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Abstract

We present a new coupled Hartree-Fock(HF)/Kohn-Sham DFT perturbation method

that accounts for the effect of enlarging the basis set in electronic structure calculations.

In contrast with previous approaches, our dual basis set treatment yields not only a

correction for the total energy, but also for the orbital eigenvalues and density. The

zero-th order solution is obtained from the projection of the small basis set coefficients.

Diagonalization of the full Fock matrix in the large basis set is avoided. In this first

paper of a series, we develop the theoretical foundations of our approach for molecules,

including the coupled-perturbed equations through second order and the energy expres-

sions through fourth order – as our method complies with Wigner’s 2n + 1 rule. The

first-order perturbation equation turns out to be uncoupled and odd-order terms in the

energy expansion vanish.

In calculations on simple molecules, our method recovers over 93% (84%) of the

missing DFT(HF) energy when going from the cc-pVDZ to the aug-cc-pVDZ basis,
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and over about 95% in all cases if an energy extrapolation formula is used. Mulliken

charges, orbital eigenvalue spectrum and HOMO-LUMO gaps of the large basis are well

reproduced. Charge density maps show that the differences between the perturbatively

corrected density and the reference nearly vanish through second-order.

1 Introduction

A major issue often encountered in electronic structure calculations involves dealing with

large enough basis sets in order to achieve a desired high accuracy. For molecules the

problem is mostly one of computation time; for solids there is the additional issue of achieving

convergence in self-consistent field (SCF) treatments because of linear dependencies and

numerical errors in truncation of the Ewald series.

In wavefunction methods a large virtual basis is needed to account for dynamic electron

correlation whereas a smaller basis is sufficient to describe the occupied orbitals. This ob-

servation led Jurgens-Lutovsky and Almlöf1 to propose a dual basis set scheme for MP2

calculations based on an approach introduced by King and co-workers2,3 for the descrip-

tion of Rydberg states. In their scheme1 a small basis is augmented with additional basis

functions so as to form a larger virtual space that is used to evaluate the MP2 perturba-

tion sum. The additional virtual molecular orbitals needed for the MP2 calculation are

determined by diagonalizing the Fock matrix obtained for the small basis Fock operator.

Subsequently, Wolinsky and Pulay4 substantially improved the computational efficiency of

this earlier treatment, based in large part on prescreening procedures taken from the local

correlation approach.5 They also included a second-order perturbation theory correction for

the single excitation terms that arise because Brillouin’s theorem does not hold for the added

virtuals in the large basis.

The situation is somewhat different with Kohn-Sham density functional theory. In that

case correlation is included in the SCF equation that must be solved. Nonetheless, simi-

lar dual basis set procedures can be formulated. In particular, Liang and Head-Gordon6
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presented the equivalent of a second-order perturbation scheme akin to the one described

in Refs. 1,4 except that now the perturbation consists of just the single excitation terms.

They also showed how the time-consuming diagonalization of the Kohn-Sham Fock matrix

in the large virtual space could be replaced by iterative solution for the orbital coefficient

matrix that couples the occupied and virtual spaces, followed by a simple trace relation for

the energy lowering due to this coupling. The matrix equation is quadratic, but reduces to

the perturbation scheme after making a linear approximation. This general approach has

been extended by Steele, Head-Gordon and co-workers to include analytical derivatives for

geometry optimization,7 MP2 theory,8 and other applications.9

Nakajima and Hirao10 have developed a dual-level approach to DFT that corrects for both

basis set and lower level functional. Few years later Deng, Gilbert and Gill have developed

a “triple jumping” approach,11 that includes a correction for the integration grid as well.

More recently, Deng and Gill12 have devised a different dual basis MP2 scheme, which

utilizes the exact Hartree-Fock orbitals and energy in the large basis, but approximates

the contribution of terms involving the extended basis functions to the MP2 energy. Their

approach has the advantage that it does not require the small set to be a subset of the large

one.

Finally, we mention the Perturbed AToms in MOlecules and Solids (PATMOS) treat-

ment13,14 wherein the atom is the basic unit and the correlation energy is evaluated as a sum

of intra- and inter-atomic terms; it is considered to be particularly well-suited for periodic

systems. A large and a small basis is associated with each atom, but otherwise PATMOS falls

into a distinctly different category from what are usually regarded as dual basis methods.

Our own interest in dual basis set methodology stems from its potential use in the calcula-

tion of solid state properties. In particular, we and our co-workers have devoted considerable

effort to the development of coupled perturbed Hartree-Fock and Kohn Sham (CPHF/KS)

methods for determining nonlinear optical properties,15,16 infrared17 and Raman18,19 vibra-

tional intensities, piezoelectric coefficients, etc. of periodic systems. One problem with such
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calculations is the choice of a basis set that is large enough to give accurate results without

causing SCF convergence difficulties in solving the perturbation equations. In particular,

diffuse (augmented) functions give rise to linear dependence and failed convergence of Ewald

sums,20,21 often resulting in appearance of unphysical states in the solution. As a first step

towards dealing with these issues we have formulated a general CPHF/CPKS treatment for

the effect of a basis set extension on the HF/KS energy, which is the subject of the current

paper that includes an application to molecules. This development opens the way to a sys-

tematic CPHF/CPKS dual basis set treatment of molecular properties that will ultimately

allow us to take advantage of standard perturbation theory techniques, such as interchange

relations22–25 and Wigner’s 2n+1 rule,26,27 as we have done in the past.

In a similar fashion, we envisage our perturbative dual basis approach to be possibly

combined with other perturbative treatments like MP2 for electron correlation.28

In this first paper of a series we develop our new dual basis perturbation treatment in

the context of molecular systems. As opposite to previous approaches, we derive coupled-

perturbed equations through second order and energy expressions through fourth order, for

both Hartree-Fock and DFT. This perturbation treatment allows us to correct the orbitals

(hence density) and orbital energies, as well as to extrapolate to infinite order. In our next

paper this treatment will be extended to periodic crystalline systems. An outline of the work

presented here is as follows. In the next section we present a general definition of the dual

basis set problem along with preliminary considerations. Then, in Section III we formulate

the CPHF/CPKS dual basis set method, including our particular choice for the orders of

perturbation theory and derivation of the perturbation energy expressions. In Section IV

some results are presented in order to validate the method and benchmark its effectiveness.

Finally, in the last section our important conclusions are drawn and future prospects are

outlined.
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2 From the small to the large basis set.

Let us start by defining two basis sets: a “small” one (S) and a “large” one (L). The SCF

equation in the S basis is:

SF SC = SS SC Sε (1)

subject to the normalization condition

SC† SS SC = S1 (2)

Here SF is the electronic Fock matrix, which is the sum of a one-electron term, h, and a

two-electron term B:

SF = Sh + SB (3)

The elements of B are given by

SBµ,ν =
∑
ρ,τ

SDτρ(µν||ρτ) (4)

where SD = SCn SC
† is the density matrix in the S basis.

2.1 Projection of the S solution onto the L basis

It is convenient to write the S basis functions, either approximately or exactly, in the L basis.

If the respective basis functions are denoted by a superscript S/L, then:

∑
νL

aν
S

νL|φνL〉 = |φνS〉 (5)

where aνSνL are the combining coefficients. Multiplication of Eq. (5) on the left by 〈φµL|

gives:
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∑
νL

aν
S

νL〈φµL|φνL〉 = 〈φµL|φνS〉 (6)

Then, using the overlap matrix elements

LSµL,νL = 〈φµL|φνL〉

LSSµL,νS = 〈φµL|φνS〉 (7)

we obtain

aν
S

νL = LSP νL,νS (8)

with

LSP = LS−1 LSS (9)

Near linear dependencies can be detected and the corresponding small eigenvalues of LS can

be removed through an inversion by diagonalization procedure.

The basis set S may or may not be entirely contained in L. For simplicity, we will assume

here that S is a subset of L. If not, there are several ways to extend the treatment, but we

will leave that for future work.

