, this theory

should host tachyonic lumps representing unstable D–branes of any dimension less than

25, beside the original D25–brane. Unfortunately we have been so far unable to find an

exact classical solution, say |Φ0〉, representing the new vacuum. One can nevertheless

guess the form taken by the theory at the new minimum, see [10]. The VSFT action has

the same form as (2.1), where the new string field is still denoted by Ψ, the ∗ product

is the same as in the previous theory, while the BRST operator Q is replaced by a new

one, usually denoted Q, which is characterized by universality and vanishing cohomology.

Relying on such general arguments, one can even deduce a precise form of Q ([14],[16], see

also [15, 17, 18, 19, 20, 21] and [22, 23, 24, 26, 27, 28, 29]),

Q = c0 +
∑

n>0

(−1)n (c2n + c−2n) (2.6)

Now, the equation of motion of VSFT is

QΨ = −Ψ ∗Ψ (2.7)

and nonperturbative solutions are looked for in the factorized form

Ψ = Ψm ⊗Ψg (2.8)

where Ψg and Ψm depend purely on ghost and matter degrees of freedom, respectively.

Then eq.(2.7) splits into

QΨg = −Ψg ∗Ψg (2.9)

Ψm = Ψm ∗Ψm (2.10)

We will see later on how to compute solutions to both equations. A solution to eq.(2.9)

was calculated in [14, 15]. Various solutions of the matter part have been found in the

literature, [10, 16, 22, 23, 30, 49, 50].

2.2 Organization of the paper. First part

In the first part of this review we rederive the three strings vertex coefficients by relying

on the definition and the methods introduced by [6, 7, 8, 9]. We do it first for the matter

part (section 3). In section 4 we derive the ghost Neumann coefficients and in section 5

we concentrate on the equation of motion of VSFT and look for matter–ghost factorized

solutions. We show how to rederive the solution for the ghost part with a new method.

Finally section 6 is meant as an introduction to the second part of the paper.
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3. Three strings vertex and matter Neumann coefficients

The three strings vertex [1, 44, 45] of Open String Field Theory is given by

|V3〉 =
∫

d26p(1)d
26p(2)d

26p(3)δ
26(p(1) + p(2) + p(3)) exp(−E) |0, p〉123 (3.1)

where

E =

3
∑

a,b=1





1

2

∑

m,n≥1

ηµνa
(a)µ†
m V ab

mna
(b)ν†
n +

∑

n≥1

ηµνp
µ
(a)V

ab
0na

(b)ν†
n +

1

2
ηµνp

µ
(a)V

ab
00 p

ν
(b)



 (3.2)

Summation over the Lorentz indices µ, ν = 0, . . . , 25 is understood and η denotes the flat

Lorentz metric. The operators a
(a)µ
m , a

(a)µ†
m denote the non–zero modes matter oscillators

of the a–th string, which satisfy

[a(a)µm , a(b)ν†n ] = ηµνδmnδ
ab, m, n ≥ 1 (3.3)

p(r) is the momentum of the a–th string and |0, p〉123 ≡ |p(1)〉 ⊗ |p(2)〉 ⊗ |p(3)〉 is the tensor

product of the Fock vacuum states relative to the three strings. |p(a)〉 is annihilated by

the annihilation operators a
(a)µ
m and it is eigenstate of the momentum operator p̂µ(a) with

eigenvalue pµ(a). The normalization is

〈p(a)| p′(b)〉 = δabδ
26(p+ p′) (3.4)

The symbols V ab
nm, V

ab
0m, V

ab
00 will denote the coefficients computed in [44, 45]. We will use

them in the notation of Appendix A and B of [46] and refer to them as the standard ones.

The notation V rs
MN for them will also be used at times (with M(N) denoting the couple

{0,m} ({0, n})) .
An important ingredient in the following are the bpz transformation properties of the

oscillators

bpz(a(a)µn ) = (−1)n+1a
(a)µ
−n (3.5)

Our purpose here is to discuss the definition and the properties of the three strings

vertex by exploiting as far as possible the definition given in [6] for the Neumann coefficients.

Remembering the description of the star product given in the previous section, the latter

is obtained in the following way. Let us consider three unit semidisks in the upper half

za (a = 1, 2, 3) plane. Each one represents the string freely propagating in semicircles

from the origin (world-sheet time τ = −∞) to the unit circle |za| = 1 (τ = 0), where the

interaction is supposed to take place. We map each unit semidisk to a 120◦ wedge of the

complex plane via the following conformal maps:

fa(za) = α2−af(za) , a = 1, 2, 3 (3.6)

where

f(z) =
(1 + iz

1− iz
)

2
3

(3.7)
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Here α = e
2πi
3 is one of the three third roots of unity. In this way the three semidisks are

mapped to nonoverlapping (except at the interaction points za = i) regions in such a way

as to fill up a unit disk centered at the origin. The curvature is zero everywhere except

at the center of the disk, which represents the common midpoint of the three strings in

interaction.

z3

z1

z2
f1(z1)

f3(z3)

f2(z2)

 M

M

M

M

Figure 1: The conformal maps from the three unit semidisks to the three-wedges unit disk

The interaction vertex is defined by a correlation function on the disk in the following

way
∫

ψ ∗ φ ∗ χ = 〈f1 ◦ ψ(0) f2 ◦ φ(0) f3 ◦ χ(0)〉 = 〈V123|ψ〉1|φ〉2|χ〉3 (3.8)

Now we consider the string propagator at two generic points of this disk. The Neumann

coefficients Nab
NM are nothing but the Fourier modes of the propagator with respect to the

original coordinates za. We shall see that such Neumann coefficients are related in a simple

way to the standard three strings vertex coefficients.

Due to the qualitative difference between the αn>0 oscillators and the zero modes p,

the Neumann coefficients involving the latter will be treated separately.

3.1 Non–zero modes

The Neumann coefficients Nab
mn are given by [6]

Nab
mn = 〈V123|α(a)

−nα
(b)
−m|0〉123 = − 1

nm

∮

dz

2πi

∮

dw

2πi

1

zn
1

wm
f ′a(z)

1

(fa(z)− fb(w))2
f ′b(w)

(3.9)

where the contour integrals are understood around the origin. It is easy to check that

Nab
mn = N ba

nm

Nab
mn = (−1)n+mN ba

mn (3.10)

Nab
mn = Na+1,b+1

mn
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In the last equation the upper indices are defined mod 3.

Let us consider the decomposition

Nab
mn =

1

3
√
nm

(

Enm + ᾱa−bUnm + αa−bŪnm

)

(3.11)

After some algebra one gets

Enm =
−1√
nm

∮

dz

2πi

∮

dw

2πi

1

zn
1

wm

( 1

(1 + zw)2
+

1

(z − w)2
)

(3.12)

Unm =
−1

3
√
nm

∮

dz

2πi

∮

dw

2πi

1

zn
1

wm

(f2(w)

f2(z)
+ 2

f(z)

f(w)

)( 1

(1 + zw)2
+

1

(z − w)2
)

Ūnm =
−1

3
√
nm

∮

dz

2πi

∮

dw

2πi

1

zn
1

wm

( f2(z)

f2(w)
+ 2

f(w)

f(z)

)( 1

(1 + zw)2
+

1

(z − w)2
)

By changing z → −z and w → −w, it is easy to show that

(−1)nUnm(−1)m = Ūnm, or CU = ŪC, Cnm = (−1)nδnm (3.13)

In the second part of this equation we have introduced a matrix notation which we will

use throughout the paper.

The integrals can be directly computed in terms of the Taylor coefficients of f . The

result is

Enm = (−1)nδnm (3.14)

Unm =
1

3
√
nm

m
∑

l=1

l
[

(−1)nBn−lBm−l + 2bn−lbm−l(−1)m

−(−1)n+lBn+lBm−l − 2bn+lbm−l(−1)m+l
]

(3.15)

Ūnm = (−1)n+mUnm (3.16)

where we have set

f(z) =

∞
∑

k=0

bkz
k

f2(z) =
∞
∑

k=0

Bkz
k, i.e. Bk =

k
∑

p=0

bpbk−p (3.17)

Eqs.(3.14, 3.15, 3.16) are obtained by expanding the relevant integrands in powers of z, w

and correspond to the pole contributions around the origin. We notice that the above

integrands have poles also outside the origin, but these poles either are not in the vicinity

of the origin of the z and w plane, or, like the poles at z = w, simply give vanishing

contributions.

One can use this representation for (3.15, 3.16) to make computer calculations. For

instance it is easy to show that the equations

∞
∑

k=1

UnkUkm = δnm,
∞
∑

k=1

ŪnkŪkm = δnm (3.18)
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are satisfied to any desired order of approximation. Each identity follows from the other

by using (3.13). It is also easy to make the identification

V ab
nm = (−1)n+m√nmNab

nm (3.19)

of the Neumann coefficients with the standard three strings vertex coefficients1. Using

(3.18), together with the decomposition (3.11), it is easy to establish the commutativity

relation (written in matrix notation)

[CV ab, CV a′b′ ] = 0 (3.20)

for any a, b, a′, b′. This relation is fundamental for the next developments.

An analytic proof of eq.(3.18) is given in Appendix.

3.2 Zero modes

The Neumann coefficients involving one zero mode are given by

Nab
0m = − 1

m

∮

dw

2πi

1

wm
f ′b(w)

1

fa(0)− fb(w)
(3.21)

In this case too we make the decomposition

Nab
0m =

1

3

(

Em + ᾱa−bUm + αa−bŪm

)

(3.22)

where E,U, Ū can be given, after some algebra, the explicit expression

En = −4i

n

∮

dw

2πi

1

wn

1

1 +w2

f3(w)

1− f3(w) =
2in

n

Un = −4i

n

∮

dw

2πi

1

wn

1

1 +w2

f2(w)

1− f3(w) =
αn

n
(3.23)

Ūn = (−1)n Un = (−1)nαn

n

The numbers αn are Taylor coefficients

√

f(z) =

∞
∑

0

αnz
n

They are related to the An coefficients of Appendix B of [46] (see also [44]) as follows:

αn = An for n even and αn = iAn for n odd. Nab
0n are not related in a simple way as (3.19)

to the corresponding three strings vertex coefficients. The reason is that the latter satisfy

the conditions
3
∑

a=1

V ab
0n = 0 (3.24)

1The factor of (−1)n+m in (3.19) arises from the fact that the original definition of the Neumann

coefficients (3.9) in [6] refers to the bra three strings vertex 〈V3|, rather than to the ket vertex like in (3.1);

therefore the two definitions differ by a bpz operation.
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These constraints fix the invariance V ab
0n → V ab

0n + Bb
n, where B

b
n are arbitrary numbers,

an invariance which arises in the vertex (3.1) due to momentum conservation. For the

Neumann coefficients Nab
0n we have instead

3
∑

a=1

V ab
0n = En (3.25)

It is thus natural to define

N̂ab
0n = Nab

0n −
1

3
En (3.26)

Now one can easily verify that2

V ab
0n = −

√
2n N̂ab

0n (3.27)

It is somewhat surprising that in this relation we do not meet the factor (−1)n, which we

would expect on the basis of the bpz conjugation (see footnote after eq.(3.19)). However

eq.(3.27) is also naturally requested by the integrable structure found in [11]. The absence

of the (−1)n factor corresponds to the exchange V 12
0n ↔ V 21

0n . This exchange does not seem

to affect in any significant way the results obtained so far in this field.

To complete the discussion about the matter sector one should recall that beside

eq.(3.18), there are other basic equations from which all the results about the Neumann

coefficients can be derived. They concern the quantities

Wn = −
√
2nUn = −

√

2

n
αn, W ∗

n = −
√
2n Ūn = −

√

2

n
(−1)nαn (3.28)

The relevant identities, [44, 46], are

∞
∑

n=1

Wn Unp =Wp,
∑

n≥1

WnW
∗
n = 2V aa

00 (3.29)

These identities can easily be shown numerically to be correct at any desired approximation.

An analytic proof can presumably be obtained with the same methods as in Appendix.

