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Abstract

According to influential accounts of scientific method, such as crit-

ical rationalism, scientific knowledge grows by repeatedly testing our

best hypotheses. But despite the popularity of hypothesis tests in

statistical inference and science in general, their philosophical founda-

tions remain shaky. In particular, the interpretation of non-significant

results—those that do not refute the tested hypothesis—poses a major

philosophical challenge. To what extent do they corroborate the tested

hypothesis, or provide a reason to accept it?

Karl R. Popper sought for measures of corroboration that could ad-

equately answer this question. According to Popper, corroboration is

different from probability-raising, and grounded in the predictive suc-

cess and testability of a hypothesis. As such, corroboration becomes

an indicator of the scientific value of a hypothesis and guides our prac-

tical preferences over hypotheses which have been subjected to severe

tests.

This paper proves two impossibility results for corroboration mea-

sures based on statistical relevance. The generality of these results

shows that Popper’s qualitative characterization of corroboration must

be misguided. I explore what a more promising, and scientifically use-

ful concept of corroboration could look like.
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1 Introduction. Motivating the Concept of Cor-

roboration

According to influential accounts of scientific method, scientific knowledge

grows by repeatedly testing our best hypotheses (e.g, Popper [1934/2002];

Mayo [1996]). Such tests have acquired a predominant role in scientific

reasoning and are a crucial part of publication requirements. The most

frequent form of scientific inference are null hypothesis significance tests

(NHST): they test a precise hypothesis h0—the null or default hypothesis—

against an unspecific alternative h1. In the most common form of NHST,

the null hypothesis posits a precise value for a real-valued parameter θ (h0 :

θ = θ0), while the alternative (h1 : θ 6= θ0) is a disjunction of uncountably

many precise hypotheses (e.g., Neyman and Pearson [1933]; Fisher[1956]).

The null denotes an absent or negligible effect (e.g., a new medical drug

is not better than a placebo treatment) whereas the alternative stands for

a sizeable effect. NHST are applied across all domains of science, but are

especially prominent in psychology and medicine.

Despite their popularity in scientific inference, the philosophical founda-

tions of NHST are shaky at best. NHST are used for quantifying evidence

that the data accumulate against the null hypothesis. When this level of evi-

dence is high enough, that is, greater than a prespecified significance thresh-

old, the null hypothesis is rejected in favor of the alternative. However, there

is barely any methodological guidance on how to interpret a non-significant

result, that is, a result where we fail to reject the null hypothesis. Statistics

textbooks (e.g., Chase and Brown [2000]; Wasserman [2004]) restrict them-

selves to a purely negative interpretation: failure to reject the null means
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failure to demonstrate a statistically significant phenomenon. This does not

address a crucial question in scientific reasoning: Do the results corroborate

the null hypothesis? Should we prefer the null hypothesis to the alternative

hypotheses and preliminarily accept it? Whenever the null hypothesis is of

substantial scientific interest, e.g., independence of two variables in a causal

model, such judgments are urgently required. This fact is also acknowl-

edged by numerous scientists. For two recent examples from psychology, see

Gallistel [2009] and Morey et al. [2014].

Explicating degree of corroboration is thus central for a sound interpre-

tation of NHST. Karl R. Popper, one of the few philosophers engaging in

this business, proposes the following characterization:

‘By the degree of corroboration of a theory I mean a concise

report evaluating the state (at a certain time t) of the criti-

cal discussion of a theory, with respect to the way it solves its

problems; its degree of testability; the severity of tests it has

undergone; and the way it has stood up to these tests. Corrobo-

ration (or degree of corroboration) is thus an evaluating report of

past performance. Like preference, it is essentially comparative.’

(Popper [1979], p. 18; see also Popper [1934/2002], p. 248.)

In Popper’s view, corroboration judgments positively appraise the per-

formance of the null hypothesis in a severe test, rather than just stating

the failure to find significant evidence against it. Notably, high degrees of

corroboration need not guide us to the truth (Popper [1979], p. 21). Instead,

the function of corroboration is comparative and pragmatic: it guides our

practical preferences over competing hypotheses, for example the choice of

the hypothesis on which we base the next experiment (Popper [1934/2002],

p. 416). This is exactly what most scientists are after when testing a complex

set of hypotheses.

A measure of degree of corroboration may thus help to elucidate the

value of hypothesis tests in science. Because of the well-known shortcom-

ings of NHST and their practical misuse, it has been suggested that the

entire business of hypothesis testing should be abandoned and be replaced
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by an estimation-centered perspective (Schmidt and Harlow [1997]; Cum-

ming [2015]). Sound corroboration judgments may help to respond to this

challenge and lead to more nuanced interpretations of hypothesis tests. Es-

pecially in classical inference problems like model selection, inference about

causal nets, and decisions whether or not to publish an experimental result,

science cannot do without some form of hypothesis tests. Here, a reliable

measure of degree of corroboration may improve scientific reasoning. More

generally, a measure of degree of corroboration might revive a critical ratio-

nalist epistemology of science, by showing how hypothesis tests contribute

to the growth of scientific knowledge (e.g., Rowbottom [2011]). In that con-

text, it is notable that neither philosophers nor statisticians have found an

adequate explication of degree of corroboration, and that past efforts have

been met with devastating criticism (Dı́ez [2011]; Rowbottom [2013]).

