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ABSTRACT
An approximate Riemann solver for the equations of relativistic magnetohydrodynamics

(RMHD) is derived. The Harten–Lax–van Leer contact wave (HLLC) solver, originally devel-

oped by Toro, Spruce and Spears, generalizes the algorithm described in a previous paper to the

case where magnetic fields are present. The solution to the Riemann problem is approximated

by two constant states bounded by two fast shocks and separated by a tangential wave. The

scheme is Jacobian-free, in the sense that it avoids the expensive characteristic decomposition

of the RMHD equations and it improves over the HLL scheme by restoring the missing contact

wave.

Multidimensional integration proceeds via the single step, corner transport upwind (CTU)

method of Colella, combined with the constrained transport (CT) algorithm to preserve

divergence-free magnetic fields. The resulting numerical scheme is simple to implement, ef-

ficient and suitable for a general equation of state. The robustness of the new algorithm is

validated against one- and two-dimensional numerical test problems.
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1 I N T RO D U C T I O N

Strong evidence nowadays supports the general idea that relativistic

plasmas may be closely related with most of the violent phenomena

observed in astrophysics. Most of these scenarios are commonly

believed to involve strongly magnetized plasmas around compact

objects. Accretion onto supermassive black holes, for example, is

invoked as the primary mechanism to power highly energetic phe-

nomena observed in active galactic nuclei, (Macchetto 1999; Elvis,

Risaliti & Zamorani 2002; McKinney 2005; Shapiro 2005). In this

respect, the formation and propagation of relativistic jets and the

accretion flow dynamics pose some of the most challenging and

interesting quests in modern theoretical astrophysics. Likewise, a

great deal of attention has been addressed, in the last years, to the

darkling problem of gamma-ray bursts (see, for example, Meszaros

& Rees 1994; MacFadyen & Woosley 1999; Königl & Granot

2002; Rosswog, Ramirez-Ruiz & Davies 2003), whose models of-

ten appeal to strongly relativistic collimated outflows (Aloy et al.

2000, 2002). Other attractive examples include pulsar wind nebu-

lae (Bucciantini et al. 2005), microquasars (Meier 2003; McKinney

& Gammie 2004), X-ray binaries (Varnière, Rodriguez & Tagger

2002) and stellar core collapse in the context of general relativity

(Bruenn 1985; Dimmelmeier, Font & Müller 2002).

Theoretical investigations based on direct numerical simulations

have paved a way towards a better understanding of the rich phe-
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nomenology of relativistic magnetized plasmas. Part of this accom-

plishment owes to the successful generalization of existing shock-

capturing Godunov-type codes to relativistic magnetohydrodynam-

ics (RMHD) (see Komissarov 1999; Balsara 2001; Del Zanna,

Bucciantini & Londrillo 2003, and reference therein). Implemen-

tation of such codes is based on a conservative formulation which

requires an exact or approximate solution to the Riemann problem,

i.e., the decay of a discontinuity separating two constant states (Toro

1997). In terms of computational cost, employment of exact rela-

tivistic Riemann solvers may become prohibitive due to the high

degree of intrinsic nonlinearity present in the equations. This has

focused most computational efforts towards the development of ap-

proximate solvers which, nevertheless, require knowledge of the

exact solution, at least on some level (Martı́ & Müller 2003). The

presence of magnetic fields further entangles the solution, since the

number of decaying waves increases from three to seven (Anile &

Pennisi 1987; Anile 1989). An exact analytical approach to the so-

lution (which does not allow compound waves) has been recently

presented in Giacomazzo & Rezzolla (2006), while Romero et al.

(2005) derived a special case where the velocity and magnetic field

are orthogonal.

The trade-off between efficiency, accuracy and robustness of such

approximate methods is still a matter of research. Solvers based

on local linearization have been presented in Komissarov (1999)

(KO henceforth), Balsara (2001) (BA henceforth) and Koldoba,

Kuznetsov & Ustyugova (2002). Despite the higher accuracy in

reproducing the full wave structure, these solvers rely on rather
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expensive characteristic decompositions of the Jacobian matrix.

Conversely, the characteristic-free formulation of Harten–Lax–van

Leer (HLL) of Harten, Lax & van Leer (1983) has gained increas-

ing popularity due to its ease of implementation and robustness. The

HLL approach has been successfully applied to the RMHD equa-

tions by Del Zanna et al. 2003 (dZBL henceforth) as well as to the

general relativistic case (see, for example, Gammie, McKinney &

Tóth 2003; Duez et al. 2005) and to the investigation of extragalactic

jets; see Leismann et al. (2005).

Besides the computational efficiency, however, the HLL formula-

tion averages the full solution to the Riemann problem into a single

state, and thus lacks the ability to resolve single intermediate waves

such as Alfvén, contact and slow discontinuities. In Mignone &

Bodo (2005) (Paper I henceforth), we proposed an approach that

cured this deficiency by restoring the missing contact wave. The re-

sulting scheme generalized the Harten–Lax–van Leer contact wave

(HLLC) approximate Riemann solver by Toro, Spruce & Speares

(1994) to the equations of relativistic hydrodynamics without mag-

netic fields. Here, along the same lines, we propose an extension of

the HLLC solver to the relativistic magnetized case. Similar work

has been presented in the context of classical magnetohydrodynam-

ics (MHD) by Gurski (2004) and Li (2005).

The new HLLC Riemann solver is implemented in the framework

of the corner transport upwind (CTU) method of Colella (1990),

coupled with the constrained transport (CT) evolution (Evans &

Hawley 1988) of magnetic field. The algorithm naturally preserves

the divergence-free condition to machine accuracy and is stable up

to Courant number of 1.

The paper is organized as follows. The relevant equations are

given in Section 2. In Section 3, we derive the new HLLC Riemann

solver. Numerical tests, together with the implementation of the

CTU–CT method are shown in Section 4.

2 T H E R M H D E QUAT I O N S

The motion of an ideal relativistic magnetized fluid is described by

conservation of mass,

∂α(ρuα) = 0, (1)

energy–momentum,

∂α[(ρh + |b|2)uαuβ − bαbβ + pηαβ ] = 0, (2)

and by Maxwell’s equations,

∂α(uαbβ − uβbα) = 0. (3)

see, for example, Anile & Pennisi (1987) or Anile (1989). In equa-

tions (1)–(3), we have introduced the rest mass density of the fluid

ρ, the four velocity uα , the covariant magnetic field bα and the rela-

tivistic specific enthalpy h. The total pressure p results from the sum

of thermal (gas) pressure pg and magnetic pressure |b|2/2, i.e., p =
pg + |b|2/2. In what follows, we assume a flat metric, so that ηαβ =
diag(−1, 1, 1, 1) is the Minkowski metric tensor. Greek indexes run

from 0 to 3 and are customary for covariant expressions involving

four vectors. Latin indexes (from 1 to 3) describe three-dimensional

vectors and are used indifferently as subscripts or superscripts.

The four vectors uα and bα are related to the spatial components

of the velocity v ≡ (v x , v y , v z) and laboratory magnetic field B ≡
(Bx, By, B z) through

uα = γ (1, v),

bα = γ

(
v · B,

B
γ 2

+ v(v · B)

)
, (4)

with the normalizations

uαuα = −1, uαbα = 0, (5)

|b|2 ≡ bαbα = |B|2
γ 2

+ (v · B)2 , (6)

where γ = (1 − v · v)−1/2 is the Lorentz factor. We follow the same

conventions used in Paper I, where velocities are given in units of

the speed of light.

Writing the spatial and temporal components of equation (3) in

terms of the laboratory magnetic field yields

∂B
∂t

= ∇ × (v× B), (7)

∇ · B = 0, (8)

i.e., they reduce to the familiar induction equation and the solenoidal

condition.

