
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Incorporation of Cro thermal water in a dermocosmetic formulation: cytotoxicity effects,
characterization and stability studies and efficacy evaluation

Published version:

DOI:10.1111/ics.12580

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1719854 since 2019-12-20T16:54:06Z



1 

Incorporation of Cró thermal water in a dermocosmetic formulation: 

cytotoxicity effects, characterization and stability studies and efficacy 

evaluation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

Abstract 

OBJECTIVE: Development of cosmetic formulations to provide a controlled release of 

hydrophilic active compounds from mineral medicinal waters constitutes an attractive 

challenge. The objective of this study was the development and the characterization of a 

dermocosmetic gel formulation with Cró thermal water, from Beira Interior of Portugal, 

as a major functional ingredient. 

METHODS: Concentrations of mineral chemical elements of Cró thermal water were 

previously determined by inductively coupled plasma-optical emission spectrometry and 

cytotoxicity assays using thermal water were carried out on normal human dermal fibro-

blasts (NHDF) cells. Then, the Cró thermal water was included (95%) in a developed gel 

formulation that was characterized through rheological and texture analysis and submit-

ted to stability assays during 30 days. The effects on the skin volunteers, namely skin pH, 

the degree of hydration, transepidermal water loss and skin relief, were evaluated through 

non-invasive biometric techniques. A gel formulation including purified water as used as 

control. 

RESULTS: Cró thermal water is rich on several chemical elements in particular sodium, 

silica, potassium and calcium besides some trace elements, with important functions for 

the skin. NHDF cells adhered and proliferated in the presence of thermal water confirm-

ing the biocompatibility of the major component of the gel formulation. The developed 

gel formulation based on thermal water resulted in an improvement of textural parame-

ters, comparing with the purified water-based one. Significant improvements in the cuta-

neous biometric parameters (degree of hydration, transepidermal water loss and skin re-

lief) of volunteers were also registered for the gel formulation containing thermal water.  

CONCLUSION: This study demonstrated for the first time the potential benefits of Cró 

thermal water in a gel formulation to be used in cosmetic and dermatological applications. 
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Introduction 

Cosmetics are products intended to improve the appearance and/or protecting the skin 

with the help of excipients and active ingredients adapted to different skin types and to 

keep skin in good condition according to Regulation European Commission (EC) 

1223/2009. When skin is sensitive or presents disorders, are frequently associated 

sensations of itching, redness or tightness [1]. In these cases, conventional cosmetics are 

not adequate, and it is necessary to use formulations adapted to specific needs, free of 

substances that may cause irritations and other adverse reactions, or including active 

compounds with beneficial effects on skin condition. To get the balance and the hydration 

of the skin, and to achieve the cutaneous welfare, it could be used mineral thermal waters 

that are currently included on formulations for medicinal purposes [2, 3]. In addition, 

since mineral medicinal waters are rich in minerals and oligoelements with proved 

dermatological indications, it can be considered as a useful raw material for 

dermocosmetic formulations, which are widely recognized for the capacity to 

encapsulate, stabilize, carry and deliver these elements [4-6]. Indeed, the development of 

dermocosmetic formulations to provide a prolonged release and better skin penetration of 

hydrophilic active compounds from thermal waters is an attractive challenge [7].  

Mineral medicinal waters are commonly used for the treatment of chronic dermatoses, 

mainly atopic dermatitis and psoriasis which are often associated with skin dryness and 

pruritus, increasing the quality of life and compliance in patients [8-11]. The most used 

in dermatological thermal treatments are the sulfurous and the chlorided bromo-iodic 

waters [12], the sulfated hypotonic ones [13] or even bicarbonate magnesium rich in 

fluoride [14]. Besides these types of waters, it is possible to use those that possess special 

mineral elements such as silica, calcium, magnesium, zinc, selenium and other trace 

elements such as boron and manganese [4]. Furthermore, the different properties of 
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mineral medicinal waters, such as detergent, anti-inflammatory, keratoplastic, 

antipruriginous, and antioxidant  can be used together with cosmetics and are associated 

with the interaction between its components and the skin structure [8, 15, 16]. On the 

other hand, one of the most important defence functions of the skin is to maintain the 

homeostasis through the prevention of uncontrolled water loss and the permeability of 

ions and serum proteins between organism and surrounded environment [17]. The ability 

of the skin to hold water is primarily related to the stratum corneum (SC), which plays 

the role of a barrier to water loss [18]. The control of skin hydration level has a high 

impact on mechanical and optical properties of skin and contributes to preserving the 

barrier function as well as the regulation and enzyme activation on the flaking process. 

