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A MINIMAXMAX PROBLEM FOR IMPROVING THE

TORSIONAL STABILITY OF RECTANGULAR PLATES

ELVISE BERCHIO, DAVIDE BUOSO, FILIPPO GAZZOLA, AND DAVIDE ZUCCO

Abstract. We use a gap function in order to compare the torsional per-
formances of different reinforced plates under the action of external forces.
Then, we address a shape optimization problem, whose target is to minimize
the torsional displacements of the plate: this leads us to set up a minimaxmax

problem, which includes a new kind of worst-case optimization. Two kinds of
reinforcements are considered: one aims at strengthening the plate, the other
aims at weakening the action of the external forces. For both of them, we
study the existence of optima within suitable classes of external forces and
reinforcements. Our results are complemented with numerical experiments
and with a number of open problems and conjectures.

1. Introduction

When pedestrians cross a footbridge or the wind hits a suspension bridge, the
deck undergoes oscillations, which can be of three different kinds. The longitudinal
oscillations, in the direction of the bridge, are usually harmless because bridges
are planned to withstand them. The lateral oscillations, which move the deck
horizontally away from its axis, may become dangerous, if the pedestrians walk
synchronously; see the recent events at the London Millennium Bridge [1–3] and
also earlier dramatic historical events [4, §1.2]. The torsional oscillations, which
appear when the deck rotates around its main axis, are the most dangerous ones;
they also appear in heavier structures such as suspension bridges; see [4, §1.3,1.4]
for a survey.

Following [5], we view a bridge as a long narrow rectangular thin plate hinged
at two opposite edges and free on the remaining two edges: this plate well de-
scribes decks of footbridges and suspension bridges, which, at the short edges, are
supported by the ground. The corresponding Euler-Lagrange equation is given by
a fourth order equation in a planar domain complemented by suitable boundary
conditions; see (6). The solution of this equation represents the vertical displace-
ment of the plate under the action of an external force. Note that the solution
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is continuous because for planar domains the energy space embeds into continu-
ous functions. This does not occur in higher space dimensions or for lower order
problems. The continuity of the solution is a crucial feature since it enables us to
use the so-called gap function introduced in [6]. The gap function measures the
difference of the vertical displacements on the two free edges of the plate and is
therefore a measure of its torsional response. The number measuring the max-
imal gap is given by the maximum over the free edges of the gap function; see
(7). Clearly, the maximal gap depends on the force through the Euler-Lagrange
equation satisfied by the solution and one is led to seek the force which yields the
largest torsional displacement. This gives a measure of the risk that the bridge
collapses. In order to lower this risk, one may try different ways of reinforcing the
deck.

Imagine that one has a certain amount of stiff material (e.g., steel) and has
to decide where to place it within the plate in order to lower the maximal gap
and, in turn, the torsional displacements. This material should occupy a proper
open subset of the plate. In literature this kind of problem has been tackled
in several ways; we refer to [7–9] for related problems on the torsion of a bar.
Since this shape optimization problem is completely new, we choose two different
strategies: we first assume that the stiff material reinforces a part of the plate,
then we assume that it acts directly on the force and weakens it by a factor
involving the characteristic function of the region occupied by the material and a
constant measuring the strength of the stiff material. Reinforcing the plate means
that we add the stiff material in critical parts of the plate in order to increase
the energy necessary to bend it. Weakening the force means that we place some
“aerodynamic damper” in order to reduce the action of the external force. These
kinds of minimization problems naturally lead to homogenization [10], see also [9]
for a stiffening problem for the torsion of a bar. Homogenization would lead to
optimal designs with reinforcements scattered throughout the structure, namely
designs impossible to implement for engineers. And since the design of the stiff
structure should be usable for engineers, homogenization must be avoided and the
class of admissible geometries for the reinforcements should be sufficiently small.
In this respect, we mention the paper by Nazarov-Sweers-Slutskij [11], where only
“macro” reinforcements are considered, although in a fairly different setting. The
structural optimization problem that we tackle may be seen as the “dual problem”
of the one considered in the seminal work by Michell [12], see also updated results
in [13, Chapter 4]: our purpose is to determine the best performance of the stiff
material by maintaining the cost whereas Michell aimed to determine the cheapest
stiff material by maintaining the performance.

For both the two mentioned ways of introducing the reinforcement, our purpose
is to optimize the maximal gap. We will introduce suitable classes, for both the
force and the reinforcement, in which to set up the optimization problem. First we
seek the “worst” forces for a given reinforcement. This number yields the maximal
gap that may occur. Then, we seek the “best” reinforcements, which minimize the
effect of the forces. We are then led to solve a minimaxmax problem. The existence
of a maximal force and of a minimal reinforcement depends on how wide the classes
are. In this paper, for the forces we mainly deal with the classes of Lebesgue
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functions or of the dual of the energy space, while, concerning the reinforcements,
we restrict our attention to simple designs, that may be appropriate for engineering
applications: cross-type reinforcements, tiles of rectangular shapes, networks of
bounded length, and general Lipschitz domains, see Definition 3.1.

This minimaxmax problem can also be seen as a worst-case optimization prob-
lem, since one is interested in minimizing the worst value of a functional among
all possible designs. An extended presentation of worst-case optimization prob-
lems in structural mechanics can be found in [14]; see also [15] for a worst-case
optimization problem of a compliance functional in the Lebesgue space.

This paper is organized as follows. In Section 2, we introduce rigorously the
gap function with the minimaxmax problem. In Section 3, we identify suitable
classes for which the minimaxmax problem admits a solution (i.e., worst forces
with best reinforcements). In Section 4, we discuss symmetry properties of worst
forces in the case of symmetric reinforcements. In Section 5, we investigate the
worst force acting on a plate with no reinforcement. In Section 6, we analyze
the effects of cross-type reinforcements, while, in Section 7, we consider more
general polygonal-type reinforcements. In both cases we solve numerically the
minimaxmax problem. Sections 8 to 11 are dedicated to the proofs of our results.
Finally, Section 12 contains the conclusions on the work done.

2. Variational Setting and Reinforcements for the Plate

Up to scaling, in the following we may assume that the plate Ω has length π
and width 2ℓ with 2ℓ ≪ π so that Ω =]0, π[×] − ℓ, ℓ[⊂ R

2. According to the
Kirchhoff-Love theory [16,17] (see also [18] for a modern presentation), the energy
E of a vertical deformation u of the plate Ω subject to a load f may be computed
through the functional

(1) E(u) :=

∫

Ω

(
(∆u)2

2
+ (1 − σ)(u2

xy − uxxuyy) − fu

)
dxdy ,

where σ is the Poisson ratio and satisfies 0 < σ < 1. This implies that the
quadratic part of the energy E is positive. For the partially hinged plate under
consideration, the functional E should be minimized in the space

H2
∗ (Ω) :=

{
v ∈ H2(Ω) : v = 0 on {0, π}×] − ℓ, ℓ[

}
;

since Ω is a planar domain, one has the embedding H2(Ω) ⊂ C0(Ω), and the
condition on {0, π}×] − ℓ, ℓ[ is satisfied pointwise. By [5, Lemma 4.1] we know
that H2

∗ (Ω) is a Hilbert space when endowed with the scalar product

(u, v)H2
∗

:=

∫

Ω

[∆u∆v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy

and associated norm ‖u‖2H2
∗

= (u, u)H2
∗

, which is equivalent to the usual norm in

H2(Ω), that is, ‖u‖2H2 = ‖u‖2L2 + ‖D2u‖2L2. We also define H−2
∗ (Ω) as the dual

space of H2
∗ (Ω) and we denote by 〈·, ·〉 the corresponding duality. If f ∈ L1(Ω)

then the functional E is well-defined in H2
∗ (Ω), while if f ∈ H−2

∗ (Ω) we need to
replace

∫
Ω
fu with 〈f, u〉.
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Assume that the plate Ω is reinforced with a stiff material which occupies an
open region D ⊂ Ω and that D belongs to a certain class D, while f belongs
to some space F of admissible forcing terms. We consider two possible ways of
reinforcing the plate: either we stiffen the plate by increasing the cost of the
bending energy, or we add an aerodynamic damper by weakening the force. This
modifies the original energy (1) into the two following ways:

(2) E1(u) :=

∫

Ω

[
(1 + dχD)

(
(∆u)2

2
+ (1 − σ)(u2

xy − uxxuyy)

)
− fu

]
dxdy

and

(3) E2(u) :=

∫

Ω

[
(∆u)2

2
+ (1 − σ)(u2

xy − uxxuyy) − f u

1 + dχD

]
dxdy ,

where χD is the characteristic function of D and d > 0 is the strength of the
stiffening material. As for (1), the quadratic part of the functionals (2) and (3)
are positive and should be minimized on the space H2

∗ (Ω).
When dealing with E1, for any D ⊂ Ω open, we introduce the bilinear form

(4) (u, v)D :=

∫

D

[∆u∆v + (1 − σ)(2uxyvxy − uxxvyy − uyyvxx)] dxdy

so that (u, v)Ω = (u, v)H2
∗

. Then, for all f ∈ H−2
∗ (Ω) the minimizer of E1 satisfies

the weak Euler-Lagrange equation

(5) (uf,D, v)H2
∗

+ d(uf,D, v)D = 〈f, v〉 ∀v ∈ H2
∗ (Ω) ,

which has no strong counterpart due to the lack of regularity of the term (1+dχD)
that prevents an integration by parts.

On the other hand, due to the lack of regularity of the term (1 + dχD), E2

is not defined for all f ∈ H−2
∗ (Ω), but it is well-defined for any f ∈ L1(Ω); in

this case the minimizer satisfies the equation (uf,D, v)H2
∗

=
∫
Ω

fv
1+dχD

dxdy, for all

v ∈ H2
∗ (Ω), which may also be written in its strong form:

(6)





(1 + dχD)∆2u = f , in Ω ,

u = uxx = 0 , on {0, π}×] − ℓ, ℓ[ ,

uyy + σuxx = uyyy + (2 − σ)uxxy = 0 , on ]0, π[×{−ℓ, ℓ} .

Since 0 < σ < 1, both E1 and E2 admit a unique critical point in H2
∗ (Ω), their

absolute minimum. The minimizer may be different for E1 and E2 but we will
denote both of them by uf,D since it will always be clear which functional we
are dealing with. As we have just seen, the solution uf,D satisfies a weak Euler-
Lagrange equation for E1 (but not a strong one) while it satisfies a strong Euler-
Lagrange equation for E2 (and not a merely weak one).

Assume that some classes F and D of admissible f and D are given. Take
f ∈ F , D ∈ D, and the minimizer uf,D ∈ H2

∗ (Ω) ⊂ C0(Ω) of E1 or E2, then
compute its gap function with its maximal gap:

(7) Gf,D(x) := uf,D(x, ℓ) − uf,D(x,−ℓ) , G∞
f,D := max

x∈[0,π]
|Gf,D(x)| .
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In this way we have defined the map G∞
f,D : F × D → [0,∞[ with (f,D) 7→ G∞

f,D .
Given D ∈ D, we first seek the worst f ∈ F such that

(8) G∞
D := max

f∈F
G∞
f,D = max

f∈F
max
x∈[0,π]

|Gf,D(x)| ,

and then the best D ∈ D such that

(9) G∞ := min
D∈D

G∞
D = min

D∈D
max
f∈F

max
x∈[0,π]

|Gf,D(x)| .

This is our minimaxmax problem. In the next sections we analyze some classes F
and D, where (8) and (9) admit a solution. Note that G∞ = G∞(F ,D) is monotone
with respect to both the classes F and D but with opposite monotonicity.

3. Existence Results for the Minimaxmax Problem

We determine some classes F and D of admissible forces and reinforcements for
which (8) and (9) admit a solution. The proofs are given in Section 8. We first
show that G∞

D , as in (8), is well-defined for some choices of the class F .