Finally let us concentrate on the Neumann coefficients Nab
00 . Although a formula for

them can be found in [6], these numbers are completely arbitrary due to momentum con-

servation. The choice

V ab
00 = δab ln

27

16
(3.30)

is the same as in [44], but it is also motivated by one of the most surprising and mys-

terious aspects of SFT, namely its underlying integrable structure: the matter Neumann

coefficients obey the Hirota equations of the dispersionless Toda lattice hierarchy. This was

explained in [11] following a suggestion of [12]. On the basis of these equations the matter

Neumann coefficients with nonzero labels can be expressed in terms of the remaining ones.

The choice of (3.30) in this context is natural.

2The
√
2 factor is there because in [46] the α′ = 1 convention is used
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4. Ghost three strings vertex and bc Neumann coefficients

The three strings vertex for the ghost part is more complicated than the matter part due

to the zero modes of the c field. As we will see, the latter generate an ambiguity in the

definition of the Neumann coefficients. Such an ambiguity can however be exploited to

formulate and solve in a compact form the problem of finding solutions to eq.(2.9)3 .

4.1 Neumann coefficients: definitions and properties

To start with we define, in the ghost sector, the vacuum states |0̂〉 and |0̇〉 as follows

|0̂〉 = c0c1|0〉, |0̇〉 = c1|0〉 (4.1)

where |0〉 is the usual SL(2,R) invariant vacuum. Using bpz conjugation

cn → (−1)n+1c−n, bn → (−1)n−2b−n, |0〉 → 〈0| (4.2)

one can define conjugate states. It is important that, when applied to products of oscilla-

tors, the bpz conjugation does not change the order of the factors, but transforms rigidly

the vertex and all the squeezed states we will consider in the sequel (see for instance eq.(4.4)

below).

The three strings interaction vertex is defined, as usual, as a squeezed operator acting

on three copies of the bc Hilbert space

〈Ṽ3| = 1〈0̂| 2〈0̂| 3〈0̂|eẼ , Ẽ =

3
∑

a,b=1

∞
∑

n,m

c(a)n Ñab
nmb

(b)
m (4.3)

Under bpz conjugation

|Ṽ3〉 = eẼ
′ |0̂〉1|0̂〉2|0̂〉3, Ẽ′ = −

3
∑

a,b=1

∞
∑

n,m

(−1)n+mc(a) †n Ñab
nmb

(b) †
m (4.4)

In eqs.(4.3, 4.4) we have not specified the lower bound of the m,n summation. This

point will be clarified below.

The Neumann coefficients Ñab
nm are given by the contraction of the bc oscillators on the unit

disk (constructed out of three unit semidisks, as explained in section 3). They represent

Fourier components of the SL(2,R) invariant bc propagator (i.e. the propagator in which

the zero mode have been inserted at fixed points ζi, i = 1, 2, 3):

〈b(z)c(w)〉 = 1

z − w
3
∏

i=1

w − ζi
z − ζi

(4.5)

Taking into account the conformal properties of the b, c fields we get

Ñab
nm = 〈Ṽ123|b(a)−nc

(b)
−m|0̇〉123

=

∮

dz

2πi

∮

dw

2πi

1

zn−1

1

wm+2
(f ′a(z))

2 −1
fa(z)− fb(w)

3
∏

i=1

fb(w) − ζi
fa(z)− ζi

(f ′b(w))
−1 (4.6)

3An alternative treatment of the ghost three–strings vertex has been given recently in [60, 62]

– 10 –



It is straightforward to check that

Ñab
nm = Ña+1,b+1

nm (4.7)

and (by letting z → −z, w → −w)

Ñab
nm = (−1)n+mÑ ba

nm (4.8)

Now we choose ζi = fi(0) = α2−i so that the product factor in (4.6) nicely simplifies as

follows
3
∏

i=1

fb(w)− fi(0)
fa(z)− fi(0)

=
f3(w)− 1

f3(z)− 1
, ∀ a, b = 1, 2, 3 (4.9)

Now, as in the matter case, we consider the decomposition

Ñab
nm =

1

3
(Ẽnm + ᾱa−bŨnm + αa−b ¯̃Unm) (4.10)

where

Ẽnm =

∮

dz

2πi

∮

dw

2πi
Nnm(z, w)A(z, w)

Ũnm =

∮

dz

2πi

∮

dw

2πi
Nnm(z, w)U(z, w) (4.11)

¯̃Unm =

∮

dz

2πi

∮

dw

2πi
Nnm(z, w)Ū (z, w)

and

A(z, w) = 3f(z)f(w)

f3(z)− f3(w)

U(z, w) = 3f2(z)

f3(z)− f3(w)

Ū(z, w) = 3f2(w)

f3(z)− f3(w)

Nnm(z, w) =
1

zn−1

1

wm+2
(f ′(z))2(f ′(w))−1 f

3(w) − 1

f3(z)− 1

After some elementary algebra, using f ′(z) = 4i
3

1
1+z2

f(z), one finds

Ẽnm =

∮

dz

2πi

∮

dw

2πi

1

zn+1

1

wm+1

( 1

1 + zw
− w

w − z
)

Ũnm =

∮

dz

2πi

∮

dw

2πi

1

zn+1

1

wm+1

f(z)

f(w)

( 1

1 + zw
− w

w − z
)

(4.12)

¯̃Unm =

∮

dz

2πi

∮

dw

2πi

1

zn+1

1

wm+1

f(w)

f(z)

( 1

1 + zw
− w

w − z
)

Using the property f(−z) = (f(z))−1, one can easily prove that

¯̃Unm = (−1)n+mŨnm (4.13)
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4.2 Computation of the coefficients

In this section we explicitly compute the above integrals. We shall see that the presence

of the three c zero modes induces an ambiguity in the (0, 0), (−1, 1), (1,−1) components

of the Neumann coefficients. This in turn arises from the ambiguity in the radial ordering

of the integration variables z, w. While the result does not depend on what variable we

integrate first, it does depend in general on whether |z| > |w| or |z| < |w|.
If we choose |z| > |w| we get

Ẽ(1)
nm = θ(n)θ(m)(−1)nδnm + δn,0δm,0 + δn,−1δm,1 (4.14)

while, if we choose |z| < |w|, we obtain

Ẽ(2)
nm = θ(n)θ(m)(−1)nδnm − δn,1δm,−1 (4.15)

where θ(n) = 1 for n > 0, θ(n) = 0 for n ≤ 0. We see that the result is ambiguous for the

components (0, 0), (−1, 1), (1,−1).
To compute Ũnm we expand f(z) for small z, as in section 3,

f(z) =
∞
∑

k=0

bkz
k

Since f−1(z) = f(−z) we get the relation

n
∑

k=0

(−1)kbkbn−k = δn,0 (4.16)

which is identically satisfied for n odd, while for n even it can be also rewritten as

b2n = −2
n
∑

k=1

(−1)kbn−kbn+k (4.17)

Taking |z| > |w| and integrating z first, one gets

Ũ (1a)
nm = δn+m + (−1)m

n
∑

l=1

(bn−lbm−l − (−1)lbn−lbm+l) (4.18)

If, instead, we integrate w first,

Ũ (1b)
nm = (−1)mbnbm + (−1)m

m
∑

l=1

(bn−lbm−l + (−1)lbn+lbm−l) (4.19)

One can check that, due to (4.17),

Ũ (1a)
nm = Ũ (1b)

nm ≡ Ũ (1)
nm (4.20)

Now we take |z| < |w| and get similarly

Ũ (2a)
nm = (−1)m

n
∑

l=1

(bn−lbm−l − (−1)lbn−lbm+l)

Ũ (2b)
nm = −δn+m + (−1)mbnbm + (−1)m

m
∑

l=1

(bn−lbm−l + (−1)lbn+lbm−l)
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Again, due to (4.17)

Ũ (2a)
nm = Ũ (2b)

nm = Ũ (2)
nm (4.21)

Comparing Ũ (1) with Ũ (2), we see once more that the ambiguity only concerns the

(0, 0), (−1, 1), (1,−1) components. Using (4.10) we define

Ñab, (1,2)
nm =

1

3
(Ẽ(1,2)

nm + ᾱ(a−b)Ũ (1,2)
nm + αa−b(−1)n+mŨ (1,2)

nm )

The above ambiguity propagates also to these coefficients, but only when a = b. For later

reference it is useful to notice that

Ñ
ab, (1,2)
−1,m = 0, except perhaps for a = b, m = 1

Ñ
ab, (1,2)
0,m = 0, except perhaps for a = b m = 0 (4.22)

and, for |n| ≤ 1,

Ñ
ab, (1,2)
n,1 = 0, except perhaps for a = b n = −1 (4.23)

We notice that, if in eq.(4.3,4.4) the summation over m,n starts from −1, the above

ambiguity is consistent with the general identification proposed in [6]

Ñab
nm = 〈Ṽ3|b(a)−nc

(b)
−m|0̇〉1|0̇〉2|0̇〉3 (4.24)

It is easy to see that the expression in the RHS is not bpz covariant when (m,n) take

values (0, 0), (−1, 1), (1,−1) and the lower bound of the m,n summation in the vertex (see

above) is −1. Such bpz noncovariance corresponds exactly to the ambiguity we have come

across in the explicit evaluation of the Neumann coefficients. We can refer to it as the bpz

or radial ordering anomaly.

4.3 Two alternatives

It is clear that we are free to fix the ambiguity the way we wish, provided the convention

we choose is consistent with bpz conjugation. We consider here two possible choices. The

first consists in setting to zero all the components of the Neumann coefficients which are

ambiguous, i.e. the (0, 0), (−1, 1), (1,−1) ones. This leads to a definition of the vertex

(4.3) in which the summation over n starts from 1 while the summation over m starts from

0. In this way any ambiguity is eliminated and the Neumann coefficients are bpz covariant.

This is the preferred choice in the literature, [14, 16, 15, 17, 18]. In particular, it has led in

[14] to a successful comparison of the operator formulation with a twisted conformal field

theory one.

We would like, now, to make some comments about this first choice, with the purpose

of stressing the difference with the alternative one we will discuss next. In particular we

would like to emphasize some aspects of the BRST cohomology in VSFT. In VSFT the

BRST operator is conjectured [14, 15] to take the form

Q = c0 +

∞
∑

n=1

fn(cn + (−1)nc−n) (4.25)
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It is easy to show that the vertex is BRST invariant, i.e.

3
∑

a=1

Q(a)|Ṽ3〉 = 0 (4.26)

Due to

{Q, b0} = 1 (4.27)

it follows that the cohomology of Q is trivial. As was noted in [17], this implies that the

subset of the string field algebra that solves (2.9) is the direct sum of Q–closed states and

b0–closed states (i.e. states in the Siegel gauge).

|Ψ〉 = Q|λ〉+ b0|χ〉 (4.28)

As a consequence of the BRST invariance of the vertex it follows that the star product of a

BRST-exact state with any other is identically zero. This implies that the VSFT equation

of motion can determine only the Siegel gauge part of the solution.

For this reason previous calculations were done with the use of the reduced vertex

[15, 14] which consists of Neumann coefficients starting from the (1,1) component. The

unreduced star product can be recovered by the midpoint insertion of Q = 1
2i (c(i)− c(−i))

as

|ψ ∗ φ〉 = Q|ψ ∗b0 φ〉 (4.29)

where ∗b0 is the reduced product.

In the alternative treatment given below, using an enlarged Fock space, we compute the

star product and solve (2.9), without any gauge choice and any explicit midpoint insertion.

Motivated by the advantages it offers in the search of solutions to (2.9), we propose

therefore a second option. It consists in fixing the ambiguity by setting

Ñaa
−1,1 = Ñaa

1,−1 = 0, Ñaa
0,0 = 1. (4.30)

If we do so we get a fundamental identity, valid for Ũnm ≡ Ũ (1)
nm (for n,m ≥ 0),

∑

k=0

ŨnkŨkm = δnm (4.31)

Defining

X̃ab = CṼ ab, (4.32)

eq.(4.31) entails

[X̃ab, X̃a′b′ ] = 0 (4.33)

One can prove eq.(4.31) numerically. By using a cutoff in the summation one can

approximate the result to any desired order (although the convergence with increasing

cutoff is less rapid than in the corresponding matter case, see section 3.1). A direct analytic

proof of eq.(4.31) is given in Appendix.