The deviation of this process affects barrier function and results on dry skin [19]. In this 

sense, hydration evaluation is one of the most relevant bioindicators of skin health and 

one of the most relevant parameters to be monitored in the development of new products 

in cosmetic research [16, 20-22].  

The Cró thermal water is a medium mineral thermal water, from a SPA of Beira Interior  

region (Portugal), with a historical and registered indication for dermatological disorders  

by National Portuguese Health Authority  [12, 15, 16]. Thus, the aim of the present work 

was the development of a dermocosmetic formulation, namely a hydrophilic gel, 

containing Cró thermal water as a major functional ingredient, and compared with a 

control gel formulation prepared with purified water.  

 

Material and Methods 

Test materials 

All chemicals used were of analytical reagent grade. Carbopol 940® (carbomer), 

propylene glycol and lavender essential oil were purchased from Acofarma (Terrassa, 
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Spain). Triethanolamine (85%) was obtained from Farma-Quimica Sur S.L. (Malaga, 

Spain), imidazolidinyl urea was obtained from Guinama (Valencia, Spain) and green mint 

dye from Sancolor (Barcelona, Spain). Dulbecco’s modified Eagle’s medium-F12 

(DMEM-F12) was purchased from Sigma-Aldrich (Darmstadt, Germany). [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) was purchased from VWR International (Ohio, USA). 

Cró thermal water was obtained from its natural source and purified water was prepared 

by a Puranity TU 6 system from VWR (Leuven, Belgium) with a specific conductivity of 

less than 0.1 µS cm−1.  

 

Determination of the chemical composition of the Cró thermal water  

Thermal water was acidified with purified nitric acid (0.1%, v/v). The concentrations of 

major and minor elements, namely boron (B), calcium (Ca), potassium (K), magnesium 

(Mg), sodium (Na) and silica (Si), were determined by inductively coupled plasma-

optical emission spectrometry (ICP-OES) with an Optima 7000 DV spectrometer (Perkin 

Elmer, Norwalk, Connecticut, USA) equipped with an Échelle monochromator and a dual 

CCD detector, with backlighting and a cooling system; Mira Mist nebulizer and cyclonic 

spray chamber were used. The analyte signals were recorded at the following 

wavelengths: 249.677 nm (B); 317.933 (Ca); 766.49 nm (K); 285.213 nm (Mg); 589.592 

nm (Na); and 251.611 nm (Si). The concentrations of elements present at trace and ultra-

trace levels, namely manganese (Mn) and zinc (Zn) were determined by inductively 

coupled plasma mass spectrometry (ICP-MS) with a magnetic sector Thermo Finnigan 

Element 2 spectrometer. A glass concentric nebulizer, a Scott spray chamber and a 

secondary electron multiplier detector were used. On each sample, a minimum of 

triplicate 180 s analyses was conducted following a 50 s uptake and stabilization period. 
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Between samples, the nebulizer system was rinsed for 2 min with 2% nitric acid, which 

eliminated carry-over and reconditioned the sampler cone. The following isotopes of the 

investigated elements were monitored: 55Mn in medium resolution and 67Zn in low 

resolution. 

During both ICP-OES and ICP-MS analyses, sets of instrumental blank and calibration 

verification checks were run at frequent intervals. The accuracy of the results was verified 

by analysing a standard reference material (NIST 1640, “Trace elements in natural 

water”).  

