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ABSTRACT

We assess the suitability of various numerical MHD algorithms for astrophysical accretion disk simulations with the PLUTO code.
The well-studied linear growth of the magneto-rotational instability is used as the benchmark test for a comparison between the
implementations within PLUTO and against the ZeusMP code. The results demonstrate the importance of using an upwind recon-
struction of the electro-motive force (EMF) in the context of a constrained transport scheme, which is consistent with plane-parallel,
grid-aligned flows. In contrast, constructing the EMF from the simple average of the Godunov fluxes leads to a numerical instability
and the unphysical growth of the magnetic energy. We compare the results from 3D global calculations using different MHD meth-
ods against the analytical solution for the linear growth of the MRI, and discuss the effect of numerical dissipation. The comparison
identifies a robust and accurate code configuration that is vital for realistic modeling of accretion disk processes.
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1. Introduction

It is widely accepted that the magneto-rotational instability
(MRI) can be responsible for turbulence in proto-planetary
disks, enabling the accretion of the disk material onto the star.
The turbulence interacts with the gas-phase chemistry, grain
growth and settling, and thermal evolution, which makes the un-
derstanding of planet formation a challenge. In particular, the
effectiveness of MRI-driven turbulence depends on the ioniza-
tion degree of the gas (Blaes & Balbus 1994; Jin 1996; Gammie
1996; Wardle 1999; Sano et al. 2000; Fleming et al. 2000; Ilgner
& Nelson 2006; Turner et al. 2007). The collisional ionization
rate depends on the temperature, which at sufficiently high ac-
cretion rates is governed by the dissipation of magnetic fields in
the turbulence. Accurately capturing the magnetic energy loss
during diffusion and reconnection as heat requires an energy-
conserving numerical scheme.

Many classical studies of the magneto-rotational instabil-
ity (MRI) were conducted with the ideal MHD approach and
the local shearing box approximation (Brandenburg et al. 1995;
Hawley et al. 1995, 1996; Matsumoto & Tajima 1995; Stone
et al. 1996; Sano et al. 2004), partly reviewed in Balbus &
Hawley (1998). However, recent developments have shown that
critical questions about turbulence in accretion disks can only be
addressed in global simulations (Fromang & Nelson 2006; Lyra
et al. 2008; Fromang & Nelson 2009; Fromang & Papaloizou
2007; Davis et al. 2010). The majority of the existing codes
which can handle global disk simulations are based on Zeus-
like finite difference schemes (Hawley 2000; Fromang & Nelson
2006, 2009). Thus, it would be beneficial to tackle the open

questions with an independent method. A number of investi-
gators have recognized the importance of using conservative
Godunov-type upwind schemes rather than non-conservative fi-
nite difference algorithms (Stone & Gardiner 2005; Fromang
et al. 2006; Mignone et al. 2007), especially for jets and space
weather simulations (Groth et al. 2000).

So far, no global calculation has treated temperature changes
in the disk. Some first results in this direction apply the flux-
limited radiation diffusion approach in shearing-box calculations
(Turner et al. 2002; Turner 2004; Hirose et al. 2006; Flaig et al.
2009). The latter use a conservative, cell-centered finite volume
scheme. A major challenge here is to accurately and effectively
monitor and control the evolution of the divergence of the mag-
netic field, which should stay at div(B) = 0.

Two main approaches for evolving the magnetic field have
been established over the years. The first is the “constrained
transport” (CT) method (Brecht et al. 1981; Evans & Hawley
1988; Devore 1991; Stone & Norman 1992; Hawley & Stone
1995). By discretizing the magnetic and electric vector fields
on a staggered mesh, this scheme achieves the important prop-
erty of maintaining div(B) = 0 to machine accuracy. Several
issues arise in choosing how to adapt the CT method to the
cell-centered discretization used in the Godunov MHD schemes.
Constrained transport Godunov schemes introduced by Dai &
Woodward (1998), Ryu et al. (1998), Balsara & Spicer (1999),
Komissarov (1999) and Tóth (2000) include both staggered and
cell-centered magnetic fields. The difficulty is that the staggered
field is not well suited for upwind Godunov schemes. For a
staggered field, the one-dimensional solutions of the Riemann
problem for density, momentum and the energy equation have
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no direct extension to the upwind fluxes in the induction equa-
tion (Balsara & Spicer 1999). Londrillo & Del Zanna (2000)
and Londrillo & del Zanna (2004) enhanced the CT method
to make it consistent with the one-dimensional solver for plane
parallel, grid-aligned flows. Based on the Harten-Lax-van Leer
(HLL) and Roe Riemann solver fluxes, they proposed a new way
to reconstruct the electric fields now called “upwind CT”. In
Londrillo & del Zanna (2004) they followed a similar approach
by using the Hamilton-Jacobi equations to derive the method as
proposed in Kurganov et al. (2001). Further improvements of the
CT approach were introduced in the ATHENA code Gardiner &
Stone (2005) and the RAMSES code (Fromang et al. 2006), both
based on the work of Londrillo & del Zanna (2004).