Let us suppose we have solved the SCF equations in the S basis to obtain SC. The zeroth

order approximation for the occupied coefficients in the L basis will then be:

L
Cj
νL

(0) =
∑
νS

aν
S

νL
SCj

νS
(10)

or, in matrix notation:

LC(0) = LSP SC (11)

Note that if the basis set S was not exactly contained in L, a reorthonormalization of the
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occupied orbitals would be needed. It follows that, in zeroth order,

LD = LCn LC† (12)

then at zeroth order in the basis set perturbation, we have

LD(0) = LC(0)n
L
C(0)† = LSP SD LSP† (13)

Next we separate the space spanned by basis functions L into two subspaces, one of which

is spanned by the S basis (‖) while the other (⊥) is orthogonal to it. For that purpose it is

useful to define the matrix SLP:

SLP = SS−1 SLS (14)

Then, we introduce, the O‖ matrix

O‖ = LSP SLP (15)

which represents the projection from the L space to the S space and back, together with its

complementary matrix

O⊥ =
(
L1−O‖

)
(16)

A full derivation of these matrices and their main properties is reported in Appendix A. In

particular, after projection onto S space it is shown in Appendix A that the matrix elements

of any operator Â in the L basis are given by (see Eqs.(A.5)–(A.6)):

AL,‖ = (O‖)†AL O‖ (17)

An exactly analogous relation holds for a prior projection onto the complementary space

in L as well as the off-diagonal projections that couple the two spaces (see Eqs.(31) and (32)
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below).

We also note that, for the occupied eigenvectors LC
(0)
O :

O‖ LC
(0)
O = LSP SLP LSP SCO = LSP SCO = LC

(0)
O (18)

and, thus,

O⊥ LC
(0)
O =

(
1−O‖

)
LC

(0)
O = LC

(0)
O −

LC
(0)
O = 0 . (19)

3 Basis set enlargement as a perturbation

Let us now assume that the differential effect of adopting L, as opposed to S, is sufficiently

small so that the basis set enlargement can be considered as a perturbation. Then the

coefficient matrix C can be expanded in orders of a perturbation parameter λ:

C = C(0) + λC(1) +
1

2!
λ2C(2) +

1

3!
λ3C(3) + ... (20)

where the zero-th order coefficients are those obtained directly after projection from the

small basis– see Eq. (11). Here, as well as in the following, we have dropped the superscript

L since all quantities from now on refer to the large basis. λ, as usual, is a formal parameter

that varies between 0 and 1 and will ultimately be set equal to unity. As a consequence, the

density matrix in orders of perturbation theory becomes:

D = D(0) + λD(1) +
1

2!
λ2D(2) +

1

3!
λ3D(3) + ... (21)
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where:

D(0) = C(0) nC(0)† (22)

D(1) = C(1) nC(0)† + C(0) nC(1)† (23)

D(2) = C(2) nC(0)† + C(0) nC(2)† + 2 C(1) nC(1)† (24)

For later use it is convenient to factor these matrices into block diagonal and block

off-diagonal parts using the projection matrices O‖ and O⊥:29

D(n) = O‖D(n)O‖
†

+ O⊥D(n)O⊥
†

D
(n)

= O‖D(n)O⊥
†

+ O⊥D(n)O‖
†

(25)

As in the case of C and D the Fock matrix F = h + B as well as the orbital energies,

can be expanded as

F = F(0) + λF(1) +
1

2!
λ2F(2) +

1

3!
λ3F(3) + ... (26)

and

ε = ε(0) + λε(1) +
1

2!
λ2ε(2) +

1

3!
λ3ε(3) + ... (27)

Since the bielectronic term depends linearly upon the density matrix it can be expressed

as the sum of contributions from the block diagonal and block off-diagonal projections of D,

i.e.
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Bµ,ν

[
D(n)

]
= Bµ,ν

[
D(n)

]
+Bµ,ν

[
D

(n)
]

≡ Bµ,ν [n ] = Bµ,ν [n ] +Bµ,ν [n ] (28)

where

Bµ,ν

[
D(n)

]
=
∑
ρ,τ

D(n) (µν || ρτ) ≡ Bµ,ν [n ] (29)

Bµ,ν

[
D

(n)
]

=
∑
ρ,τ

D
(n)

(µν || ρτ) ≡ Bµ,ν [n ] (30)

Note that following Eq. (19) B[ 0 ] = 0, hence B[ 0 ] = B[ 0 ]

3.1 Definition of perturbative orders of F

In order to define orders of perturbation theory for the one- and two-electron matrices that

contribute to F we also partition these matrices into diagonal and off–diagonal blocks

B[n ] = O‖
†
B[n ]O‖ + O⊥

†
B[n ]O⊥

B[n ] = O‖
†
B[n ]O⊥ + O⊥

†
B[n ]O‖ (31)

h = O‖
†
h O‖ + O⊥

†
h O⊥

h = O‖
†
h O⊥ + O⊥

†
h O‖ (32)

Our separation of the various contributions to the Fock matrix F in orders of perturbation
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theory is as follows:

F(0) = h + B[ 0 ] = h + B[ 0 ] (33)

F(1) = B[ 1 ] + h + B[ 0 ] = Ω(1) (34)

F(2) = B[ 2 ] + 2B[ 1 ] + 2B[ 1 ] = B[ 2 ] + 2B[ 1 ] (35)

F(3) = B[ 3 ] + 3B[ 2 ] + 3B[ 2 ] + 6B[ 1 ] (36)

F(n) = B[n ] + nB[n− 1 ] + nB[n− 1 ]

+n(n− 1)B[n− 2 ] for n ≥ 3 (37)

where we have introduced:

Ω(1) = h + B[ 0 ] (38)

and exploited the fact that D(1) = 0. With this choice the off-diagonal AO blocks are sys-

tematically one order of perturbation theory higher than the diagonal blocks of the same

matrix. As will be seen in the following, this definition guarantees Wigner’s 2n+1 rule,26,27

while the same proved not to be true for other choices we have considered. It is possible to

use an alternative definition that will generate an n+ 1 rule. However, we prefer the formu-

lation developed here because it leads to a number of simplifications including a convenient

extrapolation procedure (vide infra).

3.2 Virtual spaces

Following our choice that the S basis should be entirely contained in L, the virtual MO

manifold V in the L basis can be divided into two subspaces, that we will label as V ′

and V ′′. V ′ contains the virtual orbitals of the S basis, while V ′′ contains the virtuals

(orthogonal to V’) that are added in the L basis. The additional V ′′ orbitals are obtained

by diagonalizing the O⊥
†
F(0)O⊥ matrix. We find this separation into V ′ and V ” subspaces

advantageous because: i) it simplifies the formalism; and, ii) as we will show in more detail

11



for periodic systems in Paper II , it allows us to easily detect unphysical orbitals. Such

unphysical orbitals, which can occur due to numerical inaccuracies in constructing the Fock

matrix, are characterized by eigenvalues below the small basis HOMO (or Fermi level in

periodic systems). For the V ′ space, Eqs. (18) and (19) hold, in exactly the same way as

for the occupied orbitals (substitute V ′ for O). Conversely, for the V ′′ space we have, by

construction,

O‖C
(0)
V ′′ = 0 ; O⊥C

(0)
V ′′ = C

(0)
V ′′ (39)

3.3 The orthonormality condition

By expanding the coefficient matrices in the orthonormality condition

C†SC = 1 (40)

according to Eq. (20) and grouping orders of perturbation theory, we find:

C(0)†SC(0) = 1 (41)

C(1)†SC(0) + C(0)†SC(1) = 0 (42)

C(2)†SC(0) + 2C(1)†SC(1) + C(0)†SC(2) = 0 (43)

3.4 CPHF/CPKS perturbation equations

Except for the unique definition of orders the CPHF/CPKS perturbation equations are

essentially the same as in our previous work.15 Thus, by inserting the expansions (26), (27)

and (20) into the SCF equation FC = SCε in the large basis, we obtain :
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F(0)C(0) = SC(0)ε(0) (44)

F(1)C(0) + F(0)C(1) = SC(1)ε(0) + SC(0)ε(1) (45)

F(2)C(0) + 2F(1)C(1) + F(0)C(2) =

= SC(2)ε(0) + 2SC(1)ε(1) + SC(0)ε(2) (46)

...

The coefficient matrices may be expressed as

C(n) = C(0)U(n) (47)

so that the orthonormalization conditions in Eqs. (41)–(43) become (through second-

order)

U(1) = −U(1)† (48)

U(2) + U(2)† = −2U(1)†U(1) (49)

Multiplication of Eqs.(45)–(46) on the left by C(0)† leads to a set of self-consistent equations

for the U(n) in terms of the matrices

G(n) = C(0)†F(n)C(0) (50)

The G(n) matrices may be divided into blocks defined by the occupied O and virtual V ′,

V ′′ spaces. Explicit expressions for the various blocks, based on Eqs.(33)-(39), are given in

Appendix B.
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3.5 Non-canonical solution of first– and second–order perturbation

equations

For sake of completeness, we develop here the coupled perturbed equations following the

non-canonical treatment of Karna and Dupuis.27 The first-order perturbation equation is:

G(1) + ε(0)U(1) = U(1)ε(0) + ε(1) (51)

If i, j, ... refer to occupied orbitals and a, b, ... to virtuals, then assuming ε(1)ia = 0 the solution

for the occ-virt elements of U(1) is (switch i and a for the virt–occ elements)

U
(1)
ia =

G
(1)
ia

ε
(0)
a − ε(0)i

(52)

with i occupied and a virtual. For the diagonal occ–occ and virt–virt blocks we make the

particular non-canonical choice U (1) = U (1)† = 0, which trivially satisfies Eq. (48).