The next subsection is devoted to working out some remarkable consequences of

eq.(4.31).
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4.4 Matrix structure

Once the convention (4.30) is chosen, we recognize that all the matrices (Ẽ, Ũ , ¯̃U) have

the (0, 0) component equal to 1, all the other entries of the upper row equal to 0, and a

generally non vanishing zeroth column. More precisely

Ũ00 = Ẽ00 = 1

Ũn0 = bn Ẽn0 = 0, Ũ0n = Ẽ0n = δn,0 (4.34)

Ũnm 6= 0, n,m > 0

This particular structure makes this kind of matrices simple to handle under a generic

analytic map f . In order to see this, let us inaugurate a new notation, which we will

use in this and the next section. We recall that the labels M,N indicate the couple

(0,m), (0, n). Given a matrix M , let us distinguish between the ‘large’ matrix MMN

denoted by the calligraphic symbol M and the ‘small’ matrix Mmn denoted by the plain

symbol M . Accordingly, we will denote by Y a matrix of the form (4.34), ~y = (y1, y2, ...)

will denote the nonvanishing column vector and Y the ‘small’ matrix

YNM = δN0δM0 + ynδM0 + Ymn, (4.35)

or, symbolically, Y = (1, ~y, Y ).

Then, using a formal Taylor expansion for f , one can show that

f [Y]NM = f [1]δN0δM0 +
(f [1]− f [Y ]

1− Y ~y
)

n
δM0 + f [Y ]mn (4.36)

Now let us define

Y ≡ X̃11

Y+ ≡ X̃12 (4.37)

Y− ≡ X̃21 (4.38)

These three matrices have the above form. Using (4.31) one can prove the following prop-

erties (which are well–known for the ‘small’ matrices)

Y + Y+ + Y− = 1

Y2 + Y2
+ + Y2

− = 1

Y3
+ + Y3

− = 2Y3 − 3Y2 + 1

Y+Y− = Y2 − Y (4.39)

[Y,Y±] = 0

[Y+,Y−] = 0

Using (4.35, 4.36) we immediately obtain (we point out that, in particular for Y, y2n =
2
3 b2n, y2n+1 = 0 and Ynm = X̃nm for n,m > 0)

Y + Y+ + Y− = 1
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~y + ~y+ + ~y− = 0

Y 2 + Y 2
+ + Y 2

− = 1

(1 + Y )~y + Y+~y+ + Y−~y− = 0

Y 3
+ + Y 3

− = 2Y 3 − 3Y 2 + 1

Y 2
+~y+ + Y 2

−~y− = (2Y 2 − Y − 1)~y (4.40)

Y+Y− = Y 2 − Y
[Y, Y±] = 0

[Y+, Y−] = 0

Y+~y− = Y ~y = Y−~y+

−Y±~y = (1− Y )~y±

These properties were shown in various papers, see [15, 18]. Here they are simply conse-

quences of (4.39), and therefore of (4.31). In particular we note that the properties of the

‘large’ matrices are isomorphic to those of the ‘small’ ones. This fact allows us to work

directly with the ‘large’ matrices, handling at the same time both zero and not zero modes.

4.5 Enlarged Fock space

We have seen in the last subsection the great advantages of introducing the convention

(4.30). In this subsection we make a proposal as to how to incorporate this convention

in an enlargement of the bc system’s Fock space. In fact, in order for eq.(4.24) to be

consistent, a modification in the RHS of this equation is in order. This can be done by, so

to speak, ‘blowing up’ the zero mode sector. We therefore enlarge the original Fock space,

while warning that our procedure may be far from unique. For each string, we split the

modes c0 and b0:

η0 ← c0 → η†0, ξ†0 ← b0 → ξ0 (4.41)

In other words we introduce two additional couple of conjugate anticommuting creation

and annihilation operators η0, η
†
0 and ξ0, ξ

†
0

{ξ0, η0} = 1, {ξ†0, η
†
0} = 1 (4.42)

with the following rules on the vacuum

ξ0|0〉 = 0, 〈0|ξ†0 = 0 (4.43)

η†0|0〉 = 0, 〈0|η0 = 0 (4.44)

while ξ†0, η0 acting on |0〉 create new states. The bpz conjugation properties are defined by

bpz(η0) = −η†0, bpz(ξ0) = ξ†0 (4.45)

The reason for this difference is that η0 (ξ0) is meant to be of the same type as c0 (b0).

The anticommutation relation of c0 and b0 remain the same

{c0, b0} = 1 (4.46)
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All the other anticommutators among these operators and with the other bc oscillators are

required to vanish. In the enlarged Fock space all the objects we have defined so far may

get slightly changed. In particular the three strings vertex (4.3,4.4) is now defined by

Ẽ′
(en) =

∞
∑

n≥1,m≥0

c(a) †n Ṽ (ab)
nm b(b)†m − η(a)0 b

(a)
0 (4.47)

With this redefinition of the vertex any ambiguity is eliminated, as one can easily check.

In a similar way we may have to modify all the objects that enter into the game.

The purpose of the Fock space enlargement is to make us able to evaluate vev’s of the

type

〈0̇| exp
(

cFb+ cµ+ λb
)

exp
(

c†Gb† + θb† + c†ζ
)

|0̂〉 (4.48)

which are needed in star products. Here we use an obvious compact notation: F,G denotes

matrices FNM , GNM , and λ, µ, θ, ζ are anticommuting vectors λN , µN , θN , ζN . In cFb +

cµ + λb it is understood that the mode b0 is replaced by ξ0 and in c†Gb† + θb† + c†ζ the

mode c0 is replaced by η0. In this way the formula is unambiguous and we obtain

〈0̇| exp (cFb+ cµ+ λb) exp
(

c†Gb† + θb† + c†ζ
)

|0̂〉

= det(1 + FG) exp
(

−θ 1
1+FGFζ − λ 1

1+GFGµ − θ 1
1+FGµ+ λ 1

1+GF ζ
)

(4.49)

Eventually, after performing the star products, we will return to the original Fock space.

5. Solving the ghost equation of motion in VSFT

We are now ready to deal with the problem of finding a solution to (2.9)

Q|ψ〉+ |ψ〉 ∗ |ψ〉 = 0 (5.1)

Since now we are operating in an enlarged the Fock space, Qmust be modified, with respect

to the conjectured form of the BRST operator (4.25) in VSFT, in the following way

Q → Q(en) = c0 − η0 + η†0 +
∞
∑

n=1

fn(cn + (−1)nc−n) (5.2)

The first thing we would like to check is BRST invariance of the vertex, i.e.

3
∑

a=1

Q(a)
(en)|Ṽ3〉(en) = 0 (5.3)

It is easy to verify that both equations are identically satisfied thanks to the first two

eqs.(4.40), and thanks to addition of −η0 in (5.2) (η†0 passes through and annihilates the

vacuum).

In order to solve equation (5.1) we proceed to find a solution to

|ψ̂〉3 =1 〈ψ̇|2〈ψ̇|V123〉 (5.4)
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where ψ̂ and ψ̇ are the same state on the ghost number 2 and 1 vacuum, respectively. We

choose the following ansatz

|ψ̂〉 = |Ŝ(en)〉 = N exp

(

∑

n,m≥1

c†nSnmb
†
m +

∑

N≥0

c†NSN0ξ
†
0

)

|0̂〉 (5.5)

|ψ̇〉 = |Ṡ(en)〉 = N exp

(

∑

n,m≥1

c†nSnmb
†
m +

∑

N≥0

c†NSN0ξ
†
0

)

|0̇〉 (5.6)

Following now the standard procedure, [10, 30], from (5.4), using (4.49), we get

T = Y + (Y+,Y−)
1

1− ΣVΣ
(Y−
Y+

)

(5.7)

In RHS of these equations

Σ =

( T 0

0 T

)

, V =

( Y Y+
Y− Y

)

.

where T = CS and Y,Y± have been defined by eq.(4.38).

We repeat once more that the matrix equation (5.7) is understood for ‘large’ matrices,

which include the zeroth row and column, i.e. Y = X̃11 = CÑ11 = (1, ~y, Y ≡ X̃),

T = (1,~t, T̃ ) and S = (1, ~s, S̃). This is a novelty of our treatment. In fact, solving eq.(5.7),

we obtain the algebraic equation

T = CS =
1

2Y
(

1 + Y −
√

(1 −Y)(1 + 3Y)
)

(5.8)

which splits into the relations

T00 = S00 = 1

T̃ =
1

2X̃

(

1 + X̃ −
√

(1− X̃)(1 + 3X̃)
)

(5.9)

~t =
1− T̃
1− X̃

~y

The normalization constant N is, formally, given by

N =
1

det (1−ΣV) (5.10)

However we notice that the (0,0) entry of ΣV is 1, so the determinant vanishes. Therefore

we have to introduce a regulator ε→ 0, and write

Nε =
1

ε

1

det′ (1−ΣV) (5.11)

where det′ is the determinant of the ‘small’ matrix part alone. This divergence is not

present in the literature, [14, 18]. It is in fact related to the 1 eigenvalue of T and Y in

the twist even sector (i.e. in the eigenspace of C with eigenvalue 1). This is therefore an
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additional divergence with respect to the usual one due to the 1 eigenvalue of X̃ in the

twist–odd sector (see below).

Now we prove that this solves (5.1). Indeed, after some elementary algebra, we arrive

at the expression

Q(en)|Ṡ〉+ |Ŝ〉 =
(

− c†n [(~s)n − (C − S)nkfk] + c0 − η0
)

|Ṡ〉 (5.12)

We would like to find ~f so that the expression in square brackets in (5.12) vanishes. Using

the last equation in (5.9) we see that this is true provided

~y = (1− X̃)~f (5.13)

Now, by means of an explicit calculation, we verify that the solution to (5.13) is

fn =
1

2
(1 + (−1)n)(−1)n

2 (5.14)

For inserting in the RHS of (5.13) both (5.14) and X̃ in the form

X̃ =
1

3
(1 + CŨ + ŨC)

we see that the vanishing of fn for n odd is consistent since ~y has no odd components,

while for n even we have

y2n =

∞
∑

k=1

2

3
(−1)k

(

δ2n,2k − Ũ2n,2k

)

(5.15)

The second sum is evaluated with the use of the integral representation of U (4.12)

∞
∑

k=1

(−1)k Ũ2n,2k =

∮

dz

2πi

∮

dw

2πi

1

z2n+1

∞
∑

k=1

(−1)k 1

w2k+1

f(z)

f(w)

( 1

1 + zw
− w

w − z
)

= −
∮

dz

2πi

∮

dw

2πi

1

z2n+1

1

w

1

1 +w2

f(z)

f(w)

( 1

1 + zw
− w

w − z
)

(5.16)

= −
∮

dz

2πi

1

z2n+1
f(z)

(

1− 1

f(z)

1

1 + z2

)

= −b2n +

∞
∑

k=1

(−1)kδ2n,2k

The δ-piece cancels with the one in (5.15), while the remaining one is precisely y2n.

The derivation in (5.16) requires some comments. In passing from the first to the

second line we use
∑∞

k=1(−1)k 1
w2k+1 = − 1

w
1

1+w2 , which converges for |w| > 1. Therefore,

in order to make sense of the operation, we have to move the w contour outside the circle of

radius one. This we can do provided we introduce a regulator (see Appendix) to avoid the

overlapping of the contour with the branch points of f(w), which are located at w = ±i.
With the help of a regulator we move them far enough and eventually we will move them

back to their original position. Now we can fully rely on the integrand in the second line of
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(5.16). Next we start moving the w contour back to its original position around the origin.

In so doing we meet two poles (those referring to the 1
1+w2 factor), but it is easy to see that

their contribution neatly vanishes due to the last factor in the integrand. The remaining

contributions come from the poles at w = z and at w = 0. Their evaluation leads to the

third line in (5.16). The rest is obvious.