Theorem 3.1. For a given open set D ⊂ Ω and p ∈]1,+∞], the maximization
problems

(10) max
{
G∞
f,D : f ∈ H−2

∗ (Ω) with ‖f‖H−2
∗

= 1
}
, (for E1),

(11) max
{
G∞
f,D : f ∈ Lp(Ω) with ‖f‖Lp = 1

}
, (for both E1 and E2),

admit a solution (in the considered space).

Then, we turn to problem (9). We introduce some classes D for which it is
guaranteed the existence of a solution.

Definition 3.1 (Classes of admissible reinforcements). (a) Cross-type reinforce-
ments: for N,M ∈ N, µ ∈]0, π/2N [, ε ∈]0, ℓ/M [, xi ∈ [µ, π − µ] for i = 1, . . . , N
with xi+1 − xi > 2µ for i 6 N − 1, and yj ∈ [−ℓ + ε, ℓ− ε] for j = 1, . . . ,M with
yj+1 − yj > 2ε for j 6 M − 1, define

C :=
{
D ⊂ Ω : D =

( N⋃

i=1

]xi − µ, xi + µ[×]− ℓ, ℓ[
)
∪
( M⋃

j=1

]0, π[×]yj − ε, yj + ε[
)}

.

(b) Tiles of rectangular shapes: for N ∈ N and ε ∈]0, ℓ[, define

T :=
{
D ⊂ Ω : D =

N⋃

i=1

Ri, Ri ⊂ Ω is an open rectangle with inradius > ε
}
.

(c) Networks of bounded length: for ε ∈]0, ℓ[ and L > 0, define

N :=
{
D ⊂ Ω : D = Σε where Σ ⊂ Ω is closed, connected, H1(Σ) 6 L

}
.

Here H1 denotes the one-dimensional Hausdorff measure of a set, and Σε repre-
sents the ε-tubular neighborhood of Σ, namely the set of points in Ω at distance to
Σ less than ε.

(d) Lipschitz trusses: for ε ∈]0, ℓ[, define

L :=
{
D ⊂ Ω : D open with the inner ε-cone property

}
.
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We recall that by the inner ε-cone property we mean that at every point x of the
boundary ∂D there is some truncated cone from x with an opening angle ε and
radius ε inside D.

Notice that some of these classes are monotone with respect to set inclusion,
namely C ⊂ T ⊂ L, for suitable choices of the parameters N, ε, µ, L.

Theorem 3.2. For a given κ ∈]0, 2πℓ[ the minimization problem

(12) min{G∞
D : D ∈ D with |D| = κ} ,

admits a solution whenever the class D is one of those introduced in Definition 3.1
(with the parameters chosen so as to satisfy the area constraint).

4. Symmetric Framework for the Minimaxmax Problem

Whenever the class D of the minimaxmax problem (9) reduces to symmetric
reinforcements, the class F can be reduced without changing the problem. We
say that a set D ⊂ Ω is symmetric with respect to the midline (or, for short,
symmetric) if (x, y) ∈ D if and only if (x,−y) ∈ D, for all (x, y) ∈ Ω. Then, we
introduce the subspaces of even and odd functions with respect to y:

H2
E(Ω) := {u ∈ H2

∗ (Ω) : u(x,−y) = u(x, y) ∀(x, y) ∈ Ω} ,
H2

O(Ω) := {u ∈ H2
∗ (Ω) : u(x,−y) = −u(x, y) ∀(x, y) ∈ Ω} .

We first notice that

(13) H2
E(Ω) ⊥ H2

O(Ω) , H2
∗ (Ω) = H2

E(Ω) ⊕H2
O(Ω) .

For all u ∈ H2
∗ (Ω) we denote by ue ∈ H2

E(Ω) and uo ∈ H2
O(Ω) its components

according to this decomposition, namely ue(x, y) = u(x,y)+u(x,−y)
2 and uo(x, y) =

u(x,y)−u(x,−y)
2 . The orthogonal projections PE : H2

∗ (Ω) → H2
E(Ω) and PO : H2

∗ (Ω) →
H2

O(Ω) are defined onto these subspaces as PEu := ue and POu := uo, for every
u ∈ H2

∗ (Ω). Then, we define:

H−2
E (Ω) := {f ∈ H−2

∗ (Ω) : 〈f, v〉 = 0 ∀v ∈ H2
O(Ω)} ,

H−2
O (Ω) := {f ∈ H−2

∗ (Ω) : 〈f, v〉 = 0 ∀v ∈ H2
E(Ω)} .

In particular, H2
O(Ω) ⊆ ker f for every f ∈ H−2

E (Ω) and H2
E(Ω) ⊆ ker f for

every f ∈ H−2
O (Ω). Moreover, H−2

∗ (Ω) = H−2
E (Ω) ⊕ H−2

O (Ω), that is for every

f ∈ H−2
∗ (Ω) there exists a unique couple (fe, fo) ∈ H−2

E (Ω) ×H−2
O (Ω) such that

f = fe + fo; with fe := f ◦ PE and fo := f ◦ PO. As usual, we endow H−2
∗ (Ω)

with the norm ‖f‖H−2
∗

:= sup‖v‖H2
∗
=1

〈f, v〉 , and we observe that

(14) ‖f‖H−2
∗

= max
{
‖fe‖H−2

∗

, ‖fo‖H−2
∗

}
∀f ∈ H−2

∗ (Ω) .

The next result shows that if the reinforcement D is symmetric with respect to
the midline then the worst forces f , whose existence is ensured by Theorem 3.1,
can be sought in the class of odd distributions.
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Theorem 4.1. Assume that D ⊂ Ω is open and symmetric with respect to the
x-axis. Then, (10) is equivalent to max{G∞

f,D : f ∈ H−2
O (Ω), ‖f‖H−2

∗

= 1}. More-

over, if f ∈ H−2
O (Ω) is such that ‖f‖H−2

∗

= 1 and

G∞
f,D = max

{
G∞
g,D : g ∈ H−2

∗ (Ω) with ‖g‖H−2
∗

= 1
}
,

then there exist infinitely many g ∈ H−2
∗ (Ω) such that PEg 6= 0, ‖g‖H−2

∗

= 1, and
G∞
g,D = G∞

f,D.

Theorem 4.1 states that, for a symmetric reinforcement D (possibly D = ∅ as for
the free plate), the maximization of the gap function can be restricted to the class
of odd distributions. But Theorem 4.1 does not state that only odd f attain the
maximum. And indeed, G∞

f,D is not sensitive to the addition of some φ ∈ H−2
E (Ω)

to f , provided that the total norm is not exceeded. An interesting open problem
is to determine whether there exists a unique f ∈ H−2

O (Ω) maximizing G∞
f,D (up to

a sign change). We expect the answer to depend on D, in particular on possible
additional symmetry properties of D. We prove Theorem 4.1 in Section 9.

Next, we have the following Lp-version of Theorem 4.1.

Theorem 4.2. Assume that D ⊂ Ω is open and symmetric with respect to the
x-axis and let p ∈]1,∞]. Then, problem (11) is equivalent to the maximization

problem max
{
G∞
f,D : f ∈ Lp(Ω), f odd in y, ‖f‖Lp = 1

}
.

If 1 < p < ∞, then any maximizer is necessarily odd with respect to y.
If p = ∞ and an odd maximizer f satisfies |f(x, y)| < 1 on a subset of Ω of

positive measure, then there exist infinitely many maximizers g ∈ L∞(Ω) such that
ge 6= 0 and ‖g‖L∞ = 1.

Theorem 4.2 states that, for a symmetric reinforcement D, the maximization of
the gap function can be restricted to the class of odd functions. Moreover, differ-
ently from Theorem 4.1, if 1 < p < ∞ it says that only odd functions f attain the
maximum. On the other hand, in the case p = ∞ oddness may fail, provided that
there exists an odd maximizer satisfying the somewhat strange property stated
in Theorem 4.2: the reason of this assumption will become clear in the proof of
Theorem 4.2 given in Section 9.

5. Worst Cases on the Free Plate

In this section, we consider the free plate with no reinforcement (D = ∅) so that
E1 and E2 coincide, and we study problem (10). For simplicity, for all f ∈ H−2

∗ (Ω),
we set Gf (x) = Gf,∅(x) and G∞

f = G∞
f,∅.

Following the suggestion of Theorem 4.1, for any z ∈]0, π[ we focus on the odd
distribution

(15) Tz :=
δ(z,ℓ) − δ(z,−ℓ)

2
∈ H−2

O (Ω) ,

where δP is the Dirac delta with mass concentrated at P ∈ Ω. Let uz ∈ H2
∗ (Ω)

be the unique solution of the equation (uz, v)H2
∗

= 〈Tz, v〉, for all v ∈ H2
∗ (Ω). By

the Riesz Theorem, this means that uz is the representative of Tz and therefore
(by taking v = uz) ‖Tz‖2H−2

∗

= ‖uz‖2H2
∗

= 〈Tz, uz〉 = GTz (z)/2. This enables us to
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normalize Tz and introduce the distribution T z :=
√
2Tz√

GTz (z)
such that ‖T z‖H−2

∗

= 1.

For any integer m, set

(16) Υm :=
sinh2(mℓ)

m3 [(3 + σ) sinh(mℓ) cosh(mℓ) + (1 − σ)mℓ]
.

In Section 11 we prove the following result.

Proposition 5.1. For all x, z ∈]0, π[ we have

GTz (x) =
4

π(1 − σ)

∞∑

m=1

Υm sin(mz) sin(mx) , GT z
(x) =

√
2 GTz (x)√
GTz (z)

.

Let us explain how Proposition 5.1 suggests a conjecture for the solution of
(10) when D = ∅. Let Υm be as in (16) and consider the function Φ defined
as Φ(x) :=

∑∞
m=1 Υm sin2(mx), for every x ∈ [0, π]. Note that Φ(x) > 0 for all

x ∈]0, π[ and

(17) Φ(0) = Φ(π) = 0 , Φ(π2 ) =

∞∑

k=0

Υ2k+1 , Φ′(π2 ) = 0 , Φ′′(π2 ) < 0 .

Some numerical computations and (17) suggest that Φ achieves its maximum at
x = π/2:

(18) Φ(π2 ) > Φ(x) ∀x 6= π
2 .

Moreover, by Hölder’s inequality, Proposition 5.1, and condition (18), for every
x, z ∈]0, π[

∣∣GT z
(x)

∣∣ =
4
√

2

π(1 − σ)
√

GTz (z)

∣∣∣∣∣

∞∑

m=1

Υm sin(mz) sin(mx)

∣∣∣∣∣

6
4
√

2

π(1 − σ)
√

GTz (z)

∞∑

m=1

√
Υm | sin(mz)|

√
Υm | sin(mx)|

6
4
√

2

π(1 − σ)
√

GTz (z)

( ∞∑

m=1

Υm sin2(mz)

)1
2
·
( ∞∑

m=1

Υm sin2(mx)

) 1
2

=
2
√

2√
π(1 − σ)

Φ(x)
1
2 6

2
√

2√
π(1 − σ)

Φ(π2 )
1
2 .

Note that the above application of the Hölder inequality yields a strict inequality
whenever z 6= x. Therefore, after taking the maximum over [0, π] we deduce that

G∞
T z

< 2
√
2√

π(1−σ)
Φ(π2 )1/2 for every z 6= π

2 and that for z = π
2 the equality holds

G∞
Tπ/2

= GTπ/2
(π2 ) = 2

√
2√

π(1−σ)
Φ(π2 )1/2. Hence, if (18) holds, then we would infer

that

for all z ∈]0, π[ we have G∞
T z

6 G∞
Tπ/2

with equality if and only if z = π/2.

This statement would prove that among all concentrated loads on the free edges
of the plate Ω, the largest maximal gap is obtained when the load is concentrated
(with opposite signs) at the midpoints (π/2,±ℓ). A numerical support of this
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fact is provided by Table 1 below. The values collected there have been obtained
using the software Mathematica, approximating the Fourier series for G∞

T z
up to

the 10,000-th term.