Since D(1) = 0 it is clear that only the U
(1)
OV ′′ block is non-zero and a self-consistent

solution of Eq. (51) is unnecessary because G
(1)
OV ′′ does not contain the first-order density

matrix (see Appendix B).

Given that the diagonal blocks of U(1) vanish, it follows from Eq.(51) that:

ε
(1)
ij = G

(1)
ij ; ε

(1)
ab = G

(1)
ab (53)

Finally, the virt-virt block of the Lagrange multiplier matrix through first-order can be

diagonalized to give the virtual orbital energies through that order. In first-order the virtual

orbital energies are modified due to V ′, V ′′ coupling, but the occupied orbital energies are

unaltered.

From Eq. (46) the second-order perturbation equation is:

G(2) + 2 G(1)U(1) + ε(0)U(2) = U(2)ε(0) + 2 U(1)ε(1) + ε(2) (54)
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Assuming that the virt-occ block of ε(2) is zero, and using Eq. (49), we have:

U
(2)
ai =

G
(2)
ai + 2

∑virt
b G

(1)
ab U

(1)
bi − 2

∑occ
j U

(1)
aj G

(1)
ji

ε
(0)
i − ε

(0)
a

(55)

Since the diagonal blocks of U(1) and U(1)† are null it also follows from Eq. (49) that

U
(2)
ia = −U (2)

ai

∗
. (56)

By the same token the occ–occ block of U(2) is obtained from Eq. (49) as U(2) = −U(1)†U(1),

under the choice that this block is hermitian.

Based on the fact that D
(0)

= 0 ( and D(1) = 0), we observe (see Appendix B) that

G
(2)
OV ′′ = 0, which means that ( see Eq.(55) )

U
(2)
V ′′O = 0 (57)

that is, the second-order correction to the wavefunction does not couple the O and V ′′ spaces.

A direct consequence of Eq. (57) is that D
(2)

= 0.

The occ−occ block of the second-order Lagrange multiplier matrix can be obtained from

Eq. (54) as

ε
(2)
ij = G

(2)
ij +

virt∑
a

2G
(1)
ia U

(1)
aj + U

(2)
ij (ε

(0)
i − ε

(0)
j )

= G
(2)
ij +

virt∑
a

2G
(1)
ia U

(1)
aj +

∑
a

U
(1)
ia U

(1)
aj (ε

(0)
i − ε

(0)
j )

= G
(2)
ij +

virt∑
a

U
(1)
ia U

(1)
aj (2ε(0)a − ε

(0)
i − ε

(0)
j ) (58)

and, similarly, for the virt–virt block

ε
(2)
ab = G

(2)
ab +

occ∑
i

U
(1)
ai U

(1)
ib (2ε

(0)
i − ε(0)a − ε

(0)
b ) (59)
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As before, the sum of the Lagrange multiplier matrices for the occ–occ block can be diago-

nalized to yield the occupied orbital energies – this time through second-order. The same

holds for the virt–virt block.

3.6 Energy contributions

Starting from the Hartree-Fock energy expression (Tr signifies the trace)

EHF =
1

2
Tr [(h + F)D] (60)

and the perturbation expansion of the total energy

E = E(0) + λE(1) +
1

2!
λ2E(2) +

1

3!
λ3E(3) + ... (61)

we obtain the perturbation corrections to the energy through 4th-order given below. The

full derivation is given in Appendix C

E
(0)
HF =

1

2
Tr
[
(h + F(0)) D(0)

]
(62)

E
(1)
HF = Tr

[
F(0)D(1)

]
= 0 (63)

E
(2)
HF = Tr

[
Ω(1) D(1)

]
(64)

E
(3)
HF = Tr

[
6 U

(1)
OV

† (
U

(1)
V OG

(1)
OO −G

(1)
V V U

(1)
V O

)
+

3

2
Ω(1)D(2)

]
= 0 (65)

E
(4)
HF = Tr

[
12 U

(1)
OV

† (
2 G

(1)
V OU

(2)
OO + 2 G

(1)
V V U

(2)
V O − 2 U

(2)
V OG

(1)
OO + G

(2)
V V U

(1)
V O −U

(1)
V Oε

(2)
OO

)
+ B[ 1 ] D(1)

]
(66)

Here E(0)
HF corresponds to the total energy as obtained in the small basis.
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Note that:

Tr
[
Ω(1) D(1)

]
= Tr

[
Ξ(1)U(1) n+ Ξ(1) nU(1)†

]
= 2Tr

[
Ξ

(1)
OV ′′ U

(1)
V ′′O + Ξ

(1)
V ′′O U

(1)
OV ′′

†]
(67)

where

Ξ(1) = C(0)†Ω(1)C(0) (68)

E
(3)
HF vanishes because D

(2)
= 0 as do G

(1)
OO, G

(1)
V ′V ′ and G

(1)
V ′′V ′′ (see Appendix B ). Since

E
(4)
HF depends only on second-order quantities it is obvious that the 2n + 1 is satisfied, at

least through 4th-order – although we have no reasons to doubt its validity for higher orders.

3.6.1 Comparison with other approaches

It is of interest to compare our approach with the method of Martin Head-Gordon and

coworkers (MHG in the following). Eq. (7) of Ref. 6 yields the dual basis set energy

correction as

EMHG = Tr [FOV XV O] (69)

where FOV is the off-diagonal block of the Fock matrix constructed from D(0) and thus

equivalent to Ξ
(1)
OV in Eq. (68). The quantity

XV O = UV OU−1OO . (70)

is introduced which in turn, is obtained as the solution of:

FV O + FV V XV O −XV OFOO −XV OFOV XV O = 0V O (71)

If limited to first order, so that UV O = U
(1)
V O and UOO = 1OO, then Eq. (69) corresponds

to our second-order energy in Eq. (64). As far as the initial Fock build is concerned, the two

approaches are identical. Because of the last term on the lhs of Eq. (71) an infinite order
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approximation for U is actually obtained. Thus, the two treatments are equivalent through

the second-order of perturbation theory, but diverge beyond that point.

Note that in the MHG approach, neither the correction to the wavefunction nor to the

eigenvalues is provided.

From another point of view the “MP1” perturbation correction, which is the singles’

contribution to the MP2 energy due to violation of the Brillouin theorem, is usually expressed

as:

EMP1
HF = 2

∑
ia

(
G

(0)
ia + Ξ

(1)
ia

)2
ε
(0)
i − ε

(0)
a

= 2
∑
ia

Ξ
(1)
ia

2

ε
(0)
i − ε

(0)
a

(72)

since G
(0)
OV = 0. Only those virtuals that belong to the V ′′ space will contribute to this sum.

Making the appropriate substitutions from Appendix B and (52) into Eq.(72) leads to:

EMP1
HF = Tr

[
D(1)(h + B[ 0 ]

)
]

= Tr
[
D(1)(h + h + B[ 0 ] + B[ 0 ])

]
= Tr

[
D(1)(h + B[ 0 ])

]
(73)

which, again, is our second-order energy – Eq. (64). Eq. (C.10) in Appendix C was used

to obtain the last line in Eq. (72).

3.7 Energy Extrapolation

As one advantage of having obtained the separate energy corrections for different pertur-

bation orders, an extrapolation to infinite order can be applied. Since the first- and third-

order contributions are zero, we extrapolate using even orders only. For this extrapolation

we employ the well–known formula

EExtr
HF = E

(0)
HF −

(
E

(2)
HF − E

(0)
HF

)2
E

(0)
HF − 2E

(2)
HF + E

(4)
HF

(74)
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Eq. (74) is usually attributed to Aitken,30 but is actually much older as discussed in Ref.

31.

3.8 Density Functional Theory

Let us now consider the extension of our approach from CPHF to a Coupled-Perturbed

Kohn-Sham (CPKS) treatment. We derive expressions for a hybrid functional, such as

PBE0 or B3LYP, since local density and generalized gradient approximations are special

cases, whereas the generalization to higher levels can be readily obtained.