This prompts the question of what has been going wrong with the con-

cept of corroboration. My paper answers this question by claiming that

the standard framework for explicating degree of corroboration—statistical

relevance—does not square well with the task of that concept in scientific

reasoning. I will defend this claim by means of two impossibility results.

Broadly speaking, I demonstrate the impossibility of any probabilistic mea-

sure of corroboration that is based on both the testability and the predictive

success of the hypothesis. These are, however, the principal virtues that

Popper wanted to capture in a measure of corroboration.

Based on the results of this analysis, I conclude that it is necessary to

develop a different framework for explicating degree of corroboration. In par-

ticular, I hypothesize that an adequate explication of degree of corroboration

should be sensitive to the way the alternative hypotheses are partitioned.

Spelling out this proposal in detail will be left to future work, though.

The paper is structured as follows. Section 2 briefly presents Popper’s

characterization of an adequate measure of degree of corroboration. Section

3 is the core of the paper: it develops plausible adequacy criteria for de-

gree of corroboration in a statistical relevance framework and demonstrates

that no measure of corroboration can satisfy them all. The final Section 4

discusses my findings and explores ways out of the dilemma created by the
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impossibility results.

2 Popper’s Measure of Degree of Corroboration

Popper’s first writings on degree of corroboration, in Chapter 10 of ‘The

Logic of Scientific Discovery’, do not engage in a quantitative explication.

Apparently, this task is deferred to a scientist’s common sense (e.g., Popper

[1934/2002], pp. 265–7). However, this move makes the entire concept of

corroboration vulnerable to the charge of subjectivism: without a quantita-

tive criterion, it is not clear which corroboration judgments are sound and

which aren’t (Good [1968], p. 136). Especially if we aim at gaining objective

knowledge from hypothesis tests, we need a precise explication of degree of

corroboration.

Popper faces this challenge in a couple of BJPS articles (Popper [1954],

[1957], [1958]) that form, together with a short introduction, appendix ix

of ‘The Logic of Scientific Discovery’. In these articles, Popper develops

and defends a measure of degree of corroboration. Popper argues that this

measure cannot be a probability in the sense of Carnap ([1950]), that is, the

plausibility of the tested theory (or hypothesis) conditional on the observed

evidence:

‘[. . . ] the probability of a statement [. . . ] simply does not express

an appraisal of the severity of the tests a theory has passed, of the

manner in which it has passed these tests.’ (Popper [1934/2002],

411)

In particular, logical content and informativity contribute to the testability

of a theory and to its degree of corroboration:

‘The main reason for this is that the content of a theory—which

is the same as its improbability—determines its testability and

corroborability.’ (ibid., original emphasis)

So corroboration should be sensitive to the informativity and logical content

of a theory, which is again related to the improbability of a theory. If
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one considers that degree of corroboration should guide our judgments of

acceptance in NHST, this makes lots of sense: good theories should predict

the evidence well and be informative (see the discussions in Hempel [1960];

Levi [1963]; Huber [2005]). Popper confirms that scientific theory assessment

pursues both goals at once:

‘Science does not aim, primarily, at high probabilities. It aims

at a high informative content, well backed by experience. But

a hypothesis may be very probable simply because it tells us

nothing, or little.’ (Popper [1934/2002], 416)

Such a characterization of corroboration is attractive because it amal-

gamates two crucial cognitive values in theory assessment: high informative

content and empirical support. Also in NHST, both values play a role since

a precise hypothesis (the null) is tested against a continuum of alternatives.

However, this paper shows that such a tradeoff is unattainable if further

reasonable assumptions are made.

Let us now have a look at how Popper characterizes degree of corrobora-

tion. Transcribed to modern notation, Popper assumes that evidence e and

hypothesis h are among the closed sentences L of a first-order language L.

A corroboration measure is described by a function c : L2 ×P→ R, where

P is the set of probability measures on the σ-algebra generated by L. This

function assigns a real-valued degree of corroboration c(h, e) to any pair of

sentences in L, together with a probability measure p(·). This measure may

be interpreted as a function of the logical structure of L, but also as objec-

tive chance or degree of belief—our discussion is independent of this point.

For the sake of simplicity, we will omit reference to background assumptions

and assume that they are implicit in the probability function p(·).
Note that such a probabilistic measure of corroboration does not quantify

sufficient conditions for high degree of corroboration. Popper ([1934/2002],

pp. 265–6, 402, 437) and also his modern followers (Rowbottom [2008],

[2011]) emphasize that corroborating evidence has to report the results of

sincere and severe effort to overturn the tested hypothesis. Obviously, such

requirements cannot be formalized completely (see also Popper [1983], p.
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154). The point of a probabilistic measure is rather to describe the degree

of corroboration of a hypothesis if these methodological requirements are

met.

Popper then specifies a set of adequacy criteria. The first entails

I c(h, e) >/=/< 0 if and only if p(e|h) >/=/< p(e).

This is a classical statistical relevance condition: e corroborates h just in

case supposing h makes e more expected. This condition is also in line with

Popper’s remark that corroboration is, like preference, essentially contrastive

(Popper [1979], p. 18).

II −1 = c(¬h, h) ≤ c(h, e) ≤ c(h, h) ≤ 1.