As a result of this calculation we find that eq.(5.12) becomes

Q(en)|Ṡ(en)〉+ |Ŝ(en)〉 = (c0 − η0)|Ṡ(en)〉 (5.17)

Finally, as a last step, we return to the original Fock space. A practical rule to do so

is to drop all the double zero mode terms in the exponentials4 (such as, for instance, c0ξ
†
0)

and to impose the condition c0 − η0 = 0 on the states, i.e. by considering all the states

that differ by c0 − η0 acting on some state as equivalent. The same has to be done also

for b0 − ξ†0 (paying attention not to apply both constraints simultaneously, because they

do not commute). These rules are enough for our purposes. In this context the RHS of

eq.(5.17) is in the same class as 0.

Let us collect the results. In the original Fock space the three string vertex is defined

by

Ẽ′ =
∞
∑

n≥1,M≥0

c(a) †n Ṽ
(ab)
nM b

(b)†
M (5.18)

eqs.(5.5,5.6) becomes

|Ŝ〉 = N exp

(

∑

n,m≥1

c†nSnmb
†
m +

∑

n≥1

c†nSn0b0

)

|0̂〉 (5.19)

|Ṡ〉 = N exp

(

∑

n,m≥1

c†nSnmb
†
m

)

|0̇〉 (5.20)

It is now easy to prove, as a check, that

Q|Ṡ〉+ |Ŝ〉 = 0 (5.21)

where

Q = c0 +

∞
∑

n=1

(−1)n(c2n + c−2n) (5.22)

The above computation proves in a very direct way that the BRST operator is nothing

but the midpoint insertion ( z = i ) of the operator 1
2i(c(z) − c(z̄)) [14]. A different proof

of this identification, which makes use of the continuous basis of the ∗–algebra [50], was

given in [18].

As an additional remark, we point out that the ghost action calculated in the en-

larged and restricted Fock space are different, although they are both divergent due to the

normalization (5.11).

4Which is equivalent to normal ordering these terms. We thank A.Kling and S.Uhlmann for this sug-

gestion.
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A final warning to the reader: the method of ‘large’ matrices is extremely powerful

and leads in a very straightforward way to results that are very laborious to be obtained by

alternative methods; the incorporation of ‘large’ matrices in the Fock space formalism, on

the other hand, is given here on an ad hoc basis and certainly needs some formal polishing.

5.1 A comment on the eigenvalues of Neumann coefficients matrices

The introduction of ‘large’ matrices gives us the opportunity to clarify an important point

concerning the eigenvalues of the (twisted) matrices of three strings vertex coefficients.

The diagonalization of the reduced ∗-product was performed in [18, 42, 43, 60], using a

remarkable relation between matter coefficients and ghost coefficients [45]. Here we will

make some comments about the singular role played by the midpoint, which turns out to

be quite transparent in the diagonal basis. Our commuting vertex coefficients (including

the (0, 0) component) are of the form

Y =

(

1 0

~y Y

)

(5.23)

Y± =

(

0 0

~y± Y±

)

(5.24)

It is then evident that the eigenvalues are

eig[Y] = 1⊕ eig[Y ] (5.25)

eig[Y±] = 0⊕ eig[Y±] (5.26)

We can easily put them in a block diagonal form

Ŷ =

(

1 0

0 Y

)

(5.27)

Ŷ± =

(

0 0

0 Y±

)

(5.28)

This is achieved by

Ŷ(±) = Z−1Y(±)Z (5.29)

The block-diagonalizing matrix is

Z =

(

1 0
~f 1

)

(5.30)

Z−1 =

(

1 0

−~f 1

)

(5.31)

where
~f =

1

1− Y ~y = − 1

Y±
~y± (5.32)

At first sight one might think that, since (5.32) has the well known solution fn = 1
2(1 +

(−1)n)in, it cannot be the case that either Y has eigenvalue 1, or Y± have the eigenvalue

0. However (5.32) is a statement in the twist–even sector of the Hilbert space of vectors
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{vn}, n = 1, 2, .... So we must conclude that small matrices do not have singular eigenvalues

in this sector. The twist–odd sector on the contrary contains singular eigenvalues. This

was noted in [42, 60], where the following spectrum for the ‘small’ matrices ,(Y, Y±) was

found

y(κ) =
1

2 cosh x− 1
(5.33)

y±(κ) =
coshx± sinhx− 1

2 cosh x− 1
(5.34)

where x ≡ πκ
2 and κ is a continuous parameter in the range (−∞, ∞).

It was pointed out in [42, 60] that to any κ 6= 0 there correspond two eigenvectors of

opposite twist–parity, while κ = 0 has only one twist–odd eigenvector. On the basis of the

discussion in this paper we see that, when considering the ‘large’ matrix Y, we have an

additional 1 eigenvalue whose twist–even eigenvector is given by the first column of (5.30)
5 .

In terms of the bc standard modes we can write

c̃0 = c0 +
∑

n≥1

fn(cn + (−1)nc†n) = Q (5.35)

c̃n = cn n 6= 0 (5.36)

b̃0 = b0 (5.37)

b̃n = −fnb0 + bn n 6= 0 (5.38)

where we have defined (f−n ≡ fn). As noted also in [17] this is an equivalent representation

of the bc system6

{b̃N , c̃M} = δN+M N,M = −∞, ..., 0, ...,∞ (5.39)

This can possibly be viewed as a redefinition of the CFT fields c(z), b(z).

If we exclude the c̃0, b̃0 zero modes we are left with the reduced ∗-product which turns

out to be an associative product for states in the Siegel gauge. In particular we note that,

since, in the reduced product, the value κ = 0 is related to only one eigenvector of Y and

since the same value is intimately related to the midpoint (5.35), the Siegel gauge can be

regarded as a split string description.

A possible suggestion to appropriately treat the additional singular 1 eigenvalue of Y
may be to “blow up” the zero modes, as before, in two triples of conjugate operators. Then

we can safely compute ∗-products in an enlarged Fock space and then return to the original

space by appropriate restrictions. As an encouraging indication in this direction, we notice

that

K1 = L1 + L−1 (5.40)

5This is very similar to what happens with the Neumann coefficients in the matter sector with zero

modes in [61].
6In order to prove this, twist invarince of ~f is crucial (C ~f = ~f)
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where L1 and L−1 are the ghost Virasoro generators, can be modified in the enlarged space

by formally setting

c0 → c0 − η0 + η†0 (5.41)

It is easy to see that the vertex is K1-invariant. In fact, keeping for simplicity only the

zero mode part which is the only one of interest in this aspect, we have

K1e
−η0b0 |0̂〉 = e−η0b0

(

(−c0 − η0 + η†0 + η0)(b1 + b−1)
)

c0|0̇〉 = 0 (5.42)

6. Matter projectors and D–branes

In this second part of the review we will be concerned with the solutions of the matter

part of the VSFT equations of motion, i.e. with solutions to (2.10). However instead of

reviewing the well–known squeezed state solutions to [30, 46] as well as the related solutions

discussed in [22, 23], our leading idea will be to find VSFT solutions in order to make a

comparison with solutions in scalar noncommutative field theories. In particular we will

show that it is possible to establish a one-to-one correspondence between tachyonic lumps,

i.e lower dimensional D–branes, in the former and solitonic solutions in the latter. This

correspondence is fully exposed by introducing a constant background B field.

To start with we fix the solution of the ghost part in the form given in the previous

section and concentrate on the matter part. The value of the action for such solutions is

given by

S(Ψ) = K〈Ψm|Ψm〉 (6.1)

where K contains the ghost contribution. We recall that K is infinite (see above) unless

the action is suitably regularized. The choice of a regularization should be understood as

a ‘gauge’ freedom, [22], in choosing the solutions to (2.7). So a coupled solution to (2.9)

and (2.10), even if the action is naively infinite in its ghost component, is nevertheless a

legitimate representative of the corresponding class of solutions.

6.1 Solitons in noncommutative field theories

Before we set out to discuss solutions to (2.10) and to better explain our aim, let us

briefly describe solitons in noncommutative field theories, (see [31] for a beautiful review).

Noncommutative field theories are effective low energy field theories which live on the world-

volume of D–branes in the presence of a constant background B field. To be definite, let us

think of a D25–brane in bosonic string theory. The simplest example of effective theories is

a noncommutative theory of a scalar field φ, which is thought to represent the tachyon living

on the brane (this is an oversimplified situation, in fact one could easily take the gauge field

as well into account, while the massive string states are thought to having been integrated

out). We concentrate on the case in which B is switched on along two space directions,

which we denote by x = q and y = p (from now one, for simplicity, we will drop the other

coordinates). The coordinates become noncommutative and the ensuing situation can be

described by replacing the initial theory with a theory in which all products are replaced

– 23 –



by the Moyal ⋆ product with deformation parameter θ (linked to B as explained below).

Alternatively one can use the Weyl map and replace the noncommutative coordinates by

two conjugate operators q̂, p̂, such that [q̂, p̂] = iθ. In the large θ limit, after a suitable

rescaling of the coordinates, the kinetic part of the action becomes negligible, so only the

potential part,
∫

dx dy V⋆(φ), is relevant. Using the Weyl correspondence, the action can

be replaced by 2πθTrHV (φ̂), where H is the Hilbert space constructed out of q̂, p̂, and φ̂

is the operator corresponding to the noncommutative field φ. Solutions to the equations

of motion take the form

φ̂ = λiP, P 2 = P (6.2)

where λi, i = 1, . . . , n are the minima of the classical commutative potential V , which is as-

sumed to be polynomial. The energy of such a solution is therefore given by 2πθ V (λi)TrHP .

On the basis of this discussion it is clear that, in order to know the finite energy

solutions of the noncommutative scalar theory, we have to find the finite rank projectors

in the space H. The latter can be constructed in the following way. Define the harmonic

oscillator a = (q̂ + ip̂)/
√

(2θ) and its hermitean conjugate a†: [a, a†] = 1. By a standard

construction we can define the normalized harmonic oscillator eigenstates: |n〉 = (a†)n√
n!
|0〉.

Now, via the Weyl correspondence, we can map any operator |n〉〈m| to a classical function

of the coordinates x, y. In particular |n〉〈n|, which are rank one projectors, will be mapped

to classical functions

ψn(x, y) = 2 (−1)nLn

(

2r2

θ

)

e−
r2

θ (6.3)

where r2 = x2 + y2. Each of these solutions, by construction, satisfy ψn ⋆ ψn = ψn. We

refer to them as the GMS solitons [57]. They can be interpreted as D23–branes. We

can of course consider any finite sum of these projectors. They will also be solutions.

They are interpreted as collapsing D23–branes. Moreover, using the shift operator S =
∑∞

n=0 |n + 1〉〈n|, one can set up a solution generating techniques, whereby a nontrivial

soliton solution can be generated starting from a trivial one by repeated application of S

(see ([31])).

Our purpose in this paper is to show how the soliton solutions just described arise in

VSFT. The way they can be seen is by taking the low energy limit of tachyonic lumps

representing D23–branes in VSFT [27, 28]. They are, so to speak, relics of VSFT branes

in the α′ → 0 limit.

6.2 The background B field

But before we turn to this, we will introduce a background field B in SFT. In ref. [32] and

[33] it was shown that, when such a field is switched on, in the low energy limit the string

field theory star product factorizes into the ordinary Witten ∗ product and the Moyal ⋆

product. A related result can be obtained in the following way. The string field theory

action (2.1) can be explicitly calculated in terms of local fields, provided the string field

is expressed itself in terms of local fields as in (2.2). Of course this makes sense only
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in the limit in which string theory can be approximated by a local field theory. In this

framework (2.1) takes the form of an infinite series of integrated local polynomials (kinetic

and potential terms) of the fields involved in (2.2) as explained in section 2. Now, it has

been proven by [34, 35] that, when a B field is switched on, the kinetic term of (2.1)

remains the same while the three string vertex changes, being multiplied by a (cyclically

invariant) noncommutative phase factor (see ([34, 35]) and eq.(7.2) below). It is easy to see

on a general basis that the overall effect of such noncommutative factor is to replace the

ordinary product with the Moyal product in the RHS of the effective action (for a related

approach see [36]).