Table 1. Numerical values of 104 × G∞
T z

and 104 × G∞
Tz

(with

ℓ = π/150 and σ = 0.2).

z π
20

π
18

π
16

π
14

π
12

π
10

π
8

π
6

π
4

π
2

104 × G∞
T z

627.809 659.067 695.691 739.38 792.677 859.592 946.815 1066.21 1238.29 1429.87

104 × G∞
Tz

19.326 21.354 23.854 27.012 31.123 36.686 44.609 56.687 76.596 102.23

It is evident that the worst case is attained for z = π
2 and that the map z 7→ G∞

T z

is increasing on [0, π/2] (note that it is symmetric with respect to π/2). For later
use, we put in Table 1 also the values of G∞

Tz
.

6. Weakening the Force with Cross-Type Reinforcements

In this section, we minimize the energy E2 given in (3) finding the explicit
solution and, in turn, the explicit gap function for particular choices of forces f
and reinforcements D. We take symmetric cross-type reinforcements D ∈ C (see
Definition 3.1) with one horizontal arm and 2N + 1 vertical arms for some non-

negative integer N . More precisely, fix 0 < µ < (2N+1)π
4(N+1) , 0 < ε < ℓ, (where the

first condition prevents overlapping of vertical arms) and consider the set

(19) D
N
ε,µ :=

(
]0, π[×]− ε, ε[

) 2N+1⋃

i=1

((
πi

2N+2
− µ

2N+1
, πi
2N+2

+ µ

2N+1

)
×]− ℓ, ℓ[

)
.

We will drop the subscripts in DN
ε,µ in order to lighten the notation, writing them

when needed to avoid confusion. To compare the effect of the reinforcements on
the torsional instability, we are keeping the area of the set DN fixed, indeed we
have |DN | = 2πε+ 4µ(ℓ− ε) for any N . Furthermore, for g ∈ L2(]0, π[) and α > 0
with α 6∈ N (since this simplifies some computations), following the suggestion of
Theorem 4.2, we consider the odd function

(20) fα(x, y) := Rα sinh(αy)g(x)

with Rα := α
2Cg(cosh(αℓ)−1) and Cg :=

∫ π

0 |g(x)| dx, so that ‖fα‖L1 = 1. We define

(21) βm := 2 γm Υm

Cg(1−σ) and ωm := γm

Cg

(1+σ) sinh(mℓ) cosh(mℓ)+(1−σ)mℓ
(1−σ)m2[(3+σ) sinh(mℓ) cosh(mℓ)+(1−σ)mℓ] ,

where the coefficients Υm are as defined in (16), and

(22) γm :=
2

π

∫ π

0

g(x) sin(mx) dx− 2d
π(1+d)

2N+1∑

i=1

∫ πi
2N+2

+
µ

2N+1

πi
2N+2

−
µ

2N+1

g(x) sin(mx) dx .

Then, we obtain an explicit form for the gap function corresponding to problem
(6) with f = fα and D = DN , and we analyze its asymptotic behavior as α → +∞.
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Theorem 6.1. Let α > 0 with α 6∈ N, let uα be the unique solution of (6)
with f = fα and D = DN , let Gα be as in (7) with uf,D = uα. As α →
+∞, Gα(x) =

∑∞
m=1 βm(α) sin(mx) converges uniformly on [0, π] to the func-

tion G(x) :=
∑∞

m=1 βm sin(mx), where the Fourier coefficients βm(α) are so that

βm(α) = βm − ωm

α + o
(
1
α

)
, with βm and ωm > 0 given in (21).

In Section 10 we prove Theorem 6.1. We derive the explicit value of βm(α)
in (57). Furthermore, we show that G(x) is the gap function corresponding to a
solution of the limit problem (58).

We exploit Theorem 6.1 to numerically solve the minimaxmax problem (9).
More precisely, we fix ℓ = π/150 and σ = 0.2 (two reasonable values for plates
modeling the deck of a bridge, see [19]). Moreover, we take fα in (20) with
g(x) = sin(nx) for n = 1, . . . , 10 and we call fn its H−2

∗ (Ω) limit as α → +∞ (see
Lemma 10.2) and Gn the corresponding gap function. Then, we consider

(23) F = {f1, ..., f10} and D = {D0, ..., D5} .
The results are summarized in Table 2, in terms of the maximal gap G∞

n . The
numerical values in Table 2 have been obtained using the software Mathematica,
approximating the Fourier series for Gn up to the 250-th term.

Table 2. Numerical values of 104×G∞
n , with ℓ = π/150, σ = 0.2,

d = 2, g(x) = sin(nx), D = DN , µ = 0.3 (above) and µ = 0.5
(below).

104× G∞
1 G∞

2 G∞
3 G∞

4 G∞
5 G∞

6 G∞
7 G∞

8 G∞
9 G∞

10

∅ 65.444 16.357 7.2665 4.0849 2.6123 1.8123 1.3300 1.0170 0.8023 0.6488
D0 47.113 15.980 14.249 4.4296 11.422 2.6591 7.5961 2.0675 3.3673 1.6048
D1 53.964 13.158 6.3585 4.0133 3.1797 2.9515 10.284 1.0582 9.9445 2.5730
D2 55.292 13.979 5.9848 3.4987 2.1837 1.8092 1.4864 1.3153 1.2857 2.8377
D3 55.839 13.892 6.2568 3.3920 2.2970 1.6152 1.2488 1.0158 0.8667 0.7611
D4 56.135 14.080 6.2664 3.5181 2.1798 1.6029 1.1965 0.9264 0.7631 0.6461
D5 56.320 14.050 6.2225 3.5437 2.2726 1.5216 1.1736 0.8864 0.7190 0.5998

104× G∞
1 G∞

2 G∞
3 G∞

4 G∞
5 G∞

6 G∞
7 G∞

8 G∞
9 G∞

10

∅ 65.444 16.357 7.2665 4.0849 2.6123 1.8123 1.3300 1.0170 0.8023 0.6488
D0 37.707 14.748 16.541 5.3424 7.7463 3.7421 2.8388 1.8136 5.1181 1.1708
D1 46.544 11.277 5.8180 4.0207 3.5078 3.6263 13.807 1.1909 12.949 3.1775
D2 48.602 12.383 5.2331 3.0977 2.2697 1.7983 1.5803 1.4839 1.5789 3.7815
D3 49.473 12.287 5.5878 2.9641 2.0589 1.4918 1.1993 1.0118 0.9058 0.8400
D4 49.950 12.559 5.6012 3.1382 1.9056 1.4510 1.1105 0.8695 0.7391 0.6464
D5 50.251 12.526 5.5421 3.1782 2.0384 1.3462 1.0587 0.8055 0.6678 0.5581

Several comments are in order. First we notice that, as expected from the state-
ment of Theorem 6.1, the results do not depend on ε. Moreover, µ = 0.3 means
that the free edges of the plate are covered by the reinforcement on a percentage
of 19% of their length, whereas µ = 0.5 means that such a percentage is 31.8%.
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It is worth noting that there is no monotonicity of G∞
n with respect to either the

number of branches, or to the frequency of sin(nx), nor to the reinforcement thick-
ness µ. Also, we observe that each forcing term has its own “best truss” yielding
a minimal maximal gap: the pattern is quite clear and it follows a descending
diagonal in the two Tables 2. Basically, we see that Dn−1 (i.e., the cross with
2n − 1 vertical arms) is the “best truss” for g(x) = sin(nx) and the reason is
that the plate is reinforced in the points where g attains either a maximum or a
minimum; we did not display all the related lines but the same pattern holds true
until N = 10. In particular, if n = 2 we know that D1 is the best reinforcement
since there are parts of the truss under the two extremal points of g(x) = sin(2x),
see the left-hand picture in Figure 1 where we depict the longitudinal behavior of
g(x) = sin(2x) and the truss D1 (black spots on the horizontal axis).

x

y

x

y

Figure 1. The forces g(x) = sin(2x) (left) and g(x) = sin(7x)
(right) with the truss D1.

We remark that some trusses aggravate the torsional instability, i.e., they in-
crease the maximal gap G∞

n : this is due to a bad combination between the shape
of the forcing term g and the location of D. For example, we observe that the
reinforcement D0 improves the performance when g(x) = sin(nx) with n = 1, 2,
while for other values of n the torsional performance is worse than that of the
unstiffened plate (with D = ∅). We also observe that there are some “anomalous

values” of G∞
n , see e.g., the values corresponding to D1 and n = 7 or n = 9:

they are considerably larger than the other values in the same column and the
reason is again that the place where D acts interacts badly with g. In particular,
we notice that both sin(7x) and sin(9x) have the same sign in correspondence of
x = π

4 ,
π
2 ,

3π
4 that are the centers of the three vertical arms of D1; in particular,

g(x) = sin(7x) =⇒ g(π4 ) = g(3π4 ) = − 1√
2
, g(π2 ) = −1, see the right picture in

Figure 1.
Next, we exploit Theorem 6.1 to solve analytically the maxmax problem (8)

when D reduces to one horizontal bar (including the free plate). In general, max-
imizing a Fourier series is a tricky problem that can be solved only for particular
choices of the coefficients, see e.g., [20]. This is why we focus on the set Γ of
functions g = g(x) satisfying one of the following:

• g(x) = sin(mx) with m ∈ N.

• g(x) =
∑

m>N

γ̃m sin(mx) with {γ̃m}m∈N ⊂ ℓ2 and N ∈ N large enough.

• g(x) = sin(mx) + sin(3mx) with m ∈ N.
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• g(x) =

N∑

m=1

sin((2m− 1)x) with N ∈ N sufficiently large.

Then, we define the class

FΓ :=
{
f : f = lim

α→∞
fα in H−2

∗ (Ω) , with fα as in (20) and g ∈ Γ
}

and, in Section 10, we prove the following.

Theorem 6.2. Let F = FΓ be as above and assume that D =]0, π[×] − ε, ε[ for
some 0 < ε < ℓ (i.e., µ = 0 in (19)). Then, the solution of the maxmax problem
(8) is given by [limα→∞ Rα sinh(αy)] sin(x), where the limit is in H−2

∗ (Ω).

Theorem 6.2 states that the worst case as α → ∞ corresponds to the function
g(x) = sin(x). However, g(x) = sin(x) seems not to be the worst case in general:

to see this, compare the values of G∞
1 given in Table 2 with G∞

Tπ/2
given in Table 1.

7. Weakening Resonant Forces with Polygonal Reinforcements

In this section, we intend to study numerically the gap function (7) and the
related minimaxmax problem (9) in the case the class F contains some “resonant-
type” force f and the class D contains “not-so-nice” domains D ∈ L (see Definition
3.1). Hence, we minimize the energy (3).

Throughout this section, we fix ℓ = π/150 and σ = 0.2 (two reasonable values
for plates modeling the deck of a bridge, see [19]). Moreover, we assume that

tanh(
√

2mℓ) > σ2/(2 − σ)2
√

2mℓ so that m 6 2734. Then, for any integer m 6

2734, the first torsional eigenfunction em of ∆2 with the boundary conditions in
(30) having m − 1 nodes in the x-direction and the corresponding eigenvalue νm

are known; see [5]. Notice that m4 < νm <
(
m2+ π2

4 ℓ2

)2
. A detailed analysis of the

variation of all the eigenvalues under domain deformations was performed in [21].
We aim to study the effect of a reinforcement D when the force f is at resonance,
namely proportional to a torsional (odd) eigenfunction: we take f = em(x, y). For
these functions f we then deal with problem (6) and we seek the best shape of the
reinforcement D in order to lower the maximal gap G∞

D . We numerically study
problem (9) within classes of forces (with m from 1 to 5) and of reinforcements D
of sets composed by two parallel strips, by triangles, by squares, and by hexagons
as in Figure 2:

(24) F = {e1, ..., e5} and D = {Strips, Triangles, Squares, Hexagons} .
The black lines are the thick stiffening trusses D put below the plate and their

total area is constant. More precisely, the first plate is reinforced by two parallel
trusses of width X = 1046π

7502 ≈ 0.00584, thereby having a global area of 2πX .
The three remaining shapes all have two parallel trusses of width W = π

750 along
the free edges of the plate for a total area of 2πW , while the remaining area of
2π(X − W ) is distributed in connecting transverse trusses which generate some
polygons all along the plate, see again Figure 2. The triangular transverse truss is
composed of 74 vertical segments having length 2ℓ− 2W and 75 oblique segments
having length (π/75 − 2W )

√
2, both having width 0.00287159 (approximately).

