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ABSTRACT 

β-HPV cause near ubiquitous latent skin infection within long-lived hair follicle keratinocyte 

stem cells (HF KSC). In patients with epidermodysplasia verruciformis (EV), β-HPV viral 

replication is associated with skin keratosis and cutaneous squamous cell carcinoma (SCC). 

To determine the role of HF KSC in β-HPV induced skin carcinogenesis, we utilized a 

transgenic mouse model in which the keratin 14 promoter drives expression of the entire 

HPV8 early region (HPV8tg). HPV8tg mice developed thicker skin in comparison to wild 

type littermates consistent with a hyperproliferative epidermis. HF keratinocyte proliferation 

was evident within the Lrig1+ KSC population (69 vs 55%, p<0.001, n=6), and not in the 

CD34+, LGR5+ and LGR6+ KSC populations. This was associated with a 2.8-fold expansion 

in Lrig1+ keratinocytes and 3.8 fold increased colony forming efficiency. Consistent with 

this, we observed nuclear p63 expression throughout this population and the HF 

infundibulum and adjoining IFE, associated with a switch from p63 TA isoforms to ΔNp63 

isoforms in HPV8tg skin. EV keratosis and in some cases actinic keratoses demonstrated 

similar histology associated with β-HPV virus reactivation and nuclear p63 expression within 

the HF infundibulum and perifollicular epidermis. These findings would suggest that β-HPV 

field cancerization arises from the HF junctional zone and predispose to SCC.  
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INTRODUCTION 

More than 200 human papillomavirus (HPV) types have been DNA sequenced and thus 

classified into five genera (Alpha-, Beta-, Gamma-, Mu- and Nu-papillomavirus) (Bernard et 

al., 2010; http://pave.niaid.nih.gov/#home). High-risk α-HPV types have been established to 

be causative for cancer, notably in the ano-genital tract (Bosch et al., 2013). In contrast β-

HPV types are evolutionarily distinct as they do not integrate into the host genome and cause 

ubiquitous latent skin infection (Quint et al., 2015). The likely reservoir for β-HPV latent 

infection is postulated to reside within long-lived hair follicle keratinocyte stem cells (HF-

KSC), since plucked hair consistently demonstrates β-HPV DNA and KSC characteristics are 

enhanced by HPV 5 and 8 early region genes (Boxman et al., 1997; Bouwes Bavinck et al., 

2008; Hufbauer et al., 2013). However, the precise HF-KSC populations involved in β-HPV 

latent infection remain to be defined (Kranjec and Doorbar, 2016). Markers of β-HPV 

infection are uniformly observed in Epidermodysplasia Verruciformis (EV) keratosis and 

cutaneous squamous cell carcinoma (SCC), which represents the prototypic model of β-HPV 

induced skin carcinogenesis (Borgogna et al., 2012, Borgogna et al., 2014a). EV is a rare 

genodermatosis that has been included in the list of primary immunodeficiency characterized 

by defects in innate immunity (Notarangelo et al., 2004). Inactivating bi-allelic mutations of 

either EVER1/TMC6 or EVER2/TMC8 have been described in several families suffering 

from EV and account for about half of described EV cases (Ramoz et al., 2002). Atypical 

cases of EV have been also reported and they usually display T-cell defects (Azzimonti et al., 

2005, Borgogna et al., 2014a, Landini et al., 2014). It has been postulated that β-HPV 

reactivation is also associated with skin carcinogenesis in organ transplant recipients (Quint 

et al., 2015; Borgogna et al., 2014b; Howley et al., 2015). To determine the role of HF-KSC 

in β-HPV induced skin carcinogenesis, we utilized a transgenic mouse model in which the 

entire HPV8 early region genes are expressed under a keratin 14 promoter (HPV8tg) 
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(Schaper et al., 2005; De Andrea et al., 2010). HPV8tg mice develop multiple persistent 

papillomas within 8 weeks, of which 6% go on to develop spontaneous SCC with metastatic 

potential.  

In this study, we provide a model of β-HPV-induced skin carcinogenesis that is based on the 

aberrant expansion of Lrig1+ KSC in the upper hair follicle that spill out into the surrounding 

epidermis. Similarly expansion of the junctional zone HF KSC population was identified by 

p63 labelling in human EV keratosis and actinic keratosis. 