III c(h, h) = 1− p(h).

IV If e |= h then c(h, e) = 1− p(h).

V If e |= ¬h then c(h, e) = −1.

These conditions determine under which conditions the measure of corrobo-

ration takes its extremal values. Minimal degree of corroboration is obtained

if the evidence refutes the hypothesis (V). Conversely, the most corroborat-

ing piece of evidence e is a verification of h (II). In that case, degree of

corroboration is equal to the improbability of h (III, IV), which is supposed

to express the informativity, testability and logical content of h. This is

especially plausible in Carnap’s logical interpretation of probability, which

Popper adopts for p(h). But it also makes sense for a subjective Bayesian

interpretation. See Popper ([1934/2002], pp. 268–9, [1963], pp. 385–7) and

Rowbottom ([2013], pp. 741–4).

VI c(h, e) ≥ 0 increases with the power of h to explain e.

VII If p(h) = p(h′), then c(h, e) > c(h′, e′) if and only if p(h|e) > p(h′|e′).

These conditions reiterate the statistical relevance rationale from condition

I, and make it more precise. Regarding condition VI, Popper ([1934/2002],

416) defines explanatory power according to the formula E(e, h) = (p(e|h)−
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p(e))/(p(e|h) + p(e)), another measure of the statistical relevance between

e and h. But the details need not bother us here. Condition VII states

that corroboration essentially co-varies with posterior probability whenever

two hypotheses are equiprobable at first. In that case, posterior probability

is a good indicator of statistical relevance. Compared to Popper’s original

formulation, we have dropped the requirement p(h) > 0 because by Bayes’

Theorem, the case p(h) = p(h′) = 0 would imply p(h|e) = p(h′|e′) = 0 and

trivialize the condition.

VIII If h |= e, then

a) c(h, e) ≥ 0;

b) c(h, e) is an increasing function of 1− p(e);

c) c(h, e) is an increasing function of p(h).

IX If ¬h is consistent and ¬h |= e, then

a) c(h, e) ≤ 0;

b) c(h, e) is an increasing function of p(e);

c) c(h, e) is an increasing function of p(h).

Condition VIII demands that corroboration gained from a successful deduc-

tive prediction co-vary with the informativity of the evidence and the prior

probability of the hypothesis. Condition IX mirrors this requirement for the

case ¬h |= e. These conditions can be motivated from the idea that if h |= e,

then corroboration should not automatically transfer to hypotheses h ∧ h′

that contain an “irrelevant conjunct” h′ which has not yet been tested. See

the next section for more detailed discussion of this point.

Popper ([1954], 359) then proposes the corroboration measure cP (h, e)

which satisfies all of his constraints:

cP (h, e) =
p(e|h)− p(e)

p(e|h) + p(e)− p(e|h) p(h)
. (1)

But we can easily see that an essential motivation behind a measure of degree

of corroboration is not satisfied. cP (h, e) is an increasing function of p(h) for

all values of p(e|h) and p(e). Hence, the informativity and testability of the
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hypothesis never contributes to its degree of corroboration. This violates

Popper’s informal characterization of the concept and does not square well

with the practice of NHST. The only exception is the case p(h|e) = 1, as

expressed in IV, but then we are arguably not in need of a measure of

corroboration: h has been proved conclusively. Dı́ez ([2011]) provides even

more reasons why Popper’s explication is at odds with the tenets of critical

rationalism. We shall now phrase this problem more generally and show that

it does not only arise for Popper’s measure cP (h, e), but for all corroboration

measures that are motivated from the same kind of intuitions.

3 The Impossibility Results

Popper’s nine adequacy conditions are quite specific requirements and too

strong for the purpose of a general analysis of degree of corroboration. I

will therefore weaken them and retain only such adequacy conditions that

are indispensable for a conceptual analysis of corroboration. I then show

two impossibility results for corroboration measures that (i) are built on

statistical relevance between h and e and the predictive success of h for e;

and (ii) preserve the intuition that corroboration should be responsive to

the informativity and testability of the tested hypothesis.

I would like to begin with a condition which is mainly representational in

nature and is frequently used in formal epistemology (e.g., Schupbach and

Sprenger [2011]; Crupi, Chater and Tentori [2013]; Crupi [2014]). Popper’s

own measure cP (h, e) also conforms to it.

Formality There exists a function f : [0, 1]3 × {(x, y, z)|1 + xz − z ≥ y ≥
xz} → R such that for all e, h ∈ L and p(·) ∈ P,

c(h, e) = f(p(e|h), p(e), p(h)).

This condition relates degree of corroboration to the joint probability dis-

tribution of e and h.The three arguments of f determine that distribution

in all non-degenerate cases, and they are the same quantities that figure in

Popper’s measure of corroboration cP . This makes comparisons easier. In
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practice, Formality means that two scientists who agree about all relevant

probabilities will make the same corroboration judgments.

Note that Formality should not be defined on the entire unit cube [0, 1]3

since not all assignments of p(e|h), p(e) and p(h) are compatible with each

other. This is evident from the equality

p(e) = p(e|h)p(h) + p(e|¬h)(1− p(h))

which implies, by setting p(e|¬h) to its extremal values, the inequalities

p(e) ≥ p(e|h)p(h) p(e) < p(e|h)p(h) + 1− p(h).