For computational purposes, equations (1)–(3) are more conve-

niently put in the standard conservation form

∂U
∂t

+
∑

k

∂Fk(U )

∂xk
= 0, (9)

together with the divergence-free constraint (8), where U = (D, mx,

my, m z , Bx, By, B z , E) is the vector of conservative variables and Fk

are the fluxes along the xk ≡ (x , y, z) directions. The components of

U are, respectively, the laboratory density D, the three components

of momentum mk and magnetic field Bk and the total energy density

E. From equations (1), (2) and the definitions (4) one has

D = ργ, (10)

mk = (ρhγ 2 + B2)vk − (v · B)Bk, (11)

E = ρhγ 2 − pg + B2

2
+ v2 B2 − (v · B)2

2
(12)

and

Fx (U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dvx

mxvx − Bx
bx
γ

+ p

myvx − Bx
by

γ

mzvx − Bx
bz
γ

0

Byvx − Bxvy

Bzvx − Bxvz

mx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

Similar expressions hold for Fy(U ) and Fz(U ) by cyclic permuta-

tions of the indexes. Notice that the fluxes entering in the induction

equation are the components of the electric field which, in the infinite

conductivity approximation, becomes

Ω = −v× B. (14)

The non-magnetic case is recovered by letting B → 0 in the previous

expressions.

Finally, proper closure is provided by specifying an additional

equation of state. Throughout the following, we will assume a con-

stant �-law, with specific enthalpy given by

h = 1 + �

� − 1

pg

ρ
, (15)

where � is the constant specific heat ratio.
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2.1 Recovering primitive variables

Godunov-type codes are based on a conservative formulation where

laboratory density, momentum, energy and magnetic fields are

evolved in time. On the other hand, primitive variables, V =
(ρ, v, pg, B), are required when computing the fluxes (13) and

more convenient for interpolation purposes.

Recovering V from U is not a straightforward task in RMHD and

different approaches have been suggested by previous authors: BA

used an iterative scheme based on a 5 × 5 Jacobian subblock of the

system (9); KO solves a 3 × 3 nonlinear system of equations; dZBL

(the same approach is also used in Leismann et al. 2005) further

reduced the problem to a 2 × 2 system of nonlinear equations. Here

we reduce this task to the solution of a single non-linear equation,

by properly choosing the independent variable. If one sets, in fact,

W = ρhγ 2, S = m · B, the following two relations hold:

E = W − pg +
(

1 − 1

2γ 2

)
|B|2 − S2

2W 2
, (16)

|m|2 = (W + |B|2)2

(
1 − 1

γ 2

)
− S2

W 2
(2W + |B|2). (17)

Since at the beginning of each time step m, B and S are known

quantities, equation (17) allows one to express the Lorentz factor γ

as a function of W alone:

γ =
[

1 − S2(2W + |B|2) + |m|2W 2

(W + |B|2)2W 2

]1/2

. (18)

Using the equation of state (15), the thermal pressure pg is also a

function of W:

pg(W ) = W − Dγ

�rγ 2
, (19)

where �r = �/(� − 1) and γ is now given by (18). Thus the only

unknown appearing in equation (16) is W and

f (W ) ≡ W − pg +
(

1 − 1

2γ 2

)
|B|2 − S2

2W 2
− E = 0 (20)

can be solved by any standard root finding algorithm. Although both

the secant and Newton–Raphson methods have been implemented

in our numerical code, we found the latter to be more robust and

computationally efficient and it will be our method of choice. The

expression for the derivative needed in the Newton scheme is com-

puted as follows:

d f (W )

dW
= 1 − dpg

dW
+ |B|2

γ 3

dγ

dW
+ S2

W 3
, (21)

where dpg/dW is computed from (19), whereas dγ /dW is com-

puted from equation (18):

dpg

dW
= γ (1 + Ddγ /dW ) − 2W dγ /dW

�rγ 3
,

dγ

dW
= −γ 3 2S2(3W 2 + 3W |B|2 + |B|4) + |m|2W 3

2W 3(W + |B|2)3
. (22)

Once W has been computed to some accuracy, the Lorentz fac-

tor can be easily found from (18), thermal pressure from (19) and

velocities are found by inverting equation (11):

vk = 1

W + |B|2
(

mk + S

W
Bk

)
(23)

Finally, equation (10) is used to determine the proper density ρ.

2.2 The Riemann problem in RMHD

In the standard Godunov-type formalism, numerical integration of

(9) depends on the computation of numerical fluxes at zone in-

terfaces. This task is accomplished by the (exact or approximate)

solution of the initial value problem:

U (x, 0) =
{

U L,i+1/2 if x < xi+1/2,

U R,i+1/2 if x > xi+1/2,
(24)

where U L,i+1/2 and U R,i+1/2 are assumed to be piece-wise constant

left and right states at zone interface i + 1/2. The evolution of the

discontinuity (24) constitutes the Riemann problem.

As in classical MHD, evolution in a given direction is governed

by seven equations in seven independent conserved variables. In-

tegration along the x-direction, for example, leaves Bx unchanged

since the corresponding flux is identically zero, equation (13). The

solution to the initial value problem (24) results, therefore, in the

formation of seven waves: two pairs of magnetoacoustic waves, two

Alfvén waves and an entropy wave.

The complete analytical solution to the relativistic MHD Riemann

problem has been recently derived in closed form by Giacomazzo &

Rezzolla (2006). A number of properties regarding simple waves are

also well established; see Anile & Pennisi (1987) and Anile (1989).

Romero et al. (2005) discuss the case in which the magnetic field of

the initial states is tangential to the discontinuity and orthogonal to

the flow velocity.

General guidelines, relevant to the present work, follow below.

Across a magnetoacoustic (fast or slow) shock, all components of

V can change discontinuously. Thermodynamic quantities (e.g., ρ

and pg) are continuous through a relativistic Alfvén wave (as in

the classical case), but contrary to the classical counterpart, the

magnetic field is elliptically polarized and the normal component

of the velocity is discontinuous (Komissarov 1997). Through the

contact mode, only density exhibits a jump while thermal pressure,

velocity and magnetic field are continuous.

For the special case in which the component of the magnetic field

normal to a zone interface vanishes, a degeneracy occurs where

tangential, Alfvén and slow waves all propagate at the speed of the

fluid and the solution simplifies to a three-wave pattern. Under this

condition, the approximate solution outlined in Paper I can still be

applied with minor modifications; see Section 3.2 in this paper and

Mignone, Massaglia & Bodo (2006).

3 T H E H L L C S O LV E R

The derivation of the HLL and HLLC approximate Riemann solvers

has already been discussed in Paper I and will not be repeated here-

after.

Following the same notations, we approximate the solution to

the initial value problem (24) with two constant states, U ∗
L and U ∗

R,

bounded by two fast shocks and a contact discontinuity in the middle.

We write the solution on the x/t = 0 axis as

U (0, t) =

⎧⎪⎪⎨⎪⎪⎩
U L if λL � 0,

U ∗
L if λL � 0 � λ∗,

U ∗
R if λ∗ � 0 � λR,

U R if λR � 0,

(25)

where λL and λR are, respectively, the minimum and maximum

characteristic signal velocities and λ∗ is the velocity of the middle
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contact wave. The corresponding intercell numerical fluxes are

f =

⎧⎪⎪⎨⎪⎪⎩
FL if λL � 0,

F∗
L if λL � 0 � λ∗,

F∗
R if λ∗ � 0 � λR,

FR if λR � 0.

(26)

The intermediate fluxes F∗
L and F∗

R are expressed in terms of U ∗
L

and U ∗
R through the Rankine–Hugoniot jump conditions:

λL

(
U ∗

L − U L

) = F∗
L − FL,

λ∗(U ∗
R − U ∗

L

) = F∗
R − F∗

L,

λR

(
U R − U ∗

R

) = FR − F∗
R,

(27)

where, in general, F∗
L,R �= F (U ∗

L,R).

The consistency condition is obtained by adding the previous

equations together:(
λ∗ − λL

)
U ∗

L + (
λR − λ∗)U ∗

R

λR − λL

= U hll, (28)

where

U hll = λRU R − λLU L + FL − FR

λR − λL

(29)

is the state integral average of the solution to the Riemann problem.

