

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Green extraction protocols of Mitragyna speciosa leaves leading to a possible large scale production

This is the author's manuscript

Original Citation:

Availability:

This version is available http://hdl.handle.net/2318/1719706 since 2019-12-19T11:07:52Z

Terms of use:

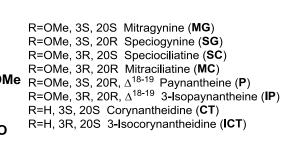
Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

Green extraction protocols of Mitragyna speciosa leaves leading to a possible large scale production

Luisa Boffa⁽¹⁾, Stefano Mantegna⁽¹⁾, Valentina Bosco⁽²⁾, Daniele Crudo⁽²⁾, Giancarlo Cravotto⁽¹⁾


⁽¹⁾Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125, Torino, Italy ⁽²⁾E-PIC S.r.l., Via XXIV Maggio 20, 13888 Mongrando

Mitragyna speciosa (K.) H. (*Rubiaceae*), is a tropical tree that is indigenous to Southeast Asia and Indochina. Also known as Kratom, it has been widely used, for hundreds of years, for its stimulant and opioid-like analgesic effects [1]. The principal pharmacologically active alkaloids in kratom leaves include mitragynine (MG), 7-hydroxymitragynine (HMG), speciociliatine (SC), speciogynine (SG) and paynantheine (P) [2]. In recent decades, extractions of *M. speciosa* alkaloids have been performed in various different ways, using either organic solvents or water [3]. The most common methods are maceration in methanol [4] and soxhlet extraction. In a previous work, dried M. speciosa leaves were extracted using ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical carbon dioxide extraction (SFE), using methanol,

ethanol, water and binary mixtures [5]. Of the several methods tested, MAE in a closed vessel (110°C, 60 W, MeOH/H₂O 1:1) gave the highest alkaloid fraction amount, while UAE with an immersion horn (25°C, 21.4 kHz, 50 W, MeOH) showed the best yield for MG+P. The present study aims to design a green protocol for *alkaloids extraction*, in particular MG, from the leaves using green techniques and solvents both in pretreatment and in extraction steps. For this purpose, we compared several non-conventional techniques (ultrasound, microwave, hydrodynamic cavitation) with classic methods. Dried *M. speciosa* leaves belonging to a *red vein variety from* **Bali** were in some cases pretreated with a phosphate buffer (pH = 7.5) and then extracted with EtOH, EtOH/H₂O mixture or acidic H₂O (pH = 3), using UAE, MAE. Moreover, hydrodynamic cavitation (HC) was also used for the scaling-up of the processes, using a pilot scale reactor (Rotocav[®]). Conventional extractions were carried out at rt in a MeOH/H₂O 1:1 mixture or in EtOH under reflux (exhaustive). In some cases, purified alkaloids were isolated by precipitation (NH₄OH). All the samples were analyzed using HPLC-DAD for the quantification of the principal alkaloids present