Therefore, we know pretty well the effects of a B field when perturbative configurations

are involved. What we wish to explore here are the effects of a B field on nonperturbative

solutions. We find that a B field has the virtue of smoothing out some of the singularities

that appear in VSFT. As for the overall star product in the presence of a background B

field, it turns out that Witten’s star product and Moyal product are completely entangled

in nonperturbative configurations. Nevertheless, in the low energy limit, we can again

witness the factorization into Witten’s star product and the Moyal one. It is exactly this

factorization that allows us to recover the noncommutative field theory solitons.

We also remark that switching on a B field in VSFT is consistent with the interpreta-

tion of VSFT. The latter is thought to describe closed string theory, and the antisymmetric

field B belongs in the massless sector of a bosonic closed string theory.

Finally we would like to stress that the Moyal star product referred to here has nothing

to do with the Moyal representation of Witten’s star product which was suggested in

[37, 38]. This representation can be seen as a confirmation of an old theorem [39] concerning

the uniqueness of the Moyal product in the class of noncommutative associative products,

however it is realized in an (unphysical) auxiliary space, see [40, 41, 42], therefore it cannot

affect the physical space–time.

6.3 Organization of the paper. Second part

In section 7 we derive the new Neumann coefficients for the three string vertex in the

presence of a background B field. In section 8 we solve the projector equation (2.10) for

a 23–dimensional tachyonic lump and justify its D23–brane interpretation. In section 9

we start examining the effect of the B field on such solution. In section 10 we generalize

the lump solution of section 8. We construct a series of solutions to the matter projector

equation, which we denote by |Λn〉 for any natural number n. |Λn〉 is generated by acting

on a tachyonic lump solution |Λ0〉 with (−κ)nLn(x/κ), where Ln is the n-th Laguerre

polynomial, x is a quadratic expression in the string creation operators, see below eqs.(4.35,

10.7), and κ is an arbitrary real constant. These states satisfy the remarkable properties

|Λn〉 ∗ |Λm〉 = δn,m|Λn〉 (6.4)

〈Λn|Λm〉 = δn,m〈Λ0|Λ0〉 (6.5)

Each |Λn〉 represents a D23–brane, parallel to all the others. In section 11 we show that

the field theory limit of |Λn〉 factors into the sliver state (D25–brane) and the n-th GMS

soliton. Section 12 describes related results.
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7. The three string vertex in the presence of a constant background B

field

The three string vertex [1, 44, 45] of the Open String Field Theory was given in eq.(3.1).

The notation V rs
MN for the vertex coefficients will often be used from now on, where M(N)

will denote the couple {0,m} ({0, n}).
Our first goal is to find the new form of the coefficients V rs

MN when a constant B field

is switched on. We start from the simplest case, i.e. when B is nonvanishing in two space

directions, say the 24–th and 25–th ones. Let us denote these directions with the Lorentz

indices α and β. Then, as is well–known [47, 34, 35], in these two directions we have a

new effective metric Gαβ , the open string metric, as well as an effective antisymmetric

parameter θαβ, given by

Gαβ =

(

1

η + 2πα′B
η

1

η − 2πα′B

)αβ

, θαβ = −(2πα′)2
(

1

η + 2πα′B
B

1

η − 2πα′B

)αβ

Henceforth we set α′ = 1, unless otherwise specified.

The three string vertex is modified only in the 24-th and 25-th direction, which, in

view of the subsequent D–brane interpretation, we call the transverse directions. We split

the three string vertex into the tensor product of the perpendicular part and the parallel

part

|V3〉 = |V3,⊥〉 ⊗ |V3,‖〉 (7.1)

The parallel part is the same as in the ordinary case and will not be re-discussed here. On

the contrary we will describe in detail the perpendicular part of the vertex. We rewrite

the exponent E as E = E‖ +E⊥, according to the above splitting. E⊥ will be modified as

follows

E⊥ → E′
⊥ =

3
∑

r,s=1





1

2

∑

m,n≥1

Gαβa
(r)α†
m V rs

mna
(s)β†
n +

∑

n≥1

Gαβp
α
(r)V

rs
0na

(s)β†
n

+
1

2
Gαβp

α
(r)V

rs
00 p

β
(s) +

i

2

∑

r<s

p(r)α θαβp
(s)
β

)

(7.2)

Next, as far as the zero modes are concerned, we pass from the momentum to the

oscillator basis, [44, 45]. We define

a
(r)α
0 =

1

2

√
bp̂(r)α − i 1√

b
x̂(r)α, a

(r)α†
0 =

1

2

√
bp̂(r)α + i

1√
b
x̂(r)α, (7.3)

where p̂(r)α, x̂(r)α are the zero momentum and position operator of the r–th string, and we

have kept the ‘gauge’ parameter b of ref.[46] (b ∼ α′). From now on Lorentz indices are

raised and lowered by means of the effective open string metric, for instance p(r)α = Gαβp
(r)
β .

We have

[a
(r)α
M , a

(s)β†
N ] = GαβδrsδMN , N,M ≥ 0 (7.4)
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Denoting by |Ωb,θ〉 the oscillator vacuum ( aαN |Ωb,θ〉 = 0, for N ≥ 0 ), the relation between

the momentum basis and the oscillator basis is defined by

|p24〉123 ⊗ |p25〉123 ≡ |{pα}〉123 =

(

b

2π
√
detG

) 3
2

exp

[

3
∑

r=1

(

− b
4
p(r)α Gαβp

(r)
β +

√
ba

(r)α†
0 p(r)α −

1

2
a
(r)α†
0 Gαβa

(r)β†
0

)

]

|Ωb,θ〉

Now we insert this equation inside E′
⊥ and try to eliminate the momenta along the per-

pendicular directions by integrating them out. To this end we rewrite E′
⊥ in the following

way and, for simplicity, drop all the labels α, β and r, s:

E′
⊥ =

1

2

∑

m,n≥1

a†mGVmna
†
n +

∑

n≥1

pV0na
†
n +

1

2
p

[

G−1(V00 +
b

2
) +

i

2
θǫχ

]

p−
√
bpa†0 +

1

2
a†0Ga

†
0

where we have set θαβ = ǫαβθ and introduced the matrices ǫ with entries ǫαβ (which

represent the 2× 2 antisymmetric symbol with ǫ12 = 1) and χ with entries

χrs =





0 1 −1
−1 0 1

1 −1 0



 (7.5)

At this point we impose momentum conservation. There are three distinct ways to do that

and eventually one has to (multiplicatively) symmetrize with respect to them. Let us start

by setting p3 = −p1 − p2 in E′
⊥ and obtain an expression of the form

pX00 p+
∑

N≥0

p Y0N a
†
N +

∑

M,N≥0

a†M ZMN a
†
N (7.6)

where, in particular, X00 is given by

Xαβ,rs
00 = Gαβ (V00 +

b

2
) ηrs + i

θ

4
ǫαβ ǫrs (7.7)

Here the indices r, s take only the values 1,2, and η =

(

1 1/2

1/2 1

)

.

Now, as usual, we redefine p so as eliminate the linear term in (7.6). At this point we

can easily perform the Gaussian integration over p(1), p(2), while the remnant of (7.6) will

be expressed in terms of the inverse of X00:

(

X−1
00

)αβ,rs
=

2A−1

4a2 + 3

(

3

2
Gαβ (η−1)rs − 2i a ǫαβ ǫrs

)

(7.8)

where

A = V00 +
b

2
, a =

θ

4A
. (7.9)

Let us use henceforth for the B field the explicit form

Bαβ =

(

0 B

−B 0

)

(7.10)
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so that

DetG =
(

1 + (2πB)2
)2
, θ = −(2π)2B, a = −π

2

A
B (7.11)

Now one has to symmetrize with respect to the three possibilities of imposing the

momentum conservation. Remembering the factors due to integration over the momenta

and collecting the results one gets for the three string vertex in the presence of a B field

|V3〉′ = |V3,⊥〉′ ⊗ |V3,‖〉 (7.12)

|V3,‖〉 is the same as in the ordinary case (without B field), while

|V3,⊥〉′ = K2 e
−E′ |0̃〉 (7.13)

with

K2 =

√
2πb3

A2(4a2 + 3)
(DetG)1/4, (7.14)

E′ =
1

2

3
∑

r,s=1

∑

M,N≥0

a
(r)α†
M V

rs
αβ,MNa

(s)β†
N (7.15)

and |0̃〉 = |0〉 ⊗ |Ωb,θ〉. The coefficients Vαβ,rs
MN are given by

V
αβ,rs
00 = Gαβδrs − 2A−1b

4a2 + 3

(

Gαβφrs − iaǫαβχrs
)

(7.16)

V
αβ,rs
0n =

2A−1
√
b

4a2 + 3

3
∑

t=1

(

Gαβφrt − iaǫαβχrt
)

V ts
0n (7.17)

V
αβ,rs
mn = GαβV rs

mn −
2A−1

4a2 + 3

3
∑

t,v=1

V rv
m0

(

Gαβφvt − iaǫαβχvt
)

V ts
0n (7.18)

where, by definition, V rs
0n = V sr

n0 , and

φ =





1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1



 (7.19)

while the matrix χ has been defined above (7.5). These two matrices satisfy the algebra

χ2 = −2φ, φχ = χφ =
3

2
χ, φ2 =

3

2
φ (7.20)

Next, let us notice that the above results can be easily extended to the case in which

the transverse directions are more than two (i.e. the 24–th and 25–th ones) and even. The

canonical form of the transverse B field is

Bαβ =









0 B1

−B1 0
0 . . .

0
0 B2

−B2 0
. . .

. . . . . . . . .









(7.21)
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It is not hard to see that each couple of conjugate transverse directions under this decom-

position, can be treated in a completely independent way. The result is that each couple

of directions (26 − i, 25 − i), corresponding to the eigenvalue Bi, will be characterized by

the same formulas (7.16, 7.17, 7.18) above with B replaced by Bi.

The properties of the new Neumann coefficients Vrs
NM have been analyzed in [58]. Here

we write down the results.

To start with, let us quote

• (i) Vαβ,rs
NM are symmetric under simultaneous exchange of the three couples of indices;

• (ii) they are endowed with the property of cyclicity in the r, s indices, i.e. V
rs =

V
r+1,s+1, where r, s = 4 is identified with r, s = 1.

Next let us extend the twist matrix C by CMN = (−1)M δMN and define

X
rs ≡ CV

rs, r, s = 1, 2, X
11 ≡ X (7.22)

These matrices commute

[Xrs,Xr′s′ ] = 0 (7.23)

and

(Xrs)∗ = X̃
rs, i.e. (Xrs)† = X

rs

Moreover we have the following properties, which mark a difference with the B = 0 case,

CV
rs = Ṽ

srC, CX
rs = X̃

srC (7.24)

where we recall that tilde denotes transposition with respect to the α, β indices. Finally

one can prove that

X
11 + X

12 + X
21 = I

X
12
X
21 = (X11)2 − X

(X12)2 + (X21)2 = I− (X11)2

(X12)3 + (X21)3 = 2(X11)3 − 3(X11)2 + I (7.25)

In the matrix products of these identities, as well as throughout the paper, the indices α, β

must be understood in alternating up/down position: Xα
β. For instance, in (7.25) I stands

for δαβ δMN .

8. The squeezed state solution

In this section we wish to find a solution to the equation of motion |Ψ〉 ∗ |Ψ〉 = |Ψ〉 in the

form of squeezed states [48, 49, 50, 29]. A squeezed state in the present context is written

as

|S〉 = |S⊥〉 ⊗ |S‖〉 (8.1)
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where |S‖〉 has the ordinary form, see [30, 46], and is treated in the usual way, while

|S⊥〉 = N 2 exp



−1

2

∑

M,N≥0

aα†M Sαβ,MN aβ†N



 |Ωb,θ〉 (8.2)

The ∗ product of two such states, labeled 1 and 2, is

|S′
⊥〉 = |S1,⊥〉 ∗ |S2,⊥〉 =

K2 (N1N2)
2

DET(I− ΣV)1/2 exp



−1

2

∑

M,N≥0

aα†MS
′
αβ,MNa

β†
N



 |0̃〉 (8.3)

where, in matrix notation which includes both the indices N,M and α, β,

S
′ = V

11 + (V12,V21)(I− ΣV)−1Σ

(

V
21

V
12

)

(8.4)

In RHS of these equations

Σ =

(

CS1C 0

0 CS2C

)

, V =

(

V
11

V
12

V
21

V
22

)

, (8.5)

and Iα,rsβ,MN = δαβ δMN δ
rs, r, s = 1, 2. DET is the determinant with respect to all indices.