Similarly, if one divides each expression in equation (27) by the

corresponding λ’s on the left-hand sides and adds the resulting ex-

pressions,

F∗
LλR

(
λ∗ − λL

) + F∗
RλL

(
λR − λ∗)

λR − λL

= λ∗ Fhll, (30)

with

Fhll = λR FL − λL FR + λRλL(U R − U L)

λR − λL

(31)

being the flux integral average of the solution to the Riemann prob-

lem.

Since the sets of jump conditions across the contact discontinuity

differ depending on whether Bx vanishes or not, we proceed by

separately discussing the two cases. In either case, the speed of

the contact wave is assumed to be equal to the (average) normal

velocity over the Riemann fan, i.e., λ∗ ≡ v∗
x . The normal component

of magnetic field, Bx, is assumed to be continuous at the interface,

so that B∗
x ≡ B x,L = B x,R can be regarded as a parameter in the

solution.

3.1 CaseB∗
x �= 0

We start by noticing that equations (28) and (30) provide a total of

14 relations. Six additional conditions come by imposing continuity

of total pressure, velocity and magnetic field components across the

contact discontinuity. This gives us a freedom of 20 independent

unknowns, 10 per state; we choose to introduce the following set of

unknowns for each state:{
D∗, v∗

x , v∗
y , v∗

z , B∗
y , B∗

z , m∗
y, m∗

z , E∗, p∗}. (32)

The normal component of momentum (m∗
x ) is not an independent

variable since we assume, for consistency, that

m∗
x = (E∗ + p∗)v∗

x − (v∗ · B∗)B∗
x . (33)

The previous relation obviously holds between conservative and

primitive physical quantities. We point out that the choice (32) is

not unique and alternative sets of independent variables may be

adopted.

According to the previous definitions, the state vector solution to

the Riemann problem is written as

U ∗ = (
D∗, m∗

x , m∗
y, m∗

z , B∗
y , B∗

z , E∗)t
, (34)

while the flux vector, equation (13), becomes

F∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D∗v∗
x

m∗
xv

∗
x − B∗

x B∗
x

(γ ∗)2 − B∗
x v

∗
x (v∗ · B∗) + p∗

m∗
yv

∗
x − B∗

x B∗
y

(γ ∗)2 − B∗
x v

∗
y (v∗ · B∗)

m∗
z v

∗
x − B∗

x B∗
z

(γ ∗)2 − B∗
x v

∗
z (v∗ · B∗)

B∗
y v

∗
x − B∗

x v
∗
y

B∗
z v∗

x − B∗
x v

∗
z

m∗
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (35)

As in Paper I, we adopt the convention that quantities without the L

or R suffix refer indifferently to the left (L) or right (R) state.

The six conditions across the contact discontinuity are

v∗
x,L = v∗

x,R, v∗
y,L = v∗

y,R, v∗
z,L = v∗

z,R,

B∗
y,L = B∗

y,R, B∗
z,L = B∗

z,R, p∗
L = p∗

R.
(36)

For these quantities the suffix L or R is thus unnecessary.

From the transverse components of the magnetic field in the state

consistency condition (28), one immediately finds that

B∗
y = Bhll

y , B∗
z = Bhll

z . (37)

Thus the transverse components the magnetic field are given by the

HLL single state. Similarly, from the fifth and sixth components of

the flux consistency condition (30) one can express the transverse

velocity through

B∗
x v

∗
y = B∗

y v
∗
x − Fhll

By
, B∗

x v
∗
z = B∗

z v∗
x − Fhll

Bz
, (38)

where Fhll
By

and Fhll
Bz

are the By- and B z-components of the HLL flux,

equation (31). Simple manipulations of the normal momentum and

energy components in equation (28) together with (33) yield the

following simple expression:

Ehllv∗
x + p∗v∗

x − B∗
x (v∗ · B∗) = mhll

x . (39)

Similar algebra on the momentum and energy components of the

flux consistency condition (30) leads to[
Fhll

E − B∗
x (v∗ · B∗)

]
v∗

x −
(

B∗
x

γ ∗

)2

+ p∗ − Fhll
mx = 0, (40)

where 1/(γ ∗)2 = 1 − (v∗
x )2 − (v∗

y)2 − (v∗
z )2.

Now, if one multiplies equation (40) by v∗
x and subtracts equa-

tion (39), the following quadratic equation may be obtained:

a
(
v∗

x

)2 + bv∗
x + c = 0, (41)

with coefficients

a = Fhll
E − Bhll

⊥ · Fhll
B⊥ ,

b = −Fhll
mx − Ehll +

∣∣Bhll
⊥

∣∣2 +
∣∣Fhll

B⊥

∣∣2
,

c = mhll
x − Bhll

⊥ · Fhll
B⊥ .

(42)

In the previous expressions Bhll
⊥ ≡ (0, Bhll

y , Bhll
z ), Fhll

B⊥ ≡ (0, Fhll
By

,

Fhll
Bz

). Similar arguments to those presented in Paper I lead to the

conclusion that only the root with the minus sign is physically

admissible.
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Once v∗
x is known, v∗

y and v∗
z are readily obtained from (38), p∗ is

computed from (40), while density, transverse momenta and energy

are obtained using the Rankine–Hugoniot jump conditions across

each fast wave:

D∗ = λ − vx

λ − v∗
x

D, (43)

m∗
y = −B∗

x

[(
B∗

y

/
(γ ∗)2

) + (v∗ · B∗)v∗
y

] + λmy − Fmy

λ − v∗
x

, (44)

m∗
z = −B∗

x

[(
B∗

z

/
(γ ∗)2

) + (v∗ · B∗)v∗
z

] + λmz − Fmz

λ − v∗
x

, (45)

E∗ = λE − mx + p∗v∗
x − (v∗ · B∗)B∗

x

λ − v∗
x

. (46)

In equations (44) and (45), Fmy and Fmz are, respectively, the my-

and mz-components of the flux, equation (13), evaluated at the left

or right state. As in Paper I, we have omitted the suffix L or R for

clarity of exposition.

3.2 Case B∗
x = 0

For vanishing normal component of the magnetic field a degener-

acy occurs where the Alfvén waves and the two slow magnetosonic

waves propagate at the speed of the contact discontinuity. For this

case the approximate character of the HLLC solver offers a better

representation of the exact solution, since the Riemann fan is com-

prised three waves only. At the contact discontinuity, however, only

the normal component of the velocity vx and the total pressure p
are continuous (KO). The remaining variables experience jumps.

This only adds two constraints to the 14 jump conditions, leaving a

freedom of eight unknowns per state. However, the transverse veloc-

ities vy and v z do not enter explicitly in the fluxes (35) and the jump

conditions can be written entirely in terms of {D∗, v∗
x , m∗

y , m∗
z , B∗

y ,

B∗
z , E∗, p∗}, i.e., eight unknowns per state. Straightforward algebra

shows that the coefficients of the quadratic equation (41) are now

given by

a = Fhll
E , b = −Fhll

mx − Ehll, c = mhll
x , (47)

i.e., they coincide with the expressions derived in Paper I. The root

with the minus sign still represents the correct physical solution.

Once v∗
x is found, the total pressure p∗ is derived from

p = −Fhll
E v∗

x + Fhll
mx

, (48)

and the normal momentum (33) becomes

m∗
x = (E∗ + p∗)v∗

x . (49)

The remaining quantities are easily obtained from the jump con-

ditions:

D∗ = λ − vx

λ − v∗
x

D, (50)

m∗
y,z = λ − vx

λ − v∗
x

my,z, (51)

E∗ = λE − mx + p∗v∗
x

λ − v∗
x

, (52)

B∗
y,z = λ − vx

λ − v∗
x

By,z . (53)

3.3 Remarks

The expressions derived separately in Sections 3.1 and 3.2 are suit-

able in the Bx �= 0 and Bx → 0 cases, respectively. Although other

degeneracies may be present (see KO for a thorough discussion) no

other modifications are necessary to the algorithm. Before testing

the new solver, however, a few remarks are worth of notice.

(i) The solutions derived separately for Bx �= 0 and the special

case Bx = 0 automatically satisfy the consistency conditions (28)

and (30) by construction.

(ii) In the limit of zero magnetic field, the expressions derived

in Section 3.2 reduce to those found in Paper I.