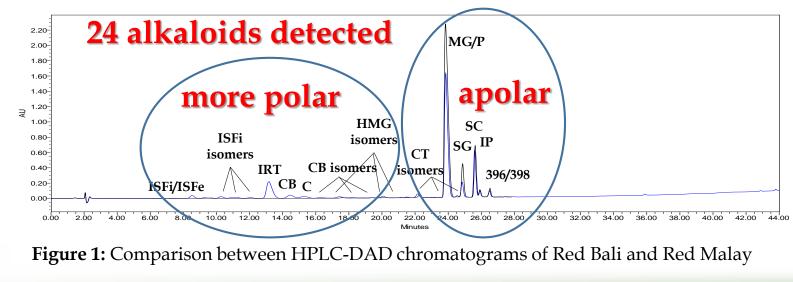
Politecnico di Bari

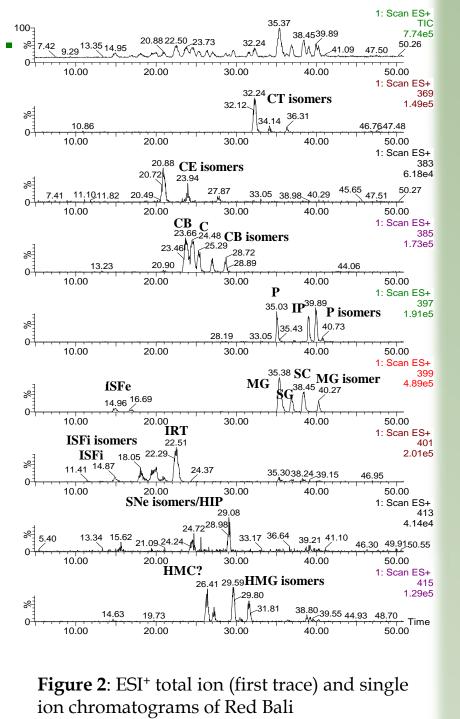
R=OMe. 3S. 7S. 20S 7-Hvdroxymitragynine (HMC R=OMe, 3R, 7R, 20S 7-Hydroxyspeciociliatine (HSC R=OMe, 3R, 7R, 20R 7-Hydroxymitraciliatine (HMC R=OMe, 3R, 7R, 20R, Δ^{18-19} 7-Hvdroxvisopavnantheine (HIP

=H, 3S, 7R, 20S Corynoxine B (CB) R=H, 3S, 7S, 20S Corynoxine (**C**) R=H, 3S, 7R, 20R Rhynchophylline (RC R=H. 3S. 7S. 20R Isorhynchophylline (IRC) R=H, 3S, 7R, 20R, ∆¹⁸⁻¹⁹ Corynoxeine (**CÉ** R=H. 3S, 7S, 20R, Δ^{18-19} Isocorynoxeine (ICE R=OH. 3S. 7S. 20R Rotundifoline (RT) R=OH, 3S, 7S, 20R, Δ^{18-19} Rotundifoleine (**RTe**) R=OH. 3S. 7R. 20R Isorotundifoline (IRT) R=OH, 3S, 7S, 20S Mitrafoline (**MF**) R=OH. 3R. 7R. 20S Speciofoline (SFi R=OH, 3R, 7S, 20S Isospeciofoline (**ISFi** R=OH, 3R, 7S, 20S, Δ^{18-19} Isospeciofoleine (**ISFe**) R=OMe, 3S, 7R, 20R, Δ^{18-19} Specionoxeine (**SNe**) 7S, 20R, Δ^{18-19} Isospecionoxeine (ISN

Instrumentation

based on literature data [6].

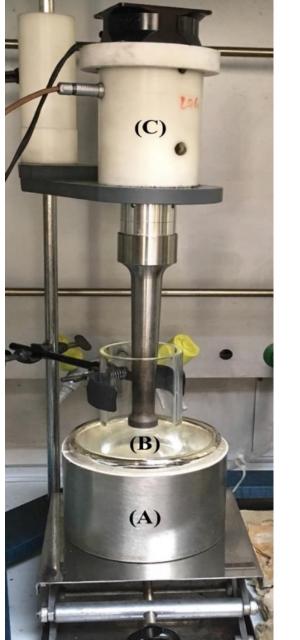

Red Vein Bali Kratom


HPLC-DAD analyses

- ◆ Instrument: Waters 1525 Binary HPLC pump equipped with 2998 PDA.
- Column: XTerra MS C8 column (4.6 x 150 mm, 5 μm, Waters).
- ♦ Mobile phase: Water with 0.1% TFA (A), and acetonitrile with 0.1% TFA (B) (1 ml/min)
- ✤ Gradient (time, B%): 0.01, 20; 7.5, 20; 15, 30; 26, 60; 39.5, 100; 44, 100.
- Monitoring wavelengths: 222 nm

HPLC-MS-MS analyses

- ◆ Instrument: UPLC Acquity Waters system equipped with a Binary Solvent Manager, Sample Manager, Column Manager, a PDA and Micromass Quattro microTM API (triple quadrupole) detectors
- Solvents and column as described before (0.5 ml/min)
- ✤ Gradient (time, B%): 0.01, 20; 15, 20; 30, 30; 52, 60; 68, 100; 80, 100.