 

RESULTS 

The HPV8tg mice skin displays HF proliferative epidermal hyperplasia 

After birth, HPV8tg mice develop thicker skin in comparison to wild type (WT) littermates 

(Figure 1). Adult HPV8tg skin thickness of the ear was 0.6±0.1 vs 0.4±0.1 mm (p<0.05, 

n=9), there was no difference in weight and tail width. More keratinocyte layers were evident 

in the HF infundibulum and adjoining interfollicular epidermis (IFE) in HPV8tg, 4.2 ± 0.47 

vs 2.0 ± 0.0 and 3.8 ± 0.49 vs 1.5 ± 0.43 respectively (p<0.01, n=5), but stratum corneum 

thickness measured on histological sections was not different. Consistent with a 

hyperproliferative epidermis, keratinocyte proliferation assessed by Ki67 positive cells per 

basal keratinocyte was markedly increased within the HF (41± 10.9 vs 23 ± 11.8, n=7, 

p=0.01) and to a lesser extent the IFE (0.46± 0.18 vs 0.31 ± 0.11, n=15, p=0.01). The 

expression of HPV8 early region genes in this transgenic mouse model has been previously 

described (Schaper et al., 2005; De Andrea et al., 2010). While this HPV8tg mouse model 

yield spontaneous SCC formation, other similar β-HPV transgenic models driven by K14 

promoter do not develop SCC spontaneously (Viarisio et al. 2011). Consistent with this, 

levels of E6 and E7 expression in HPV8tg mouse skin were similar to that observed in HeLa 

cells with natural HPV18 infection (Supplementary Figure 1). Together these findings 
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suggested that HPV8 early region genes induce a proliferative epidermal hyperplasia, notably 

in the HF. HPV8 induced keratinocyte proliferation was greatest in the HF and immediately 

adjoining IFE, as determined by Ki67 expression, even though keratin 14 promoter driven 

HPV8 early region genes were uniformly expressed. 

 

The Lrig1 KSC population is expanded in HPV8tg mice 

Within the HF, the mean area of the infundibulum was markedly increased in HPV8tg 

compared to WT mice (Figure 2a), while there was no difference in HF length (Figure 2b).  

To determine which hair follicle keratinocyte population become expanded in HPV8tg mice 

compared to wild type littermates, we labelled skin sections in whole mount analysis with a 

set of stem cell markers. Consistent with the observed HF infundibulum expansion, 

keratinocyte proliferation was evident within the Lrig1+ KSC population (69 vs 55%, 

p<0.001, n=6), and not in the CD34+ (1 vs 1%), LGR5+ (1 vs 3%) and LGR6+ (29 vs 40%) 

KSC populations (n=7, Figures 2c-e Figures 3a&b). Flow cytometric analysis of dissociated 

skin confirmed a 2.8-fold increase in Lrig1+ keratinocytes in the HPV8tg mice, 7.4% +/- 

2.2% vs 2.7% +/- 0.8%, n=6, P < 0.05, but no difference in CD34+ KSC numbers (0.81% +/- 

0.24% vs 0.73% +/- 0.37%) (Figure 2c). Flow sorted Lrig1+ and CD34+ keratinocyte sub-

populations had similar levels of K14 promoter driven early region genes mRNA expression 

(Figure 4a), despite the observed difference in proliferation. To exclude any difference in the 

EVER 1 and 2 gene expression levels in HPV8tg mice versus control, qRT-PCR analysis was 

performed with the RNA extracted from Lrig1+ sorted cells and found comparable levels as 

shown in Figure 4b.  Flow sorted Lrig1+ keratinocytes from HPV8tg mice also demonstrated 

a 3.8 fold increased colony forming efficiency (Figures 3c&d), hence Lrig1+ cells retain KSC 

function. There was no significant difference in colony forming efficiency from flow sorted 

Lrig1 negative keratinocytes from HPV8tg versus WT mice (Supplementary Figure 2). In 
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keeping with Lrig1+ expansion and proliferation, we observed nuclear p63 expression 

throughout this population and the emanating keratinocytes of HF infundibulum and 

adjoining IFE (Figure 3e). RT-PCR and western blotting analysis confirmed the switch from 

p63 TA isoforms to ΔNp63 isoforms in HPV8tg skin (Figures 5a-c), consistent with earlier 

reports indicating HPV8 early proteins induce p63 expression (Meyers et al., 2013). Thus 

Lrig1+ KSC proliferation through induction of ΔNp63 in HPV8tg skin resulted in KSC 

expansion into the overlying infundibulum and adjoining IFE.  