(iii) In the classical limit, our derivation does not coincide with

the approximate Riemann solvers constructed by Gurski (2004) or

Li (2005). The reason for this discrepancy stems from the fact that

both Gurski (2004) and Li (2005) assume that transverse momenta

and velocities are tied by the relation m∗
y,z ≡ ρ∗v∗

y,z . Although cer-

tainly true in the exact solution, this assumption reduces, in the

HLLC approximate formalism, the number of unknowns from 10

to eight (when Bx �= 0) thus leaving the systems of jump conditions

(27) overdetermined. Should this be the case, the number of equa-

tions exceeds the number of unknowns and the integral relations

across the Riemann fan inevitably break down. This explains the

inconsistencies found in Li’s and Gurski’s derivations and further

discussed in Miyoshi & Kusano (2005).

Therefore, in the classical limit, our expressions automatically

imply m∗
y,z �= ρ∗v∗

y,z and the correct expressions for the transverse

velocities are still given by (38), whereas transverse momenta should

be derived from the jump conditions accordingly. Furthermore, con-

trary to Li’s misconception, consistency with the jump conditions

requires that the magnetic field components be uniquely determined

by (37) and no other choices are thus possible.

(iv) The reader might have noticed that in the limit of vanishing

Bx, some of the expressions given in Section 3.1 do not reduce to

the those found in Section 3.2. This property also persists in the

classical limit, see Gurski (2004) and Li (2005). The reason for this

discrepancy relies on the assumption of continuity of the transverse

components of magnetic field across the tangential wave λ∗: when

Bx → 0, a degeneracy occurs where the tangential, Alfvén and slow

waves all propagate at the speed of the fluid and the solution sim-

plifies to a three-wave pattern. In the exact solution, the continuity

of By and Bz across the tangential wave is lost since the middle state

bounded by the two slow waves becomes singular.

(v) Lastly, we note that in both the classical and relativistic case

the transverse velocities given by equation (38) become ill-defined

as Bx → 0. However, in the classical case, the terms involving v∗
y or

v∗
z in the flux definitions remain finite as Bx → 0. Conversely, this

is not the case in RMHD for arbitrary orientation of the magnetic

field as one can see, for example, using equation (44):

m∗
y ∼

(
Bhll

z v∗
x − Fhll

Bz

)(
Fhll

By
Bhll

z − Fhll
Bz

Bhll
y

)
Bx

(
λ − v∗

x

) + O(1) (54)

as Bx → 0. Fortunately, for strictly two-dimensional flows (e.g.,

when B z = v z = 0), the leading order term vanishes and the sin-

gularity is avoided. In the general case, however, we conclude that

more sophisticated solvers should allow the presence of rotational

discontinuities in the solution to the Riemann problem. This has

been done, for example, by Miyoshi & Kusano (2005) in the con-

text of classical MHD.
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3.4 Wave speed estimate

The full characteristic decomposition of the RMHD equation (i.e.,

the eigenvalues and eigenvectors of the Jacobian matrix ∂Fx/∂U )

was extensively analyzed by Anile & Pennisi (1987) and Anile

(1989). In the one-dimensional case the Jacobian matrix can be

decomposed into seven eigenvectors associated with four magne-

tosonic waves (fast and slow disturbances), two Alfvén waves and

one entropy wave propagating at the fluid velocity. The eigenstruc-

ture is therefore similar to the classical case and it can be shown that

the ordering of the various speeds and corresponding degeneracies

are preserved (Anile 1989).

Since the HLLC approximate Riemann solver requires an esti-

mate of the outermost waves, the right- and left-going fast shock

speeds identify the necessary characteristic velocities. Thus we set

(Davis 1988)

λL = min(λ−(VL), λ−(VR)),

λR = max(λ+(VL), λ+(VR)),
(55)

where λ− and λ+ are the minimum and maximum roots of the quartic

equation

ρh
(

1 − c2
s

)
a4 = (1 − λ2)

[(|b|2 + ρhc2
s

)
a2 − c2

sB2
]
, (56)

with a = γ (λ − vx ),B = bx − λb0. In absence of magnetic field,

both the (left- and right-going) slow and fast shocks propagate at the

same speed and equation (56) reduces to the quadratic equation (22)

shown in Paper I. When B �= 0, no simple analytical expression is

available and solving (56) requires numerical or rather cumbersome

analytical approaches. Recently, Leismann et al. (2005) proposed

approximate simple lower and upper bounds to the required eigen-

values. Here we choose to solve equation (56) by means of analytical

methods, where the quartic is reduced to a cubic equation which is

in turn solved by standard methods.

There are special cases where it is possible to handle some of the

degeneracies more efficiently using simple analytical formulae:

(i) for vanishing total velocity, equation (56) reduces to a bi-

quadratic,

(ρh + |b|2)λ4 − (|b|2 + ρhc2
s + B2

x c2
s

)
λ2 + c2

s B2
x = 0; (57)

(ii) for vanishing normal component of the magnetic field, equa-

tion (56) yields a quadratic equation

a2λ
2 + a1λ + a0 = 0 (58)

with a2 = ρh[c2
s +γ 2(1− c2

s )]+Q, a1 = −2ρhγ 2vx (1− c2
s ), a0 =

ρh[−c2
s + γ 2v2

x (1 − c2
s )] − Q and Q = |b|2 − c2

s (v⊥ · B⊥)2.

For all other cases we solve the quartic equation (56).

3.5 Positivity of the HLLC scheme

The set of physically admissible conservative states, G, identify all

the U’s yielding positive thermal pressure pg and total velocity |v|
< 1, according to the procedure outlined in Section 2.1. Thus the

positivity of the HLLC approximate Riemann solver requires that

(i) both left and right intermediate states U∗
L and U∗

R belong to

G;

(ii) the first-order scheme yields updated conservative states that

are in G.

Unfortunately, the mathematical proof of the positivity of the

HLLC scheme presents remarkable algebraic difficulties. In absence

of the singular behavior described in Section 3.3, investigations have

been carried at the numerical level by verifying that each intermedi-

ate state U∗ correspond to a primitive, physically admissible state. In

all the tests presented in this paper and several others not discussed

here, the scheme did not manifest any loss of positivity. However, in

the general three-dimensional case when Bx, By, Bz �= 0, the terms

involving Bx in the expressions for the transverse momenta may

become arbitrarily large as Bx → 0 and a loss of positivity can be

experienced.

4 A L G O R I T H M VA L I DAT I O N

4.1 Corner transport upwind for relativistic MHD

The RMHD equations (9) are evolved in a conservative, dimension-

ally unsplit fashion:

U n+1
i, j = U n

i, j + Lx,n+1/2
i, j + Ly,n+1/2

i, j , (59)

where the L’s are Godunov operators,

Lx,n+1/2
i, j = − 
t


xi

(
f x,n+1/2

i+1/2, j − f x,n+1/2
i−1/2, j

)
, (60)

Ly,n+1/2
i, j = − 
t


y j

(
f y,n+1/2

i, j+1/2 − f y,n+1/2
i, j−1/2

)
, (61)

and Un is the set of volume-averaged conservative variables U n =
(D, m, B̄, E)n at time t = tn. Here B̄ denotes the zone-averaged

magnetic field. For clarity of exposition, we will omit, throughout

the following, integer-valued subscripts (i, j) and retain only the

half-integer notation to denote zone edge values.

The fluxes appearing in equations (60) and (61) are computed by

solving, at each zone interface, a Riemann problem with suitable

time-centered left and right input states. For example, we obtain

f y,n+1/2
j+1/2 as the HLLC flux with input states given by Vn+1/2

j+1/2,L and

Vn+1/2
j+1/2,R, respectively.

Computation of time-centered left and right zone edge values

proceeds using the CTU of Colella (1990), recently extended to rel-

ativistic hydrodynamics by Mignone, Plewa & Bodo (2005) and to

classical MHD by Gardiner & Stone (2005). Here we generalize the

CTU approach to relativistic MHD by following a slightly differ-

ent approach, although equivalent to the guidelines given in Colella

(1990). For the sake of conciseness, only the essential steps will be

described hereafter. The unfamiliar reader is referred to the work of

Colella (1990), Saltzman (1994) and Gardiner & Stone (2005) for

more comprehensive derivations.