The second class of MHD methods exclusively uses the cell
center discretization. Here there is no additional staggered grid
and div(B) is not automatically forced to vanish. Solution at-
tempts for this problem were presented by Powell (1994), Powell
et al. (1999) or Dedner et al. (2002). The so called “eight waves”
method uses the modified MHD equations with specific source
terms and allows magnetic monopoles to appear as an additional
8th mode in the classical seven-mode Riemann fan. A further
development is the hyperbolic cleaning method of Dedner et al.
(2002). Here the conservative form of the MHD system is pre-
served by introducing a time-dependent wave equation which
dampens the monopoles. Whether these technique sufficiently
removes div(B) strongly depends on the problem and for MHD
turbulence this was never actually shown.

The PLUTO code is a conservative multi-dimensional and
multi-geometry code that can be applied to relativistic or non-
relativistic MHD or pure HD flows. The ability to switch be-
tween several different numerical modules in PLUTO allows
us to test and compare a range of different methods, such as
cell-centered and CT, and choose those giving the best conver-
gence and stability properties, defining a consistent algorithm.
For example, the code offers the possibility of using the Riemann
solvers of Roe, Harten-Lax-van Leer Discontinuities (HLLD),
Harten-Lax-van Leer Contact (HLLC), HLL and Lax-Friedrichs
(Rusanov) types. The PLUTO code has successfully reproduced
a series of standard MHD tests, including the rotating shock-
tube, the fast rotor and the blast wave solution (Mignone et al.
2007). The methods are reviewed in Balsara (2004) and Mignone
& Bodo (2008).

In this paper we investigate the behavior of various MHD
algorithms in 3D global accretion disk calculations using cylin-
drical coordinates. The results from the PLUTO Godunov code
are compared with those from ZeusMP, which represents a cer-
tain class of widespread finite difference codes. ZeusMP (Stone
& Norman 1992; Hayes et al. 2006) uses a classical staggered
discretization of the magnetic and electric vector fields (MoC-
CT). We use the ZeusMP version 1b, which has already been
applied successfully to 3D global MHD accretion disk calcula-
tions (Fromang & Nelson 2006; Dzyurkevich et al. 2010). We
set up identical models in the two codes, and examine the per-
formance of the different numerical schemes by comparing the
growth of the MRI with the expectations from linear analysis.
At the same time, unphysical results are easily discovered by
comparison with linear analysis. In Sect. 2 we describe the dif-
ferences between the numerical schemes of ZEUS and PLUTO.
Sect. 3 presents the disk model and the measurement methods.
In Sect. 4 we show the results of the inter-code comparison. The
convergence properties of the finally identified best suited algo-
rithm are investigated in Sect. 5. Conclusions and an outlook are
given in Sect. 6.

2. Numerics

2.1. MHD equations

The equations of ideal magnetohydrodynamics written in con-
servative form as implemented in Godunov schemes are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t
+ ∇ · (ρuu − BB) = −∇P∗ + ρ∇Ψ, (2)

∂B
∂t
+ ∇ · (uB − Bu) = 0, (3)

and

∂E
∂t
+ ∇ · ((E + P∗)u − B(Bu)) = ρu∇Ψ, (4)

where ρ is the gas density, ρu is the momentum density, B is
the magnetic field, and E is the total energy density. The total
pressure is a sum of the magnetic and gas pressure, P∗ = P +
(B · B)/2. Total energy density is connected to internal energy
ε as E = ε + ρu2/2 + B2/2. The gravitational potential is set to
Ψ ∝ 1/R to set the azimuthal Keplerian shear flow of the gas.