 

Proliferation of human fibroblast cells in the presence of Cró thermal water  

In order to evaluate the growth of cells in the presence of Cró thermal water, Normal 

Human Dermal Fibroblasts (NHDF) bought from PromoCell (Labclinics, S.A.; 

Barcelona, Spain) were used as a cell model once they  are widely used for the evaluation 

of the cytotoxicity of cosmetic formulations [23-25]. To assess cell proliferation in the 

presence of thermal water, NHDF were seeded in 96-well plates 2  104 cells/well with 

DMEM-F12 prepared with thermal water and supplemented with heat-inactivated FBS 

(10% v/v) and 1% antibiotic/antimycotic solution. After that, the cells were kept in culture 

at 37 °C in a 5% CO2 humidified atmosphere. In control groups, the DMEM-F12 was 

prepared with MilliQ® water Ethanol 96% was added to cells to be used as positive 

controls (dead cells), and medium prepared with purified water was used as negative 

controls (live cells). Cell growth was monitored by using an inverted light microscope 

(Optika, Bergamo, Italy) equipped with an Optikam B5 digital camera (Optika, Bergamo, 

Italy) after 1, 3 and 9 days.  
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Characterization of the cytotoxic profile of Cró thermal water  

Additionally, cell viability was assessed through the reduction of the MTS into a water-

soluble brown formazan product. Briefly, from NHDF cells seeded at a density of 2  

104 cells/well (96 wells plates) and grown in DMEM-F12 prepared with thermal water (n 

= 5), cell viability was assessed after 1, 3 and 9 days. The positive and negative control 

groups were performed as described in the previous section. Then, the culture medium 

from each well was removed and replaced with a mixture of 100 μL of fresh culture 

medium and 20 μL of MTS reagent solution. The cells were further incubated for 4 h at 

37 °C under a humidified atmosphere with 5% CO2. The absorbance of the formazan was 

measured at 490 nm using a microplate reader (Multiskan GO, Thermo Scientific, 

Ratastie, Finland). The extent of cell viability was expressed as the percentage of viable 

cells in comparison with negative control cells. 

 

Preparation of gel formulation  

The gel was prepared by addition, under stirring, of the water (thermal or purified) to 

Carbopol 940® (0.5 %) and imidazolidinyl urea (0.2 %), with propylene glycol (5.0 %) 

and neutralized with triethanolamine (q.s. to pH = 5.5), after the addition of the green 

mint dye (q.s.) and the flavouring agent (lavender essential oil, 2.5 %). After gel 

preparation, it was transferred to a glass container, protected from light, before any further 

studies. 

 

Characterization and stability of the gel formulation  

The characterization and stability studies included visual evaluation of the organoleptic 

characteristics (colour and odour), pH measurement, rheological studies and texture 

analysis. The pH was measured using a potentiometer (Mettler Toledo, Schwerzenbach, 
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Switzerland). The rheological studies were conducted with a rotational viscometer 

(Fungilab Alpha series L, Barcelona, Spain). Spindle number L4 was employed for the 

following speeds: 1.5, 3.0, 4.0, 5.0, 10.0, 12.0, 20.0 and 30.0 rpm at 20 ± 2 °C. For each 

speed, the apparent viscosity values (mPa.s) were recorded. The textural analyses were 

performed at 20 ± 2 °C using a texturometer (Stable Micro Systems TA.XTPlus, Surrey, 

United Kingdom); the following parameters were investigated: firmness, adhesiveness 

and spreadability. The firmness and the adhesiveness were evaluated by carrying out a 

penetration test using a load cell of 5 kg, a compression disc (40 mm diameter), a 

penetration depth of 15 mm, a test speed of 2 mm/s and a trigger force of 30 g. After 

penetrating the sample, the probe returned to the initial position. From the obtained graph 

force versus distance, the maximum force (g) (firmness) and the negative area (g  s) 

(adhesiveness) were calculated. The spreadability evaluation was performed using a TTC 

spreadability test probe, a penetration depth of 15 mm and a test speed of 3.0 mm/s. In 

this test, the sample is placed into the female cone, avoiding the incorporation of air. The 

sample surface is leveled, the probe placed at a defined position (25 mm) and the assay 

start with the male cone’s downward movement, which compresses the sample, 

promoting its scattering between the surfaces of the two cones.  