To reach the form (8.4) one has to use cyclicity of Vrs under r → r + 1, s → s + 1, see

above.

Let us now discuss the squeezed state solution to the equation |Ψ〉 ∗ |Ψ〉 = |Ψ〉 in the

matter sector. In order for this to be satisfied with the above states |S〉, we must first

impose

S1 = S2 = S
′ ≡ S

and then suitably normalize the resulting state. Then (8.4) becomes an equation for S, i.e.

S̃ = V
11 + (V12,V21)(I− ΣV)−1Σ

(

V
21

V
12

)

(8.6)

where Σ,V are the same as above with S1 = S2 = S. Eq.(8.6) has an obvious (formal)

solution by iteration. However in ref. [30] it was shown that it is possible to obtain the

solution in compact form by ‘abelianizing’ the problem. Notwithstanding the differences

with that case, it is possible to reproduce the same trick on eq.(8.6), thanks to (7.23). One

denotes CV
rs by X

rs and CS by T, and assumes that [Xrs,T] = 0 (of course this has to

be checked a posteriori). Notice however that we cannot assume that C commutes with S,

but we assume that CS = S̃C. By multiplying (8.6) from the left by C we get:

T = X
11 + (X12,X21)(I− ΣV)−1

(

TX
21

TX
12

)

(8.7)

For instance S̃V
12 = S̃CCV

12 = TX
12, etc. In the same way,

(I− ΣV)−1 =

(

I− TX
11 −TX12

−TX21
I− TX

11

)−1
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where Iαβ,MN = δαβ δMN . Now all the entries are commuting matrices, so the inverse can be

calculated straight away.

From now on everything is the same as in [30, 46], therefore we limit ourselves to a

quick exposition. One arrives at an equation only in terms of T and X ≡ X
11:

(T − I)(XT2 − (I+ X)T + X) = 0 (8.8)

This gives two solutions:

T = I (8.9)

T =
1

2X

(

I+X−
√

(I+ 3X)(I − X)
)

(8.10)

The third solution, with a + sign in front of the square root, is not acceptable, as explained

in [46]. In both cases we see that the solution commutes with X
rs. The squeezed state

solution we are looking for is, in both cases, S = CT. As for (8.9), it is easy to see that it

leads to the identity state. Therefore, from now on we will consider (8.10) alone.

Now, let us deal with the normalization of |S⊥〉. Imposing |S⊥〉 ∗ |S⊥〉 = |S⊥〉 we find

N 2 = K−1
2 DET (I− ΣV)1/2

Replacing the solution in it one finds

DET(I− ΣV) = Det ((I− X)(I+ T)) (8.11)

Det denotes the determinant with respect to the indices α, β,M,N . Using this equation

and (7.14), and borrowing from [46] the expression for |S‖ 〉, one finally gets for the 23–

dimensional tachyonic lump

|S〉=
{

det(1−X)1/2det(1 + T )1/2
}24

exp



−1

2
ηµ̄ν̄

∑

m,n≥1

aµ̄†mSmna
ν̄†
n



 |0〉 ⊗ (8.12)

A2(3 + 4a2)√
2πb3(DetG)1/4

(

Det(I− X)1/2Det(I+ T)1/2
)

exp



−1

2

∑

M,N≥0

aα†MSαβ,MNa
β†
N



 |0̃〉,

where S = CT and T is given by (8.10). The quantities in the first line are defined in

ref.[46] with µ̄, ν̄ = 0, . . . 23 denoting the parallel directions to the lump.

The value of the action corresponding to (8.12) is easily calculated

SS=K
V (24)

(2π)24

{

det(1−X)3/4det(1 + 3X)1/4
}24

· A
4(3 + 4a2)2

2πb3(DetG)1/2
Det(I− X)3/4Det(I+ 3X)1/4 (8.13)

where V (24) is the volume along the parallel directions and K is the constant of eq.(6.1).
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Finally, let e denote the energy per unit volume, which coincides with the brane tension

when B = 0. Then one can compute the ratio of the D23–brane energy density e23 to the

D25-brane energy density e25 ;

e23

e25
=

(2π)2

(DetG)1/4
· R (8.14)

R=
A4(3 + 4a2)2

2πb3(DetG)1/4
Det(I− X)3/4Det(I+ 3X)1/4

det(1−X)3/2det(1 + 3X)1/2
(8.15)

If the quantity R equals 1, this equation is exactly what is expected for the ratio of

a flat static D25–brane action and a D23–brane action per unit volume in the presence of

the B field (7.10)[51, 36]. In fact the DBI Lagrangian for a flat static Dp–brane is, [47],

LDBI =
1

gs(2π)p

√

Det(1 + 2πB) (8.16)

where gs is the closed string coupling. Substituting (7.10) and taking the ratio the claim

follows. By extending the methods of [52] (see also [53, 54]) to the present case, we have

indeed being able to prove in [55] that

R = 1 (8.17)

thus adding evidence to the interpretation of |S〉, given by (8.12), as a D23–brane in the

presence of a background B field. A further confirmation of this interpretation could

be obtained from the study of the spectrum of modes leaving on the brane, which can

presumably be done along the same lines as [15, 16, 53, 54, 51].

To end this section let us briefly discuss the generalization of the above results to

lower dimensional lumps. As remarked at the end of section 2, every couple of transverse

directions corresponding to an eigenvalue Bi of the field B can be treated in the same way

as the 24–th and 25–th directions. One has simply to replace in the above formulas B

with Bi. The derivation of the above formulas for the case of 25− 2i dimensional lumps is

straightforward.

9. Some effects of the B field

In this section we would like to show that what we have obtained so far is not merely a

formal replica of the same calculation without B field, but that it significantly affects the

lumps solutions. Precisely we would like to show that a B field has the effect of smoothing

out some of the singularities that appear in the VSFT, in particular in the low energy limit.

In [56] it was shown that the geometry of the lower–dimensional lump states repre-

senting Dp-branes is singular. This can be seen both in the zero slope limit α′ → 0 and

as an exact result. It can be briefly stated by saying that the midpoint of the string is

confined on the hyperplane of vanishing transverse coordinates. It is therefore interesting

to see whether the presence of a B field modifies this situation. Moreover, as explained

in the introduction, soliton solutions of field theories defined on a noncommutative space

describe Dp-branes ([57], [31]). It is then interesting to see if we can recover the simplest
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GMS soliton, using the particular low energy limit, i.e. the limit of [47], that gives a

noncommutative field theory from a string theory with a B field turned on.

We start with the limit of [47], α′B ≫ g, in such a way that G, θ and B are kept fixed,

which we represent by means of a parameter ǫ going to 0 as in [56] (α′ ∼ ǫ2). We write

the closed string metric gαβ as g δαβ . We could also choose to parametrize the α′B ≫ g

condition by sending B to infinity, keeping g and α′ fixed and operating a rescaling of the

string modes as in [33], of course at the end we get identical results. By looking at the

exponential of the 3-string field theory vertex in the presence of a B field

3
∑

r,s=1





1

2

∑

m,n≥1

Gαβa
(r)α†
m V rs

mna
(s)β†
n +

√
α′
∑

n≥1

Gαβp
α
(r)V

rs
0na

(s)β†
n

+α′ 1
2
Gαβp

α
(r)V

rs
00 p

β
(s) +

i

2

∑

r<s

p(r)α θαβp
(s)
β

)

(9.1)

we see that the limit is characterized by the rescalings

Vmn → Vmn

Vm0 → ǫVm0 (9.2)

V00 → ǫ2V00

The dependence of Gαβ and θαβ on g, α′ and B is understood. We will make it explicit at

the end of our calculations in the form

Gαβ =
(2πα′B)2

g
δαβ , θ =

1

B
(9.3)

Substituting the leading behaviors of VMN in eqs.(7.18), and keeping in mind that A =

V00 +
b
2 , the coefficients Vαβ,rs

MN become

V
αβ,rs
00 → Gαβδrs − 4

4a2 + 3

(

Gαβφrs − iaǫαβχrs
)

(9.4)

V
αβ,rs
0n → 0 (9.5)

V
αβ,rs
mn → GαβV rs

mn (9.6)

We see that the squeezed state (8.12) factorizes in two parts: the coefficients V
αβ,11
mn re-

construct the full 25 dimensional sliver, while the coefficients V
αβ,11
00 take a very simple

form

S
αβ
00 =

2|a| − 1

2|a|+ 1
Gαβ ≡ sGαβ (9.7)

In the ǫ→ 0 limit we also have

Det(I− X)1/2Det(I+ T)1/2 → 4

4a2 + 3
det(1−X)

4a

2a+ 1
det(1 + T ) (9.8)
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The complete lump state in this limit will be denoted by |Ŝ〉, and as a consequence of

eq.(8.12) and these equations, it will take the form

|Ŝ〉=
{

det(1−X)1/2 det(1 + T )1/2
}26

exp



−1

2
Gµν

∑

m,n≥1

aµ†mSmna
ν†
n



 |0〉 ⊗ (9.9)

4a

2a+ 1

b2√
2πb3(detG)1/4

exp

(

−1

2
s aα†0 Gαβa

β†
0

)

|Ωb,θ〉,

where µ, ν = 0, . . . 25 and Gµν = ηµ̄ν̄ ⊗Gαβ . The first line of the RHS of this equation is

nothing but the sliver state |Ξ〉, which represents the D25–brane. The norm of the lump

is now regularized by the presence of a which is directly proportional to B: a = −π2

A B.

Using

|x〉 =

√

2
√
detG

bπ
exp

[

−1

b
xαGαβx

β − 2√
b
iaα†0 Gαβx

β +
1

2
aα†0 Gαβa

β†
0

]

|Ωb,θ〉 (9.10)

we can calculate the projection onto the basis of position eigenstates of the transverse part

of the lump state

〈x|e− s
2
(a†0)

2 |Ωb,θ〉 =

√

2
√
detG

bπ

1

1 + s
e−

1−s
1+s

1
b
xαxβGαβ

=

√

2
√
detG

bπ

1

1 + s
e
− 1

2|a|b
xαxβGαβ (9.11)

The transverse part of the lump state in the x representation is then

〈x|Ŝ⊥〉 =
1

π
e
− 1

2|a|b
xαxβGαβ |Ξ⊥〉 (9.12)

Using now the form (9.3) of Gαβ and θαβ and the explicit expression for a in terms of

g and α′, [58]

a =
θ

4A

√
detG = −2π2(α′)2B

b g
(9.13)

we obtain the simplest soliton solution of [57] (see also [31] and references therein):

e
− 1

2|a|b
xαxβGαβ → e

−xαxβδαβ
|θ| (9.14)

which corresponds to the |0〉〈0| projector in the harmonic oscillator Hilbert space (see

Introduction), and is a projector on a space endowed with a Moyal product.

In this way the B field provides a regularization of (9.12), as compared to [56]. This

beneficial effect of the B field is confirmed by the fact that the projector (9.9) is no longer

annihilated by x0

x0 exp

(

−1

2
saα†0 Gαβa

β†
0

)

|Ωb,θ〉 = i

√
b

2
(a0 − a†0) exp

(

−1

2
saα†0 Gαβa

β†
0

)

|Ωb,θ〉

= −i
√
b

2

[

4a

2a+ 1

]

a†0 exp

(

−1

2
saα†0 Gαβa

β†
0

)

|Ωb,θ〉
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Therefore, in the low energy limit, the singular structure found in [56] has disappeared in

the presence of a nonvanishing B field. This is actually not true only in the low energy

limit, but is an exact result, as was shown in [55].

10. More lumps in VSFT

In the two previous sections we have constructed a 23–dimensional lump solution, which

we have interpreted as a D23–brane. In the low energy limit this solution in the coordinate

basis, turned out to be the simplest (two–dimensional) GMS soliton multiplied by a trans-

lational invariant solution which represents the D25–brane. The question we want to deal

with here is whether there are other lump solutions that correspond to the higher order

GMS solitons. The answer is affirmative. We will construct an infinite sequence of them,

denoted |Λn〉. These new star algebra projectors are D23–branes, constructed out of (8.12)

and parallel to it. In the low energy limit they give rise to the full series of GMS solitons.