2.1.1. ZEUS

The momentum equation is solved by ZeusMP in a non-
conservative way,

ρ
du
dt
= −∇P + ρ∇Ψ + 1

4π
[∇ × B] × B. (5)

Density and pressure are stored at the cell center, but as the vec-
tor components of velocity and magnetic fields are stored at the
grid interfaces, fluxes can be calculated directly in ZEUS. The
scheme is second order in space and first order in time in re-
gions between shocks. Although there are no shocks in our runs,
we are aware of the anti-diffusive behavior of ZEUS for shocks
as it was pointed out in Falle (2002) when using ZEUS without
artificial viscosity.

In Sect. 5, we therefore present a test-run with ZEUS includ-
ing the usual amount of artificial viscosity as it is used in global
simulations.

2.1.2. PLUTO

Contrary to Zeus-type finite difference schemes, a Godunov type
scheme follows a conservative ansatz. In general all quantities
are stored at the cell center. Only for the CT MHD method
there is an additional staggered magnetic field. The second order
Runge-Kutta (RK) iterator is employed with a CFL about 0.25.
Prior to flux calculation, variables are reconstructed at the grid
interface, which implies interpolation with a limited slope. The
resulting two different states at the interfaces allow us to solve
the Riemann problem, which is the main feature of a Godunov
code. We tested the different MHD Riemann solvers of Roe
(Cargo & Gallice 1997), HLLD (Miyoshi & Kusano 2005), HLL
and Lax-Friedrichs Rusanov in our inter-code comparison. The
difference is the number of wave characteristics that are used by
each solver. Harten-Lax-van Leer and Lax-Friedrichs solver use
the fast magneto-sonic wave characteristic as maximal signal ve-
locity. Harten-Lax-van Leer Discontinuities solver additionally
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Fig. 1. Analytical growth rate plotted for different qr (solid to dash-
doted lines). Triangles present the measured MRI growth rates from
our simulation with initial axisymmetric white noise disturbance from
model HLLDLIN 128 × 64 × 64 with n = 4. The values are measured
for each radii and averaged. Results are similar to those in Hawley &
Balbus (1991), Fig. 8.

includes the Alfvén wave characteristic and the contact discon-
tinuity. The Roe solver follows all seven MHD waves, including
the slow magneto-sonic characteristic. We note that compared to
the HLLD and Roe solver, the ZEUS code is four to six times
faster. This factor appears because of the two predictor and cor-
rector steps in the Runge-Kutta time integration and the calcula-
tion of the different fluxes in the Riemann solver.

2.2. Constrained transport EMF reconstruction in PLUTO

In the CT approach, the staggered components of B are evolved
as surface averaged quantities and are updated using Stokes’ the-
orem. This requires constructing a line-averaged electric field
along the face edges using some sort of reconstruction or averag-
ing technique from the face centers, where different EMF com-
ponents are usually available as face-centered upwind Godunov
fluxes. As was already mentioned, it is difficult to represent the
solenoidality of magnetic fields correctly in Godunov schemes.
For the constrained transport we will concentrate on three dif-
ferent EMF reconstruction methods. The first method, here
called ACT, describes the arithmetic average of the face-centered
EMF’s obtained by the upwind fluxes in the induction equa-
tion (Balsara & Spicer 1999) presented in Fig. 1,

ε̄i+1/2, j+1/2,k=
1
4

(εi+1/2, j,k + εi+1/2, j+1,k + εi, j+1/2,k+εi+1, j+1/2,k). (6)

This CT algorithm does not reproduce the correct solution for
plane-parallel, grid-aligned flows (Gardiner & Stone 2005). In
this case, considering the i-direction, one obtains εz,i, j+1/2 =
εz,i+1, j+1/2 and εz,i+1/2, j = εz,i, j. Then we get from the ACT Eq. (6)

ε̄i+1/2, j+1/2,k =
1
4

(εi, j,k + εi, j+1,k) +
1
2
εi, j+1/2,k, (7)

in contrast to the correct solution, which is simply εi+1/2, j+1/2,k =
εz,i, j+1/2. The reason is the lack of a directional bias in the for-
mula. Therefore Balsara & Spicer (1999) apply weighting coef-
ficients to grant the directional bias. Gardiner & Stone (2005)
effectively double the amount of dissipation in their approach.
They present a modified formula, which includes cell-center

electric fields to recover the proper directional biasing, here
called UCT,

ε̂i+1/2, j+1/2,k =
1
2

(εi+1/2, j,k + εi+1/2, j+1,k + εi, j+1/2,k + εi+1, j+1/2,k)

−1
4

(εi, j,k + εi, j+1,k + εi+1, j,k + εi+1, j+1,k).

