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The challenging goal of trespassing the Blood Brain Barrier (BBB) is being faced using physical 
triggers to enhance drugs penetration either as such or loaded within Nanocarriers (NCs). NCs as 
nanotechnology-based drug delivery strategy, have attracted increasing attention in biomedicine 
because their dimension approaches the size scale of the biological components to which targeted 
delivery is desired. In particular, drug nanodelivery systems can be considered the new frontier for 
the controlled release of various therapeutic substances for the treatment of central nervous system 
(CNS) diseases [1]. 
In spite of 25 years of intensive research in the field of nanomedicine, with the exception of  few  
nanotherapies, most applications have failed to translate into clinics. Indeed, in particular, few NCs  
are able to cross the BBB and to penetrate into the CNS tissues  [2].  
To get a clinical effect, in fact, an almost  unlimited series of ‘traps’ have to be escaped by the NCs 
before BBB permeation: after intravenous injection degradation in the  bloodstream, ‘coronal’ 
protein adhesion, overall distribution, sequestration in liver, spleen, kidneys, intracellular 
localization and many other undesired effects occur, each one critically restricting  the overall 
success of the therapy [2].  
Alternatively to systemic administration, ‘topical’ approaches driven by physical triggers have been 
investigated, based on the trespassing of the biological barriers, which covers and protect the target 
cells. 
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To promote the drug and/or biological molecules penetration across the BBB two different (but 
possibly complementary) strategies  can be  followed: 
 
1) the ‘NanoSize’  strategy, using carriers whose dimensions are so limited that transmembranal  
passage occurs both via  passive (by direct plasma membrane) or active (endocytosis, pinocytosis, 
etc) penetration; 
2) the ‘NanoHole’ strategy, producing a local and temporary barrier disruption by osmotic, 
pharmacological or physical means. 
 
The NanoSize strategy is based on the idea that nanocarriers may act as Trojan horses: after 
reaching  their site of action by passive processes, they may at best differentially accumulate in the 
location of interest and facilitate the drug intake throughout the body by physiological systems. 
The NanoHole strategy mainly promotes a variety of mechanisms allowing  safe temporary opening 
of the membrane junctions and membrane structure. As a matter of fact drug penetration through 
the BBB could be significantly improved providing a proper physical vector, including thermal, 
ultrasonic (either focused or not) and electromagnetic fields is applied. In this context, skin 
penetration has been extensively studied in the past and some suggestions  may be exploited for 
promoting BBB trespassing, such as physical based ‘phoresis: both  Ultrasound (sono-phoresis) or 
electrical field (electro- or iono-phoresis) are used to get  an efficient transcutaneous drug transport 
[3].   
 
The BBB scenario 
The Blood Brain Barrier  is formed by the endothelial cells confining the cerebral capillaries and by 
the nearby astrocytic end-feet processes, perivascular neurones and pericytes [4]. The two sides of 
the membrane are the luminal (blood side), with a reduced rate of pinocytosis preventing entrance  
[5] and the abluminal or basal one (brain side), which allows a very limited  transport of substances 
in both directions. Capillaries are linked together by tight junctions  whose electrical resistance is as 
high as 2000 ohm/cm2 [5].  
BBB allows the passive diffusion of water, most of gases, and lipid soluble molecules, as well as 
the selective transport of some molecules such as glucose and aminoacids that are crucial for 
neuronal function. However BBB prevents the uptake of most therapeutic molecules by active 
transport mechanisms and it actually excludes ∼100% of large-molecule neurotherapeutics and 
more than 98% of all small-molecule drugs, such as anticancer drugs, antibiotics, anti Alzheimer's 
drugs and anti Parkinson's drugs from the brain. Particularly, neurotherapeutic molecules such as 
rivastigmine or tacrine, that might be effective in neurological diseases, do not cross the BBB in 
adequate amounts.  
Much research is therefore focused on the delivery of  drugs  across the BBB either  invasively or 
non invasively.  
Concerning invasive methods, direct injection of drugs to BBB through intra-thecal or 
intracerebroventricular fluids is feasible only in surgical settings with possible severe side effects, 
such as infection and trauma. In the absence of any effective targeting, however, most of the 
systemic applications fail in delivering a clinically significant drug dose.  
Non-invasive methods often rely on chemical modification of drugs, e.g. prodrug synthesis, or on 
the inhibition of efflux transports. As an example, intranasal delivery, early used by W. Ewart in 
1998 [6], needs penetration enhancers and a significant fraction of drug is removed by ciliary 
clearance and not fully absorbed.  
Being the concentration gradient the only driving force, a clinically significant dose of ‘naked’ drug  
is hardly deliverable using shortcuts like nasal delivery because the administration site is  far from 
the disease site ( cerebral cortex for Alzheimer’s, substantia nigra for Parkinson’s disease).  
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Intranasal delivery of nanocarriers by inhalation and transmission through olfactory and trigeminal 
nerve pathways may improve the drug delivering effectiveness, as has been recently investigated 
[7].  
External physical triggers able to increase the trespassing of BBB by opening temporary pores [8]  
may overcome the present limitations to nanocarriers penetration and might be used to improve 
drug delivery across BBB. 
 