In our formulation, second-order accurate left and right states are

sought in the form

Vn+1/2
i±1/2,S = V x,n+1/2 ± δx Vn

2
, Vn+1/2

j±1/2,S = V y,n+1/2 ± δy Vn

2
, (62)

where we take S = L (S = R) with the plus (minus) sign. The slopes

δ x Vn and δ y Vn are computed at the beginning of the time step using,

for example, the monotonized central-difference (MC) limiter:

δx qn = si min

(
2
∣∣
qn

+
∣∣, 2

∣∣
qn
−
∣∣, ∣∣qn

i+1 − qn
i−1

∣∣
2

)
, (63)

where q ∈ V and


qn
± = ±(

qn
i±1 − qn

i

)
, si = sign

(

qn

+
) + sign

(

qn

−
)

2
. (64)

An alternative smoother prescription is given by the harmonic mean

(van Leer 1977):

δx qn = 2 max (0, 
q+
q−)


q+ + 
q−
. (65)
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Equation (63) provides smaller dissipation at discontinuities,

whereas equation (65) was found to give less oscillatory results.

Interpolation in the y-direction is done in a similar manner. Addi-

tional forms of limiting may be adopted if necessary, see Sections A1

and A2.

The cell- and time-centered values on the right-hand sides of equa-

tions (62) are computed from a Taylor expansion of the conservative

variables, i.e.,

U x,n+1/2 ≈ U n + 
t

2

∂U
∂t

= U n − 
t

2

(
∂F̂x

∂x
+ ∂Fy

∂y

)
, (66)

U y,n+1/2 ≈ U n + 
t

2

∂U
∂t

= U n − 
t

2

(
∂Fx

∂x
+ ∂F̂y

∂y

)
. (67)

Following Colella (1990), we approximate the spatial derivative in

the direction normal to a zone interface (denoted with a hat) with

the Hancock step already introduced in Paper I,

∂F̂x

∂x
≈ Fx

(
Vn

i+1/2,L

) − Fx
(

Vn
i−1/2,R

)

xi

, (68)

whereas the derivative in the tangential direction is computed in an

upwind fashion using a Godunov operator:


t
∂Fy

∂y
≈ −Ly,n = 
t


y j

(
f y,n

j+1/2 − f y,n
j−1/2

)
. (69)

The state U y,n+1/2 is obtained by similar arguments by interchanging

the role of normal and tangential derivatives. We would like to point

out that the Godunov operators used in the predictor step involve

left and right states computed at t = tn (and not at t = tn+1/2 as in

Gardiner & Stone (2005)):

Vn
i±1/2,S = Vn ± δx Vn

2
, Vn

j±1/2,S = Vn ± δy Vn

2
. (70)

This choice still makes the scheme second-order accurate in space

and time and was found, in our experience, to yield a more robust

algorithm. Besides, our CTU implementation does not require a

primitive variable formulation, thus offering ease of implementation

in the context of relativistic hydro and MHD, where the Jacobian

∂F/∂U is particularly expensive to evaluate.

Note that a total of four Riemann problems are involved in the

single time-step update (59). It can be easily verified that for one-

dimensional flows, the CTU method outlined above reduces to the

scheme presented in Paper I.

Finally, the choice of the time step 
t is based on the Courant–

Friederichs–Lewy (CFL) condition (Courant, Friedrichs & Lewy

1928):


t = CFL × min
i, j

(

x

max
(∣∣λx

L

∣∣, ∣∣λx
R

∣∣) ,

y

max
(∣∣λy

L

∣∣, ∣∣λy
R

∣∣)
)

, (71)

where 0 < CFL < 1 is the Courant number and |λx
L,R |, |λy

L,R| are

the zone interface wave speeds computed in the x and y directions

according to (55).

4.1.1 Contrained transport evolution of the magnetic field

It is well known that multidimensional numerical schemes do not

generally preserve the solenoidal condition, equation (8), unless

special discretization techniques are employed. In this respect, sev-

eral approaches have been suggested in the context of the classical

MHD equations (Londrillo & Del Zanna 2000; Tóth 2000) and

some of them have been recently extended to the relativistic case;

see dZBL. Here we adopt the CT (Evans & Hawley 1988) and fol-

low the approach of Balsara & Spicer (1999) for its integration in

Godunov-type schemes.

In the CT approach a new staggered magnetic field variable is

introduced. In this representation, the components of the magnetic

field are treated as area-weighted averages on the zone faces to which

they are orthogonal. Thus, Bx is collocated at (i + 1/2, j), whereas

By at (i, j + 1/2). No jump is allowed in the normal component

of B at a zone boundary, consistently with the well posedness of

the Riemann problem presented in Sections 2.2 and 3. Transverse

components may be discontinuous.

In this formulation, a discrete version of Stoke’s theorem is used

to integrate the induction equation (7). For example, after the pre-

dictor steps (66) and (67), we update the face-centered magnetic

field according to

Bn+1/2
x,i+1/2 = Bn

x,i+1/2 − 
tn

2
y j

(
�z

i+1/2, j+1/2 − �z
i+1/2, j−1/2

)
,

Bn+1/2
y, j+1/2 = Bn

y, j+1/2 + 
tn

2
xi

(
�z

i+1/2, j+1/2 − �z
i−1/2, j+1/2

)
,

(72)

and similarly after the corrector step. The electromotive force �

is collocated at cell corners and is computed by straightforward

arithmetic averaging:

�z
i+1/2, j+1/2 = �z

i+1/2, j + �z
i, j+1/2 + �z

i+1/2, j+1 + �z
i+1, j+1/2

4
,

(73)

where, �z
i+1/2, j ≡ − f x,n

By ,i+1/2, j and �z
i, j+1/2 ≡ f y,n

Bx ,i, j+1/2 are the

z components of the electric fields available at grid interfaces dur-

ing the upwind step. Despite its simplicity, equation (73) lacks of

directional bias and more sophisticated algorithms may be used to

incorporate upwind information in a consistent way; see Londrillo

& Del Zanna (2004) and Gardiner & Stone (2005). For ease of

implementation we will not discuss them here.

It is a straightforward exercise to verify that the ∇ · B = 0 condi-

tion is preserved from one time-step to the next one, due to perfect

cancellation of terms. Notice also that, since Bx is continuous at the

(i + 1/2, j) interface, only B̄y and B̄z need to be interpolated during

the reconstruction procedure in the x-direction. A similar argument

applies to B̄x and B̄z when interpolating along the y coordinate.

Since equation (59) evolves volume-averaged quantities, the

zone-averaged magnetic field, B̄, is computed at the beginning of

the time-step from the face-averaged magnetic fields using linear

interpolation:

B̄x = Bx,i+1/2 + Bx,i−1/2

2
, (74)

B̄y = By, j+1/2 + By, j−1/2

2
. (75)

Equations (73)–(75) are second-order accurate in space.

4.1.2 Summary

We summarize our CTU–CT algorithm by the following steps.

(i) At the beginning of the time-step, form the volume averages

(74) and (75) from the face centered magnetic field.

(ii) Compute x and y limited slopes by interpolating cell-centred

primitive variables according to equation (63) or (65).

(iii) Make a sweep along the x direction. Form left and right

states using the first of equation (70) with Bn
x,i+1/2,L = Bn

x,i+1/2,R

equal to the x component of the face-centred magnetic field:
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– use the Hancock step (68) to compute the x derivative in

equation (66) and add the resulting contribution to Ux,n+1/2;

– compute the Lx,n Godunov operator by solving Riemann

problems at the (i + 1/2, j) interfaces and add the resulting con-

tribution to Uy,n+1/2.

(iv) Make a sweep along the y direction. Form left and right

states using the second in equation (70) with Bn
y,j+1/2,L = Bn

y,j+1/2,R

equal to the y component of the face-centred magnetic field:

– obtain the Ly,n Godunov operator (69) by solving Riemann

problems at the (i, j + 1/2) interfaces; add the resulting contribu-

tion to Ux,n+1/2;

– use the Hancock step relative to the y direction to compute

the y derivative and add it to Uy,n+1/2.