All these measurements were performed after 1, 15 and 30 days of storage of gel in the 

dark at 20 ± 2 °C and relative humidity (RH) 50 ± 10 % and were performed in triplicate. 

 

Efficacy evaluation of the developed gel formulation through cutaneous biometry  

Twenty healthy human volunteers (five men and fifteen women) participated in the study 

to evaluate the effect of the formulation on different parameters, such as skin pH, degree 

of hydration, transepidermal water loss (TEWL) and skin relief. All the volunteers 

participating in the study provided their informed written consent. The volunteers rested 
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at least 20 min, so that their blood circulation can regain a normal level after possible 

physical exercise. The skin area (forearm) were not covered with clothes during the 

acclimatization time. They were also instructed to not apply any cosmetic or wash the 

forearms before and during the test. The volunteers were randomly divided in two groups, 

that applied thermal or purified water-based gel formulation, with regards to similarities 

in their skin measurements. The skin surface pH values are between range of 5.0 and 6.0, 

considered the range that preserves the physiologic acid nature of the skin. The hydration 

levels are both between 30 and 40 arbitrary units (AU), that correspond to a dry skin and 

TEWL values are close to 9 g/h/m2 and then lower than 10 g/h/m2, that correspond to very 

healthy skin condition. 

Skin pH (Skin- pH-Meter® PH 905), hydration (Corneometer® CM 825) and TEWL 

(Tewameter® TM 300) were determined using a Multi Probe Adapter MPA 6® equipment 

(Courage-Khazaka, Köln, Germany). Those determinations were performed in 

quintuplicate. The skin surface images were obtained with a Visioscan® VC 98 equipment 

(Courage-Khazaka). The determinations were performed in the forearm before gel 

application and 30 and 60 min after the application of 1.50 g of the gel formulation.  

 

Statistical Analysis 

The statistical analysis of the viscosity, skin pH surface, hydration and TEWL results 

obtained was performed using 2-way ANOVA followed by Bonferroni post-tests. A p 

value lower than 0.05 (p < 0.05) was considered statistically significant. 

 

Results and discussion 

Chemical composition of Cró thermal water  
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Table I reports the concentrations of the chemical elements of Cró thermal water. The 

chemical composition of Cró thermal water revealed the presence of sodium, silica, 

calcium, potassium and some trace elements, that play important roles in skin homeostasis 

and regeneration, as summarized in Table I. Also in previous studies, this thermal water 

has been characterized by the presence of total sulphur (16.9 in I2 0.01 N), with 

noteworthy functions regarding the skin, such as cell regenerator, antioxidant, 

antibacterial and antifungal activity, as well as  bicarbonate (157 mg/L), chloride (33 

mg/L) and sulphate (14.1 mg/L) anions [15].  

The dermatologic therapeutic indications invoked by the presence of such elements were 

recently reviewed by M.Z. Karagülle et al. [27], and can be related to the beneficial effects 

of the incorporation of mineral thermal waters on specific formulations for topical 

applications, namely cosmetics. 

 

Proliferation and cytotoxicity evaluation of the Cró thermal water  

The Cró thermal water promotes the NHDF adhesion and proliferation, with no 

microscopic differences registered when compared to the negative control after 1, 3 and 

9 days (Fig.1). Dead cells with their typical spherical shape were observed in the positive 

control (ethanol treated cells), as expected.  

To further assess the effects of thermal water on cell viability, MTS assay was also 

performed. This assay showed that cells remained viable when were seeded with culture 

medium prepared with thermal water after 1, 3 and 9 days of incubation (Fig. 2). The 

results showed the biocompatibility of the Cró thermal water. 