εi, j,k are the finite volume electric fields calculated from the cell
center values. This “upwind” property of the algorithm is only
strictly valid in the special limit of plane-parallel flow and it is
not “upwind” in the general multidimensional sense. Based on
this, Gardiner & Stone (2005) developed a new CT method, here
called UCTCONTACT,

εz,i+1/2, j+1/2 =
1
4

(
εz,i+1/2, j + εz,i+1/2, j+1 + εz,i, j+1/2 + εz,i+1, j+1/2

)

+
δy

8

⎛⎜⎜⎜⎜⎝
(
∂εz
∂y

)
i+1/2, j+1/4

−
(
∂εz
∂y

)
i+1/2, j+3/4

⎞⎟⎟⎟⎟⎠
+
δx
8

⎛⎜⎜⎜⎜⎝
(
∂εz
∂x

)
i+1/4, j+1/2

−
(
∂εz
∂x

)
i+3/4, j+1/2

⎞⎟⎟⎟⎟⎠
with(
∂εz
∂x

)
i+1/4, j

=
2
δx

(
εz,i+1/2, j − εz,i, j

)

and

(
∂εz
∂y

)
i+1/2, j+1/4

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(∂εz/∂y)i, j+1/4 for vx,i+1/2, j > 0,
(∂εz/∂y)i+1, j+1/4 for vx,i+1/2, j < 0,
1
2 ((∂εz/∂y)i, j+1/4
+(∂εz/∂y)i+1, j+1/4), otherwise.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Both methods, UCT and UCTCONTACT, show exactly the same
evolution in our test problems, because our Keplerian disk setup
presents precisely the case of a plane-parallel, grid-aligned flow,
where both methods should give the same result.

3. Linear MRI in a global disk

The analytical description of the the linear stage of MRI has been
given by Balbus & Hawley (1991). Local shearing box simula-
tions have confirmed the analytical expectation of the linear MRI
growth (Brandenburg et al. 1995; Hawley et al. 1995). Global
simulations and also the nonlinear evolution of the MRI was pre-
sented in Hawley & Balbus (1991). Our simplified setup here is
representative for a global proto-planetary disk and made for a
modest radial domain.

3.1. Global setup

We use cylindrical coordinates in our models with the notation
(R, φ, Z). The equations are solved using uniform grids. The do-
main extends 60◦ in the azimuthal direction, Z = ±0.5 R0 and
from 1 to 4 R0 in the radial direction. R0 is a free parameter
for this dimensionless problem. Initial density ρ and pressure P
are constant in the entire disk patch with ρ = 1.0, P = c2

sρ/γ,
cs = 0.1uφ,0 and γ = 5/3. The gas is set up initially with
the Keplerian speed, u2

φ,0 =
R0
R . A uniform vertical magnetic

field is placed at radii between 2 and 3 units, reducing effects
of the radial boundary. The resolution for the standard case is
[R, φ, Z] = [128, 64, 64]. For both codes (ZEUS and PLUTO) we
use identical random generated velocity perturbations (10−4uKep)

Page 3 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912443&pdf_id=1


A&A 516, A26 (2010)

Table 1. Initial parameter of global setup.

ρ P Vr Vz Vφ Br Bz Bφ

1.0 c2
sρ/γ ±5e − 4 ±5e − 4

√
1
R 0.0 0.05513/n 0.0

Radial Vertical Azimuthal Nr Nz Nφ CFL toutput

1–4 ±0.5 π/3 128 64 64 0.25 π

Table 2. MRI growth rates measured for models with 4 and 8 MRI modes (n = 4, 8).