In DFT calculations, the total electronic energy is separated into several terms32

E
(0)
DFT (aX) = ET + EV + EJ + aXE

X
HF + EXC

R (aX) (75)

In Eq. (75) ET , EV and EJ are the kinetic, electron-nuclear attraction and Coulomb re-

pulsion energies, respectively. They are the same as in the HF treatment. EX
HF is the

HF exchange contribution EX
HF = Tr

[
BXD

]
, with BX being the exchange part of the bi-

electronic term. It is multiplied by the scaling factor aX to give the fraction of “exact”

exchange in the functional. Finally, EXC
R (aX) is the remaining exchange-correlation part of

the electron-electron interaction energy.

The XC part of the DFT Fock matrix can be written as FXC = dEXC/dρ so that,

following Pople et al.32

FXC
DFT = FXC

DFT [ρ] =
∑
i

wi

[
∂fXC

∂ρ
φµφν + 2

∂fXC

∂|∇ρ|2
∇ρ · ∇(φµφν)

]
(76)

where fXC is the exchange-correlation functional of the density, ρ, and its gradient, ∇ρ, that

yields EXC when integrated over all space.

The additional Fock and energy contributions in our dual basis set perturbation treatment

are similar to those obtained in other response treatments33 (see, for instance, Eqs. (19) and
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(20) of Ref. 34 for the case of electric fields in periodic systems). The key difference is the

definition of orders in terms of the density matrix (or density) based on a separation of the

latter into parallel and perpendicular projections. In exact analogy with our treatment of

the Hartree-Fock exchange and (coulomb) terms FXC
DFT is expanded as (cf. Eqs. (33)–(37) )

FXC
DFT

(0)
= FXC

DFT

(0)
[ ρ(0)]

FXC
DFT

(1)
= F

XC

DFT

(0)
[ ρ(0)] + FXC

DFT

(1)
[ ρ(1)]

FXC
DFT

(2)
= F

XC

DFT

(2)
[ ρ(2)] + 2 FXC

DFT

(2)
[ ρ(1)]

... (77)

It follows from Eq. (77) that the vanishing of odd-order terms proved for the Hartree-Fock

treatment applies to DFT as well.

3.9 Implementation details

The present dual basis set method has been implemented in the Crystal code.35 Despite being

designed for the treatment of crystalline solids, this program is able to perform molecular

calculations just like any standard molecular quantum chemistry program, thanks to the

adoption of an atom-centered Gaussian basis set. Iterative solution of Eq. (54) is accelerated

by means of DIIS techniques,36,37 which leads to convergence within 5-6 iterations, in all cases

tested, at a threshold of 10−10 on the diagonal element of the DIIS error matrix.

The Xcfun library38 is used for taking the functional derivatives. Plots have been realized

using the CRYSPLOT online tool.39
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4 Results and Discussion

In this section we document the performance of our method for the total energy and compare

with the treatment of Martin Head-Gordon and co-workers (hereafter referred to as the MHG

method) – see Eqs. (69) - (71). We also analyze the effect of the basis set corrections on

the eigenvalue spectrum, (Mulliken) atomic charges and electronic densities, which cannot

be computed using other approaches.

Since our ultimate goal is to be able to use diffuse functions for systems – like crystalline

solids – in which their use is not possible otherwise, we have mostly adopted the pairing

of cc-pVXZ with the corresponding aug-cc-pVXZ basis, but any other pairing such that

the S basis is entirely contained in L would be feasible with our current formalism. Since

the main purpose of this work is to validate the method, we leave for future studies an

extensive benchmark of basis set pairings. In most instances our results were obtained with

Hartree-Fock and the popular representative hybrid functional PBE0. Molecular geometries

are available as supplementary material. Finally, for convenience, we refer to our method as

MKn, where it n stands for the perturbation order, and employ the notation MKn L−basis
S−basis to

include the definition of the two basis sets.

We will not present detailed timings here, as our main concern is to validate the method

and focus on accuracy. However, it might be of interest to the reader to present at least some

analysis. The Fock matrix build in the large basis is the rate-determining step in our largest

test calculation – C6H6 molecule with cc-pVTZ/aug-cc-pVTZ basis set. In the large-basis

SCF convergence is achieved in 10 iterations. Just one Fock build is performed in the MHG

method, while our uncoupled MKn approach requires one build per each perturbative order

(including zero-th order). In the case of coupled-perturbed iterations, 3 additional builds at

second-order are needed, which is still 30% less than for the full large-basis SCF.
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4.1 Energies

Table 1 reports the MKn total energy corrections for a set of small molecules, when cc-pVDZ

is used as the S basis and the L basis is aug-cc-pVDZ. It is seen that the 2nd order correction

recovers about 62-73% of the missing total energy at the HF level, 75-86% in the DFT case.

The fourth-order correction is decisive in achieving high accuracy - in all cases about 84-

92% of the missing total energy for HF, 93-97% for DFT. Extrapolation using Eq. (74) leads

to values that are remarkably close to the reference, with absolute differences well below

0.5 milliHartree and a recovery of more than about 95% in all cases. These observations

remain qualitatively the same for the uncoupled treatment wherein Eq. (55) is solved non-

iteratively, except that the extrapolations do not work nearly as well. In particular, for the

DFT calculations they typically lead to a significant overcorrection.

Comparing the MKn results with the MHG ones, we note that the latter are slightly

better than our second-order energies, but not quite as good as our E(4) values, with the latter

difference being more substantial after extrapolation. Except for the effect of extrapolation,

these observations again remain much the same for the uncoupled treatment. Even so, the

magnitude of the error is less than for the MHG method (except in one case). For DFT

there is a tendency in the MHG method to overcorrect40 (an empirical scaling factor has

been proposed to compensate for that effect). We note that the coupled perturbed iterations

in our second-order equation substantially relieve this tendency (compare the coupled and

uncoupled calculations in fourth-order).

A somewhat similar analysis pertains to augmentation of the correlation consistent triple-

zeta basis set – see Table 2. Now the zeroth-order energy differences are smaller, which leads

to reduced values for the percentage recovery. The absolute errors at second- and fourth-

order are less than in Table I, being smaller than 1 milliHartree in all cases, while the energy

extrapolation seems to be slightly less effective than in the double-zeta case. Thus, the

extrapolated energies do not represent an improvement over the MHG method in a couple

of the DFT calculations.
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On the other hand, omitting the SCF iterations in second-order does not now lead to

overcorrections in the DFT case. Both at fourth-order and after extrapolation, the uncoupled

treatment yields values that are quite similar to the coupled calculations. This behavior

deserves further study since, if general, it would lead to a much more efficient procedure. It

may be that iterative treatment of the MK2 equations is necessary only if the reference basis

is of double zeta quality or less.

It is instructive, in view of the future development of gradients within our dual basis

method, to briefly investigate potential energy surfaces. A common test case is the HF

binding energy curve for a neon dimer, which is shown in Figure 1. In the infinite basis set

limit the bond between the two atoms is non-existent, since HF cannot describe dispersion

interactions.41 However, in a finite basis the basis superposition error will give rise to a

minimum that, for a small cc-pVDZ basis, occurs at a shorter internuclear distance than a

larger d-aug-cc-pVDZ basis. As seen in the figure the coupled perturbed basis set correc-

tions progressively shift the cc-pVDZ curve so that, in fourth-order, it is almost parallel to

the doubly-augmented reference; extrapolation brings the two curves slightly closer to one

another and more nearly parallel.
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Table 1: Absolute errors in the coupled perturbed energy (in milliHartree) for a set of simple
molecules computed at the Hartree-Fock (top) and PBE0 (bottom) levels. Values for the
corresponding uncoupled (non-iterative) treatment are given in parentheses. S basis: cc-
pVDZ; L basis: aug-cc-pVDZ ERef is the reference value for the aug-cc-pVDZ basis (in
Hartree). ∆EMHG refers to Martin Head-Gordon’s approach.6

Molecule ∆E(0) ∆E(2) ∆E(4) ∆EExtr ∆EMHG ERef

H
ar
tr
ee

–
Fo

ck

LiH 0.54 0.18 0.07 (0.08) 0.02 (0.04) 0.13 -7.984187
NH3 9.93 3.82 1.47 (1.63) 0.02 (0.40) 2.89 -56.205423
H2O 14.44 5.00 1.72 (1.75) -0.03 (0.05) 3.68 -76.040752
HCN 4.26 1.22 0.39 (0.41) 0.08 (0.12) 0.91 -92.886575
CO2 11.68 3.20 0.95 (0.99) 0.13 (0.21) 2.07 -187.663237
HCOOH 15.85 4.65 1.46 (1.54) 0.18 (0.34) 3.24 -188.794243
CH4N2O 22.68 6.92 2.28 (2.42) 0.34 (0.62) 4.92 -224.024602
C6H6 6.06 1.62 0.51 (0.58) 0.14 (0.26) 1.23 -230.728219