Let us now move to substantial conditions on degree of corroboration.

First, in a Popperian spirit, corroboration should track predictive success

(e.g., Popper [1983], pp. 241–3):

Weak Law of Likelihood (WLL) For mutually exclusive hypotheses

h1, h2 ∈ L, e ∈ L and p(·) ∈ P, if

p(e|h1) ≥ p(e|h2) and p(e|¬h1) ≤ p(e|¬h2) (2)

with one inequality being strict, then c(h1, e) > c(h2, e).

The WLL has been defended as capturing a ‘core message of Bayes’ The-

orem’ (Joyce [2008]): if h1 predicts e better than h2, and ¬h2 predicts e

better than ¬h1, then e favors h1 over h2. Since WLL is phrased in terms

of predictive performance, it is even more compelling for corroboration than

for evidential support. After all, p(e| ± h1) and p(e| ± h2) measure how

well h1 and h2 have stood up to a test with outcome e. The version given

here is in one sense stronger and in one sense weaker than Joyce’s original

formulation: it is stronger because only one inequality has to be strict (see

also Brössel [2013], pp. 395–6); it is weaker because the WLL has been re-

stricted to mutually exclusive hypotheses, where our intuitions tend to be

more reliable.

Another condition deals with the role of irrelevant evidence in corrobo-

ration judgments:
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Screened-Off Evidence Let e1, e2, h ∈ L and p ∈ P. If e2 is proba-

bilistically independent of e1, h, and e1 ∧ h and p(e2) > 0, then

c(h, e1) = c(h, e1 ∧ e2).

Structurally identical versions of this condition prominently figure in ex-

plications of evidential support and explanatory power (e.g., Kemeny and

Oppenheim [1952]; Schupbach and Sprenger [2011]). It is a weaker ver-

sion of the well-known Final Probability Incrementality condition (Festa

[2012]; Crupi, Chater and Tentori [2013]), which demands, inter alia, that

c(h, e) = c(h, e′) if and only if p(h|e) = p(h|e′). To see this, just choose

e := e1, e
′ := e1 ∧ e2 and note that under the independence conditions of

Screened-Off Evidence,

p(h|e1 ∧ e2) =
p(h ∧ e1|e2)
p(e1|e2)

= p(h|e1)

Hence, anybody who accepts Final Probability Incrementality for measures

of corroboration, also needs to endorse Screened-Off Evidence. However,

Screened-Off Evidence is also very sensible on independent grounds: in an

experiment where h has been tested and (relevant) evidence e1 has been

observed, completely irrelevant extra evidence (e2 ⊥⊥ e1, h, e1 ∧h) should not

change the evaluation of the results. Imagine, for example, that a scientist

tests the hypothesis that a high pitch facilitates voice recognition. As her

university is interested in improving the planning of lab experiments, the

scientist also collects data on when participants drop in, which days of the

week are busy, which ones are quiet, etc. Plausibly, these data satisfy the

independence conditions of Screened-Off Evidence. But equally plausibly,

they do not influence the degree of corroboration of the hypothesis under

investigation.

The next adequacy condition is motivated by the problem of irrele-

vant conjunctions for measures of evidential support (e.g., Fitelson [2002];

Hawthorne and Fitelson [2004]). Assume that hypothesis h asserts the wave

nature of light. Taken together with a body of auxiliary assumptions, h

implies the phenomenon e: the interference pattern in Young’s double slit

experiment. Such an observation apparently corroborates the wave nature

of light.

11



However, once we tack an utterly irrelevant proposition such as h′ = ‘the

chicken came before the egg’ to the hypothesis, it seems that e corroborates

h ∧ h′—the conjunction of the wave theory of light and the chicken-egg

hypothesis—not more than h, if at all. After all, h′ was in no way tested by

the observations we made. It has no record of past performance to which

we could appeal. This motivates the following constraint:

Irrelevant Conjunctions Assume the following conditions on h, h′, e ∈ L

and p ∈ P are satisfied:

[1] h and h′ are consistent and p(h ∧ h′) < p(h);

[2] p(e) ∈ (0, 1);

[3] h |= e;

[4] p(e|h′) = p(e).

Then it is always the case that c(h ∧ h′, e) ≤ c(h, e).

This requirement states that for any non-trivial hypothesis h′ that is con-

sistent with h ([1]) and irrelevant for e ([4]), h ∧ h′ is corroborated no more

than h whenever h non-trivially entails e ([2], [3]). A similar requirement has

been defended for measures of empirical justification (Atkinson [2012], pp.

50–1). Indeed, it would be strange if corroboration (or justification) could

be increased for free by attaching irrelevant conjunctions. That would also

make it nearly impossible to reply persuasively to Duhem’s problem, and to

separate innocuous from blameworthy hypotheses. Degree of corroboration

is supposed to guide our evaluation of hypotheses in the light of experimen-

tal results. But a measure which is invariant under logical conjunction of

hypotheses (for deductively implied evidence) cannot fulfil this function.

Interestingly, the preceding adequacy conditions can be derived from

Popper’s original adequacy conditions (all proofs are given in the appendix):

Theorem 1 The following statements are true:

• Popper’s condition VII implies Weak Law of Likelihood for the

case of equiprobable hypotheses.