The squared transverse truss is composed of 74 vertical segments having length
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Figure 2. Qualitative patterns of the trusses in D.

2ℓ − 2W and width W . Finally, the hexagonal transverse truss is composed of
17 Y -shaped components, alternating upwards and downwards, complemented by
two segments at the opposite ends of the plate (playing the role of the oblique
branches of Y ), whose measures are ℓ −W for the length of the vertical legs and
Z = 0.0215211 (approximated) for the width. These four designs, all belonging to
the class L of Definition 3.1, have their own motivation. The first one is the most
natural, putting reinforcements only on the two free edges. The triangular truss is
the most frequently used by engineers. The third one is also natural, putting the
simplest transverse connections between the free edges. Finally, a truss composed
of regular hexagons was shown to have better bending performances in [22] where
the “boundary effects” were neglected. In fact, what really counts is to have
angles of size 2π/3, as in irrigation or traffic problems, see [23–25]. Let us also
mention that it has been known since the 19th century that soap bubbles reach an
equilibrium on flat surfaces when the angles between three adjacent bubbles are
always 2π/3, see [26]. This angle has the peculiarity to “optimize the distances”
and it is therefore interesting to measure its performance also in stiffening trusses.
The numerical values for the maximal gap are reported in Table 3.

Table 3. Numerical values of 104×G∞
em,D for the different polyg-

onal reinforcements D and resonant forces em (with ℓ = π/150,
σ = 0.2, and d = 2).

e1 e2 e3 e4 e5
∅ 43.629 21.811 14.537 10.899 8.7147

Strips 25.448 6.3602 2.8255 1.5883 1.0157
Triangles 29.363 7.2105 3.2643 1.8409 1.1855
Squares 27.946 6.9846 3.1028 1.7442 1.1154

Hexagons 28.875 7.1787 3.2007 1.7919 1.1304

The class D that we have introduced here could be enlarged by considering
also other geometries for D. Regarding the hexagonal design, we actually stud-
ied different positions of the intersections in the Y-shaped elements. The results
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contained in Table 3 are given for elements where the intersections occur on the
midline of the plate, hence with the vertical branch having length ℓ, while we per-
formed computations also for cases where the vertical branch is longer or shorter
than ℓ. Even though one might expect the gap functions to be monotone or to
have a unique minimum point (with respect to the length of the vertical branch),
this does not occur, the behavior being very specific depending on the particular
resonant force em considered. In some cases, the maximal gap exits the range we
saw in Table 3: for e1 and e3 the gap function is always bounded by that of the
squares and that of the triangles, while for e2 the branch b of length b = 2ℓ/3
produces a situation worse than the triangles, for e4 the cases b = 4ℓ/3, 11ℓ/8
perform better than the squares. For e5 the case b = 23ℓ/20 performs worse than
the triangles while the cases b = 4ℓ/3, 17ℓ/20 are better than the squares.

8. Proofs of the Existence Results

We first prove the continuity of the map defined in (7). We recall that in all
the cases considered for the class F , the weak* topology coincides with the weak
topology, except when F = L∞(Ω).

Proposition 8.1. Let F be either H−2
∗ (Ω) (for E1) or L

p(Ω) with p ∈]1,+∞] (for
both E1 and E2). Let also D be a class of open subdomains of Ω closed with respect
to the L1 topology. Then the map G∞

f,D : F × D → [0,∞[ with (f,D) 7→ G∞
f,D

is sequentially continuous when F is endowed with the weak* topology and D is
endowed with the L1 topology.

Proof. Let {(fn, Dn)}n ⊂ F × D be such that (fn, Dn) → (f,D) as n → +∞,
hence fn ⇀∗ f in F and χDn → χD in L1 as n → +∞. We denote by u = uf,D

and un = ufn,Dn the corresponding solutions of (5). Recalling (4), (5) with f = fn
and D = Dn reads

(25) (un, v)H2
∗

+ d(un, v)Dn = 〈fn, v〉 ∀v ∈ H2
∗ (Ω) .

Since fn ⇀∗ f in F , the above equality with v = un yields ‖un‖H2
∗

6 C for

some C > 0. In particular, un ⇀ ū up to a subsequence in H2
∗ (Ω) for some

ū ∈ H2
∗ (Ω). Next, by adding and subtracting d(un, v)D in (25), we obtain that,

for every v ∈ H2
∗ (Ω)

(26) (un, v)H2
∗

+ d(un, v)D + d(un, v)Dn\D − d(un, v)D\Dn
= 〈fn, v〉 .

Since χDn → χD in L1(Ω) yields |Dn△D| → 0 as n → +∞, we deduce that
|(un, v)Dn\D| 6 C‖v‖H2(Dn\D) = o(1) as n → +∞ and similarly (un, v)D\Dn

=
o(1). By this, passing to the limit in (26), we conclude that (ū, v)H2

∗

+ d(ū, v)D =

〈f, v〉 for all v ∈ H2
∗ (Ω); hence ū ≡ u. Furthermore, from the compactness of

the embedding H2
∗ (Ω) ⊂ C0(Ω), we obtain un → u in C0(Ω). In terms of the

gap functions, this means that Gfn,Dn(x) converges uniformly to Gf,D(x) as n →
+∞ over [0, π]. In particular, G∞

fn,Dn
→ G∞

f,D as n → +∞. This concludes the
proof. �
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Theorem 3.1. Fix D ⊂ Ω. If {fn} ⊂ H−2
∗ (Ω) is a maximizing sequence for (10),

since ‖fn‖H−2
∗

= 1, up to a subsequence, we have fn ⇀ f in H−2
∗ (Ω). By Propo-

sition 8.1, max
{
G∞
f,D : f ∈ H−2

∗ (Ω), ‖f‖H−2
∗

= 1
}

= G∞
f,D

. Moreover, it must be

‖f‖H−2
∗

= 1. Otherwise, if ‖f‖H−2
∗

< 1, set f̃ = f/‖f‖H−2
∗

and by linearity we

get G∞
f̃ ,D

= G∞
f,D

/‖f‖H−2
∗

> G∞
f,D

, a contradiction that proves the first part of

Theorem 3.1.
Now, let {fn} ⊂ Lp(Ω) be a maximizing sequence for (11) such that ‖fn‖Lp = 1.

Up to a subsequence and for some f , we have fn ⇀ f in Lp(Ω) if 1 < p < ∞
and fn ⇀∗ f in L∞(Ω). In particular, by lower semicontinuity of the norms with
respect to these convergences, ‖f‖Lp 6 ‖fn‖Lp = 1. Moreover, by Proposition 8.1,
we have max

{
G∞
f,D : f ∈ Lp(Ω) with ‖f‖Lp = 1

}
= G∞

f,D
. Finally, the proof that

‖f‖Lp = 1 follows by arguing as above. �

Theorem 3.2. Using the Direct Method of the Calculus of Variations, it is sufficient
to find a topology for which the functional D 7→ G∞

D defined in (10) is lower
semicontinuous while the class of admissible sets D is compact. For this purpose
we use the L1-convergence of sets, namely the L1-convergence of the characteristic
functions associated to the sets. Indeed, by its definition (10) and the continuity
proved in Proposition 8.1, it follows that the functional G∞ is lower-semicontinuous
with respect to the L1-convergence of sets. Therefore, it remains to prove that the
classes introduced in Definition 3.1 are compact with respect to this convergence:
we do it for each class.

(a) Consider a sequence of crosses {Dn} in C: by the Bolzano-Weierstrass The-
orem the sequences of points {xi

n} and {yin} converge, up to subsequences, to
some xi ∈ [µ, π − µ], i = 1, . . . , N , and some yj ∈ [−ℓ + ε, ℓ − ε], j = 1, . . . ,M ,
respectively. By the Lebesgue Dominated Convergence Theorem, it turns out that
|Dn△D| → 0 as n → ∞ where D is the cross

( N⋃

i=1

(xi − µ, xi + µ×] − ℓ, ℓ[
)
∪
( M⋃

j=1

]0, π[×]yj − ε, yj + ε[
)

;

this means that χDn → χD in L1(Ω) as n → ∞. Moreover, |D| = κ, thanks to
the area constraint. Therefore, the class C with area constraint is compact with
respect to the L1-convergence of sets.

(b) To each rectangle R ⊂ Ω we associate its four vertices V1(R), . . . , V4(R)
in such a way that V1(R) is the upper-right vertex (i.e., the one with largest
y-coordinate in the case such a vertex is unique, otherwise the one with largest
x-coordinate) and the remaining Vi(R) are ordered clockwise. Consider a sequence
of rectangles {Rn} all having inradius at least ε: by the Bolzano-Weierstrass The-
orem, up to extracting a subsequence (that we do not relabel), the sequence
of vertices {V1(Rn)} converges to some point V1 ∈ Ω. Up to extracting a fur-
ther subsequence, the sequence of vertices {V2(Rn)} also converges to some point
V2 ∈ Ω. Repeating this argument for the remaining vertices, we infer that each
of the four sequences of vertices {Vi(Rn)} converges, up to subsequences, to some
point Vi ∈ Ω (for i = 1, 2, 3, 4). Let R be the open convex hull of the four
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points V1, . . . , V4; since, by construction, the scalar product of two consecutive
sides is (Vi(Rn)Vi+1(Rn), Vi+1(Rn)Vi+2(Rn)) = 0 for i = 1, 2, 3, 4, where we set
V5(R) := V1(R) and V6(R) := V2(R), passing to the limit as n → ∞, and using
the continuity of the scalar product it follows that (ViVi+1, Vi+1Vi+2) = 0 (for
i = 1, 2, 3, 4, where V5 := V1 and V6 := V2). Moreover, since the distance between
two consecutive vertices of Rn is larger than 2ε for all n, also the inradius of R
is at least ε. This implies that the set R is an open rectangle having the distinct
vertices Vi(R) = Vi (for i = 1, 2, 3, 4). Moreover, by the Lebesgue Dominated
Convergence Theorem, it turns out that |Rn△R| → 0 as n → ∞; this means that
χRn → χR in L1(Ω) as n → ∞.

Then take a sequence of sets Dn ∈ T with Dn = ∪N
i=1R

i
n. Using the argument

above, up to subsequences, we have that |Ri
n△Ri| → 0 as n → ∞ for some

rectangles Ri all having inradius at least ε. Hence, χRi
n
→ χRi in L1(Ω) for all

i = 1, ..., N and, in turn, χDn → χD in L1(Ω). The area constraint yields that
|D| = κ. Therefore, the class T with area constraint is compact with respect to
the L1-convergence of sets.