P
B
E
0

LiH 0.59 0.10 0.04 (0.04) 0.03 (0.03) 0.04 -8.048678
NH3 14.47 3.68 0.95 (0.50) 0.02 (-0.82) 1.23 -56.205423
H2O 20.85 4.72 1.01 (-0.19) -0.10 (-2.34) 1.17 -56.499660
HCN 5.53 1.08 0.28 (0.16) 0.10 (-0.08) 0.38 -93.320557
CO2 13.57 2.71 0.64 (0.33) 0.16 (-0.34) 0.72 -188.413993
HCOOH 19.39 4.07 0.98 (0.48) 0.20 (-0.61) 1.20 -189.588405
CH4N2O 28.69 6.24 1.56 (0.80) 0.32 (-0.94) 1.86 -225.058198
C6H6 8.65 1.23 0.26 (0.22) 0.12 (0.07) 0.51 -231.990437
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Table 2: Absolute errors in the coupled perturbed energy (in milliHartree) for a set of simple
molecules computed at the Hartree-Fock (top) and PBE0 (bottom) levels. Values for the
corresponding uncoupled (non-iterative) treatment are given in parentheses. S basis: cc-
pVTZ; L basis: aug-cc-pVTZ ERef is the reference value for the aug-cc-pVTZ basis (in
Hartree). ∆EMHG refers to Martin Head-Gordon’s approach.6

Molecule ∆E(0) ∆E(2) ∆E(4) ∆EExtr ∆EMHG ERef

H
ar
tr
ee

–
Fo

ck

LiH 0.18 0.06 0.02 (0.03) 0.01 (0.01) 0.03 -7.986830
NH3 2.51 1.16 0.60 (0.64) 0.23 (0.33) 0.71 -56.220379
H2O 3.43 1.44 0.63 (0.68) 0.09 (0.22) 0.89 -76.059844
HCN 1.05 0.38 0.17 (0.18) 0.07 (0.09) 0.17 -92.908105
CO2 2.25 0.79 0.32 (0.34) 0.09 (0.14) 0.35 -187.710057
HCOOH 3.35 1.19 0.47 (0.51) 0.11 (0.20) 0.65 -188.840965
CH4N2O 5.13 1.94 0.81 (0.88) 0.19 (0.35) 1.11 -224.077896
C6H6 1.86 0.63 0.25 (0.28) 0.09 (0.13) 0.35 -230.781228

P
B
E
0

LiH 0.34 0.07 0.02 (0.02) 0.01 (0.01) 0.02 -8.051777
NH3 3.68 1.47 0.76 (0.76) 0.43 (0.42) 0.36 -56.515711
H2O 5.57 1.96 0.78 (0.74) 0.19 (0.10) 0.44 -76.379839
HCN 1.20 0.35 0.15 (0.15) 0.09 (0.09) 0.07 -93.342724
CO2 2.53 0.77 0.30 (0.29) 0.12 (0.12) 0.15 -188.459636
HCOOH 4.18 1.30 0.48 (0.28) 0.17 (0.17) 0.29 -189.633984
CH4N2O 6.69 2.21 0.88 (0.87) 0.31 (0.30) 0.51 -225.110792
C6H6 1.87 0.37 0.11 (0.12) 0.06 (0.06) 0.10 -232.042280
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Figure 1: Interaction energy in Ne dimer as a function of distance between the two atoms
using cc-pVDZ as a small basis and d-aug-cc-pVDZ as a large basis, computed at the Hartree-
Fock level. Vertical lines indicate positions of minima, as obtained from a Morse potential
fit.

4.2 Properties

4.2.1 Orbital Energy Levels

In Figure 2 we display the eigenvalue spectrum of the water molecule, as obtained with

the S = cc-pVDZ (left) and L = aug-cc-pVDZ (right) basis sets at the PBE0 level (cf.

Eqs. (53), (58) and (59)). In between are the diagonalization of the full F(0) matrix (as

performed in the MHG method), and our first- and second-order CPHF corrected MK1 and

MK2 results. At the uncorrected cc-pVDZ level, we also show the eigenspectrum obtained

from diagonalization of the perp–perp block of the 0-th order Fock matrix (V ′′ space - see

Section 3.2).
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Figure 2: Graphical representation of the eigenvalue spectrum around the HOMO-LUMO
gap for the water molecule (PBE0). In the left panel we report in green color the eigenvalues
obtained from the diagonalization of the perp–perp block of the Fock matrix in the L basis
(V ′′ space). Values for the HOMO and LUMO levels are reported explicitly.
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We observe that the HOMO-LUMO gap is much too large for the cc-pVDZ basis. None

of the additional orbitals just described falls in this gap, although this can happen. The

first order correction (MK1) significantly corrects the virtual orbitals, leading to a gap that

is closer to the reference. On the other hand, at this level no change occurs in the occupied

orbitals, as expected. The second-order (MK2) correction acts on the occupied levels bringing

them close to the reference values. The virtuals are also slightly corrected at this order. The

diagonalization of the full F(0) matrix – that is avoided in our MKn method – leads to virtual

energy levels almost identical to our MK1 result, and occupied levels that fall in between

MK1 and MK2.

A more extensive analysis of the effect of basis set corrections on HOMO-LUMO gaps

is reported in Table 3. Here it is observed that the behavior just discussed in the case of

the water molecule seems to be general, as the reference gap is accurately and, in most

instances, steadily approached when going from MK0 to MK1 and MK2. In all cases, the

main correction is seen at the MK1 level.

4.2.2 Electronic Charge

Thanks to the availability of corrections to the density matrix our method enables us com-

pute a wide variety of properties. In that regard, it is of interest to examine the electronic

charge density itself. Figure 3 shows difference maps for the charge density between the

reference L basis (aug-cc-pVDZ) and the MKnaug−cc−pV DZcc−pV DZ corrected densities for the pla-

nar urea molecule. In zeroth-order significant differences are observed, especially near the

atomic positions. There is an evident deficiency of electronic charge around the H atoms.

This is reflected in the Mulliken charges (see Table 4), which also indicate an excess of

electronic charge on the C atom. Although Mulliken charges are known not to provide a

reliable partitioning of electronic charge when a diffuse basis set is employed, we are using

them here simply to quantify how well our perturbation treatment reproduces the electronic

charge transfer due to basis set extension. The MK1 correction significantly reduces these
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discrepancies in Fig. 3 leaving a clear difference only near oxygen; it also leads to Mulliken

charges that are very similar to the reference. Finally, MK2 yields a density that has only

small differences with respect to aug-cc-pVDZ. The uncoupled treatment behaves similarly,

although a larger error is observed in the core region of the O and N atoms after corrections

are included. An analogous behavior is seen in Figure 3 and in Table 4 for benzene and

HCN. In either case the first-order correction already yields an excellent agreement with the

reference for Mulliken charges, although a significant overcorrection of the density around

the N atom is observed in HCN.

Table 3: Hartree-Fock and PBE0 HOMO-LUMO gaps in eV.

molecule cc-pVDZ MK1aug−cc−pV DZcc−pV DZ MK2aug−cc−pV DZcc−pV DZ aug-cc-pVDZ

H
ar
tr
ee

–
Fo

ck LiH 8.20 7.96 7.96 7.97
NH3 16.44 12.34 12.34 12.58
H2O 18.43 14.42 14.52 14.82
HCN 18.08 14.18 14.23 14.29
CO2 20.57 16.12 16.19 16.32
HCOOH 17.27 13.49 13.58 13.74
CH4N2O 14.86 11.24 11.33 11.59
C6H6 12.82 10.07 10.08 10.13

P
B
E
0

LiH 4.35 4.32 4.36 4.30
NH3 9.13 7.08 7.08 7.50
H2O 10.07 8.17 8.27 8.73
HCN 10.75 10.22 10.25 10.27
CO2 11.76 10.46 10.56 10.64
HCOOH 8.30 7.98 7.99 8.10
CH4N2O 7.87 6.26 6.35 6.67
C6H6 7.17 7.00 6.98 7.01
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Table 4: Mulliken charges for urea, benzene and HCN molecules, as obtained at different
perturbation orders for the PBE0 functional.

Atom cc-pVDZ MK1aug−cc−pV DZcc−pV DZ MK2aug−cc−pV DZcc−pV DZ aug-cc-pVDZ

Urea

C 5.81 5.11 5.09 4.97
O 8.36 8.59 8.59 8.64
N 7.13 7.02 7.05 7.06
H 0.87 1.05 1.04 1.05
H 0.91 1.07 1.07 1.08

C6H6
C 6.00 5.46 5.46 5.41
H 1.00 1.54 1.54 1.59

HCN
H 0.89 1.01 1.01 1.00
C 5.99 5.66 5.67 5.61
N 7.11 7.33 7.32 7.39

5 Conclusions

We have developed a novel coupled perturbation theory treatment of dual basis sets that in-

troduces the basis set enlargement as a perturbation with respect to the small basis solution.