• Popper’s condition VII implies Screened-Off Evidence.
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• Popper’s condition VIIIc implies Irrelevant Conjunctions.

This shows that our adequacy conditions are motivated in the right way:

they are either weaker versions of Popper’s criteria, or closely related to

them. We can thus be confident that our formal analysis of corroboration

is on target and that our adequacy conditions do not track a different, in-

compatible concept.

However, unlike evidential support, corroboration contains an element

of severe testing: the hypothesis should run a risk of being falsified. High

informativity and testability contribute to this goal. As Popper states, ‘in

many cases, the more improbable [...] hypothesis is preferable’ (Popper

[1979], pp. 18–9), and the purpose of a measure of degree of corroboration

is ‘to show clearly in which cases this holds and in which it does not hold’

(ibid.). This motivates the following desideratum:

Weak Informativity Degree of corroboration c(h, e) does not generally

increase with the probability of h. That is, there are h, h′, e ∈ L and

p ∈ P such that

(1) p(e|h) = p(e|h′) > p(e);

(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) ≤ c(h′, e).

The intuition behind Weak Informativity can also be expressed as follows:

corroboration does not, in the first place, assess the probability of a hy-

pothesis; therefore c(h, e) should not always increase with the probability

of h. To this, the following condition—Strong Informativity—adds that low

probability/high logical content can in principle be corroboration-conducive.

Note that the requirement 1/2 ≥ p(h), p(h′) is purely technical and philo-

sophically innocuous.

Strong Informativity The informativity/logical content of a proposition

can increase degree of corroboration, ceteris paribus. That is, there

are h, h′, e ∈ L and p ∈ P such that

(1) p(e|h) = p(e|h′) > p(e);
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(2) 1/2 ≥ p(h) > p(h′);

(3) c(h, e) < c(h′, e).

To my mind, any account of corroboration that denies these properties has

stripped itself of its distinctive features with respect to evidential support or

degree of confirmation. At the very least, the Popperian characaterization

of corroboration as capturing both predictive success and testability would

have to be abandoned, and links with NHST would have to be loosened. The

idea behind Strong/Weak Informativity has also recently been defended by

Roberto Festa in his discussion of the ‘Reverse Matthew Effect’: successful

predictions reflect more favorably on general theories than on restricted

or weakened versions of them (Festa [2012], pp. 95–100). Note that neither

Strong nor Weak Informativity postulates that corroboration decreases with

prior probability; they just deny the ‘Matthew Effect’ that corroboration co-

varies with prior probability (see also Roche [2014]).

I am now going to demonstrate that the listed adequacy conditions are

incompatible with each other. First, as a consequence of Weak Law of Like-

lihood, corroboration increases with the prior probability of a hypothesis.

This clashes directly with Strong/Weak Informativity:

Theorem 2 (First Impossibility Result) No measure of corroboration

c(h, e) constructed according to Formality can satisfy Weak Law of

Likelihood and Weak/Strong Informativity at the same time.

Since Formality is a purely representational condition, this result means that

Weak Law of Likelihood and Weak/Strong Informativity pull in different

directions: the first condition emphasizes the predictive performance of the

tested hypothesis, the second its logical strength. It is perhaps surprising

that these two conditions are already incompatible, since it is a popular tenet

of critical rationalism that informative hypotheses are also more valuable

predictively.

Second, Strong Informativity clashes with Irrelevant Conjunctions and

Screened-Off Evidence:

Theorem 3 (Second Impossibility Result) No measure of corrobora-

tion c(h, e) constructed according to Formality can satisfy Screened-
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Off Evidence, Irrelevant Conjunctions and Strong Informativity at the

same time.

Thus, the intuition behind Strong/Weak Informativity cannot be satisfied

if other plausible adequacy constraints on degree of corroboration are ac-

cepted. In particular, if a measure of corroboration is insensitive to irrel-

evant evidence and does not reward adding irrelevant conjunctions, then

it cannot give any bonus to informative hypotheses. The less informative

and testable a hypothesis is, the higher its degree of corroboration, ceteris

paribus.

Finally, the result of Theorem 3 can be extended to Weak Informativity

if we make the assumption that irrelevant conjunctions dilute the degree of

corroboration, rather than not increasing it (proof omitted). See also the

corresponding remark in the motivation of Irrelevant Conjunctions.

Note that these results are meaningful even for those who are not in-

terested in the project of explicating Popperian corroboration (e.g., because

they are radical subjective Bayesians). Some of the above adequacy condi-

tions have been proposed for measures of evidential support or explanatory

power as well; others could be potentially interesting in these contexts. For

instance, Brössel ([2013]) has recently discussed the condition Logicality,

which resembles Strong/Weak Informativity. Hence, the above results also

make sense in the framework of Bayesian Confirmation Theory, as indicat-

ing the impossibility of probabilistic measures that capture informativity

and predictive success at the same time.