We will construct them and prove that they satisfy the remarkable identities (6.4,6.5).

In order to construct these new solutions we need a new ingredient, given by the

Fock space projectors similar to those introduced in [22]. We define them only along the

transverse directions

ρ1 =
1

(I+ T)(I− X)

[

X
12(I− TX) + T(X21)2

]

(10.1)

ρ2 =
1

(I+ T)(I− X)

[

X
21(I− TX) + T(X12)2

]

(10.2)

They satisfy

ρ21 = ρ1, ρ22 = ρ2, ρ1 + ρ2 = I (10.3)

i.e. they project onto orthogonal subspaces. Moreover, if we use the superscript T to denote

transposition with respect to the indices N,M and α, β, we have

ρT1 = ρ̃1 = Cρ2C, ρT2 = ρ̃2 = Cρ1C. (10.4)

and

ρ†i = ρi, i.e. ρ∗i = ρ̃i, i = 1, 2

τρi = ρ̃iτ, i = 1, 2

where ∗ denote complex conjugation and † =∗T . Moreover τ is the matrix τ = {ταβ} =
(

1 0

0 −1

)

. We recall that in the absence of the B field, it has been shown that ρ1, ρ2

projects out half the string modes, [22, 26].

With all these ingredients we can now move on, give a precise definition of the |Λn〉
states and demonstrate the properties announced above.

To define the states |Λn〉 we start from the lump solution (8.12). I.e. we take |Λ0〉 =
|S〉. However, in the following, we will limit ourselves only to the transverse part of it,

– 35 –



the parallel one being universal and irrelevant for our construction. We will denote the

transverse part by |S⊥〉.
First we introduce two ‘vectors’ ξ = {ξNα} and ζ = {ζNα}, which are chosen to satisfy

the conditions

ρ1ξ = 0, ρ2ξ = ξ, and ρ1ζ = 0, ρ2ζ = ζ, (10.5)

Next we define

x = (a†τξ) (a†Cζ) = (aα†N τα
βξNβ)(a

α†
N CNMζMα) (10.6)

and introduce the Laguerre polynomials Ln(z), of the generic variable z. The definition of

|Λn〉 is as follows

|Λn〉 = (−κ)nLn

(x

κ

)

|S⊥〉 (10.7)

As part of the definition of |Λn〉 we require the two following conditions to be satisfied

ξT τ
1

I− T2
ζ = −1, ξT τ

T

I− T2
ζ = −κ (10.8)

Hermiticity for |Λn〉 requires that

(aτξ∗)(aCζ∗) = (aτCξ)(aζ) (10.9)

This condition admits the solution

ζ = τξ∗ (10.10)

which we will assume throughout the rest of the paper, even though it will be left implicit

for notational simplicity. Eq.(10.10) is compatible with the conditions (10.5) and (10.8),

see [59]. As a consequence of (10.10), the LHS’s of both equations (10.8) are real, so κ

must be real too. Let us show this for instance for the first equation, since for the second

no significant modification is needed:

(

ξT τ
1

I− T2
ζ

)∗
= ξT∗τ

1

I− (T∗)2
ζ∗ = ζT

1

I− (T∗)2
τξ = ξT τ

1

I− (T†)2
ζ = ξT τ

1

I− T2
ζ

where the second equality is obtained by replacement of (10.10), and the third by trans-

position.

The proof that (6.4,6.5) are satisfied was given in [59].

Before we pass to the low energy limit, let us make a comment on the definition of

|Λn〉, wherein a central role is played by the Laguerre polynomials. While the true rationale

of this role eludes us, it is possible to prove that the form of the definition |Λn〉 (together
with (10.5,10.8) is not only sufficient for (6.4,6.5) to be true, but also necessary. The case

|Λ1〉 = (x− κ)|S⊥〉 was discussed in [22]. The next most complicated state is

(α+ βx+ γx2)|S⊥〉 (10.11)
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The conditions this state has to satisfy in order to define a |Λ2〉 that obeys (6.4,6.5) for

n = 0, 1, 2 are, given (10.5,10.8), by the following relations

−2(α)1/2 = β, γ =
1

2
(10.12)

Then, putting α = κ

|P′〉 =
(

κ2 − 2κx+
1

2
x2
)

|S⊥〉 (10.13)

The polynomial in the RHS is nothing but the second Laguerre polynomial of x/κ multi-

plied by κ2. In fact using Mathematica it is easy to extend this analysis for n as large as

one wishes.

Finally let us remark that the relations demonstrated in this section, in particular

(6.4,6.5), are true for any value of B, therefore also for B = 0.

11. The GMS solitons

In order to analyze the same limit as in section (9) for a generic |Λn〉, first of all we have to
find the low energy limit of the projectors ρ1, ρ2. In this limit these two projectors factorize

into the zero mode and non–zero mode part. The former is given by

(ρ1)
αβ
00 →

1

2

[

Gαβ + iǫαβ
]

, (ρ2)
αβ
00 →

1

2

[

Gαβ − iǫαβ
]

, (11.1)

Now, we take, in the definition (10.6), ξ = ξ̂ + ξ̄ and ζ = ζ̂ + ζ̄, where ξ̄, ζ̄ are such

that they vanish in the limit α′ → 0. Then we make the choice ξ̂n = ζ̂n = 0, ∀n > 0 and

determine ξ̂ and ζ̂ in such a way that eqs.(10.5, 10.9) and (10.8) are satisfied in the limit

α′ → 0. We are assuming here that there exist solutions of the problem at α′ 6= 0 that

take precisely this specific form when α′ → 0. This is a plausible assumption since the α′

dependence is smooth in all the involved quantities. In any case it is not hard to construct

examples of this fact: for instance ξ = ρ2ξ̂ satisfies the above requirements to zeroth and

first order of approximation in ǫ. More complete examples are provided in [59].

Now, in the field theory limit the conditions (10.5) become

ξ̂0,24 + iξ̂0,25 = 0, ζ̂0,24 + iζ̂0,25 = 0, (11.2)

From now on we set ξ̂0 = ξ̂0,25 = −iξ̂0,24 and, similarly, ζ̂0 = ζ̂0,25 = −iζ̂0,24. The conditions
(10.8) become

ξT τ
1

I− T2
ζ → − 1

1− s2
2√

detG
ξ̂0ζ̂0 = −1 (11.3)

ξT τ
T

I− T2
ζ → − s

1− s2
2√

detG
ξ̂0ζ̂0 = −κ (11.4)

Compatibility requires

2ξ̂0ζ̂0√
detG

= 1− s2, κ = s (11.5)
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At the same time

(ξτa†)(ζCa†)→ −ξ̂0ζ̂0((a24†0 )2 + (a25†0 )2) = − ξ̂0ζ̂0√
detG

aα†0 Gαβa
β†
0 (11.6)

Hermiticity requires that the product ξ̂0ζ̂0 = |ξ̂0|2, in accordance with (11.3,11.4). The

solutions found in this way can be referred to as the factorized solutions, since, as will

become clear in a moment, they realize the factorization of the star product into the Moyal

⋆ product and Witten’s ∗ product. In order to be able to compute 〈x|Λn〉 in the field theory

limit, we have to evaluate first

〈x|
(

aα†0 Gαβa
β†
0

)k
e−

s
2
aα†
0 Gαβa

β†
0 |Ωb,θ〉 = (−2)k d

k

dsk

(

〈x|e− s
2
aα†
0 Gαβa

β†
0 |Ωb,θ〉

)

(11.7)

= (−2)k d
k

dsk





√

2
√
detG

bπ

1

1 + s
e−

1−s
1+s

1
b
xαGαβx

β





An explicit calculation gives

dk

dsk

(

1

1 + s
e−

1−s
1+s

1
b
xαxβGαβ

)

= (11.8)

=

k
∑

l=0

k−l
∑

j=0

(−1)k+j

(1− s)j(1 + s)k+1

k!

j!

(

k − l − 1

j − 1

)

〈x, x〉je− 1
2
〈x,x〉

where it must be understood that, by definition, the binomial coefficient

(−1
−1

)

equals 1.

Moreover we have set

〈x, x〉 = 1

ab
xαGαβx

β =
2r2

θ
(11.9)

with r2 = xαxβδαβ .

Now, inserting (11.8) in the definition of |Λn〉, we obtain after suitably reshuffling the

indices:

〈x|(−κ)nLn

(x

κ

)

e−
1
2
saα†

0 Gαβa
β†
0 |Ωb,θ〉 → 〈x|(−s)nLn

(

− 1− s2
2s

aα†0 Gαβa
β†
0

)

e−
1
2
saα†

0 Gαβa
β†
0 |Ωb,θ〉

=
(−s)n
(1 + s)

n
∑

j=0

n
∑

k=j

k
∑

l=j

(

n

k

)(

l − 1

j − 1

)

1

j!

(1− s)k
(1 + s)jsk

· (−1)j〈x, x〉j e− 1
2
〈x,x〉

√

2
√
detG

bπ
(11.10)

The expression can be evaluated as follows. First one uses the result

k
∑

l=j

(

l − 1

j − 1

)

=

(

k

j

)

(11.11)
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Inserting this into (11.10) one is left with the following summation, which contains an

evident binomial expansion,

n
∑

k=j

(

n

k

)(

k

j

)(

1− s
s

)k

=

(

n

j

)

(1− s)j
sn

(11.12)

Replacing this result into (11.10) we obtain

〈x|(−κ)nLn

(x

κ

)

e−
1
2
saα†

0 Gαβa
β†
0 |Ωb,θ〉 →

2|a|+ 1

4|a|

√

2
√
detG

bπ
(−1)n

n
∑

j=0

(

n

j

)

1

j!

(

−2r2

θ

)j

e−
r2

θ

Recalling now that the definition of |Ŝ〉 includes an additional numerical factor (see eq.(9.9)),

we finally obtain

〈x|Λn〉 → 〈x|Λ̂n〉 =
1

π
(−1)n

n
∑

j=0

(

n

j

)

1

j!

(

−2r2

θ

)j

e−
r2

θ |Ξ〉

=
1

π
(−1)n Ln

(

2r2

θ

)

e−
r2

θ |Ξ〉 (11.13)

as announced in section 6. The coefficient in front of the sliver |Ξ〉 is the n − th GMS

solution. Strictly speaking there is a discrepancy between these coefficients and the cor-

responding GMS soliton, given by the normalizations which differ by a factor of 2π. This

can be traced back to the traditional normalizations used for the eigenstates |x〉 and |p〉 in
the SFT theory context and in the Moyal context, respectively. This discrepancy can be

easily dealt with a simple redefinition.

12. VSFT star product and Moyal product

In the previous section we have shown that the low energy limit of 〈x|Λ̂n〉 factorizes into

the product of the sliver state and ψn(x, y), see (6.3). This means, on the one hand, that

the GMS solitons are the low energy remnants of corresponding D–branes in VSFT, and,

on the other hand, that, for this type of solutions, the VSFT star product factorizes into

Witten’s star product and the Moyal ⋆ product. But, actually, much more can be said

about the correspondence between the states |Λ̂n〉 and the solitons of noncommutative

field theories with polynomial interaction.

We recall from section 6 that the latter are very elegantly constructed in terms of

harmonic oscillators eigenstates |n〉. In particular the ψn(x, y) solutions correspond to

projectors Pn = |n〉〈n|, via the Weyl transform. The correspondence is such that the

operator product in the Hilbert space corresponds to the Moyal product in (x, y) space.

Therefore we can formalize the following correspondence

|Λn〉 ←→ Pn ←→ ψn(x, y)

|Λn〉 ∗ |Λn′〉 ←→ PnPn′ ←→ ψn ⋆ ψn′
(12.1)

where ⋆ denotes the Moyal product. Moreover

〈Λn|Λn′〉 ←→ Tr(PnPn′) ←→
∫

dxdy ψn(x, y)ψn′(x, y) (12.2)
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up to normalization (see (6.5)). This correspondence seems to indicate that the Laguerre

polynomials hide a universal structure of these noncommutative algebras.