In contrast with previous approaches our method yields corrected Hartree-Fock/Kohn-Sham

DFT orbitals and orbital energies, thereby allowing for the subsequent calculation of prop-

erties along with total energies. As it turns out, odd orders in the energy expansion are

zero and the first-order perturbation equation is uncoupled. Our approach satisfies Wigner’s

2n+1 rule. Hence, the second-order coupled perturbed solutions determine energy correc-

tions through fourth order. A straightforward extrapolation appears to work effectively.

Illustrative energy calculations are carried out on a number of small molecules (plus the

neon dimer) and the corrected small basis set values are seen to be quite close to those found

for the large basis set. They also compare well with results obtained using the earlier dual

basis set method of Martin Head-Gordon and co-workers. Representative calculations of

orbital energies and electron densities are also presented. Again, our coupled perturbation

theory closely reproduce those computed directly with the large basis set.

We are already working on the extension to periodic systems, that are our main interest,

in the belief that the methodology developed here will foster the use of gaussian basis sets for

30



Figure 3: Effect of MKn basis set corrections on the total charge density of urea (top),
benzene (center) and HCN (bottom) molecules using the PBE0 functional. A) Difference
map between total electronic charge computed with the aug-cc-pVDZ and cc-pVDZ basis
sets. B) and C) : same as A) but with respect to the MK1aug−cc−pV DZcc−pV DZ and MK2aug−cc−pV DZcc−pV DZ
levels of correction, respectively. C’) is the same as C) , but in the uncoupled treatment. The
isolines are spaced by 0.001 Bohr. Colors from blue to red range from the largest negative
to the largest positive difference.
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such systems. While in the current work our focus was on the development and validation of

the theory, we also plan to carry out extensive benchmarks. This will be useful in addressing

the practicalities for everyday use of the algorithm, such as the choice of optimal basis set

pairings.

Supporting Information

In the SI we report the geometries of the molecules of our small test set.
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Appendix

A Parallel and Orthogonal subspaces

Let us start from the definition of the identity operators in the two bases:

• The identity operator in L space is

ÎL =
∑
µL,νL

|µL〉S−1
µL,νL
〈νL| (A.1)

• The identity operator in S space is

ÎS =
∑
µS ,νS

|µS〉S−1
µS ,νS
〈νS| (A.2)

• The projection of an operator A onto the large basis is given by:

ÂL = ÎLÂ ÎL (A.3)

with matrix elements:

AµL,νL = 〈µL|ÎL Â ÎL|νL〉 = 〈µL|Â|νL〉 (A.4)

The projection of the operator ÂL onto the smaller basis and back to L may, then, be

expressed as

ÂL,‖ = ÎLÎSÂLÎS ÎL = (Ô||)†ÂL Ô|| (A.5)
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〈µL|ÂS|νL〉 = 〈µL|ÎS ÎLÂ ÎLÎS|νL〉

= O‖
†
µL,τLAτL,σLO‖σL,νL (A.6)

where the projection matrix

O‖σL,µL = LSP σL,τS
SLP τS ,µL (A.7)

with

LSP σL,τS =
∑
ρL

[LS−1]σL,ρL〈ρL|τS〉 (A.8)

and

SLP σS ,τL =
∑
ρS

[SS−1]σS ,ρS〈ρS|τL〉 (A.9)

The complementary projection matrix is simply :

O⊥ =
(
L1− LSP SLP

)
=
(
L1−O‖

)
(A.10)

and it is easily verified that:

O⊥O‖ = O‖O⊥ = 0 (A.11)

Since

SLP LSP = S1 (A.12)

it is straightforward to verify idempotency relations

O‖O‖ = LSP SLP LSP SLP = LSP SLP = O‖ (A.13)

O⊥O⊥ = 1− 2O‖ + O‖O‖ = 1−O‖ = O⊥ (A.14)
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B Matrix Elements of G(n)

The G(n) matrix if Eq. (50) is divided into three spaces, O, V ′ and V ′′. In the following

we report the explicit expression for some relevant blocks of such matrix at different orders,

according to Eq. (39), and following (33), (38) and (37).

G
(0)
OV ′ = G

(0)
V ′O

†
= C

(0)
O

†
(h + B[ 0 ])C

(0)
V ′ = 0

G
(0)
OV ′′ = G

(0)
V ′′O

†
= 0

G
(1)
OV ′ = G

(1)
V ′O

†
= C

(0)
O

†
B[ 1 ]C

(0)
V ′ = 0

G
(1)
OV ′′ = G

(1)
V ′′O

†
= C

(0)
O

†
Ω(1)C

(0)
V ′′

G
(1)
V ′V ′′ = G

(1)
V ′′V ′

†
= C

(0)
V ′
†
Ω(1)C

(0)
V ′′

G
(n)
OV ′ = G

(n)
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†
= C

(0)
O

† (
B[n ] + nB[n− 1 ]

)
C

(0)
V ′

G
(n)
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(n)
V ′′O

†
= nC

(0)
O

† (
B[n− 1 ] + (n− 1)B[n− 2 ]

)
C

(0)
V ′′ ; G

(2)
OV ′′ = 0

G
(n)
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(n)
V ′′V ′

†
= nC

(0)
V ′
† (
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)
C

(0)
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(1)
OO = G

(1)
OO

†
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(0)
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†
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(0)
O = 0

G
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†
= C

(0)
V ′
†
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(0)
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(0)
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V ′′ = 0

G
(2)
OO = G

(2)
OO

†
= C

(0)
O

† (
B[ 2 ] + 2B[ 1 ]

)
C

(0)
O

G
(2)
V ′V ′ = G

(2)
V ′V ′

†
= C

(0)
V ′
† (

B[ 2 ] + 2B[ 1 ]
)
C

(0)
V ′

G
(2)
V ′′V ′′ = G

(2)
V ′′V ′′

†
= C

(0)
V ′′
† (

B[ 2 ] + 2B[ 1 ]
)
C

(0)
V ′′ (B.1)

As it turns out, a number of such blocks are null.
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C Detailed derivation of energy contributions

Starting from Eq. (60) and following the expansion of the energy in Eq. (27), we can ob-

tain energies at different perturbative orders. The zero-th order expression – Eq. (62) – is

straightforward and corresponds to the total energy as obtained in the small basis.

The following trace relations, that can be derived from Equations (18), (19) and (29)–

(31), will prove useful later on

Tr
[
B[n ] D(m)

]
= Tr

[
B[n ] D(m)

]
(C.1)

Tr
[
B[n ] D(m)

]
= Tr

[
B[n ] D

(m)
]

(C.2)

Tr
[
B[n ] D(m)

]
= Tr

[
B[m ] D(n)

]
(C.3)

Tr
[
B[n ] D(m)

]
= Tr

[
B[m ] D(n)

]
(C.4)

Tr
[
B[n ] D(m)

]
= Tr

[
B[m ] D(n)

]
(C.5)

Tr
[
Ω(1) D(0)

]
= 0 (C.6)

where we have used [n] to indicate either [n ] or [n ].

Eq. (C.2), for example, is demonstrated by:

Tr
[
B[m ]D(n)

]
= Tr

[
O‖
†
B[m ]O⊥D(n) + O⊥

†
B[m ]O‖D(n)

]
= Tr

[
B[m ]O⊥D(n)O‖

†
+ B[m ]O‖D(n)O⊥

†
]

= Tr
[
B[m ](O⊥D(n)O‖

†
+ O‖D(n)O⊥

†
)
]

= Tr
[
B[m ]D

(n)
]
(C.7)

and analogolously for Eq. (C.1)

C.1 First order

The first-order energy is obtained by taking the first derivative ∂EHF∂λ at λ = 0
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E
(1)
HF =

∂EHF
∂λ

∣∣∣∣
λ=0

=
1

2
Tr
[(

h + F(1)
)

D(0) + (h + F(0)) D(1)
]

(C.8)

By inserting Eq. (38) in the above we obtain

E
(1)
HF =

1

2
Tr
[(

h + Ω(1) + B[ 1 ]
)

D(0) + (2h + B[ 0 ]) D(1)
]

=
1

2
Tr
[
B[ 1 ]D(0) + (2h + B[ 0 ]) D(1)

]
= Tr

[
F(0) D(1)

]
= 0 (C.9)

The last line follows taking into account Eqs. (C.3), (C.6) and

Tr
[
F(0)D(1)

]
= Tr

[
ε(0)U(1)n+ nU(1)†ε(0)

]
= 0 (C.10)

which holds because ε(0) is diagonal and the occ–occ block of U(1) is zero.