(c) Let Σn be a sequence of closed connected sets with H1(Σn) 6 L. From
the Blaschke Selection Theorem and the Go lab Theorem (see e.g. [27, Theorem
4.4.17]), up to a subsequence we know that Σn → Σ with respect to the Hausdorff
distance, where Σ is a closed and connected set with H1(Σ) 6 L. Then the distance
function to Σn converges to the distance function to Σ uniformly on Ω. This, with
the fact that the Lebesgue measure of the set ∂Kε = {x ∈ Ω : distK = ε} is zero,
implies that Kε

n converges in L1 to Kε (see [28]).
(d) Using again [28, Theorem 2.4.10] we obtain the compactness with respect

to the L1 convergence of the space L with area constraint. �

9. Proofs of the Symmetry Results

Theorem 4.1. Let f ∈ H−2
∗ (Ω) be such that ‖f‖H−2

∗

= 1 and consider the solution

uf ∈ H2
∗ (Ω) of (5). Since D is symmetric, following the decomposition (13) we

may rewrite (5) as

(27) (ue
f , v

e)H2
∗

+ (uo
f , v

o)H2
∗

+ d(ue
f , v

e)D + d(uo
f , v

o)D = 〈fe, ve〉 + 〈fo, vo〉 ,

for all v ∈ H2
∗ (Ω). Moreover, by (7), we have Gf,D(x) = uo

f (x, ℓ) − uo
f(x,−ℓ) and

also that G∞
f,D = maxx∈[0,π]

∣∣uo
f (x, ℓ) − uo

f (x,−ℓ)
∣∣. In particular, if fo = 0 then

uo = 0 and G∞
f,D = 0 so that f cannot be a maximizer for G∞

f,D. Hence, by (14),

there exists 0 < α 6 1 such that α = ‖fo‖H−2
∗

6 ‖f‖H−2
∗

= 1. Consider now the

problem (w, v)H2
∗

+d(w, v)D = 1
α 〈fo, v〉 for all v ∈ H2

∗ (Ω). By linearity and by (27),

its solution is w = uo/α, then G fo

α ,D(x) = 1
αGf,D(x) and G∞

fo

α ,D
= 1

αG∞
f,D > G∞

f,D .

Hence, we have shown that for all f ∈ H−2
∗ (Ω) such that ‖f‖H−2

∗

= 1, there

exists g ∈ H−2
O (Ω) such that ‖g‖H−2

∗

= 1 (g = fo/α) and G∞
g,D > G∞

f,D. This
proves the first part of Theorem 4.1.

The remaining part of Theorem 4.1 follows the inverse path. Let f be as in the
statement and take any φ ∈ H−2

E (Ω) such that ‖φ‖H−2
∗

6 1. Then, put g = f + φ
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so that go = f and ge = φ. By (14) we have ‖g‖H−2
∗

= 1. By slightly modifying
the arguments above we see that G∞

g,D = G∞
f,D. �

For the proof of Theorem 4.2 we need the following result.

Lemma 9.1. Let 1 6 p 6 ∞ and a > 0. If φ ∈ Lp(] − a, a[) then

(28) ‖φo‖Lp 6 ‖φ‖Lp .

Moreover:
– if p = 1 then the inequality in (28) is strict if and only if |φo(x)| < |φe(x)| in

a subset of ] − a, a[ of positive measure;
– if 1 < p < ∞ then the inequality in (28) is strict if and only if φ is not odd

(φ 6≡ φo);
– if p = ∞ then the inequality in (28) is strict if and only if for any {xn} ⊂

]−a, a[ such that |φ(xn)| → ‖φ‖L∞, one has lim infn |φe(xn)| > 0; in particular, if
φ ∈ C0[−a, a], then the inequality is strict if and only if φe(x) 6= 0 in every point
x where |φ| attains its maximum.

Proof. Since φo(x) = φ(x)−φ(−x)
2 , the inequality (28) follows from the Minkowski

inequality and the symmetry of ] − a, a[.
If p = 1, then the Minkowski inequality, just used to obtain (28), reads

∫ a

−a

|φo(x)| dx =
1

2

∫ a

−a

|φ(x) − φ(−x)| dx 6

∫ a

−a

|φ(x)|+|φ(−x)|
2 dx=

∫ a

−a

|φ(x)| dx

so that it reduces to an equality if and only if

0 > φ(x)φ(−x) =
[
φe(x) + φo(x)

][
φe(−x) + φo(−x)

]
= φe(x)2 − φo(x)2

for a.e. x ∈] − a, a[. This means that |φe(x)| 6 |φo(x)| for a.e. x ∈] − a, a[. Since
this is a necessary and sufficient condition, the statement for p = 1 is proved.

If p ∈]1,+∞[, the Minkowski inequality is itself obtained via an application of
Hölder’s inequality and equality holds if and only if the two involved functions are
multiples of each other. In the present situation, this means that φ(x) = αφ(−x)
for some α = α(p) < 0 and for a.e. x ∈] − a, a[. The only possibility is that
α = −1, which means that φ = φo and φe ≡ 0. Since this is a necessary and
sufficient condition, also the statement for p > 1 is proved.

If p = ∞, we claim that equality holds in (28) if and only if there exists {xn} ⊂
] − a, a[ such that |φ(xn)| → ‖φ‖L∞ and φe(xn) → 0. Indeed, if such a sequence
exists, then |φo(xn)| = |φ(xn) − φe(xn)| → ‖φ‖L∞ which proves that ‖φo‖L∞ =
‖φ‖L∞. Conversely, if equality holds then there exists {xn} ⊂] − a, a[ such that
φo(xn) → ‖φ‖L∞ . This yields φ(xn) − φe(xn) = φo(xn) → ‖φ‖L∞ and φe(xn) −
φ(−xn) = −φo(−xn) = φo(xn) → ‖φ‖L∞ , which proves that φe(xn) → 0 since
otherwise one of |φ(±xn)| would tend to exceed ‖φ‖L∞ . The claim is so proved
and therefore the strict inequality occurs in the opposite situation: this proves the
first statement.

In the case, where φ ∈ C0([−a, a]), the sequences just used to prove the state-
ment may be replaced by their limits. �
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Theorem 4.2. For every p ∈]1,∞], (28) combined with the argument in the proof
of Theorem 4.1 yields that a maximizer f can be sought as an odd function.

If 1 < p < ∞, by contradiction, let f ∈ Lp(Ω) such that ‖f‖Lp = 1 be a
non-odd maximizer. Since f 6≡ fo, by Lemma 9.1 ‖fo‖Lp < ‖f‖Lp = 1. Take now
f = fo/‖fo‖Lp , recalling that fe plays no role in the value of the gap function,

we obtain ‖f‖Lp = 1 and G∞
f,D

= G∞
f,D/‖fo‖Lp > G∞

f,D, a contradiction.

If p = ∞, take an odd function f ∈ L∞(Ω) such that ‖f‖L∞ = 1 and G∞
f,D =

max
{
G∞
φ,D : φ ∈ L∞(Ω) with ‖φ‖L∞ = 1

}
. If |f(x, y)| < 1 on a subset ω ⊂ Ω

of positive measure, take any even function h such that h(x, y) ≡ 0 in Ω \ ω and
|h(x, y)| < 1 − |f(x, y)| in ω. Then, g = f + h is not odd and satisfies ‖g‖L∞ = 1,
ge = h 6= 0, and G∞

g,D = G∞
f,D (by linearity since G∞

h,D = 0). �

10. Proofs of Theorems 6.1 and 6.2

We prove Theorem 6.1 and Theorem 6.2 in several steps. Let g ∈ L2(]0, π[),
α > 0 with α 6∈ N and

(29) kα(x, y) = Kαe
αyg(x), Kα :=

α

2Cg sinh(αℓ)
and Cg :=

∫ π

0

|g(x)| dx ,

so that ‖kα‖L1 = 1. Let hα := kα

1+dχDN
; we first focus on the auxiliary problem

(30)





∆2w = hα , in Ω ,

w = wxx = 0 , on {0, π}×]− ℓ, ℓ[ ,

wyy + σwxx = wyyy + (2 − σ)wxxy = 0 , on ]0, π[×{−ℓ, ℓ} .

Indeed, if wα solves (30), then a multiple of its odd part

uα(x, y) :=
Rα

Kα
wo

α(x, y) =
sinh(αℓ)

2(cosh(αℓ) − 1)
(wα(x, y) − wα(x,−y))

solves problem (6) with f = fα and D = DN . Moreover, if Gα(x) is the gap
function corresponding to wα, then Rα

Kα
Gα(x) is the gap function corresponding to

uα. Therefore, since Rα

Kα
= 1 + 2e−αℓ + o(e−αℓ) as α → +∞, the limit of the gap

function corresponding to uα and the asymptotic behavior of the corresponding
coefficients are exactly the same as those for wα.

Now, we focus on the explicit solution of the auxiliary problem. We expand
g ∈ L2(]0, π[) in a Fourier series

(31) g(x) =

∞∑

m=1

γ̃m sin(mx) , γ̃m =
2

π

∫ π

0

g(x) sin(mx) dx .

Then, if we set

(32) IN :=
2N+1⋃

i=1

(
πi

2N + 2
− µ

2N + 1
,

πi

2N + 2
+

µ

2N + 1

)
,
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for every x ∈]0, π[ and every y ∈] − ℓ,−ε[∪]ε, ℓ[, we have

(33)
g(x)

1 + dχDN (x, y)
=

g(x)

1 + dχIN (x)
=

∞∑

m=1

γm sin(mx) ,

where the coefficients γm are as defined in (22), while if we set γ̂m = γ̃m

1+d , we have
g(x)

1+dχ
DN (x,y) = g(x)

1+d =
∑∞

m=1 γ̂m sin(mx) for all x ∈]0, π[ and y ∈] − ε, ε[.

In the sequel, we will need the following constants (only depending on m, α and
ε):

F1(ε) :=
α(α2

−3m2) sinh(mε)+2m3 cosh(mε)

2m3 + (α2 −m2)m sinh(mε)−α cosh(mε)

2m2 ε ,

F2(ε) := −α(α2
−3m2) cosh(mε)+2m3 sinh(mε)

2m3 − (α2 −m2)m cosh(mε)−α sinh(mε)

2m2 ε ,

F3(ε) := (α2 −m2)α cosh(mε)−m sinh(mε)

2m2 ,

F4(ε) := −(α2 −m2)α sinh(mε)−m cosh(mε)

2m2 ,(34)

F
±

1 (ε) := F1(ε)± e
−2αε

F1(−ε) , F
±

2 (ε) := F2(ε)± e
−2αε

F2(−ε) ,

F
±

3 (ε) := F3(ε)± e
−2αε

F3(−ε) , F
±

4 (ε) := F4(ε)± e
−2αε

F4(−ε) ,
(35)

(36) a = a(m,α, ε) := Kαe
αε γm − γ̂m

(m2 − α2)2
,

G1 := − a
2

{
(1−σ)m2 cosh(mℓ)F+

1 (ε) +m[2 cosh(mℓ) + (1−σ)mℓ sinh(mℓ)]F+
4 (ε)

+(1−σ)m2 sinh(mℓ)F−

2 (ε) +m[2 sinh(mℓ) + (1−σ)mℓ cosh(mℓ)]F−

3 (ε)
}

G2 := a
2

{
(1−σ)m3 cosh(mℓ)F−

2 (ε)−m2[(1+σ) cosh(mℓ)− (1−σ)mℓ sinh(mℓ)]F−

3 (ε)

+(1−σ)m3 sinh(mℓ)F+
1 (ε)−m2[(1+σ) sinh(mℓ)− (1−σ)mℓ cosh(mℓ)]F+

4 (ε)
}
,

G3 := − a
2

{
(1−σ)m2 cosh(mℓ)F−

1 (ε) +m[2 cosh(mℓ) + (1−σ)mℓ sinh(mℓ)]F−

4 (ε)

+(1−σ)m2 sinh(mℓ)F+
2 (ε) +m[2 sinh(mℓ) + (1−σ)mℓ cosh(mℓ)]F+

3 (ε)
}
,

G4 := a
2

{
(1−σ)m3 cosh(mℓ)F+

2 (ε)−m2[(1+σ) cosh(mℓ)− (1−σ)mℓ sinh(mℓ)]F+
3 (ε)

+(1−σ)m3 sinh(mℓ)F−

1 (ε)−m2[(1+σ) sinh(mℓ)− (1−σ)mℓ cosh(mℓ)]F−

4 (ε)
}
.(37)

Then, we set

C2 :=
m cosh(mℓ)

(
Kαγm

σm2
−α2

(m2
−α2)2

sinh(αℓ)+G3

)
+sinh(mℓ)

(
αKαγm

(2−σ)m2
−α2

(m2
−α2)2

cosh(αℓ)+G4

)

m2[(3+σ) sinh(mℓ) cosh(mℓ)+(1−σ)mℓ]
,

D2 :=
m sinh(mℓ)

(
Kαγm

σm2
−α2

(m2
−α2)2

cosh(αℓ)+G1

)
+cosh(mℓ)

(
αKαγm

(2−σ)m2
−α2

(m2
−α2)2

sinh(αℓ)+G2

)

m2[(3+σ) sinh(mℓ) cosh(mℓ)−(1−σ)mℓ]
,

A2 :=
D2m

2[(1+σ) sinh(mℓ)−(1−σ)mℓ cosh(mℓ)]−αKαγm
(2−σ)m2

−α2

(m2
−α2)2

sinh(αℓ)−G2

(1−σ)m3 sinh(mℓ)
,

B2 :=
C2m

2[(1+σ) cosh(mℓ)−(1−σ)mℓ sinh(mℓ)]−αKαγm
(2−σ)m2

−α2

(m2
−α2)2

cosh(αℓ)−G4

(1−σ)m3 cosh(mℓ)
,(38)

and

A1 := A2 + aF1(ε) , A3 := A2 + ae
−2αε

F1(−ε) ,

B1 := B2 + aF2(ε) , B3 := B2 + ae
−2αε

F2(−ε) ,

C1 := C2 + aF3(ε) , C3 := C2 + ae
−2αε

F3(−ε) ,

D1 := D2 + aF4(ε) , D3 := D2 + ae
−2αε

F4(−ε) .