This parallelism can actually be pushed still further. In fact we can easily construct

the correspondents of the operators |n〉〈m|. Let us first define

X = a†τξ Y = a†Cζ (12.3)

so that x = XY . The definitions we are looking for are as follows

|Λn,m〉 =

√

n!

m!
(−κ)n Y m−nLm−n

n

(x

κ

)

|S⊥〉, n ≤ m (12.4)

|Λn,m〉 =

√

m!

n!
(−κ)mXn−mLn−m

m

(x

κ

)

|S⊥〉, n ≥ m (12.5)

where Lm−n
n (z) =

∑m
k=0

(

m

n− k

)

(−z)k/k!. With the same techniques as in the previous

sections one can prove that

|Λn,m〉 ∗ |Λr,s〉 = δm,r|Λn,s〉 (12.6)

for all natural numbers n,m, r, s. It is clear that the previous states |Λn〉 coincide with

|Λn,n〉. In view of (12.6), we can extend the correspondence (12.1) to |n〉〈m| ↔ |Λn,m〉.
Therefore, following [57], [31], we can apply to the construction of projectors in the VSFT

star algebra the solution generating technique, in the same way as in the harmonic oscillator

Hilbert spaceH. Naturally in this case we do not have any guarantee that all the projectors

are recovered in this way.

A. Appendix

This appendix is devoted to a direct analytic proof of eqs.(3.18) and (4.31). Let us start

from the latter.

Proof of eq.(4.31). It is convenient to rewrite it as follows

∞
∑

k=0

Ũnk Ũkm = δn0δm0 +

∞
∑

k=0

Ũ
(2)
nk Ũ

(1)
km (A.1)

since, in the range 0 ≤ n,m <∞, we have Ũ
(1)
km = δn0δm0+ Ũ

(2)
km and Ũ

(1)
0m = δm0. Therefore

we have to compute

∞
∑

k=0

Ũ
(2)
nk Ũ

(1)
km =

∮

dz

2πi

1

zn+1

∮

dζ

2πi

∮

dθ

2πi

∮

dw

2πi

1

wm+1

∞
∑

k=0

1

(ζθ)k+1

f(z)

f(ζ)

f(θ)

f(w)
·

·
(

1

1 + zζ
− ζ

ζ − z

)(

1

1 + θw
− w

w − θ

)

(A.2)

Here we have already exchanged the summation over k with integrals, which is allowed

only under definite convergence conditions. The latter are guaranteed if |ζθ| > 1, in which

case ∞
∑

k=0

1

(ζθ)k+1
=

1

θζ − 1
(A.3)
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Now, we recall that, from the definition of Ũ (1), Ũ (2), we have |z| < |ζ|, |θ| > |w|. In order

to comply with the condition |ζθ| > 1 we choose to deform the θ contour while keeping the

ζ contour fixed. In doing so we have to be careful to avoid possible singularities in θ. These

are poles at θ = w,− 1
w and branch cuts at θ = ±i, due to the f(θ) factor. One can deform

the θ contour in such a way as to keep the pole at − 1
w external to the contour, since the

w contour is as small as we wish around the origin. But, of course, one cannot avoid the

branch points at θ = ±i. To make sense of the operation we introduce a regulator K > 1

and modify the integrand by modifying f(θ)

f(θ)→ fK(θ) =

(

K + iθ

K − iθ

)
2
3

(A.4)

We will take K as large as needed and eventually move back to K = 1. Under these

conditions we can safely perform the summation over k in (A.2) and make the replacement

(A.3) in the integral.

As the next step we carry out the θ integration, which reduces to the contribution

from the simple poles at θ = w and θ = 1
ζ . The RHS of (A.2) becomes

=

∮

dz

2πi

1

zn+1

∮

dζ

2πi

∮

dw

2πi

1

wm+1

[

f(z)

f(ζ)

fK(1/ζ)

f(w)

(

1

1 + zζ
− ζ

ζ − z

)(

1

w + ζ
− w

ζw − 1

)

+
f(z)

f(ζ)

w

ζw − 1

(

1

1 + zζ
− ζ

ζ − z

)]

(A.5)

The first line corresponds to the contribution from the pole at θ = 1
ζ , while the second

comes from the pole at θ = w.

Next we wish to integrate with respect to ζ. The singularities trapped within the ζ

contour of integration are the poles at ζ = z,−w (not the poles at ζ = 1
w ,−1

z ). Since

above we had K > |θ| > 1
|ζ| , it follows that |ζ| > 1

K . Therefore also the branch points at

ζ = ± i
K of fK(1/ζ) are trapped inside the ζ contour and we have to compute the relevant

contribution to the integral. In the integrand of (A.5) we have two cuts in ζ. One is the

cut we have just mentioned, let us call it c1/K and let us fix it to be the semicircle of

radius 1/K at the RHS of the imaginary axis; the contour that surrounds it excluding

all the other singularities will be denoted C1/K . The other cut, due to f(ζ), with branch

points at ζ = ±i, will be denoted c1; the contour that surrounds it excluding all the other

singularities will be denoted C1.

After these lengthy preliminaries let us carry out the integration over ζ. We get

=

∮

dz

2πi

1

zn+1

∮

dw

2πi

1

wm+1

[

f(1/z)

f(w)

(

zw

zw − 1
− z

z +w

)

+
f(z)

f(1/w)

(

1

1− zw −
w

w + z

)

+

∮

C1/K

dζ

2πi
(. . .) +

zw

1− zw

]

(A.6)

The first two terms in square brackets come from the contribution of the poles at ζ = z

and ζ = −w from the first line in (A.5), respectively. The symbol (. . .) represents the

integrand contained within the square brackets in the first line of (A.5). Finally the last
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term in (A.6) is the contribution coming from the second line of (A.5) due to the pole at

ζ = z. We notice that
zw

zw − 1
− z

z + w
=

w

z + w
− 1

1− zw (A.7)

but of course the problem here is how to evaluate the integral around the cut. Fortunately

this can be reduced to an evaluation of contributions from poles. To see this, we first recall

the properties of f(z). It is easy to see that

f(1/z) = f(−z) and f(−z) = 1/f(z) (A.8)

Therefore, in the limit K → 1, the factor fK(1/ζ)/f(ζ) tends to (f(−ζ))2. As a conse-

quence, in the same limit, the integral of (. . .) around the cut c1/K is the same as the

integral around the cut c1, and each equals one–half the integral around both contours, in

other words each equals one–half the integral about a contour that surrounds both cuts and

exclude all the other singularities (which are poles). By a well-known argument, the latter

integral equals the negative of the integral of (. . .) about all the remaining singularities

in the complex ζ–plane. This is easy to compute. The remaining singularities are poles

around ζ = z,−w,−1/z, 1/w. Notice that there is no singularity at ζ = ∞. Carrying out

this calculation explicitly we get

=

∮

dz

2πi

1

zn+1

∮

dw

2πi

1

wm+1

{

f(1/z)

f(w)

(

w

z + w
− 1

1− zw

)

+
f(z)

f(1/w)

(

1

1− zw −
w

w + z

)

−1

2

[

f(1/z)

f(w)

(

w

z + w
− 1

1− zw

)

+
f(z)

f(1/w)

(

1

1− zw −
w

w + z

)

(A.9)

+
f(1/z)

f(w)

(

w

z + w
− 1

1− zw

)

+
f(z)

f(1/w)

(

1

1− zw −
w

w + z

)]

+
zw

1− zw

}

The terms in square brackets represent the contribution from the cut c1/K and come from

the simple poles at ζ = z,−w,−1/z, 1/w, respectively. All the terms cancel out except the

last in the third line. So the RHS of (A.2) reduces to

=

∮

dz

2πi

1

zn+1

∮

dw

2πi

1

wm+1

∞
∑

k=1

(zw)k = δnm, n,m ≥ 1 (A.10)

This complete the proof of (3.18). We remark that we could have integrated first with

respect to ζ and then with respect to θ. The procedure is somewhat different, but the final

result is the same. We also point out that there may be other equivalent ways to derive

(3.18).

Proof of eq.(3.18). It is convenient to rewrite Unm in an alternative form compared

to (3.13). We start by replacing in eq.(3.9)

f ′a(z)
1

(fa(z)− fb(w))2
f ′b(w) = −∂z

1

fa(z)− fb(w)
f ′b(w) (A.11)

and integrating by part. We decompose the resulting expression as in eq.(3.11). After some

algebra one gets

Unm =

√

n

m

∮

dz

2πi

1

zn+1

∮

dw

2πi

1

wm+1

g(z)

g(w)

(

1

1 + zw
− w

w − z

)

(A.12)
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where

g(z) =
1

z
(1 + iz)

2
3 (1− iz) 4

3 (A.13)

This function satisfies

g(1/z) = g(−z) (A.14)

which corresponds to the first of eqs.(A.8). There is no analog of the second.

In order to prove eq.(3.18) we have to evaluate

√

m

n

∞
∑

k=1

UnkUkm =

∮

dz

2πi

1

zn+1

∮

dζ

2πi

∮

dθ

2πi

∮

dw

2πi

1

wm+1

∞
∑

k=1

1

(ζθ)k+1

g(z)

g(ζ)

g(θ)

g(w)
·

·
(

1

1 + zζ
− ζ

ζ − z

)(

1

1 + θw
− w

w − θ

)

(A.15)

The structure is the same as in (A.2), except for the substitution f → g and for the fact

that now the summation over k starts from 1. We will thus proceed as above while paying

attention to the differences. Using

∞
∑

k=1

1

(ζθ)k+1
=

1

ζθ

1

θζ − 1
(A.16)

instead of (A.3), we see that, when integrating over θ we have to take into account the pole

at θ = 0. The result is

=

∮

dz

2πi

1

zn+1

∮

dζ

2πi

∮

dw

2πi

1

wm+1

[

g(z)

g(ζ)

gK(1/ζ)

g(w)

(

1

1 + zζ
− ζ

ζ − z

)(

1

w + ζ
− w

ζw − 1

)

+
f(z)

f(ζ)

w

ζw − 1

(

1

1 + zζ
− ζ

ζ − z

)

+
g(z)

ζg(ζ)g(w)

(

1

1 + zζ
− ζ

ζ − z

)

1 + w2

w

]

(A.17)

The last contribution comes precisely from the double pole at θ = 0.

Next let us untegrate over ζ. There is no singularity at ζ = 0 or ζ = ∞, as one may

have suspected. Let us deal first with the first line in eq.(A.17). This is exactly the first

line of (A.5), except for the substitution f → g. We proceed in the same way as above,

but with some additional care because we cannot use the analog of the second eq.(A.8).

However we remark that
gK(1/ζ)

g(ζ)
=
fK(1/ζ)

f(ζ)

(ζK − i)2
(1− iζ)2 (A.18)

Now we have recovered the same structure as in (A.5) except for the last factor in the RHS

of (A.18), i.e. at the price of bringing into the game a double pole at ζ = −i. Fortunately
the residue of this pole vanishes. All is well what ends well. We can now safely repeat

the same argument that leads from eq.(A.5) to eq.(A.9), and conclude that the various

contributions from the first line of eq.(A.17) add up to zero. The second line is easy to

compute, the only contribution comes from the simple pole at ζ = z:

=

∮

dz

2πi

1

zn+1

∮

dζ

2πi

∮

dw

2πi

1

wm+1

[

1

1− zw −
1

g(w)

1 + w2

w

]

= δnm, n,m ≥ 1 (A.19)

This completes the proof of (3.18).

– 43 –



Acknowledgments

Two of us (C.M. and D.M.) would like to thank L.F.Alday and M.Cirafici for useful dis-

cussions. This review grew out of various talks given by the authors in Torino (November

2001), Vietri (March 2002, April 2003 ), Sao Paulo (July 2002), Ahrenshoop (August 2002),

Anacapri (September 2002) and especially from lectures delivered by L.B. at Kopaonik

(September 2002). This research was supported by the Italian MIUR under the program

“Teoria dei Campi, Superstringhe e Gravità”.
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