 
The NanoSize strategy   
Nanoparticles  have extensively been applied as nanocarriers to transport small molecules and even 
large peptides [9]. In the literature a number of different nanoparticles, e.g. polymeric  [10], lipidic 
[11, 12], albumin- based [13] and metallic ones [14] are fully described. To allow nanoparticles to 
cross BBB a number of ‘tricks’ have been developed, based on surface modifications using 
surfactant coating (e.g. polysorbates or poloxamer) or protein covalent binding (e.g. 
apolipoproteins) [15].  
Most of these NC applications require intravascular administration, and their short-range  interplay 
with plasma and  blood cells has to be accounted for in designing the NC structure [16]. 
Nanoparticles aggregation, possibly dangerously increasing their size, is one of the critical 
challenge. Accurate adjustments of the superficial charge are required, but any accidental variation 
in the external pH value can alter it dramatically. Adhesion of the blood proteins to the NC surface 
[2] may also cause size modification. This phenomenon can be avoided, or at least slowed, by 
grafting hydrophilic polymer to the nanoparticle surface, e.g. PEGylation, in which poly(ethylene 
glycol) (PEG) is grafted onto the nanoparticle surface producing ‘stealth’ nanoparticles showing an  
increased circulation time [16].   
 
 
  
The NanoHole strategy 

The ultrasound mediated barrier disruption for drug delivery can be exploited by different types of 
nanocarriers [17] among which the ultrasound-responsive microbubbles have been specifically 
designed to target CNS. 
Focused Ultrasound (FUS), in conjunction with microbubbles, is the only technique that can induce 
regional localized BBB opening noninvasively. FUS consists in multiple intersecting beams of 
ultrasound  directed and concentrated on a target. Whereas individual beams cross the tissue with no 
effect, the convergence of  multiple beams of focused ultrasound at the focal point results in a huge 
local energy triggering important biological effects depending on the nature of the tissue and the 
ultrasound parameters.  
FUS may thus have a huge impact in trans-BBB brain drug delivery. Chen & Konofagou  [18] 
elucidated the interactions between ultrasound, microbubbles and the local microenvironment 
during BBB opening with FUS, by monitoring the mechanism of the BBB opening in vivo by MRI 
and passive cavitation detection (PCD). They showed that the BBB can be disrupted safely and 
transiently under specific acoustic pressures (under 0.45 MPa) and microbubble (diameter under 8 
µm) conditions.  
As a matter of fact, on November 9, 2015 a team led by T Mainprize and K Hynynen at 
Sunnybrook Health Sciences Centre in Toronto successfully used focused ultrasound to enable 
temporary and targeted opening of the blood-brain barrier (BBB), allowing effective delivery of 
doxorubicin-based chemotherapy into a patient’s malignant brain tumor using Insightec’s ExAblate 
Neuro system ( see  www.fusfoundation.org). 
Recently also magnetic nanoparticles attracted increasing attention for their ability to precisely 
deliver drugs  to specific sites of action by the application of an external magnetic field  [19] 

http://www.fusfoundation.org/
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Although metallic NCs (e.g. superparamagnetic iron oxide, SPIONs) uptake increasing the   
intracellular iron content may have toxic effects expecially for oligodendrocytes [5], a possible 
alternative use can be devised. Recent literature suggest a close relationship between neurological 
diseases and heavy metal ion concentration [9]: the real challenge, under this point of view, would 
be that of manufacturing ‘chelating’ NPs which, once entered into the intracerebral liquid, could act 
as a ‘metal scavenger’ which can finally be expelled by the abluminal BBB side.  
 
 
Final considerations  
Although nanotechnological devices have raised serious concerns about their safety for human 
health [20] (Oberdörster defined the new science of ‘nanotoxicology’), specifically due to their 
small size, the large surface area-to-mass ratio and the possible larger fraction of reactive electrons  
exposed at the surface, they are nowadays among the most promising therapeutic strategies. 
 Physics can be  an important  added value  to enhance efficient drug delivery across biological 
membranes otherwise impenetrable, as showed by  the  success of the application of FUS  to micro-
bubble carriers. 
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