MW

MicroSYNTH Milestone **2450 MHz 1000** W

US

Cup-horn PEX1, R.E.U.S. 25 kHz, 200 W

Titanium horn

21 kHz, 250 W

Pilot scale reactor Rotocav® 3000 rpm, 3 kW

Extraction procedure

(pH 7.5) Conv., US-assisted, HC

EtOH/H₂O 7:3, H₂O (pH 3) Conv., US-assisted, HC, **MW-assisted**

Precipitation of alkaloids with NH₄OH and filtration or extraction with CH₂Cl₂

quantification of *MG*+*P* and *total* alkaloids at 222 nm

Conventional solvents

Sample	Pretreatment	Extraction conditions	Work up	Extr. Yield	MG+P/TAlk	MG+P/TAlk
				w/w %	w/w % Ext	mg/g plant
Exaust.	-	EtOH rfx, 2 h	Filtration,	36	3.52/7.9	12.7/28.5
		plant/solv. 1:170	evaporation			
1	-	EtOH, magn. stirr., 2 h	Filtration,	5.4	6.4/14.4	3.5/7.85
		plant/solv. 1:10	evaporation			
2	Rt, magn. stirr., 2 h	EtOH, magn. stirr., 2 h	Filtration,	5.6	7.3/16.4	4.1/9.2
	plant/buffer 1:10	plant/solv. 1:10	evaporation			
3	US horn , <25°C, 15 min	EtOH/H ₂ O 7:3, US horn , <25°C	Filtration,	13.0	4.0/8.98	5.2/11.7
	plant/buffer 1:10	15 min, plant/solv. 1:10	evaporation			
4	HC, 20÷50°C, 10 min	EtOH, magn. stirr., 2 h	Filtration,	3.5	11.4/25.6	4.0/9.1
	plant/solv. 1:20	plant/solv. 1:10	evaporation			
5	HC, 20÷50°C, 10 min	EtOH, <mark>US horn</mark> , <25°C	Filtration,	3.7	10.5/23.6	3.9/8.9
	plant/solv. 1:20	15 min, plant/solv. 1:10	evaporation			
6	HC, 20÷50°C, 10 min	EtOH/H ₂ O 7:3 , US horn , <25°C	Filtration,	3.8	10.8/24.2	4.1/9.3
	plant/solv. 1:20	15 min, plant/solv. 1:10	evaporation			

Exhaust. = exhaustive extraction. MG+P/Talk = mitragynine and paynanteine amount on total alkaloids

- Best extraction yields and highest MG+P mg/g plant amounts were observed with UAE (with pretreatment using EtOH, without it using acidic H_2O)
- ◆Highest MG+P w/w % in the extract were obtained using EtOH or EtOH/H₂O 7:3 mixture (UAE) with HC-assisted pretreatment

Non conventional solvents

Sample	Pretreatment	Extraction conditions	Work up	Extr. Yield w/w %	MG+P/TAlk w/w % Ext	MG+P/TAlk mg/g plant
Pur. Alk.	-	MeOH/H ₂ O 1:1	Ppt with NH ₄ OH/	1.2	37.7+4.8/81.7	5.11/9.83
		plant/solv. 1:10	filtration			
1	Rt, magn. stirr., 15 min	H ₂ O (pH 3), 50°C, ag. magn., 2 h	Ppt with NH ₄ OH/	0.41	0.04/44.5	0.002/1.83
	plant/buffer 1:15	plant/solv. 1:15	extraction with CH ₂ Cl ₂			
2	Rt, magn. stirr., 15 min	H ₂ O (pH 3), MW rfx, 30 min	Ppt with NH ₄ OH/	0.214	9.75/43.6	0.21/0.93
	plant/buffer 1:15	plant/solv. 1:15	extraction with CH_2Cl_2			
3	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, <25°C, 15 min	Ppt with NH ₄ OH/	0.178	24.2/46,9	0.43/0.83
	plant/buffer 1:15	plant/solv. 1:15	extraction with CH ₂ Cl ₂			
4	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, <25°C, 30 min,	Ppt with NH ₄ OH/	0.156	26.5/50.0	0.41/0.78
	plant/buffer 1:15	plant/solv. 1:15	filtration			
5	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, <25°C, 30 min,	Extraction with CH ₂ Cl ₂	0.210	10.5/47.9	0.22/1.01
	plant/buffer 1:15	plant/solv. 1:15	aqueous phase sample 4			
6	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, <25°C, 60 min	Ppt with NH ₄ OH/	0.067	26.1/46.0	0.17/0.31
	plant/buffer 1:15	plant/solv. 1:15	filtration			
7	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, <25°C, 60 min	Extraction with CH ₂ Cl ₂	0.145	14.0/47.8	0.20/0.70
	plant/buffer 1:15	plant/solv. 1:15	aqueous phase sample 6			
8	US Reus, <25°C, 15 min	H ₂ O (pH 3), US Reus, 20÷50°C, 15 min	Ppt with NH ₄ OH/	0.116	39.3/69.4	0.46/0.80
	plant/buffer 1:15	plant/solv. 1:15	filtration			
9	US Reus , <25°C, 15 min	H ₂ O (pH 3), US Reus , 20÷50°C, 30 min	Ppt with NH ₄ OH/	0.307	11.9/46.5	0.37/1.43
	plant/buffer 1:15	plant/solv. 1:15	filtration			
10	-	H ₂ O (pH 3), US Reus , 20÷50°C, 15min	Ppt with NH ₄ OH/	0.284	23.0/41.1	0.65/1.17
		plant/solv. 1:15	filtration			
11	US horn, <25°C, 15 min	H ₂ O (pH 3), US horn, 20÷50°C, 30 min	Ppt with NH ₄ OH/	0.264	18.5/52.8	0.49/1.39
	plant/buffer 1:15	plant/solv. 1:15	filtration			
12	-	H ₂ O (pH 3), US horn , 20÷50°C, 30 min	Ppt with NH ₄ OH/	0.410	34.9/59.2	1.43/2.42
		plant/solv. 1:15	filtration			
13	-	H ₂ O (pH 3), US horn , 20÷50°C, 30 min	Ppt with NH ₄ OH/	0.426	35.1/61.0	1.49/2.60
		plant/solv. 1:20	filtration			
14	-	H ₂ O (pH 3), HC, 20÷45°C, 10 min	Ppt with NH ₄ OH/	1.2	3.25/8.7	0.39/1.12
		plant/solv. 1:20	extraction with CH ₂ Cl ₂			