(v) Compute the time-centred area weighted magnetic field us-

ing Stoke’s theorem (72). This concludes the predictor step.

(vi) Make a sweep along the x direction with left and right time-

centred states given by the first equation in (62) with Bn+1/2
x,i+1/2,L =

Bn+1/2
x,i+1/2,R equal to the time centred face-averaged magnetic field

computed via Stoke’s theorem. Obtain the Lx,n+1/2 Godunov

operator.

(vii) Repeat the previous step by sweeping along the y direction.

Compute the Ly,n+1/2 Godunov operator.

(viii) Update the cell-centred conservative variables using equa-

tion (59) and the face-averaged magnetic field using Stoke’s

theorem.

4.2 One-dimensional test problems

One-dimensional problems are specifically designed to verify the

ability of the algorithm in reproducing the exact wave pattern. In

what follows, we present four shock-tube tests, already introduced

by BA and dZBL, with left and right states given in Table 1. Compu-

tations are performed on the interval [0, 1] and the initial disconti-

nuity is placed at x = 0.5. The final integration time is t = 0.4. Note

that the CT algorithm is unnecessary, since equation (8) is trivially

satisfied in one-dimensional flows.

4.2.1 Problem 1

The first test problem, initially proposed by van Putten (1993), is

a relativistic extension of the Brio & Wu (1988) magnetic shock

tube. In analogy with the classical case, we use the ideal equation of

state (15) with specific heat ratio � = 2. The breakup of the initial

discontinuity sets up a left-going fast rarefaction wave, a left-going

Table 1. Initial conditions for the one-dimensional shock tube problems

presented in the text. In all test problems we adopt a resolution of 1600 uni-

form computational zone, covering the interval [0, 1]. Integration is carried

until t = 0.4.

Test ρ pg vx vy v z Bx By Bz

1L 1 1 0 0 0 0.5 1 0

1R 0.125 0.1 0 0 0 0.5 −1 0

2L 1 30 0 0 0 5 6 6

2R 1 1 0 0 0 5 0.7 0.7

3L 1 103 0 0 0 10 7 7

3R 1 0.1 0 0 0 10 0.7 0.7

4L 1 0.1 0.999 0 0 10 7 7

4R 1 0.1 −0.999 0 0 10 −7 −7

Figure 1. Comparison between the first-order HLL (dotted line) and the

HLLC (dashed line) method for the first shock tube problem at t = 0.4. Only

density profiles are shown. Computations were performed on 100 compu-

tational zones with CFL = 0.8. The solid line gives the analytic solution as

computed by Giacomazzo & Rezzolla (2006). The major difference between

the two approaches is the resolution of the contact wave.

compound wave, a contact discontinuity, a right-going slow shock

and a right-going fast rarefaction wave.

We compare, in Fig. 1, the results obtained with the first-order

HLL and HLLC solvers on 100 uniform computational zones. The

exact solution (given by the solid line) was obtained using the nu-

merical code available from Giacomazzo & Rezzolla (2006). The

left going compound wave located at x ≈ 0.5 is only visible in

the numerical integration since the code used to generate the an-

alytical solution (shown as the solid line in Fig. 1) does not al-

low compound structures by construction. As expected, the HLLC

Riemann solver attains sharper representation of the contact dis-

continuity when compared to the HLL scheme. Because of the

reduced smearing in proximity of the contact wave, neighboring

structures such as the compound wave on the left and the slow

shock on the right can be better resolved when using the HLLC

solver. Computations at different resolutions show, in fact, that the

L-1 norm errors in density are reduced by roughly 20–30 per cent

(see left-hand panel in Fig. 2), being, respectively, 0.53 and 0.74

Figure 2. Discrete L1-norm density errors (in percent) computed for the

first-order scheme at different grid resolutions using the HLLC (asterisks)

and HLL (filled circles) solvers. Computation have been performed for the

first (left-hand panel, P1) and second (right-hand panel, P2) problems on 50,

100, 200, 400, 800, 1600, 3200 and 6400 zones with CFL = 0.8.
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Figure 3. Relativisitc Brio–Wu shock tube problem. The second-order scheme with the HLLC Riemann solver on 1600 grid points and the MC limiter was

used. From left to right and top to bottom: proper density, thermal pressure, Lorentz factor, normal and transverse velocity components and transverse magnetic

field. The Courant number is 0.8.

for the HLLC and HLL solver at the highest resolution employed

(6400 zones).

Fig. 3 shows the results obtained with the second-order scheme

with the MC limiter, equation (63), and the same Courant number,

CFL = 0.8 on 1600 grid points. A direct comparison with the exact

solution shows that all discontinuities are correctly captured and

resolved on few computational zones, owing also to the presence

of a compressive limiter. In this respect, our second-order HLLC

scheme provides similar results to those obtained with the third-

order central ENO–HLL scheme by dZBL.

The L-1 norm errors computed at different resolutions with the

two different solvers differ by ≈10–20 per cent, see left-hand panel

in Fig. 4. When compared to the more sophisticated, characteristic-

based algorithm presented in BA, our results show slightly sharper

Figure 4. Discrete L1-norm error (10−2) for density computed for the

second-order scheme at different resolutions, see Fig. 2.

representation of the right-going slow shock and the contact dis-

continuity. Small overshoots appear in the Lorentz factor profile

at the left-going compound wave and the right-going slow shock.

This feature may be considerably mitigated by switching to a less

compressive limiter or by reducing the Courant number.

4.2.2 Problem 2

The resulting wave pattern for this configuration is comprised two

left-going rarefaction fans (fast and slow) and two right-going slow

and fast shocks. The specific heat ratio used for this calculation is

� = 5/3. The weak slow rarefaction located at x ≈ 0.53 and the slow

shock at x ≈ 0.86 are separated by a contact discontinuity where the

proper density changes by a factor of ∼7. The velocity on either side

of the contact wave is mildly relativistic, with a maximum Lorentz

factor of ≈1.36.

The improvement offered by the HLLC Riemann solver over the

HLL approach in the resolution of the contact wave is evident from

Fig. 5, where we compare the density profiles obtained with the

first-order schemes against the analytical solution.

Computations obtained with the second-order limiter (63) show

excellent agreements with the analytical profiles, see Fig. 6. Our

single-step HLLC scheme attain considerably sharper resolution

than the results obtained by previous calculations. The two right-

going shocks, for instance, are smeared over ∼3 grid points, ap-

proximately half of the resolution shown in BA and dZBL. More-

over, the smearing of the contact wave is considerably reduced

when compared to the HLL scheme in dZBL (∼10 zones versus

∼14). Similar overshoots, though, appear at the right of contact

mode.
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Figure 5. Comparison between the first-order HLL (dotted line) and the

HLLC (dashed line) method for the second shock tube at t = 0.4. Density

profiles are shown. Computations were performed on 100 computational

zones with CFL = 0.8. The solid line gives the analytic solution as computed

by Giacomazzo & Rezzolla (2006).

The discrete L-1 errors for different grid sizes are shown in the

right panel of Fig. 4, where, at the maximum resolution employed

(6400 zones) the HLLC and HLL errors reduce to 0.17 and 0.25 per

cent, respectively.

Figure 6. Solution of the mildly relativistic blast wave problem (test 2) computed with the second-order HLLC scheme and the MC limiter. A Courant number

of 0.8 and 1600 grid zones were used in the computation.