 

β-HPV associated expansion of the HF junctional zone KSC population in human skin 

field cancerization 

The dilated HF infundibulum with increased keratinocyte layers and the crowded 

perifollicular epidermis with hyperkeratosis were consistently observed in the HPV8tg mice, 

and resembled Freudenthal’s funnel, the pathognomonic histological finding in actinic 

keratosis (n=28 mice, Supplementary Figure 3). EV keratosis uniformly demonstrated similar 

histology associated with β-HPV virus reactivation and nuclear p63 expression within the HF 

infundibulum and perifollicular epidermis (Figure 5d, 6 patients with 44 lesions, 

Supplementary Table 1). Likewise, in some cases of actinic keratosis from non-EV patients,  

we were able to detect nuclear p63 expression within the infundibulum and perifollicular 

epidermis in areas where β-HPV virus reactivation was well evident, as detected by 

expression of the viral marker E4 (Figure 5d, n=2 of 25). Hence, our findings suggest that 

similar to HPV8 mice, EV and some patients with AK demonstrate expansion of a junctional 

zone HF KSC population identified by p63 labelling. These findings would suggest that β-

HPV field cancerization arises from the HF infundibulum and predispose to SCC. Indeed, we 

observed p63 positive cells in HPV8tg and human SCC (Figure 5e, n=5); the latter were from 

immunocompetent patient from sun-exposed sites.   
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DISCUSSION 

The concept of “field cancerization” as introduced by Slaughter et al. was initially used to 

describe an area of upper aerodigestive tract in situ SCC, within which develop multiple 

invasive SCC foci (Slaughter et al., 1953). In the skin, similar pre-neoplastic field 

cancerization is observed and is characterized by the presence of multiple AK’s (Stockfleth et 

al., 2011). Although ultraviolet (UV) light induced DNA damage is the prime cause of AK, 

other factors, including β-HPV infection can also contribute to development of this skin 

disorder, especially in immunocompromised patients (Taguchi et al., 1994; Weissenborn et 

al., 2005; Banerjee et al., 2008). Patients with EV and related primary T cell 

immunodeficiency syndrome, are predisposed to develop skin field cancerization with similar 

keratoses that are associated with re-activation of latent β-HPV infection (Azzimonti et al., 

2005; Landini et al., 2014). In all cases of skin field cancerization, UV light is the key driver 

for transformation to SCC, as tumors typically arise on sun-exposed sites and contain p53 UV 

signature mutations (Jonason et al., 1996). Intriguingly, we have previously observed β-HPV 

reactivation at the clinically unaffected skin and in situ carcinoma at the periphery of SCC 

lesions from EV and organ transplant recipient, as well as within EV SCC (Borgogna et al., 

2014b). In some cases, 2 of 25 cases studied of non-EV AK, β-HPV reactivation was 

observed. The HPV8tg mouse model with constitutive epithelial HPV8 expression develops 

keratosis like skin changes, with 6% of lesions progressing to spontaneous SCC (Schaper et 

al., 2005). The rate of conversion to SCC is greater in HPV8tg than in EV patients and may 

reflect the higher expression of early region genes. As in human EV, UV radiation rapidly 

leads to SCC formation in HPV8tg and other HPV mouse models (Marcuzzi et al., 2009; 

Viarisio et al., 2011).  