All this does not yet imply that explicating degree of corroboration is

a futile project. Rather, it reveals a fundamental and insoluble tension

between the two main contributing factors of corroboration that Popper

identifies: predictive success and testability/informativity. Weak Law of

Likelihood, Screened-Off Evidence and Irrelevant Conjunctions all speak to

the predictive success intuition, whereas Strong/Weak Informativity rewards

high logical content and testability. That it is impossible to satisfy minimal

subsets of these plausible conditions sheds doubts on the statistical relevance

framework for explicating corroboration. However, before we prematurely

draw pessimistic conclusions, let us revisit the available options.
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4 Discussion

In this paper, I have first demonstrated the urgency of searching for an

adequate probabilistic measure of corroboration. This has been motivated

by the lack of guidance on the interpretation of non-significant results in

statistical hypothesis tests (NHST). I have explored Popper’s idea that a

measure of corroboration should capture both the predictive success and

the testability of the hypothesis. To this end, I have set up a set of plausible

conditions that are weaker than Popper’s original claims (Theorem 1).

However, it turns out that these criteria cannot be satisfied jointly. The

pre-theoretic concept of corroboration is overloaded with desiderata that

point in different directions and create insoluble tensions (Theorem 2 and

3). This leaves us with four options: (i) to reject one of the (substantial)

adequacy conditions; (ii) to split up degree of corroboration into different

sub-concepts, as happened for evidential support; (iii) to conclude that the

explication of degree of corroboration is hopeless and not worthy of further

pursuit, and (iv) to blame the representational framework that has been

used for explicating degree of corroboration, and to reconcile the various

desiderata in a different mathematical and conceptual framework.

Option (i) would come down to either giving up Weak Law of Likelihood,

Screened-Off Evidence, Irrelevant Conjunctions or Strong/Weak Informativ-

ity. But each of these adequacy conditions for degree of corroboration has

been carefully motivated in the preceding section. Such a step would there-

fore appear arbitrary and unsatisfactory.

For example, one could propose to endorse a statistical relevance measure

of evidential support as measure of corroboration, giving up the informativ-

ity intuition. This has the advantage of relating corroboration to a bunch of

statistical and philosophical literature (e.g., Fitelson [1999]), but it comes

at the price of stripping corroboration of its defining characteristics. The

concept might just become redundant with respect to evidential support.

Also, statistical relevance measures generally depend on p(e|¬h), either

explicitly or via the calculation of p(e) and p(h|e). This creates a variety

of problems. Consider, for example, a Binomial model where we test the
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null hypothesis h0 : θ = 0.5 against the alternative h1 : θ 6= 0.5. If the

observed relative frequency of successes is close to 0.5, for example x̄ = 0.53,

the degree of corroboration of the null hypothesis should not depend on the

likelihoods p(x̄|θ) for very large and very small values of θ. Such alternatives

are logically possible, but apparently irrelevant for testing the adequacy of

the point null hypothesis θ = 0.5. But for statistical relevance measures,

this conclusion is inevitable since p(x|θ 6= θ0) =
∫ 1
0 p(θ)p(x|θ)dθ.

Option (ii) amounts to endorsing pluralism for degree of corroboration.

The model case for this option are probabilistic analyses of evidential sup-

port: some measures, like d(h, e) = p(h|e)−p(h) capture the boost in degree

of belief in h provided by e, while others, like l(h, e) = p(e|h)/p(e|¬h), aim

at the discriminatory power of e with respect to h and ¬h. However, it is

not clear what similarly interesting subconcepts could look like for degree

of corroboration. Right now, this option does not appear to be viable.

Neither does the pessimistic option (iii) have much appeal, unless con-

vincing reasons are given why scientists can dispense with the concept of

corroboration, and hypothesis testing in general.

This leaves us with option (iv): to abandon the statistical relevance

framework for explicating degree of corroboration. Perhaps it is neither

necessary nor sufficient to base a corroboration judgment on the joint proba-

bility distribution of h and e? As noted above, statistical relevance measures

of corroboration compare the merits of h with the merits of ¬h, defined as

the aggregate of alternatives to h. However, a comparison to such an ag-

gregate does not make much sense in many NHST contexts where we deal

with a multitude of distinct alternatives hi, i ∈ N. Perhaps corroboration

judgments should be made with respect to the best-performing alternative

in the hypothesis space, and not with respect to all possible alternatives.

This suggests that we might develop explications of degree of corrobora-

tion in a framework with many distinct alternatives to the tested hypothesis

h. As a consequence, Formality would have to be dropped and degree of

corroboration would become partition-relative: testing h with alternative

¬h can lead to different corroboration judgments than testing h with alter-

natives H = {h1, h2, . . . , hn} even if ¬h =
∨

1≤i≤n hi. Such an approach has
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been anticipated by I.J. Good ([1960], [1968]). However, Good opts for a

vector-valued measure of degree of corroboration, which is, for many reasons,

unhelpful in scientific practice. Spelling out a feasible and foundationally

sound approach is left to future work along these lines.

I would like to conclude with the observation that this paper is negative

and constructive at the same time: it shows why there can be no measure

of corroboration that fits Popper’s informal description, and more generally,

that amalgamates predictive success with informativity and testability. At

the same time, the paper demonstrates why we have to expand our math-

ematical framework for explicating degree of corroboration, and suggests

which type of explications could prove useful for science and philosophy at

the same time.

Appendix: Proof of the Theorems

Proof of Theorem 1: We begin with showing that condition VII implies

the Weak Law of Likelihood (WLL). Assume p(h1) = p(h2). We distinguish

two jointly exhaustive cases in which WLL may apply:

Case 1: p(e|h1) > p(e|h2) Case 2: p(e|h1) = p(e|h2)

and p(e|¬h1) < p(e|¬h2).