4.2.3 Problem 3

The configuration for this test is similar to the previous problem, but

a higher pressure jump separates the initial left and right states, see

Table 1. Only the second-order scheme with the Van Leer limiter

(65) and a Courant number of 0.8 has been employed. The ideal

equation of state (15) with � = 5/3 is used. The ensuing wave

pattern shows a stronger relativistic configuration, with a maximum

Lorentz factor of ∼3.37, see Fig. 7. The presence of magnetic fields

makes the problem even more challenging than its hydrodynamical

counterpart (see test 3 in Paper I), since the contact wave, slow

and fast shocks now propagate extremely close to each other. As a

result, a thin density shell sets up between the contact mode and the

slow shock. The higher compression factor (more than 100) follows

from a more pronounced relativistic length contraction effect. At the

resolution of 1600 grid zones, the relative error in the density peak

(ρmax ≈ 9.98) is 1.2 per cent. A second thin shell-like structure forms

between the slow and fast shocks, as can be seen in the profiles in

Fig. 7. The peaks achieved in the transverse components of velocity

(≈ −0.37) and magnetic field (≈8.95) achieve, respectively, 87 and

95 per cent of their exact values. The small shell thickness, however,

still prevents a clear resolution of the two right going shocks, visible

in the exact solution. This demonstrates that relativistic magnetized

flows can develop rich and complex features difficult to resolve on a

grid of fixed size. Similar conclusions have been drawn by previous

investigators.

Results obtained with the HLL solver (not shown here) indicates

that the resolution attained at the contact discontinuity is equivalent.

Therefore, as it was also pointed out in Paper I, we conclude that,

for strong blast waves where relativistic contraction effects produce

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 368, 1040–1054



1050 A. Mignone and G. Bodo

Figure 7. Strong blast wave problem (test 3) on 1600 grid points. A Courant number of 0.8 and the Van Leer limiter were used.

closely moving discontinuities, the HLL and HLLC schemes pro-

duce nearly identical results.

4.2.4 Problem 4

The collision of two relativistic streams is considered in the fourth

test problem. The initial impact produces two strong relativistic fast

shocks propagating symmetrically in opposite direction about the

impact point, x = 0.5, see Fig. 8. Two slow shocks delimiting a high

pressure, constant density region in the center follow behind.

Computations are carried out with CFL = 0.8 and the Van Leer

limiter, equation (65). Spurious oscillations in vicinity of strong

shocks are reduced by switching to the more diffusive minmod lim-

iter, see Section A1. No contact waves are present in the problem

and, not surprisingly, the quality of our solution is essentially the

same obtained by previous authors: the fast shocks are resolved

in 2–3 cells, whereas the slow shocks are smeared out over 5–6

zones. Very similar patterns are observed in the work of BA and

dZBL.

It is well known that Godunov-type schemes suffer from a com-

mon pathology, often found in these type of problems. In the classi-

cal case, this has been recognized for the first time by Noh (1987).

The wall heating problem, in fact, consists in an undesired entropy

buildup in a few zones around the point of symmetry. Our scheme

is obviously no exception as it can be inferred by inspecting the

undershoots in the density profile, see Fig. 8.

We repeated the test with the HLL scheme and found that this

pathology is worse when the HLLC scheme is used. The relative

numerical undershoot in density, in fact, were found to be ∼5 per

cent for the HLL and ∼12 per cent for the HLLC scheme. Since

similar errors were also reported by BA, and the same conclusions

have been drawn in Paper I, we raise the question as to whether the

degree of this pathology grows with the complexity of the Riemann

solver. Future, more specific works should address this problem.

4.3 Two-dimensional test problems

Multidimensional numerical computations of magnetized flows are

notoriously more challenging, due to the necessity to preserve the

divergence-free constraint (8). In what follows, we consider three

test problems: a cylindrical blast wave test, the interaction of a strong

magnetosonic shock with a cloud and the propagation of an axisym-

metric jet in cylindrical coordinates.

4.3.1 Cylindrical blast wave

Cylindrical explosions in cartesian coordinates are particular useful

in checking the robustness of the code and the algorithm response

to different kinds of degeneracies. Here we follow the same setup

adopted by KO, where the square [−6, 6] × [−6, 6] is filled with a

uniform (ρ = 10−4, pg = 3 × 10−5), initially static (v= 0) medium,

threaded by a constant magnetic field B = (Bx, 0). The circular

region
√

x2 + y2 < 0.08 is initialized with constant higher density

and pressure values, ρ = 0.01 and pg = 1 decreasing linearly for

0.08 � r � 1. We adopt the ideal equation of state (15) with specific

heat ratio � = 4/3. We consider two setups, corresponding to a

relatively weak magnetic field Bx = 0.1 and a strong field Bx = 1.

Figs 9 and 10 show the magnetic field distribution, thermal pressure

and Lorentz factor for the two configurations at t = 4. Computations

are carried using the van Leer limiter, equation (65), together with

the multidimensional limiting procedure described in Section A2

on 200 × 200 uniform grid zones. The Courant number is 0.4.
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Figure 8. Relativistic shock reflection problem at t = 0.4 on 1600 computational cells. The initial Lorentz factor is γ ≈ 22.4. Integration has been carried with

the Van Leer limiter (except near strong shocks where the minmod limiter was used) and a Courant number of 0.8. Notice the wall heating problem, evident

from the small bump in the density profile.

Figure 9. Grey-scale levels of the x component of magnetic field (top left), y component of magnetic field (top right), gas pressure logarithm (bottom left) and

Lorentz factor (bottom right) for the cylindrical blast wave with relatively weak magnetic field at t = 4. Magnetic field lines are plotted on top of the Lorentz

factor distribution. Following KO, we use 32 equally spaced contour levels between 0.008 and 0.35 (for Bx), −0.18 and 0.18 (for By), −4.5 and −1.5 (for

log pg), 1 and 4.57 (for γ ).
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Figure 10. Cylindrical explosion for the strong magnetic field case (Bx = 1). We use 32 equally space contour levels between 0.793 and 1.116 (for Bx), −0.09

and 0.09 (for By), −4.52 and −1.02 (for log pg), 1 and 4.23 (for γ ).

The expanding region is delimited by a fast forward shock prop-

agating (nearly) radially at almost the speed of light. In the weak

field case, a reverse shock delimits the inner region where expan-

sion takes place radially. Magnetic field lines are squeezed in the

y direction building up a shell of higher magnetic pressure. In the

x direction the motion of the gas is not hindered by the presence of

the field and it achieves a higher Lorentz factor (γ max = 4.39). In

the strong field case, the expansion is magnetically confined along

the x direction and the outer fast shock has reduced amplitude. The

maximum Lorentz factor is γ max = 4.02.

We point out that numerical integrations for this test were possible

only by locally redefining the total energy at the end of the time-step:

E → E + B̄2

fa − B̄2

c

2
, (76)

where B̄c is the cell-centred magnetic field obtained after the

Godunov step, whereas B̄fa is the new magnetic field obtained by

averaging the face-centred values given by (72). Notice that equa-

tion (76) only redefines the energy contribution of the magnetic

field that is not directly coupled to the velocity, see equation (12)

and thus may be regarded as a first-order correction. In this respect,

the energy correction we propose is the same usually adopted in CT

schemes; see Balsara & Spicer (1999) and Tóth (2000). Although

this optional step results in a slight loss of energy conservation at

the discretization level, it was nevertheless found to become partic-

ularly useful in problems where the magnetic pressure dominates

over the thermal pressure by more than two order of magnitudes.

4.3.2 Relativistic shock–cloud interaction

The interaction of a strong relativistic fast shock with a cloud is

considered on the unit square [0, 1] × [0, 1] in two-dimensional

cartesian coordinates (x, y). This problem has been extensively used

for testing classical MHD codes; see Dai & Woodward (1994) and

Tóth (2000) and references therein. Here we consider a relativis-

tic extension adopting a somewhat different initial condition, with

magnetic field orthogonal to the slab plane. The shock wave travels

in the positive x-direction and is initially located at x = 0.6. Up-

stream, for x > 0.6, the flow is highly supersonic with pre-shock

values given by (ρ, γ x , pg, B z)pre = (1, 10, 10−3, 0.5), where γ x =
(1 − v2

x )1/2. In this reference frame, shocked material is at rest with

values given by⎛⎝ ρ

pg

Bz

⎞⎠
post

=

⎛⎝ 42.5942

127.9483

−2.12971

⎞⎠ . (77)

Notice that the magnetic field carries a rotational discontinuity and

the compression factor of density across the shock in not limited to

7 (we use � = 4/3) as in the classical case, but achieves a much

higher value (≈43). This feature is unique to relativistic flows.