KSC reside within each compartment of the skin: the IFE, HF, sebaceous and sweat 

glands. Different mouse KSC pools are distributed along the HF, defined by the expression of 
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cell surface proteins that facilitate isolation and thus characterization. To date KSC have been 

identified within four HF regions: upper (Lrig1) and lower (LGR6) junctional zone, the bulge 

(CD34 and K15) and bulb (LGR5) (Solanas & Benitah, 2013; Kretzschmar & Watt, 2014) 

(Figure 6).  In this study, we have identified the HF Lrig1+ KSC population as the putative 

target in HPV8tg mice skin carcinogenesis. Lrig1 expression defines a distinct multipotent 

stem cell population in mammalian epidermis, which resides in the HF junctional zone in 

mice (Jensen et al., 2009). Although Lrig1 expression defines an IFE KSC population in 

humans, it is not expressed in the reciprocal HF junctional zone (Supplementary Figure 4) 

and so prevented further characterization of the β-HPV target in humans (Jensen and Watt, 

2006). Reporter mice studies have shown that junctional zone Lrig1 cells give rise to 

keratinocytes in the infundibulum and adjoining IFE, akin to the expansion of this population 

in our HPV8tg mice, human EV keratosis and AK.  

p63 is a p53 protein family member expressed primarily in epithelia as six distinct 

isoforms, due to alternative transcription and C terminus splicing (Yang et al., 1998). Three 

p63 isoforms contain an N-terminal transcriptional activation (TA isoforms) sequence, while 

the other three do not (ΔN isoforms). All of the p63 isoforms, TA and ΔN, are 

transcriptionally active and the ΔN isoforms repress TA isoforms as dominant-negative 

molecules (Koster. 2010). Multiple lines of evidence support the role of p63 in KSC 

maintenance (Melino et al., 2015): i) p63 null mice demonstrate a terminally differentiated 

epidermis with no proliferative basal layer containing stem cells (Yang et al., 1999); ii) 

epidermal p63 knockdown induces differentiation, which is induced by TAp63 (Truong et al., 

2006); iii) ΔNp63 expression maintains the proliferative basal layer (Truong et al., 2006); and 

iv) p63 nuclear accumulation is prominent in KSC and holoclones (Pellegrini et al., 2001). 

UV directly and via p53 mutation results in p63 downregulation and loss of transcriptional 

activity (Liefer et al., 2000). Recently it has been proposed that UV induced concomitant 
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activation of oncogenic Ras and TGF-β pathways can restore p63 activity in p53 mutant cells 

to promote tumor progression (Vasilaki et al., 2016). In keeping with this, UV induced AK 

and cutaneous SCC frequently demonstrate nuclear p63 (Abbas et al., 2011). 

The frequency of nuclear p63 positivity is greater in HPV associated SCC of the oral and 

anogentital regions, promoted by HPV E6 degradation of p53 (Melino, 2011). 

β-HPV early region genes E2, E6 and E7 can induce KSC proliferation through inhibition of 

Notch signaling and subsequent induction of p63 (Hufbauer et al., 2013; Meyers et al., 2013, 

Pfefferle et al., 2008) providing a putative mechanism for this β-HPV induced field 

cancerization. Hence, we propose that β-HPV early region genes initiate proliferation of 

Lrig1+ KSC causing their expansion into the overlying HF infundibulum and overlying 

epidermis. β-HPV driven KSC proliferation results in EV keratosis and occasionally non-EV 

AK, which are predisposed to transformation into SCC whereupon the β-HPV episome and 

so gene expression is lost (Figure 6). 
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MATERIAL AND METHODS 

Transgenic Mouse Model 

HPV8tg and wild type litter mates were housed and managed under conditions approved by 

the Italian Animal Care Committee. Age and sex matched mice ear thickness and tail width 

were measured using Vernier caliper.  

Whole mount skin preparation 

Tail and back skin was cut into 0.5 cm2 pieces and dissociated using 2.5 U/ml Dispase 

(Roche, UK) over night at 4°C. The epidermis was gently removed and fixed in 10% neutral 

buffered formalin for 2 hours at room temperature, tissue was labelled and mounted as 

previously described (Braun K et al., 2003).  

Immunofluorescence labelling 

Immunofluorescence on whole mount, frozen and paraffin embedded section was performed 

using standard techniques as previously described (Borgogna et al. 2012). For the list of 

antibodies used see Supplementary Table 2. 