C.2 Second order

let us differentiate once more the total energy with respect to λ, at λ = 0.

E
(2)
HF =

∂2EHF
∂λ2

∣∣∣∣
λ=0

=
1

2
Tr
[
F(2) D(0) + 2 (h + F(1)) D(1) + (h + F(0)) D(2)

]
(C.11)

This can be rewritten using (38) and (35) as:

E
(2)
HF =

1

2
Tr
[
(B[ 2 ] + 2B[ 1 ] + 2B[ 1 ]) D(0) + 2

(
h + Ω(1) + B[ 1 ]

)
D(1) + (2h + B[ 0 ]) D(2)

]
(C.12)

From Eqs. (C.3), (C.4) we have that Tr[B[ 2 ] D(0)] = Tr[B[ 0 ] D(2)], Tr[B[ 1 ] D(0)] =

Tr[B[ 0 ] D(1)] and Tr[B[ 1 ] D(0)] = 0. This leads to:
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E
(2)
HF =

1

2
Tr
[
2
(
2 Ω(1) + B[ 1 ]

)
D(1) + 2 (h + B[ 0 ]) D(2)

]
= Tr

[
F(1)D(1) + F(0)D(2) + Ω(1) D(1)

]
(C.13)

We see that, for closed shells:

Tr
[
F(1)D(1)

]
= Tr

[
G(1)U(1) n+ G(1) nU(1)†

]
= 2Tr

[
G

(1)
OV U

(1)
V O + G

(1)
V O U

(1)
OV

†]
= 2

∑
ia

[
G

(1)
ia G

(1)
ai

ε
(0)
i − ε

(0)
a

− G
(1)
ai G

(1)
ia

ε
(0)
a − ε

(0)
i

]
= 4

∑
ia

U
(1)
ai U

(1)
ia (ε(0)a − ε

(0)
i ) (C.14)

And, (also for closed shells):

Tr
[
F(0)D(2)

]
= Tr

[
ε(0)U(2) n+ ε(0) nU(2)† + 2 ε(0)U(1) nU(1)†

]
= 2Tr

[
ε
(0)
O (U

(2)
OO + U

(2)
OO

†
) + 2ε

(0)
V U

(1)
V OU

(1)
OV

†]
= −4Tr

[
ε
(0)
O U

(1)
OV

†
U

(1)
V O − ε

(0)
V U

(1)
V OU

(1)
OV

†]
= −4

∑
ia

U
(1)
ai U

(1)
ia (ε(0)a − ε

(0)
i ) (C.15)

Where Eq. (49) was used. Finally, Eqs. (C.14) and (C.15) show that the first two terms in

the last line of Eq. (C.13) cancel out each other leading to Eq. (64).

C.3 Third order

By further differentiating Eq. (27) we obtain

E
(3)
HF =

∂3EHF
∂λ3

∣∣∣∣
λ=0

=
1

2
Tr
[
F(3) D(0) + 3 F(2) D(1) + 3 (h + F(1)) D(2) + (h + F(0)) D(3)

]
(C.16)
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that can be written more explicitly using (38), (35), (36) as

E
(3)
HF =

1

2
Tr
[(

B[ 3 ] + 3B[ 2 ] + 3B[ 2 ] + 6B[ 1 ]
)

D(0) + 3
(
B[ 2 ] + 2B[ 1 ] + 2B[ 1 ]

)
D(1)

+ 3 (h + Ω(1) + B[ 1 ]) D(2) + (2 h + B[ 0 ]) D(3)
]

(C.17)

From Eqs. (C.3)–(C.5) we have that Tr[B[ 3 ] D(0)] = Tr[B[ 0 ] D(3)], Tr[B[ 2 ] D(0)] =

Tr[B[ 0 ] D(2)], Tr[B[ 1 ] D(1)] = Tr[B[ 1 ] D(1)] and Tr[B[ 2 ] D(0)] = 0, Tr[B[ 1 ] D(0)] = 0.

This leads to:

E
(3)
HF =

1

2
Tr
[
3
(
B[ 2 ] + 2B[ 1 ] + 2B[ 1 ]

)
D(1) + 3 (2 Ω(1) + B[ 1 ]) D(2) + 2 F(0) D(3)

]
=

1

2
Tr
[
3 F(2) D(1) + 3 F(1) D(2) + 2F(0) D(3) + 3 Ω(1) D(2)

]
(C.18)

We see that:

Tr
[
F(0)D(3)

]
= Tr

[
ε(0)U(3) n+ ε(0) nU(3)† + 3ε(0)U(2) nU(1)† + 3ε(0)U(1) nU(2)†

]
= 2Tr

[
ε
(0)
O U

(3)
OO + ε

(0)
O U

(3)
OO

†
+ 3ε

(0)
V U

(2)
V OU

(1)
OV

†
+ 3ε

(0)
V U

(1)
V OU

(2)
OV

†]
(C.19)

From the derivatives of the orthonormality condition we get:

U
(3)
OO + U

(3)
OO

†
= −3U

(2)
OV

†
U

(1)
V O − 3U

(1)
OV

†
U

(2)
V O (C.20)

which allows us to write

2Tr
[
F(0)D(3)

]
= −12Tr

[
ε
(0)
O U

(2)
OV

†
U

(1)
V O + ε

(0)
O U

(1)
OV

†
U

(2)
V O − ε

(0)
V U

(2)
V OU

(1)
OV

†
− ε

(0)
V U

(1)
V OU

(2)
OV

†]
= −12Tr

[
U

(2)
OV

† (
U

(1)
V Oε

(0)
O − ε

(0)
V U

(1)
V O

)
+
(
ε
(0)
O U

(1)
OV

†
−U

(1)
OV

†
ε
(0)
V

)
U

(2)
V O

]
= −12Tr

[
U

(2)
OV

†
G

(1)
V O + G

(1)
OV U

(2)
V O

]
(C.21)
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Moving on to the next term we write:

Tr
[
F(1)D(2)

]
= Tr

[
G(1)U(2) n+ 2 G(1)U(1) nU(1)† + G(1) nU(2)†

]
= 2Tr

[
G

(1)
OOU

(2)
OO + G

(1)
OV U

(2)
V O + 2G

(1)
V V U

(1)
V OU

(1)
OV

†
+ G

(1)
OOU

(2)
OO

†
+ G

(1)
V OU

(2)
OV

†]
(C.22)

where, by using Eq. (49), we obtain:

3Tr
[
F(1)D(2)

]
= 6Tr

[
2G

(1)
V V U

(1)
V OU

(1)
OV

†
− 2G

(1)
OOU

(1)
OV U

(1)
V O

†
+ G

(1)
OV U

(2)
V O + G

(1)
V OU

(2)
OV

†]
= 6Tr

[
2 U

(1)
OV

† (
G

(1)
V V U

(1)
V O −U

(1)
V OG

(1)
OO

)
+ G

(1)
OV U

(2)
V O + U

(2)
OV

†
G

(1)
V O

]
(C.23)

Now we move on to the next term

3Tr
[
F(2) D(1)

]
= 3Tr

[
G(2)U(1) n+ G(2) nU(1)†

]
= 6Tr

[
G

(2)
OV U

(1)
V O + U

(1)
OV

†
G

(2)
V O

]
= 6Tr

[(
U

(2)
OV ε

(0)
V − ε

(0)
O U

(2)
OV + 2U

(1)
OV G

(1)
V V − 2G

(1)
OOU

(1)
OV

)
U

(1)
V O

+ U
(1)
OV

† (
U

(2)
V Oε

(0)
O − εV U

(2)
V O + 2U

(1)
V OG

(1)
OO − 2G

(1)
V V U

(1)
V O

)]
(C.24)

Where we used Eq. (54).