A circular density clump with ρ = 10 and radius r = 0.15 is placed

ahead of the shock front, centred at (x , y) = (0.8, 0.5). Transverse

velocities vy and v z and the x and y components of magnetic field

are set to zero everywhere. We use 400 × 200 computational zones,

by assuming reflecting boundary at y = 0.5 and free flow across the

remaining boundaries. The MC limiter, equation (63), is employed

everywhere except in proximity of strong shocks where we revert

to the minmod limiter, see Section A1. The Courant number is 0.4.

Shortly after the impact, the cloud undergoes strong compression

with the density rising by a factor of more than 20. The collision

generates a bow fast shock propagating in the shocked material and

a reverse shock is transmitted into the cloud. After the transmitted

shock reaches the back of the cloud, the two bent parts of the original
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Figure 11. Density grey-scale map of the interaction between a strong shock

and a cloud at t = 1. The upper and lower halves show the solutions computed

with HLLC and HLL solvers, respectively, on 400 × 200 zones, with CFL =
0.4 and the MC limiter. Shock-flattening has been used to prevent spurious

oscillations in proximity of the slow moving shock.

incident shock join back together and complicated wave pattern

emerges. By t = 1 the cloud is completely wrapped by the incident

shock, and the cloud expands in the form of a mushroom-shaped

shell, see upper half of Fig. 11. The solution computed with the HLL

solver (lower half in Fig. 11) show similar structures, although the

amount of numerical viscosity is considerably higher.

Notice that, because of the assumed slab symmetry, the condition

v · B = 0 is preserved in time and the solution to the Riemann prob-

lem at each interface consists of a three wave pattern: two fast waves

separated by a tangential discontinuity. In this regard, our HLLC

solver provides a better approximation of the full wave structure.

4.3.3 Relativistic jet

As a final example, we consider the propagation of an axisymmetric

jet in cylindrical coordinates (r, z). The configuration adopted here

corresponds to model C2-pol-1 in Leismann et al. (2005).

The domain [0, 12] × [0, 50] (in units of jet beam) is initially

filled with a static uniform distributions of density, gas pressure and

magnetic field, given respectively by

ρa = 1, pa = ηv2
b

�(� − 1)M2 − �v2
b

, Bz =
√

2pa. (78)

The numerical value of pa follows from the definitions of the beam

Mach number M = vb/cs = 6, jet to ambient density ratio η = 10−2

and beam axial velocity vb = 0.99. The ideal equation of state (15)

is used with � = 5/3. The jet nozzle is located at the lower bound-

ary r � 1, z = 0, where boundary conditions are held constant in

time, (ρ, vr, v z , Br, B z , pg) = (η, 0, vb, 0, B z , pa). For r > 1, we

prescribe boundary values with antisymmetric profiles for axial ve-

locity and radial magnetic field. Symmetric profiles are imposed on

the remaining quantities. This configuration corresponds to a twin

counter jet propagating in the opposite direction. Outflow bound-

aries are imposed on all other sides, except at r = 0 where reflecting

Figure 12. Grey-scale images of density (top panel), magnetic pressure

(middle panel) and Lorentz factor (bottom panel) for the axisymmetric jet.

The upper (lower) half in each panel refers to the integration carried with

the HLLC (HLL) solver. Both integrations were carried till t = 126 with

CFL = 0.8 and the Van Leer limiter. An ideal equation of state is used

with � = 5/3. Magnetic field lines are plotted on top of the Lorentz factor

grey-scale images.

boundary conditions are used. We employ a uniform resolution of

20 zones per beam radius and carry integration until t = 126 with

CFL = 0.4.

The results are shown in Fig. 12, where we display density loga-

rithm (upper panel), magnetic pressure (middle panel) and Lorentz

factor distributions (lower panel). In each panel, the upper and lower

halves show the solutions obtained with the HLLC and HLL solvers,

respectively. As we already pointed out in the non-magnetic case

(Paper I), the HLLC integration features considerably less amount

numerical diffusion as evident from the richness in small-scale struc-

tures, notably in the density distribution. In fact, density is the phys-

ical quantity more sensitive to the introduction of the tangential

wave in the Riemann solver. Comparing our results with those of

(Leismann et al. 2005, see their fig. 5), we can observe that our so-

lution has a similar (or even larger) richness in fine structure details

at half the resolution (20 ppb in our case, 40 ppb in their case).

5 C O N C L U S I O N S

An HLLC approximate Riemann solver has been developed for the

RMHD equations. The new approach improves over the single state

HLL solver in the ability to capture exactly isolated tangential and

contact discontinuities. Several test problems in one and two dimen-

sions demonstrate better resolution properties and a reduced amount

of the numerical diffusion inherent to the averaging process of the

single state HLL scheme. The solver is well behaved for strictly
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two-dimensional flows, although applications to genuinely three-

dimensional problems may suffer from a pathological singularity

when the component of magnetic field normal to a zone interface

approaches zero. This feature does not persist in the classical limit.

Multidimensional integration has been formulated in a versatile

and efficient way within the framework of the CTU method. The

algorithm is stable up to Courant numbers of 1 and preserves the

divergence-free condition via CT evolution of the magnetic field.

The additional computational cost and the numerical implementa-

tion in an existing relativistic MHD code are minimal.
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Gardiner T. A., Stone J. M., 2005, J. Comput. Phys., 205, 509

Giacomazzo B., Rezzolla L., 2006, J. Fluid Mech., in press

Gurski K. F., 2004, SIAM J. Sci. Comput., 25, 2165

Harten A., Lax P. D., van Leer B., 1983, SIAM Rev., 25, 35, 61

Koldoba A. V., Kuznetsov O. A., Ustyugova G. V., 2002, MNRAS, 333, 932

Komissarov S. S., 1997, Phys. Lett. A, 232, 435

Komissarov S. S., 1999, MNRAS, 303, 343 (KO)

Königl A., Granot J., 2002, ApJ, 574, 134

Leismann T., Antón L., Aloy M. A., Müller E., Martı́ J. M., Miralles J. A.,
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A P P E N D I X A

A1 Shock flattening

For strong shocks, we found that the one-dimensional prescriptions

(63) or (65) can still produce spurious numerical oscillations even-

tually leading to the occurrence of negative pressures. A weak form

of flattening is introduced by replacing equation (63) or (65) with

the minmod limiter whenever a strong shock is detected. In order

for the latter condition to hold, we require that both ∇ · v < 0 and

χ min = 0, where ∇ · v is computed by central differences whereas

χmin = min
(
χ x

i+1, j , χ
x
i, j , χ

x
i−1, j , χ

y
i, j+1, χ

y
i, j , χ

y
i, j−1

)
. (A1)

The switches χ x and χ y are designed as follows:

χ x
i, j =

{
1 if

pi+1, j −pi−1, j

min(pi+1, j ,pi−1, j )
� ε,

0 otherwise,
. (A2)

χ
y
i, j =

{
1 if

pi, j+1−pi, j−1

min(pi, j+1,pi, j−1)
� ε,

0 otherwise,
(A3)

where we set ε = 5 in all computations presented in this paper.

A2 Multidimensional limiting

Occasionally, we found that strong shocks propagating obliquely to

the grid in highly magnetized media may benefit from an additional

form of limiting, based on genuinely multidimensional constraints.

When needed, we enforce the maximum and minimum interpolated

values in each cell (i , j) to lie within the bounds provided by the

four neighboring zones (i + 1, j), (i − 1, j), (i , j + 1), (i , j − 1).

Specifically, denote with q̂max and q̂min the maximum and minimum

values of q ∈ V in these cells. Once the limited slopes δ x q and

δ yq have been computed according to (63) or (65), we apply the

correction

δx q → τδx q, δyq → τδyq, (A4)

where the multidimensional limiter τ is constructed as in Balsara

(2004):

τ = min

[
1, ψ min

(
q̂max − q

δmax
,

q − q̂min

δmin

)]
, (A5)

with δmax = max(|δ x q|, |δ yq|), δmin = min(|δ x q|, |δ yq|). We set

ψ = 2 for density and magnetic field, ψ = 3/4 for velocity and

ψ = 1 for thermal pressure.
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