Single cell suspension for flow cytometry and colony forming efficiency 

Tail and back skin was cut into 0.5 cm2 pieces and dissociated using 2.5 U/ml Dispase 

(Roche, UK) over night at 4°C. The epidermis was gently removed and further dissociated 

with TrypLE™ Express Enzyme (ThermoFisher, UK), and the supernatant passed through a 

70 μm cell strainer (BD bioscience, UK). Enzymes were inactivated with DMEM with 10% 

FBS and keratinocytes cell suspension were re-suspended as required. 

Flow cytometry, cell sorting and colony forming efficiency assay 

Samples were analysed and flow sorted using BD LSRFORTESSA and BD FACSAria™ 

Fusion (BD Biosciences, USA). The data were analyzed using Flowjo software (Tree Star 

Inc). Keratinocytes were flow sorted for CD34-/Lrig1+ population and 3000 cells per well 

were seeded in 6-well plate and cultured for 15 days. Rheinwald and Green Media was 
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changed every 3 days. The colonies were stained with crystal violet 0.05%, scanned with 

GelCount™ (Oxford Optronix), and analyzed using ImageJ software (NIH, USA). 

RT-PCR  

Mouse skin was homogenized in Trizol (ThermoFisher Scientific, UK). RNA isolation from 

sorted cells and homogenized tissues was performed with RNeasy kit and cDNA was 

synthetized using QuantiTect Reverse Transcription Kit (Qiagen, UK). Semi-quantitative 

reverse transcription-PCR (RT-PCR) reactions were carried out using GoTaq® G2 Green 

Master Mix (Promega, UK) and specific primers sequence are listed in Supplementary Table 

3. Real-time quantitative reverse transcription analysis (qRT-PCR) was performed on 

QuantStudio™ 7 Flex Real-Time PCR System (ThermoFisher Scientific UK). For the 

determination of E6 and E7 gene expression levels, SyGreen (PCRBIOSYSTEM, UK) was 

used. Cycling condition were previously described in Schaper et al., 2005, De Andrea et al., 

2010. Total mouse-specific β-Actin was used as the housekeeping gene.  

EVER1, EVER2, TAp63 and ΔNp63 transcription levels were analyzed with Taqman probes 

at standard conditions. Total mouse-specific GAPDH was used as the housekeeping gene. 

Primers details are described in Supplementary Table 3 and 4. 

Western blotting 

100 mg of shaved back skin was homogenized in 1 ml of RIPA buffer containing 1% Triton 

X-100, 1% Sodium Deoxycholate, 0.1% SDS, 1 mM EDTA, 160 mM NaCl, 20 mM Tris-

HCl (pH 7.4) and 25 μl/ml Protease Inhibitor Cocktail (Sigma, UK). Protein concentrations 

were analyzed using Pierce BCA Protein Assay (ThermoFisher, UK). Thirty µg of protein 

lysate was loaded on 8% SDS-PAGE, and transferred to polyvinylidene difluoride 

membranes (Millipore, UK). For the list of antibodies used see Supplementary Table 2. 

Human tissue samples 
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EV patients’ keratosis formalin-fixed and paraffin embedded (FFPE) tissue sections were 

analyzed according to the protocol approved by the ‘‘Maggiore Hospital’’ Research Ethics 

Committee, Italy. Non-EV actinic keratosis (14-NW-1272) and squamous cell carcinoma (09- 

WSE-02-1) tissues were obtained after UK NHS R&D, Local Research Ethics Committee 

approval and informed written consent.  

Statistical analysis 

Paired t-tests were used to compare HPV8 and wild type litter mates, using GraphPad 

software (Prism). 
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FIGURE LEGENDS 

 

Figure 1: Phenotypic and histological characterization of HPV8tg mice. 

a, Schematic representation of the HPV8 transgenes, showing the human cytokeratin-14 gene 

promoter upstream of the open reading frames of the HPV8 early region genes. b, 

Hematoxylin and eosin staining of paraffin embedded skin sections from WT (left panel) and 

HPV8tg (right panel) mouse skin. c, Toluidine blue staining of mouse whole mount skin 

including the hair follicle and overlying epidermis from WT (left panel) and HPV8tg (right 

panel) from the tail. d, Ear thickness (upper graph) and tail width (bottom graph) measured 

using calipers on age matched WT and HPV8tg littermates (n=8), with mean+/-SD  

(*,p<0.05; unpaired t test). All the images were processed using ImageJ software (NIH, 

USA). All scale bars =100μm. 