 

Characterization and stability studies of the developed gel formulation  
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The developed dermocosmetic formulation (hydrophilic gel), comprising more than 90% 

of thermal water was compared with a gel formulation with identical composition but 

using purified water (instead of thermal water) as a control. During the period of storage 

(until 30 days) at 20 ± 2 ºC and RH 50 ± 10 % the gel formulation, either thermal or 

purified water-based showed adequate organoleptic properties (translucid aspect and 

lavender flavour). The pH of the formulation was kept around 5.5 during the storage 

period. Relatively to rheological profiles, despite it were observed some statistical 

significant differences between thermal vs. purified water and along the 30 days of the 

storage, a similar profile in which was observed a decrease of viscosity with the increase 

of rotation speed, as it can be seen in Fig. 3 and in Table II. These formulation 

characteristics are important factors in the development and final behaviour of semisolid 

formulations [28, 29] and results revealed that the incorporation of thermal water does 

not greatly affect its viscosity.  

The gel prepared with thermal water showed lower firmness (Fig. 4.A) and adhesiveness 

(Fig. 4.B) than the control gel prepared with purified water during 30 days of storage. 

Spreadability values (Fig. 4.C) were lower for the gel with thermal water than the gel with 

purified water. Therefore, the thermal water-based gel is expected to be easier to apply 

onto the skin and exhibits favourable adhesive properties, allowing a sustained release of 

active compounds. In general, texture analysis of gel formulation showed that exhibit 

acceptable characteristics for skin topical application [30,31].  

 

Efficacy evaluation of the developed gel formulation through cutaneous biometry  

The quantification of parameters such as skin pH, SC hydration and TEWL is essential 

for the integral evaluation of the epidermal barrier status. In the present work, cutaneous 



13 

biometry as a non-invasive in-vivo approach was used to monitor the skin barrier physical 

properties in accordance with literature [32].  

Results showed that after gel application, the pH of the skin exhibited statistically 

significant differences between the groups that applied the purified water and thermal 

water-based formulations (Table III). However, for both formulations and considering the 

range of pH between 5.52-5.90, is considered the preservation of the physiologic acid 

nature of the skin [33]. This fact is especially relevant as the acidic milieu plays a central 

role for the epidermal permeability barrier homeostasis, restoration of the disrupted 

barrier, and non-specific antimicrobial defence of the skin [34]. 

The hydration degree was higher, both after 30 or 60 min of application of thermal water-

based gel formulation, when compared with the purified water-based one and a 

statistically significant increase was found after 30 min of application of thermal water-

based formulation in comparison with the initial hydration degree. This results confirm 

the improvement of the incorporation of Cró mineral medicinal water in the formulation, 

once is related to the the maintenance of water content of the SC that is determinant for 

permeability, its mechanical properties, as well as the regulation of hydrolytic enzymes 

involved in the process of normal corneocyte desquamation [21]. 

TEWL is related to permeability barrier status under normal, experimentally perturbed, 

or diseased conditions being used to assess the homeostasis of the permeability barrier 

but also indirectly to predict the influence of topically applied substances on the skin  

[35]. For TEWL was registered statistical significant decrease after 30 min with the 

application of the thermal water-based gel (Table V) which suggests that this formulation 

could have some occlusive effect on skin barrier function.  

The skin relief was evaluated by the analysis of the images that skin structure, the dryness 

level and the real topography of skin surface. The Surface Evaluation of the Living Skin 
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(SELS) parameters were registered taking into account the images obtained by the 

Visioscan® software (Fig. 5 and Table VI), namely roughness (SEr), scaliness (SEsc) and 

kurtosis parameter (Rku). In general, Bbetter results were obtained for the gel formulation 

containing thermal water, as it was observed higher SEr (lesser roughness), lower SEsc 

(lower scaliness) (Table VI) and Rku values close to 3 (higher smoothness).  

 

Conclusions 

This preliminary work shows beneficial effects on skin when the Cró thermal water was 

used in a gel dermocosmetic formulation, which itself constitutes a noteworthy 

achievement when general skin care is needed. Furthermore, it opens promising 

perspectives in future utilization in cosmetics development as well as in the 

dermatological fields. In this sense, the vehiculation of this thermal water in 

dermoscosmetic formulations is envisioned as a potential tool for the treatment of 

dermatological diseases. 
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