Solver ACTn= 4 UCTn= 4 8Wn= 4 ACTn= 8 UCTn= 8 8Wn= 8

ZEUS 0.69 ± 0.03 – – 0.69 ± 0.03 – –
HLLD 0.68 ± 0.17 0.68 ± 0.03 – 0.86 ± 0.18 0.70 ± 0.03 –
Roe 0.70 ± 0.18 0.68 ± 0.03 0.68 ± 0.02 0.84 ± 0.18 0.70 ± 0.03 0.70 ± 0.04
HLL 0.64 ± 0.05 0.63 ± 0.05 0.61 ± 0.05 0.55 ± 0.09 0.51 ± 0.06 0.50 ± 0.06
TVDLF 0.64 ± 0.05 0.63 ± 0.05 0.63 ± 0.05 0.55 ± 0.09 0.51 ± 0.06 0.50 ± 0.06

for initial radial and vertical velocities. Boundary conditions are
periodic for all variables in the vertical and azimuthal direction,
and zero gradient for the radial one1. We calculate the critical
wavelength over disk thickness according to Eq. (2.3) in Hawley
& Balbus (1991)

λcrit

2H
=

√
16
15
πVAz

ΩH
(8)

with the angular frequency Ω = R−1.5 and the Alfvén velocity
VAz = Bz/

√
4πρ. We choose the uniform vertical magnetic field

strength to obtain the fastest-growing wavelength fitting in the
domain height at R = 2, Bz = B0/n with B0 = 0.055 and n =
1, 2, ..., 8. The critical wavelength and the growth rate can be
directly measured from our simulations and then compared with
the analytical prediction. The parameters of our setup are also
listed in Table 1.

3.2. Physical limits of the MRI growth rate

Before using the ideal growth rate as a comparison value, the
processes limiting the growth rate in the linear MRI for a real
physical system have to be considered. When the magneto-
rotational instability sets in, the magnetic fields are amplified
with B = B0 exp(γMRIt) until they reach saturation. As men-
tioned in Hawley & Balbus (1991), the absolute limit of the
growth rate for ideal MHD is given for the zero radial wave vec-
tors qr = 0 with the normalized wave vector qz,

qz = kz

√
16/15νA/Ω, (9)

with the Alfvén speed νA = B/
√

4πρ. Then the critical mode
qz = 0.97 grows with γ = 0.75Ω, (see Fig. 1). As in Balbus
& Hawley (1991b) we do not a priori know the radial MRI
wavenumber in our simulations, therefor the maximum possi-
ble growth rate is reduced compared to the absolute limit. In
Fig. 1 we plot the growth rate for different radial modes. In ad-
dition we also tested a fully axis-symmetric initial random ve-
locity fields. The magnetic field evolution in our 3D setup is
nearly axis-symmetric for both initial velocity field. The stan-
dard simulation shows a n = 1 mode in the azimuthal direction
1 The zero gradient boundary condition is similar to the often applied
“outflow” boundary condition, but allows also inflow velocities. Due to
the buffer zones from 1 to 2 R0 and 3 to 4 R0 we have no interaction
with the radial boundary in our inner domain.

with differences of under five percent compared to the fully axis-
symmetric run. Therefore all simulations are comparable with
the 2D setup presented in Hawley & Balbus (1991) and we ob-
tain MRI growth rates which are comparable with Hawley &
Balbus (1991, Fig. 8).

The additional effects reducing the MRI growth rate are vis-
cous and resistive dissipation (Pessah & Chan 2008).

For the MRI, the numerical dissipation is the reason why we
need some minimal amount of grid cells. Hawley et al. (1995)
claim to need at least five grid cells per fastest growing mode
for ZEUS to correctly resolve the MRI mode. For the inter-code
comparison we used the setup described in Sect. 3.1 with a ver-
tical magnetic field for n = 4 and n = 8. Then the total resolu-
tion of 64 gives 16 grid cells per fastest growing mode, which
is enough even for very diffuse solvers. For a better differentia-
tion between the code configurations we include also a weaker
vertical magnetic field with n = 8, because then only 8 cells per
mode are available. Besides resolution and the kind of Riemann
solver the order in the reconstruction step also has an impact on
the dissipation.