(39)
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The following statement allows us to determine the explicit solution of (30).

Proposition 10.1. Assume that g ∈ L2(]0, π[) satisfies (31). For α > 0 with
α 6∈ N, let Kα be as in (29). Then, the unique solution of (30) is given by

wα(x, y) =





w1(x, y) , in ]0, π[×]ε, ℓ[ ,

w2(x, y) , in ]0, π[×] − ε, ε[ ,

w3(x, y) , in ]0, π[×] − ℓ,−ε[ .

with, for i = 1, . . . , 3,

wi(x, y) :=

∞∑

m=1

(
(Ai + Ciy) cosh(my)+(Bi + Diy) sinh(my)+

eαyKαγi
m

(m2−α2)2

)
sin(mx)

and the constants Ai = Ai(m,α, ε), Bi = Bi(m,α, ε), Ci = Ci(m,α, ε), and
Di = Di(m,α, ε) as defined in (38) and (39), while γ1

m = γ3
m = γm and γ2

m = γ̂m.

Proof. In order to solve the problem, we split the domain Ω into three rectangles:
R1 :=]0, π[×]ε, ℓ[, R2 :=]0, π[×] − ε, ε[, R3 :=]0, π[×] − ℓ,−ε[, so that we obtain

(40)






∆2w1 = Kαe
αyg(x)(1 + dχIN (x))−1 , in R1 ,

w1 = (w1)xx = 0 , on {0, π}×]ε, ℓ[ ,

(w1)yy + σ(w1)xx = (w1)yyy + (2− σ)(w1)xxy = 0 , on ]0, π[×{ℓ} ,

(41)

{
∆2w2 = Kαe

αyg(x)(1 + d)−1 , in R2 ,

w2 = (w2)xx = 0 , on {0, π}×]− ε, ε[ ,

(42)






∆2w3 = Kαe
αyg(x)(1 + dχIN (x))−1 , in R3 ,

w3 = (w3)xx = 0 , on {0, π}×]− ℓ, ε[ ,

(w3)yy + σ(w3)xx = (w3)yyy + (2− σ)(w3)xxy = 0 , on ]0, π[×{−ℓ} ,

where IN is as defined in (32). We also have to add the junction conditions:

(43) w1 = w2 , (w1)y = (w2)y , (w1)yy = (w2)yy , (w1)yyy = (w2)yyy , in ]0, π[×{ε}

(44) w2 = w3 , (w2)y = (w3)y , (w2)yy = (w3)yy , (w2)yyy = (w3)yyy , in ]0, π[×{−ε}

Let φ ∈ H4(]0, π[) be the unique solution of

(45)

{
φ′′′′(x) + 2α2φ′′(x) + α4φ(x) = g(x)(1 + dχIN (x))−1 , x ∈]0, π[ ,
φ(0) = φ(π) = φ′′(0) = φ′′(π) = 0 .

By (33), and recalling that α 6∈ N, φ may be written as

φ(x) =

∞∑

m=1

γm
(m2 − α2)2

sin(mx) , x ∈]0, π[ ,

with the γm as defined in (22). Moreover, φ′′ ∈ H2(]0, π[) is given by

φ′′(x) = −
∞∑

m=1

γm m2

(m2 − α2)2
sin(mx) , x ∈]0, π[ ,
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and this series converges in H2(]0, π[) and, hence, uniformly. We will also need
the constants

ζ1m := γm
σm2−α2

(m2−α2)2
, ζ2m := γm

(2−σ)m2−α2

(m2−α2)2
.

Let us now restrict our attention to R1. By the system (45), we have that
∆2[Kαe

αyφ(x)] = Kαe
αyg(x)(1+dχIN (x))−1. Hence, if we introduce the auxiliary

function v1(x, y) := w1(x, y) − Kαe
αyφ(x) with w1 solving (40), we see that v1

solves

(46)






∆2v1 = 0 , in R1 ,

v1 = (v1)xx = 0 , on {0, π}×]ε, ℓ[ ,
(v1)yy + σ(v1)xx = −Kαe

αℓ[α2φ+ σφ′′] , on ]0, π[×{ℓ} ,

(v1)yyy + (2− σ)(v1)xxy = −Kααe
αℓ[α2φ+ (2− σ)φ′′] , on ]0, π[×{ℓ} .

We seek solutions of (46) by separating variables, namely we seek functions Y 1
m =

Y 1
m(y) such that v1(x, y) =

∑∞
m=1 Y

1
m(y) sin(mx) solves (46). Then

∆2v1(x, y) =

∞∑

m=1

[(Y 1
m)′′′′(y) − 2m2(Y 1

m)′′(y) + m4(Y 1
m)(y)] sin(mx) ,

and the equation in (46) yields

(47) (Y 1
m)′′′′(y) − 2m2(Y 1

m)′′(y) + m4Y 1
m(y) = 0 , for y ∈]ε, ℓ[ .

The solutions of (47) are linear combinations of cosh(my), sinh(my), y cosh(my),
y sinh(my), that is, Y 1

m(y) = (A1 + C1y) cosh(my) + (B1 + D1y) sinh(my), where
A1, B1, C1, D1 will be determined by imposing the boundary conditions in (43)
and (46). By differentiating we obtain

(Y 1
m)′(y) = (A1m+D1 +C1my) sinh(my) + (B1m+C1 +D1my) cosh(my) + sinh(my) ,

(Y 1
m)′′(y) = (A1m

2 + 2D1m+ C1m
2
y) cosh(my) + (B1m

2 + 2C1m+D1m
2
y) sinh(my) ,

(Y 1
m)′′′(y) = (A1m

3 + 3D1m
2 + C1m

3
y) sinh(my) + (B1m

3 + 3C1m
2 +D1m

3
y) cosh(my) .

The two boundary conditions on ]0, π[×{ε, ℓ}, see (46), become respectively

∞∑

m=1

[(Y 1
m)′′(ℓ)− σm

2
Y

1
m(ℓ)] sin(mx) = −Kαe

αℓ[α2
φ(x) + σφ

′′(x)] ,

∞∑

m=1

[(Y 1
m)′′′(ℓ)− (2− σ)m2(Y 1

m)′(ℓ)] sin(mx) = −Kαe
αℓ[α2

φ(x) + (2− σ)φ′′(x)] ,

for all x ∈]0, π[. Hence, from the Fourier expansion of φ, we deduce that (Y 1
m)′′(ℓ)−

σm2Y 1
m(ℓ) = Kαe

αℓ ζ1m, (Y 1
m)′′′(ℓ)− (2−σ)m2(Y 1

m)′(ℓ) = Kαe
αℓ α ζ2m. By plugging

this information into the explicit form of the derivatives of Y 1
m we find the system

(1−σ)m2 cosh(mℓ)A1 +m[2 cosh(mℓ) + (1−σ)mℓ sinh(mℓ)]D1 + (1−σ)m2 sinh(mℓ)B1

+m[2 sinh(mℓ) + (1−σ)mℓ cosh(mℓ)]C1 = Kαe
αℓζ1m ,

−(1−σ)m3 cosh(mℓ)B1 +m2[(1+σ) cosh(mℓ)− (1−σ)mℓ sinh(mℓ)]C1

−(1−σ)m3 sinh(mℓ)A1 +m2[(1+σ) sinh(mℓ)− (1−σ)mℓ cosh(mℓ)]D1 = Kαe
αℓ α ζ2m .
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Similarly, for R3 we introduce the function v3(x, y) := w3(x, y) − Kαe
αyφ(x),

with w3 solving (42), and we see that v3 satisfies
(48)




∆2v3 = 0 , in R3 ,

v3 = (v3)xx = 0 , on {0, π}×]− ℓ,−ε[ ,

(v3)yy + σ(v3)xx = −Kαe
−αℓ[α2φ+ σφ′′] , on ]0, π[×{−ℓ} ,

(v3)yyy + (2− σ)(v3)xxy = −Kααe
−αℓ[α2φ+ (2− σ)φ′′] , on ]0, π[×{−ℓ} .

By separating variables, we seek functions Y 3
m = Y 3

m(y) so that the function
v3(x, y) =

∑∞
m=1 Y

3
m(y) sin(mx) solves (48). Then

∆2v3(x, y) =
∞∑

m=1

[(Y 3
m)′′′′(y) − 2m2(Y 3

m)′′(yY 2
m) + m4Y 3

m(y)] sin(mx)

and then Y 3
m(y) = A3 cosh(my) + B3 sinh(my) + C3y cosh(my) + D3y sinh(my).

As with R1, we are then led to the system

(1−σ)m2 cosh(mℓ)A3 +m[2 cosh(mℓ) + (1−σ)mℓ sinh(mℓ)]D3

−(1−σ)m2 sinh(mℓ)B3 −m[2 sinh(mℓ) + (1−σ)mℓ cosh(mℓ)]C3 = Kαe
−αℓ ζ1m ,

−(1−σ)m3 cosh(mℓ)B3 +m2[(1+σ) cosh(mℓ)− (1−σ)mℓ sinh(mℓ)]C3

+(1−σ)m3 sinh(mℓ)A3 −m2[(1+σ) sinh(mℓ)− (1−σ)mℓ cosh(mℓ)]D3 = Kαe
−αℓ α ζ2m .

Finally, let γ̃m be the Fourier coefficients of g, see (31), and φ̃ ∈ H4(]0, π[)

be defined as φ̃(x) =
∑∞

m=1
γ̃m

(m2−α2)2 sin(mx), for every x ∈]0, π[. For R2 we

introduce the auxiliary function v2(x, y) := w2(x, y)−Kαe
αy φ̃(x)

1+d with φ̃ as above

and w2 solving (41), and we see that v2 satisfies

(49)

{
∆2v2 = 0 in R2

v2 = (v2)xx = 0 on {0, π}×] − ε, ε[ .

We seek again solutions of (49) by separating variables, namely we seek functions
Y 2
m = Y 2

m(y) such that v2(x, y) =
∑∞

m=1 Y
2
m(y) sin(mx) solves (49). Then

∆2v2(x, y) =

∞∑

m=1

[(Y 2
m)′′′′(y) − 2m2(Y 2

m)′′(y) + m4Y 2
m(y)] sin(mx)

and then Y 2
m(y) = A2 cosh(my) + B2 sinh(my) + C2y cosh(my) + D2y sinh(my) .