- ◆UAE, both with titanium horn or cup horn, increased dramatically the solubility of apolar alkaloids (in particular, MG+P) in acidic H₂O ★MW using acidic H₂O did not affect positively extraction yields and alkaloids amounts in the extract
- Total alkaloids content (w/w % in the extract or mg/g plant) obtained in ethanolic UAE were comparable to exhausive ethanolic conventional protocol, while H₂O (pH 3) afforded alkaloid amounts quite far from the purified sample obtained with MeOH/H₂O

conventional extraction

Pur. Alk. = purified alkaloids. MG+P/Talk = mitragynine and paynanteine amount on total alkaloids

COMPARABLE YIELDS FOR UAE TO CONVENTIONAL PROTOCOLS *LOWER AMOUNTS OF SOLVENTS USED, LOWER EXTRACTION TIMES **AND TEMPERATURES** Conclusions **GENERALLY INCREASED PURITY OF FINAL EXTRACT WITH THE** PHOSPHATE BUFFER PRETRATMENT *** POSSIBLE EASY SCALE-UP OF UAE USING THE HC REACTOR**

References

[1] Brown, P.N.; Lund, J.A.; Murch, S.J. A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna Korth: Implications for products sold as kratom. Journal of Ethnopharmacology, 2017, 202, 302–325. [2] Barceloux D.G. (2012) Kratom [Mitragyna speciosa (Korth.) Havil.]. In Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. John Wiley & Sons Inc. (Ed.). Hoboken, NJ, 880-885. [3] Kumarnsit E.; Keawpradub N.; Nuankaew W. Effect of Mitragyna speciosa aqueous extract on ethanol withdrawal symptoms in mice, Fitoterapia, 2007, 78, 182–185. [4] Kumarnsit E.; Keawpradub N.; Nuankaew W. Acute and long-term effects of alkaloid extract of *Mitragyna speciosa* on food and water intake and body weight in rats, *Fitoterapia*, 2006, 77, 339–345. [5] Orio L.; Alexandru L.; Cravotto G.; Mantegna S.; Barge A. UAE, MAE, SFE-CO₂ and classical methods for the extraction of Mitragyna speciosa leaves. Ultrasonics Sonochemistry, 2012, 19, 591–595. [6] Boffa, L.; Ghe, C.; Barge, A.; Muccioli, G.; Cravotto, G. Alkaloid profiles and activity in different Mitragyna speciosa strains. Natural Product Communications, 2018, 13, 9, 1111-1116.

Acknowledgements

The authors are grateful to Herba Invest s.r.o. Slovakia for partially funding the work, and to the fruitful collaboration with Prof. Loretta Lazzarato and her HPLC-MS/MS analyses.