 

 

Figure 2: HPV8 transgenes induce hair follicle changes in HPV8tg mice. 

a, b, Adult mice whole mount skin were photographed and analyzed for the area of HF 

regions and length, WT and HPV8tg were compared, with mean+/-SD, using an unpaired t-

test (n=20, ** p<0.01). c, FACs analysis WT and HPV8tg mice skin keratinocyte isolates 

(n=6), labelled with Lrig1-FITC and CD34-647 antibodies, with DAPI to select live cells. d, 

The number of Lrig1 positive cells determined by FACs (n=6). (**, p<0.01; unpaired t test), 

with mean+/-SD e, Whole mount immunofluorescence of adult WT and HPV8tg tail skin for 

Ki67 (red) and HF-KSC markers (green). All the images were processed using ImageJ 

software (NIH, USA). All scale bars = 100 μm. 
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Figure 3: Lrig1 keratinocyte stem cell proliferation in HPV8tg 

a, Whole mount adult WT and HPV8tg (n=6) skin sections labelled with Ki67 (red), Lrig1 

(green) antibodies and DAPI (blue). b, Number of proliferating cells within KSC populations 

(Lrig1, LGR6, CD34, and LGR5) was enumerated, with mean+/-SD, in WT and HPV8tg 

tissue sections (n=7); ** p<0.01. c, Keratinocyte colony forming assays from flow sorted 

Lrig1 cells from WT and HPV8tg (n=6) skin dissociates, with mean+/-SD and d, A 

representative image. e, p63 labelled frozen sections from adult WT and HPV8tg mice (n=3), 

the broken line indicates the basal layer. Immuno-labelled tissue sections were visualized and 

photographed by fluorescent microscope with x20 magnification then processed using ImageJ 

software (NIH, USA). All scale bars are 100µm. 

 

Figure 4: HPV8 transgenes are uniformly expressed in the epidermis of HPV8tg mice. 

a, qRT-PCR of early region genes of WT and HPV8tg mouse skin isolated KSC populations, 

with mean+/-SD. b, qRT-PCR of murine homologues of EVER1 (TMC6) and EVER2 

(TMC8) genes of WT and HPV8tg mouse skin isolated Lrig1+ KSC populations, with 

mean+/-SD. 

 

Figure 5: β-HPV induced keratinocyte stem cell expansion results in keratosis that are 

predisposed to SCC  

a&b, RT-PCR with mean+/-SD (**, p<0.01), and c, Western blot gels of p63 isoforms from 

RNA and protein isolates respectively from WT, HPV8tg skin, papilloma (pap) and SCC 

(n=6). d, Images of tissue sections of HPV8tg mouse skin, human EV keratosis, and AK 

labelled with p63 (green), β-HPV E4 (red) specific antibodies, and DAPI (blue). e, Images of 

tissue sections of HPV8tg mouse and human SCCs labelled with K14 (red), p63 (green) 

specific antibodies and DAPI (blue). Immuno-labelled tissue sections were visualized and 
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photographed by fluorescent microscope with x20 magnification then processed using ImageJ 

software (NIH, USA). All scale bars are 100µm. 

 

Figure 6: β-HPV Field Cancerization Model 

The mouse HF (left image) is composed by at least 4 different KSC populations. In the WT 

HF, the LGR5 is expressed in the hair bulb, CD34+ and K15+ KSC are located in the bulge, 

and the Lrig1 and LGR6 KSC are located in the upper and lower junctional zone respectively. 

In HPV8tg, the Lrig1 KSC population expand beyond the junctional zone niche and no 

longer express Lrig1 but they maintain KSC function. Similarly, in human β-HPV 

reactivation (right image), the expanded population occupies the hair follicle infundibulum 

and adjoining interfollicular epidermis, as shown by the yellow arrow. These changes 

culminate in the histological phenotype known as Freudenthal’s funnel, the pathognomonic 

finding in actinic keratosis and skin field cancerization. 
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