In this case we have no boundary conditions to use as a constraint. Instead, we
impose the junction conditions (43) and (44) by which we get the relations (39).
Combining (39) with (48) and (49), we obtain a 4 × 4 system in the unknowns
A2, B2, C2, D2 which decouples into the following 2 × 2 systems:
{
(1−σ)m2 cosh(mℓ)A2 +m[2 cosh(mℓ) + (1−σ)mℓ sinh(mℓ)]D2=Kαζ

1
m cosh(αℓ) +G1

−(1−σ)m3sinh(mℓ)A2+m2[(1+σ)sinh(mℓ)−(1−σ)mℓcosh(mℓ)]D2=αKαζ
2
m sinh(αℓ)+G2

and
{
(1−σ)m2 sinh(mℓ)B2+m[2sinh(mℓ) + (1−σ)mℓcosh(mℓ)]C2=Kαζ

1
msinh(αℓ)+G3

−(1−σ)m3cosh(mℓ)B2+m2[(1+σ)cosh(mℓ)−(1−σ)mℓsinh(mℓ)]C2=αKαζ
2
m cosh(αℓ)+G4

where the Gi = Gi(m,α, ε) are defined in (37). The solutions of the above systems
are given in (38) and, combined with (39), allow us to write the explicit form of
w1, w2 and w3.
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To complete the proof of Proposition 10.1 we show that the series defining wα

converges in the next lemma. �

Lemma 10.1. If g ∈ L2(]0, π[), then the series defining wα in Proposition 10.1
converges uniformly in Ω up to the second derivative.

Proof. We start by studying the uniform convergence of the series which defines
w1. We have

|w1| 6

∞∑

m=1

(emℓ

2
(|A1 +B1|+ ℓ|C1 +D1|)+

e−mε

2
(|A1 −B1|+ ℓ|C1 −D1|)+

eαℓKαγm
(m2−α2)2

)
.

From the following relations

2m tanh(mℓ)G1

a
+

2G2

a
=

1

cosh(mℓ)
[(1− σ)m3

F
−

2 + 2m2
F

−

3 +m
3(1− σ)ℓF+

4 )]

− (σ + 3)m2[F−

3 cosh(mℓ) + F
+
4 sinh(mℓ)] ,

2 tanh(mℓ)G4

a
+

2mG3

a
=

1

cosh(mℓ)
[−(1− σ)m3

F
−

1 − (1− σ)m3
ℓF

+
3 +m

2(1 + σ)F−

4 )]

− (σ + 3)m2[F−

4 cosh(mℓ) + F
+
3 sinh(mℓ)] ,

and after some lengthy calculations, as m → +∞, we get

A2 + B2 = −a(F1(ε) + F2(ε)) + K1
γme−mℓ

m3
+ o

(
γme−mℓ

m3

)
,

C2 + D2 = −a(F3(ε) + F4(ε)) + K2
γme−mℓ

m3
+ o

(
γme−mℓ

m3

)
,

(50)

for some K1,K2 ∈ R \ {0}. Hence, as m → ∞, we have

(51) A1 +B1 = K1
γme−mℓ

m3
+ o

(
γme−mℓ

m3

)
, C1 +D1 = K2

γme−mℓ

m3
+ o

(
γme−mℓ

m3

)
.

On the other hand, as m → +∞, we have

A2 −B2 = K3(γm − γ̂m)
e−mε

m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
,

C2 −D2 = K4(γm − γ̂m)
e−mε

m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
,

(52)

for some K3,K4 ∈ R \ {0}. Hence, since as m → +∞ we have

a(F1(ε) − F2(ε)) = −Kαεe
αε(γm − γ̂m)

emε

2m3
+ o

(
(γm − γ̂m)

emε

m3

)
,

a(F3(ε) − F4(ε)) = Kαe
αε(γm − γ̂m)

emε

2m3
+ o

(
(γm − γ̂m)

emε

m3

)
,

we conclude that

A1 −B1 = −Kαεe
αε(γm − γ̂m)

emε

2m3
+ o

(
(γm − γ̂m)

emε

m3

)
,

C1 −D1 = Kαe
αε(γm − γ̂m)

emε

2m3
+ o

(
(γm − γ̂m)

emε

m3

)
.
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The above equalities, together with (51) and the summability of the coefficients
γ̃m and γ̂m, prove the uniform convergence of the series defining w1 up to the
second derivative.

Next,we consider w2. We estimate

|w2| 6

∞∑

m=1

(emε

2
(|A2 +B2|+ ε|C2 +D2|)+

emε

2
(|A2 −B2|+ ε|C2 −D2|)+

eαεKαγ̂m

(m2 − α2)2

)
.

Since as m → +∞ we have

a(F1(ε) + F2(ε)) = Kαεe
αε(γm − γ̂m)

e−mε

2m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
,

a(F3(ε) + F4(ε)) = Kαe
αε(γm − γ̂m)

e−mε

2m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
,

from (50) we deduce that

A2 + B2 = −Kαεe
αε(γm − γ̂m)

e−mε

2m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
,

C2 + D2 = −Kαe
αε(γm − γ̂m)

e−mε

2m3
+ o

(
(γm − γ̂m)

e−mε

m3

)
.

This, jointly with (52) and the summability of the coefficients γ̃m, γ̂m, proves the
uniform convergence of the series defining w2 up to the second derivative.

The computations for w3 are similar to those for w1 and we omit them. �

Now, we focus on the limiting behavior of wα as α → +∞. We first determine
the limit of hα.

Lemma 10.2. Let Cg be as in (29) and IN be as in (32). As α → +∞ we have

that hα → h in H−2
∗ (Ω), where h ∈ H−2

∗ (Ω) is defined as follows

〈h, v〉 =

∫ π

0

g(x)

Cg(1 + dχIN (x))
v(x, ℓ) dx ∀v ∈ H2

∗ (Ω) .

The proof is a consequence of an integration by parts, similar to that of Lemma
11.1 below and therefore we omit it. Next, we set

(53) w(x, y) =

∞∑

m=1

(
(A2 + C2y) cosh(my) + (B2 + D2y) sinh(my)

)
sin(mx) ,

where A2 = A2(m), B2 = B2(m), C2 = C2(m), D2 = D2(m) are given by

A2 :=
γm ((1 − σ)mℓ sinh(mℓ) + 2 cosh(mℓ))

2Cg(1−σ)m3 [(3 + σ) sinh(mℓ) cosh(mℓ) − (1 − σ)mℓ]
,

B2 :=
γm ((1 − σ)mℓ cosh(mℓ) + 2 sinh(mℓ))

2Cg(1−σ)m3 [(3 + σ) sinh(mℓ) cosh(mℓ) + (1 − σ)mℓ]
,

C2 := − γm sinh(mℓ)

2Cgm2 [(3 + σ) sinh(mℓ) cosh(mℓ) + (1 − σ)mℓ]
,

D2 := − γm cosh(mℓ)

2Cgm2 [(3 + σ) sinh(mℓ) cosh(mℓ) − (1 − σ)mℓ]
,

with γm as in (22). The following lemma holds.
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Lemma 10.3. Let wα be the unique solution of (30), w be as in (53) and h be as
in Lemma 10.2. Then, as α → +∞, we have that wα(x, y) → w (x, y) in H2

∗ (Ω)
and w is the unique solution of the problem

(54) (w, v)H2
∗

= 〈h, v〉 ∀v ∈ H2
∗ (Ω) .

Proof. Let A2, B2, C2, D2 be as defined in (38), let A2, B2, C2, D2 be as defined
in (53), we get A2 → A2, B2 → B2, C2 → C2, D2 → D2 as α → +∞. Moreover,
from (29), (34), and (36), as α → +∞, we have

Kα =
αe−αℓ

Cg
+ o(αe−αℓ) , a =

e−α(ℓ−ε)(γm − γ̂m)

Cgα3
+ o

(
e−α(ℓ−ε)

α3

)
,

and

F1(ε) =
sinh(mε) −mε cosh(mε)

2m3
α3 + o(α3) , F3(ε) = cosh(mε)

2m2 α3 + o(α3) ,

F2(ε) =
mε sinh(mε) − cosh(mε)

2m3
α3 + o(α3) , F4(ε) = − sinh(mε)

2m2 α3 + o(α3) .

Hence, recalling the definition of the constants Ai, Bi, Ci, Di given in (38) and
(39), for i = 1, 2, 3, we deduce that Ai → A2, Bi → B2, Ci → C2, Di → D2, as
α → +∞. Therefore, by exploiting the summability of the coefficients in the series
defining wα, we conclude that wα → w a.e. in Ω, as α → +∞.

On the other hand, by Lemma 10.2, there holds hα → h in H−2
∗ (Ω) as α → +∞.

Let wh ∈ H2
∗ (Ω) be the unique solution of (54), so that clearly ‖wα − wh‖H2

∗

6

‖hα − h‖H−2
∗

, wα → wh in H2
∗ (Ω) and uniformly in Ω. Hence, w ≡ wh and this

concludes the proof of the lemma. �

Proof of Theorem 6.1. By Proposition 10.1, the gap function corresponding to wα

is Gα (x) = w1(x, ℓ) − w3(x,−ℓ) =
∑∞

m=1 ξm(α) sin(mx) with the coefficients

ξm(α) := (A1 −A3) cosh(mℓ) + (B1 + B3) sinh(mℓ) + (C1 + C3)ℓ cosh(mℓ)

+(D1 −D3)ℓ sinh(mℓ) +
αγm

Cg(m2 − α2)2
,(55)

while the gap function corresponding to w can be written as the function G (x) =
w (x, ℓ) − w (x,−ℓ) =

∑∞
m=1 βm sin(mx) with the coefficients

βm =
(
2B2 sinh(mℓ) + 2C2ℓ cosh(mℓ)

)
sin(mx) =

2 γm Υm

Cg(1 − σ)
,(56)

where the coefficients Υm are as defined in (16). Since, by Lemma 10.3, the
function wα converges to w uniformly in Ω, we have

max
x∈[0,π]

|Gα (x) − G (x) | = max
x∈[0,π]

∣∣∣∣∣

∞∑

m=1

ξm(α) sin(mx) −
∞∑

m=1

βm sin(mx)

∣∣∣∣∣
6 max

x∈[0,π]
|wα (x, ℓ) − w (x, ℓ) | + max

x∈[0,π]
|wα (x,−ℓ) − w (x,−ℓ) |,

and so the right-hand side converges to zero.
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Next, we specify the asymptotic behavior of ξm(α). To this end, by Proposition
10.1, we note that, as α → +∞, the following estimates hold

A1 − A3 = a(F1(ε)− e
−2αε

F1(−ε)) = O(e−α(ℓ−ε)) +O(e−α(ℓ+ε)) ,

B1 +B3 = 2B2 + a(F2(ε) + e
−2αε

F2(−ε)) = 2B2 +O(e−α(ℓ−ε)) +O(e−α(ℓ+ε)) ,

C1 + C3 = 2C2 + a(F3(ε) + e
−2αε

F3(−ε)) = 2C2 +O(e−α(ℓ−ε)) +O(e−α(ℓ+ε)) ,

D1 −D3 = a(F4(ε)− e
−2αε

F4(−ε)) = O(e−α(ℓ−ε)) +O(e−α(ℓ+ε)) ,

B2 = B2 −
γm ((1 + σ) cosh(mℓ)− (1− σ)mℓ sinh(mℓ))

2Cg(1− σ)m2 [(3 + σ) sinh(mℓ) cosh(mℓ) + (1− σ)mℓ]

1

α
+ o

(
1

α

)
,

C2 = C2 −
γm cosh(mℓ)

2Cgm [(3 + σ) sinh(mℓ) cosh(mℓ) + (1− σ)mℓ]

1

α
+ o

(
1

α

)
.