For the first case, the proof is simple in virtue of the inequality

p(h1|e) = p(h1)
p(e|h1)
p(e)

> p(h2)
p(e|h2)
p(e)

= p(h2|e).

Then, VII guarantees that c(h1, e) > c(h2, e).

For the second case, let x := p(e|h1) = p(e|h2) and y := p(h1) = p(h2).
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We know that

p(e|¬h1) =
1

1− p(h1)
[p(e|h2)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− y
(xy + p(e|¬h1¬h2)p(¬h1¬h2))

p(e|¬h2) =
1

1− p(h2)
[p(e|h1)p(h1) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− y
(xy + p(e|¬h1¬h2)p(¬h1¬h2)).

Hence, p(e|¬h1) = p(e|¬h2). On the other hand, we have assumed that

p(e|¬h1) < p(e|¬h2). This shows that the second case can never occur and

may be dismissed.

We now prove the second implication, that is, VII ⇒ Screened-Off Evi-

dence. To this end, remember that condition VII reads

VII If p(h) = p(h′), then c(h, e) ≤ c(h′, e′) if and only if p(h|e) ≤ p(h′|e′).

Assuming h = h′, it is easy to see that VII implies

VII’ If p(h|e) = p(h|e′), then c(h, e) = c(h, e′).

The reason is simple: If p(h|e) = p(h|e′), then also p(h|e) ≤ p(h|e′) and the

‘⇐’ direction of VII implies c(h, e) ≤ c(h, e′), where h has been substituted

for h′. Now we repeat the same trick with the premise p(h|e′) ≤ p(h|e) and

we obtain c(h, e′) ≤ c(h, e). Taking both inequalities together yields the

conclusion c(h, e) = c(h, e′) and thereby VII’.

Notice that under the conditions of Screened-Off Evidence, p(h|e1∧e2) =

p(h|e1). This is so because

p(h|e1∧e2) = p(h)
p(e1 ∧ e2|h)

p(e1 ∧ e2)
= p(h)

p(e1|h) p(e2)

p(e1) p(e2)
= p(h)

p(e1|h)

p(e1)
= p(h|e1).

Hence, we can apply VII’ to the case of Screened-Off Evidence, with e := e1

and e′ := e1 ∧ e2. This implies

c(h, e1 ∧ e2) = c(h, e1),
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completing the proof.

Finally, we have the implication VIIIc ⇒ Irrelevant Conjunctions. Let

for h, h′, e ∈ L and p ∈ P the conditions of Irrelevant Conjunctions ([1] to

[4]) be satisfied. Since h |= e, VIIIc implies that c(h, e) and c(h ∧ h′, e) are

increasing functions of the probability of the tested hypothesis—p(h) and

p(h∧h′), respectively. But by assumption, we have p(h∧h′) < p(h). Hence,

it follows that c(h ∧ h′, e) ≤ c(h, e). �

Proof of Theorem 2: By Weak Informativity and Formality, there are

x > y and z > z′ with z+z′ < 1, 1+xz−z ≥ y ≥ xz and 1+xz′−z′ ≥ y ≥ xz′

such that

f(x, y, z) ≤ f(x, y, z′).

Choose a probability function p(·) such that p(h1) = z, p(h2) = z′,

p(h1 ∧ h2) = 0, p(e|h1) = p(e|h2) = x, p(e) = y. We now verify that

this distribution satisfies the axioms of probability. Because of xz > xz′ and

1 + xz − z < 1 + xz′ − z′, it suffices to verify the inequalities y ≥ xz and

y ≤ 1 + xz − z.
First note that

p(e) = p(e|h1)p(h1) + p(e|h2)p(h2) + p(e|¬h1 ∧ ¬h2)(1− p(h1)− p(h2))

which translates, setting ω := p(e|¬h1 ∧ ¬h2), as

y = xz + xz′ + ω(1− z − z′).

This equation allows us to show the desired inequalities:

y − xz = xz + xz′ + ω(1− z − z′)− xz

= xz′ + ω(1− z − z′)

≥ 0

1 + xz − z − y = 1 + xz − z − xz − xz′ − ω(1− z − z′)

= (1− z − xz′) + ω(1− z − z′)

≥ 0
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In both cases, all summands are greater or equal than zero because z +

z′ < 1 by assumption. This completes the proof that the above probability

distribution is well-defined.

Now it is straightforward to show that

p(e|¬h1) =
1

1− p(h1)
[p(e|h2)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

=
1

1− p(h1)
[p(e|h1)p(h2) + p(e|¬h1¬h2)p(¬h1¬h2)]

p(e|¬h2) =
1

1− p(h2)
[p(e|h1)p(h1) + p(e|¬h1¬h2)p(¬h1¬h2)]

because by assumption, p(e|h1) = p(e|h2). From this we can infer

p(e|¬h1)− p(e|¬h2)

=
p(e|h1) p(h2)

1− p(h1)
+
p(e|¬h1¬h2) p(¬h1¬h2)

1− p(h1)
− p(e|h1) p(h1)

1− p(h2)
− p(e|¬h1¬h2) p(¬h1¬h2)

1− p(h2)

= p(e|h1)
[

p(h2)