Two useful substitutions can be made in the above:

Tr
[(

U
(2)
OV ε

(0)
V − ε

(0)
O U

(2)
OV

)
U

(1)
V O

]
=

∑
i,a

U
(2)
ia (εa − εi)U (1)

ai =
∑
i,a

U
(2)
ia (εa − εi)

G
(1)
ai

εi − εa

= −Tr
[
U

(2)
OV G

(1)
V O

]
= Tr

[
G

(1)
V OU

(2)
OV

†]
(C.25)

Tr
[(

U
(2)
V Oε

(0)
O − ε

(0)
V U

(2)
V O

)
U

(1)
OV

†]
=
∑
i,a

U
(2)
ai (εi−εa)U (1)

ai =
∑
i,a

U
(2)
ai (εa−εi)

G
(1)
ai

εi − εa
= Tr

[
U

(2)
V OG

(1)
OV

]
(C.26)
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allowing us to write:

3Tr
[
F(2) D(1)

]
= 6Tr

[
G

(1)
V OU

(2)
OV

†
+ U

(2)
V OG

(1)
OV +

(
2U

(1)
OV G

(1)
V V − 2G

(1)
OOU

(1)
OV

)
U

(1)
V O

+ U
(1)
OV

† (
2U

(1)
V OG

(1)
OO − 2G

(1)
V V U

(1)
V O

)]
= 6Tr

[
U

(2)
OV

†
G

(1)
V O + G

(1)
OV U

(2)
V O − 4U

(1)
OV

† (
G

(1)
V V U

(1)
V O −U

(1)
V OG

(1)
OO

)]
(C.27)

By substituting Eqs. (C.21), (C.23) and (C.27) in Eq. (C.17) the third order energy

results in Eq. (65) Since the diagonal blocks of G(1) are null – Eq. (B.1) – and that

D
(2)

= 0, as explained below Eq. (57), it follows that the third order contribution to the

energy is null.

C.4 Fourth order

Taking the fourth order derivative of Eq. (27) we obtain:

E
(4)
HF =

∂4EHF
∂λ4

∣∣∣∣
λ=0

=
1

2
Tr
[
F(4) D(0) + 4 F(3) D(1)

+6F(2) D(2) + 4 (h(1) + F(1)) D(3)

+ (h(0) + F(0)) D(4)
]

(C.28)

That is expanded, by virtue of (38), (35), (36) and (37) into

E
(4)
HF =

1

2
Tr
[(

B[ 4 ] + 4B[ 3 ] + 4B[ 3 ] + 12 B[ 2 ]
)

D(0) + 4
(
B[ 3 ] + 3B[ 2 ] + 3B[ 2 ] + 6 B[ 1 ]

)
D(1)

+6
(
B[ 2 ] + 2B[ 1 ] + 2B[ 1 ]

)
D(2) + 4 (h + Ω(1) + B[ 1 ]) D(3) + (2h + B(0)) D(4)

]
(C.29)
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From Eqs. (C.3)–(C.5) we have that Tr[B[ 4 ] D(0)] = Tr[B[ 0 ] D(4)], Tr[B[ 3 ] D(0)] =

Tr[B[ 0 ] D(3)], and Tr[B[ 3 ] D(0)] = 0, Tr[B[ 2 ] D(0)] = 0.

This leads to:

E
(4)
HF =

1

2
Tr
[
4
(
B[ 3 ] + 3B[ 2 ] + 3B[ 2 ] + 6 B[ 1 ]

)
D(1)

+6
(
B[ 2 ] + 2B[ 1 ] + 2B[ 1 ]

)
D(2) + 4 (2 Ω(1) + B[ 1 ]) D(3) + 2(h + B[ 0 ]) D(4)

]
=

1

2
Tr
[
24 B[ 1 ] D(1) + 6

(
B[ 2 ] + 4B[ 1 ] + 4B[ 1 ]

)
D(2)

+8 (Ω(1) + B[ 1 ]) D(3) + 2(h + B[ 0 ]) D(4)
]

= Tr
[
3F(2) D(2) + 4 F(1) D(3) + F(0) D(4) + 6

(
B[ 1 ] + B[ 1 ]

)
D(2) + 12 B[ 1 ] D(1)

]
(C.30)

Where we used Tr[B[ 3 ] D(1)] = Tr[B[ 1 ] D(3)], Tr[B[ 2 ] D(1)] = Tr[B[ 1 ] D(2)], Tr[B[ 2 ] D(1)] =

Tr[B[ 1 ] D(2)]

We see, then, that:

Tr
[
F(0)D(4)

]
= Tr

[
ε(0)U(4) n+ ε(0) nU(4)† + 4ε(0)U(3) nU(1)† + 6ε(0)U(2) nU(2)† + 4ε(0)U(1) nU(3)†

]
= 2Tr

[
ε
(0)
O U

(4)
OO + ε

(0)
O U

(4)
OO

†
+ 4ε

(0)
V U

(3)
V OU

(1)
OV

†

+6ε
(0)
V U

(2)
V OU

(2)
OV

†
+ 6ε

(0)
O U

(2)
OOU

(2)
OO

†
+ 4ε

(0)
V U

(1)
V OU

(3)
OV

†]
(C.31)

From the orthonormality condition:

U
(4)
OO + U

(4)
OO

†
= −4U

(3)
OV

†
U

(1)
V O − 6

(
U

(2)
OV

†
U

(2)
V O + U

(2)
OO

†
U

(2)
OO

)
− 4U

(1)
OV

†
U

(3)
V O (C.32)
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Then,

Tr
[
F(0)D(4)

]
= −4Tr

[
2 U

(3)
OV

† (
U

(1)
V Oε

(0)
O − ε

(0)
V U

(1)
V O

)
− 2

(
U

(1)
OV

†
ε
(0)
V − ε

(0)
O U

(1)
OV

†)
U

(3)
V O

+3
(
U

(2)
V Oε

(0)
O − ε

(0)
V U

(2)
V O

)
U

(2)
OV

†
+ 3U

(2)
OO

† (
U

(2)
OOε

(0)
O − ε

(0)
O U

(2)
OO

)]
= −4Tr

[
2
(
U

(3)
OV

†
G

(1)
V O + G

(1)
OV U

(3)
V O

)
+3 U

(2)
OV

† (
G

(2)
V O + 2G

(1)
V V U

(1)
V O − 2U

(1)
V OG

(1)
OO

)
+ 3U

(2)
OO

† (
G

(2)
OO + 2G

(1)
OV U

(1)
V O − ε

(2)
OO

)]
(C.33)

Let us continue with:

4Tr
[
F(1)D(3)

]
= 8Tr

[
G

(1)
OOU

(3)
OO + G

(1)
OV U

(3)
V O + 3G

(1)
V OU

(2)
OOU

(1)
OV

†

+3G
(1)
V V U

(2)
V OU

(1)
OV

†
+ 3G

(1)
V V U

(1)
V OU

(2)
OV

†

+3G
(1)
OV U

(1)
V OU

(2)
OO

†
+ G

(1)
OOU

(3)
OO

†
+ G

(1)
V OU

(3)
OV

†]
= 8Tr

[
−3 G

(1)
OO

(
U

(2)
OV

†
U

(1)
V O + U

(1)
OV

†
U

(2)
V O

)
+
(
G

(1)
OV U

(3)
V O + G

(1)
V OU

(3)
OV

†)
+3G

(1)
V OU

(2)
OOU

(1)
OV

†
+ 3G

(1)
V V U

(2)
V OU

(1)
OV

†

+3G
(1)
V V U

(1)
V OU

(2)
OV

†
+ 3G

(1)
OV U

(1)
V OU

(2)
OO

†]
(C.34)

where in the last step we used Eq. (C.20). Combining Eqs. (C.33) and (C.34) we obtain:

4Tr
[
F(1)D(3)

]
+ Tr

[
F(0)D(4)

]
= 12Tr

[
U

(2)
OO

† (
ε
(2)
OO −G

(2)
OO

)
− U

(2)
OV

†
G

(2)
V O

+ 2 U
(2)
V O

(
U

(1)
OV

†
G

(1)
V V −G

(1)
OOU

(1)
OV

†)
+ 2U

(2)
OOU

(1)
OV

†
G

(1)
V O

]
(C.35)

Then, combining with
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3Tr
[
F(2)D(2)

]
= 6Tr

[
G

(2)
OO

(
U

(2)
OO + U

(2)
OO

†)
+ G

(2)
OV U

(2)
V O + U

(2)
OV

†
G

(2)
V O + 2 G

(2)
V V U

(1)
V OU

(1)
OV

†]
(C.36)

We obtain:

E
(4)
HF = 12Tr

[
U

(2)
OO

†
ε
(2)
OO + G

(2)
V V U

(1)
V OU

(1)
OV

†

+ 2 U
(2)
V O

(
U

(1)
OV

†
G

(1)
V V −G

(1)
OOU

(1)
OV

†)
+ 2 G

(1)
V OU

(2)
OOU

(1)
OV

†
+

1

2

(
B[ 1 ] + B[ 1 ]

)
D(2)

]
(C.37)

By exploiting Eq. (49), assuming Hermiticity of U
(2)
OO

†
and using the fact that E(4) is

real, we get our final expression for the fourth-order energy reported in Eq. (66)
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