Recalling the definition of ξm(α), we conclude that, as α → +∞,

ξm(α) = 2B2 sinh(mℓ) + 2C2ℓ cosh(mℓ)

−
(1 + σ) sinh(mℓ) cosh(mℓ) + (1− σ)mℓ

Cg(1−σ)m2[(3+σ) sinh(mℓ) cosh(mℓ) + (1−σ)mℓ]

γm

α
+ o

(
1

α

)

= βm −
ωm

α
+ o

(
1

α

)

with ωm as in (21).
In view of the discussion at the beginning of this section, the statement of

Theorem 6.1 now follows simply by setting

(57) βm(α) :=
Rα

Kα
ξm(α)

with ξm(α) as given in (55). Notice that we still denote by Gα(x) the gap functions
corresponding to uα. Furthermore, by Lemma 10.3, uα(x, y) → u (x, y) in H2

∗ (Ω)
where u is the odd part of the unique solution of problem (54). Namely, u is the
the unique solution of the problem

(58) (u, v)H2
∗

= 〈ho
, v〉 ∀v ∈ H2

∗ (Ω)

where h
o

is the odd part of h as defined in Lemma 10.2. �

Proof of Theorem 6.2. Set µ = 0 and g(x) = sin(nx) for some positive integer n,
then the coefficients (22) become γn = 1 while γm = 0 if m 6= n. Furthermore,
since Cg =

∫ π

0 | sin(nx)| dx = 2, by Theorem 6.1 the corresponding gap function is

(59) Gn(x) = Υn sin(nx) ,

where Υn := Υn/(1 − σ) with the Υn as defined in (16). Hence, G∞
n = Υn. The

thesis follows by showing that G∞
< Υ1 for every g ∈ Γ. Let us consider separately

the four cases in the set Γ.
• Let g(x) = sin(mx) for some positive integer m. By (59) we know that

G∞
m = Υm. Since 0 < σ < 1, some lengthy computations reveal that dΥm

dm < 0,

hence the map m 7→ Υm is strictly decreasing and maxm G∞
m = Υ1.

• For given N ∈ N and {γ̃m}m∈N ⊂ ℓ2(N), let g(x) =
∑

m>N γ̃m sin(mx).

Since supm |γ̃m| 6 2Cg/π and
∑∞

m=1 Υm converges, by Theorem 6.1 we infer the

existence of N ∈ N sufficiently large such that G∞ 6 4
π

∑
m>N Υm < Υ1.
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• Let m be a positive integer, and take g(x) = sin(mx) + sin(3mx). By the
prosthaphaeresis formulas, g(x) = 4 sin(mx) cos2(mx) and we compute the value
of Cg in (29). By putting xk = (k/m)π with k = 0, ...,m, for m = 2n we have

Cg =

n−1∑

j=0

(∫ x2j+1

x2j

(
sin(mx) + sin(3mx)

)
dx−

∫ x2j+2

x2j+1

(sin(mx) + sin(3mx)) dx

)
,

while for m = 2n + 1 we have

Cg =

n−1∑

j=0

[∫ x2j+1

x2j

(
sin(mx) + sin(3mx)

)
dx−

∫ x2j+2

x2j+1

(
sin(mx) + sin(3mx)

)
dx

]

+

∫ x2n+1

x2n

(
sin(mx) + sin(3mx)

)
dx .

In any case, we get that Cg = 8/3. Furthermore, by Theorem 6.1 we have

|G(x)| =
2

Cg

|
(
Υm sin(mx) + Υ3m sin(3mx)

)
| 6

3

4

(
Υm +Υ3m

)
6

3

4

(
Υ1 +Υ3

)
,

where in the last step we exploit the monotonicity of the map n 7→ Υn. Finally,
some lengthy computations reveal that 3F3 < F1, hence G∞ 6 Υ1 holds also for
g(x) = sin(mx) + sin(3mx).

• Take g(x) = gN(x) =
∑N

m=1 sin((2m− 1)x) for N ∈ N sufficiently large, to be

fixed later. It is known that gN(x) = sin2(Nx)/ sin(x) for x ∈]0, π[, see [20, p.73].
Hence,

CgN =

∫ π

0

|gN(x)| dx =

∫ π

0

gN (x) dx = 2
N∑

m=1

1

2m− 1
> log(2N − 1) .

By this and Theorem 6.1 we deduce that

G∞
6

2

Cg

N∑

m=1

Υm 6
2

log(2N − 1)

N∑

m=1

Fm(ℓ) 6 Υ1

for N sufficiently large, since the last summation converges when N → +∞. This
concludes the proof of Theorem 6.2. � �

11. Proof of Proposition 5.1

For z ∈]0, π[, 0 < η < min{z, π − z}, and α > 0, we take g(x) = χ[z−η,z+η](x)
in (20) and we set fα,η(x, y) := Rα,η sinh(αy)χ[z−η,z+η](x) with the constant
Rα,η := α

4η(cosh(αℓ)−1) , so that ‖fα,η‖L1 = 1. Let us establish the first ingredient

for the proof of Proposition 5.1.

Lemma 11.1. Let D = ∅ and let Gα,η and GTz (Tz as in (15)) be the gap functions
corresponding to the solutions of (5) with f = fα,η and f = Tz, respectively. As
(α−1, η) → (0, 0) we have that Gα,η(x) → GTz (x) uniformly on [0, π].

Proof. We first claim that fα,η → Tz in H−2
∗ (Ω) as (α−1, η) → (0, 0), that is,

(60) lim
(α−1,η)→(0,0)

∫

Ω

fα,η(x, y)v(x, y) dxdy = v(z,ℓ)−v(z,−ℓ)
2 , ∀v ∈ H2

∗ (Ω) .
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Take v ∈ H2
∗ (Ω) and compute

∫

Ω

fα,η(x, y)v(x, y) dxdy = Rα,η

∫ π

0

χ[z−η,z+η](x)

(∫ ℓ

−ℓ

sinh(αy)v(x, y) dy

)
dx

= 1
4 η(cosh(αℓ)−1)

∫ z+η

z−η

([
cosh(αy)v(x, y)

]ℓ
−ℓ

−

∫ ℓ

−ℓ

cosh(αy)vy(x, y) dy
)
dx

= cosh(αℓ)
cosh(αℓ)−1

v(ξz, ℓ)− v(ξz,−ℓ)

2
− 1

2(cosh(αℓ)−1)

∫ ℓ

−ℓ

cosh(αy)vy(θz, y) dy,

for some z − η < ξz , θz < z + η. Now we observe that, uniformly with respect to

η, limα−1→0

∫ ℓ

−ℓ
cosh(αy)

cosh(αℓ)−1 vy(θz , y) dy = 0, by the Lebesgue Dominated Conver-

gence Theorem and thus (60) follows. From this we infer that the corresponding
solutions converge in H2

∗ (Ω) and then the proof can be completed by arguing as
in Proposition 8.1. �

In view of Lemma 11.1, the proof of Proposition 5.1 follows once we have proved
the following statement.

Lemma 11.2. Assume z ∈]0, π[, 0 < η < min{z, π − z} and α > 0 with α 6∈ N.
As (α−1, η) → (0, 0), the gap function Gα,η(x) corresponding to the solution of (6)
with f = fα,η and D = ∅ converges to 4

π(1−σ)

∑∞
m=1 Υm sin(mz) sin(mx) uniformly

on [0, π], with the Υm as defined in (16).

Proof. The explicit form of the gap function Gα,η(x) follows from Theorem 6.1
by replacing fα with fα,η and DN with ∅. Namely, we assume µ = ε = 0 in
(19) and g(x) = χ[z−η,z+η](x) in (20), hence Cg = 2η. With these specifications,
by (39), we have A1 = A3, B1 = B2 = B3, C1 = C2 = C3, and D1 = D3,
while γm = γ̃m in (31). Hence, by (55) and (57), we it follows that the function
Gα,η(x) =

∑∞
m=1 βm(α, η) sin(mx) and

βm(α, η) =
sinh(αℓ)

cosh(αℓ) − 1

(
2B2 sinh(mℓ) + 2C2ℓ cosh(mℓ) +

αγ̃m
2η(m2 − α2)2

)
,

with B2 and C2 as in (38) and γ̃m = 4
πm sin(mz) sin(mη). By noting that γ̃m(η)

2η =
2 sin(mz)

π + o(η) as η → 0 and exploiting (56), as (α−1, η) → (0, 0) we obtain

βm(α, η) =
(
1 + 2e−αℓ + o(e−αℓ)

)(2 sin(mz)

π
+ o(η)

)(
2Υm

1 − σ
+ o

(
1

α2

))

=
4Υm sin(mz)

π(1 − σ)
+ o(1) ,

with Υm as defined in (16). This completes the proof of the lemma. �

12. Conclusions, Perspectives and Open Problems

With possible applications to the deck of a footbridge or a suspension bridge,
this paper deals with the problem of minimizing the torsional displacements of
partially hinged reinforced plates. We showed that the gap function (7) is ex-
tremely useful to measure the torsional instability and that it gives hints on how
to compare the torsional performances of different plates through the minimaxmax
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problem (9), namely a robust shape optimization in the worst case setting. The
demonstrated existence results prove that the problem is well-defined and, in some
cases, it also allows to find properties of the worst force. On the other hand, some
meaningful problems prove themselves to be very difficult to handle and optimal
elements are hardly characterizable. This led us to provide some conjectures that
we now motivate in detail.

There are other classes D where the minimum problem (9) admits a solution
but the ones in Definition 3.1 appear particularly appropriate for engineering ap-
plications. A quite general class of admissible domains, where it is possible to
define problem (9), is that of measurable sets with uniformly bounded De Giorgi
perimeter and fixed area. In this setting, thanks to a compactness result for BV
functions, the existence of a solution is still guaranteed. Therefore, we point out
that it could be interesting to know if such a solution has enough regularity and
geometrical properties to belong to one of those classes of Definition 3.1.

When D = ∅, namely in the free plate case, in Proposition 5.1 we provide the
explicit representation of the gap function when the load is concentrated on the
boundary. The same statement seems out of reach for more general load, that is for

odd distributions such as
δ(z,w)−δ(z,−w)

2 , with z ∈]0, π[ and w ∈ [0, ℓ[. Nevertheless,
it is reasonable to expect that the gap function amplifies whenever w → ℓ and
z remains fixed. For this reason, we expect Tπ/2 to be the worst case among all
possible normalized couples of odd concentrated loads. This leads to the following.

Conjecture 12.1. When D = ∅, Tπ/2 and −Tπ/2 are the unique maximizers of
the worst case problem (10).

The worst case problem (10) may also be set up in different (smaller) classes of
loads such as Lp-spaces and one has the maximization problem (11), see Theorem
3.1. We have no guess about the possible solutions of (11) when p ∈]1,∞[. We also
suspect that there exists no maximizer for (11) in L1(Ω); see Section 6. Moreover,
we believe that the strange property stated in Theorem 4.2 for p = ∞ may not be
fulfilled since we expect the following.

Conjecture 12.2. Let p = ∞. For every D ⊂ Ω, the unique maximizers of the
problem (11) are the odd function f(x, y) = y/|y|, y 6= 0, and its opposite −f .

Finally, as concerns the most ambitious goal to solve the minimaxmax problem
(9), we conclude by stating two conjectures which are supported by numerical
computations. More precisely, Table 2 in Section 6 suggests the following.

Conjecture 12.3. Let F and D be as in (23). The optimum of the minimaxmax
problem (9) is the couple (f1, D0).

Table 3 in Section 7 shows that the least G∞
D is obtained for strips, then squares,

hexagons, while the largest G∞
D is obtained for triangles. This is somehow surpris-

ing since squares are expected to be in between triangles and hexagons. Moreover,
Table 3 suggests the following.

Conjecture 12.4. Let F and D be as in (24). The optimum of the minimaxmax
problem (9) is the couple (e1, Strips).
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