1− p(h1)
− p(h1)

1− p(h2)

]
+ p(e|¬h1¬h2)(1− p(h1)− p(h2))

·
[

1

1− p(h1)
− 1

1− p(h2)

]

= p(e|h1)
p(h2)− p(h2)2 − p(h1) + p(h1)

2

(1− p(h1)) (1− p(h2))
+ p(e|¬h1¬h2)

· (1− p(h1)− p(h2))
p(h1)− p(h2)

(1− p(h1)) (1− p(h2))

= p(e|h1)
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1)

(1− p(h1)) (1− p(h2))
+ p(e|¬h1¬h2)

· (1− p(h1)− p(h2))
p(h1)− p(h2)

(1− p(h1)) (1− p(h2))

=
(p(h1)− p(h2)) · (p(h1) + p(h2)− 1)

(1− p(h1)) (1− p(h2))
(p(e|h1)− p(e|¬h1¬h2)).

If we look at the signs of the involved factors, we notice first that p(h1) −
p(h2) = z − z′ > 0 and p(h1) + p(h2)− 1 = z + z′ − 1 < 0. Then we observe
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that h1 and h2 were disjoint and that p(e|h1) and p(e|h2) are both greater

than p(e), implying p(e|h1) = p(e|h2) > p(e|¬h1¬h2). Taken together, we

can then conclude

p(e|¬h1)− p(e|¬h2) < 0.

Hence, the conditions for applying Weak Law of Likelihood are satisfied: h1

and h2 are two mutually exclusive hypotheses with p(e|h1) = p(e|h2) and

p(e|¬h1) < p(e|¬h2). Thus we can conclude

f(x, y, z) = c(h1, e) > c(h2, e) = f(x, y, z′),

in contradiction with the inequality f(x, y, z) ≤ f(x, y, z′) that we got from

Weak Informativity. �

Lemma 1 Any measure of corroboration c : L2 × P → R that satisfies

Screened-Off Evidence and Formality also satisfies the equality

f(ax, ay, z) = f(x, y, z) (3)

for x > y > 0, z > 0 and 0 < a ≤ 1 with 1 + xz − z ≥ y ≥ xz.

Proof of Lemma 1: For any 0 < a ≤ 1, x > y > 0 and z > 0 with

1 +xz− z ≥ y ≥ xz, we can choose sentences h, e1, e2 ∈ L and a probability

function p(·) ∈ P such that

a := p(e2) p(e2h) = p(e2)p(h)

x := p(e1|h) p(e1 ∧ e2) = p(e2)p(e1)

y := p(e1) p(e1 ∧ e2|h) = p(e2)p(e1|h)

z := p(h).

Since our choice of p is not restricted, this is always possible. Now, the

conditions of Screened-Off Evidence are satisfied, and it follows that c(h, e1∧
e2) = c(h, e1). By Formality, we can also derive the equalities

c(h, e1 ∧ e2) = f(p(e1 ∧ e2|h), p(e1 ∧ e2), p(h)) = f(p(e2)p(e1|h), p(e2)p(e1), p(h))

= f(ax, ay, z)

c(h, e1) = f(x, y, z).
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Taking all these equalities together delivers the desired result:

f(ax, ay, z) = c(h, e1 ∧ e2) = c(h, e1) = f(x, y, z).

Finally we note that (ax, ay, z) is always in the domain of f when a ≤ 1 and

1 + xz − z ≥ y ≥ xz:

(ay) ≥ (ax)/z ay ≤ a(1 + xz − z)

= axz + a(1− z)

≤ 1 + (ax)z − z

�

Proof of Theorem 3: Choose sentences h1, h2, e ∈ L and a probabil-

ity function p(·) ∈ P such that the conditions of Strong Informativity are

satisfied:

(1) p(e|h1) = p(e|h2) > p(e);

(2) 1/2 ≥ p(h1) > p(h2);

(3) c(h1, e) < c(h2, e).

Writing x := p(e|h1) = p(e|h2), y := p(e), z = p(h) and z′ := p(h′), we then

obtain

f(x, y, z) = c(h1, e) < c(h2, e) = f(x, y, z′). (4)

Since c(h, e) satisfies Formality and Screened-Off Evidence, by Lemma

1 it also satisfies the equality

f(ax, ay, z) = f(x, y, z)

for x > y > 0, z > 0 and 0 < a ≤ 1. It is easy to see that (1, y/x, z) is in

the domain of f if (x, y, z) is. Applying the above equality to f(1, y/x, z)

and choosing a := x, we now obtain

f(1, y/x, z) = f(x, y, z) f(1, y/x, z′) = f(x, y, z′).
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Then it follows from inequality (4) and the above equalities that

f(1, y/x, z) < f(1, y/x, z′) (5)

for these specific values of x, y, z and z′.

We can now find sentences h, h′, e′ and a probability function p′(·) such

that the conditions of Irrelevant Conjunctions are satisfied and at the same

time, p′(h) = z, p′(h ∧ h′) = z′, p′(e′) = y/x. This implies c(h ∧ h′, e′) ≤
c(h, e′). By Formality, this also implies

f(1, y/x, z) ≥ f(1, y/x, z′).

However, this inequality contradicts equation (5) that we have shown before.

Hence, the theorem is proven. �
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