3.3. Measurement method

In Fig. 2 we present the exponential growth of the fastest MRI
mode for Br. The slope directly gives us the MRI growth rate.
The black lines show the growth for each radial location. Time
is given in local orbits. Most radial slices plotted in Fig. 2 show
a growth rate close to the analytical limit (see dashed line in
Fig. 2). The inner annuli (R = 2, red line in Fig. 2) reach non-
linear amplitudes first (Fig. 2), producing disturbances that prop-
agate outward and affect the development of the slower-growing
linear modes in annuli farther away from the star (R = 3, blue
line in Fig. 2). As a result the annuli near R = 3 grow faster than
indicated by the linear analysis and only annuli at R = 2 show
the predicted behavior. In the following sections the growth
rate is calculated as the time average between 1 and 1.5 local
orbits.

4. Inter-code comparison

The models and results of the growth rate for the inter-code
comparison are summarized in Table 2. Here the growth rate
values γMRI are averaged over radius and time, as described in
Sect. 3.3. Growth rates higher than the mean analytical value or
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Fig. 2. Maximal amplitude growth of the critical MRI mode plotted for
the 42 radial slices between radii R = 2 (red line) and R = 3 (blue
line) for local and inner orbits. The setup is constructed to excite the
mode with λcrit = H (n = 1). For the radii near R = 2, the MRI growth
rate reaches the value of γ = 0.75Ω. At the outer edge of the radial
domain, the growth rate becomes higher than 0.75Ω (blue line). The
MRI modes there are affected by the inner part, where MRI already
breaks into nonlinear evolution after eight inner orbits.

its fluctuations are marked in red. The statistical error is esti-
mated from the radial fluctuation in the growth rate (Figs. 4, 6
and 9).

4.1. Magnetic-energy evolution

The growth of the magnetic field due to the excitation of the
critical mode dominates at two inner orbits and the linear growth
regime occurs. Figure 3 shows the radial magnetic-energy evolu-
tion Er ∝ B2

r for the n = 4 and n = 8 mode runs (see Table 2). In
the n = 8 mode setup we can clearly distinguish three different
families of evolution. The first family consists of Roe and HLLD
solver in combination with ACT (red colors in Table 2). If the
slope is steeper, the analytical prediction is indicating a numer-
ical problem. Second is the Lax-Friedrichs and HLL Riemann
solver. They always show the slowest growth in energy, inde-
pendent of the chosen MHD method. The third family consists
of the HLLD and Roe solvers with upwind CT and the 8-wave
method. Their results are the most similar to ZEUS. Below, we
will compare the families in detail.
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Fig. 3. Radial magnetic energy integrated for the total domain for n = 4
(top) and n = 8 (bottom) with upwind CT (solid line), Powell 8-wave
(dashed line) and arithmetic CT (dotted line). The values are normal-
ized over the initial orbital kinetic energy. After the initial disturbance,
the growth of critical mode dominates and there is a linear MRI region
visible between two and eight inner orbits. For HLLD and Roe, the
arithmetic CT shows a growth stronger then MRI until five inner orbits,
caused by a numerical instability. Harten-Lax-van Leer and TVDLF
have a much lower growth because both methods are viscous and do
not resolve the critical mode for the adopted resolution.

4.2. The arithmetic CT plus HLLD and Roe

For the ACT in combination with HLLD & Roe solvers the
growth of the magnetic energy overshoots the analytical expec-
tation for MRI growth (Table 2, Figs. 3, 4). A numerical insta-
bility dominates, which shows up in the fastest-growing mode
that has a vertical wavelength shorter than predicted from linear
analysis of MRI. In Fig. 5 we plotted the growth rate for each
radial slice, calculated from 1 to 1.5 local orbits. Roe and HLLD
show the same unphysical high radial variations in growth rate,
which locally exceeds the analytical limit. The instability gen-
erates a “checkerboard” pattern in physical space for all vari-
ables (see example for Bφ in Fig. 5). Numerical instabilities
rooted in the treatment of the Alfvén wave were already pre-
dicted by Miyoshi & Kusano (2008). They write that it is com-
monly known that highly accurate Riemann solvers for the Euler
equations sometimes encounter multi-dimensional numerical in-
stabilities at high mach numbers such as the “carbuncle” insta-
bility that may be related to the resolution of the contact wave
(Robinet et al. 2000).
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Fig. 4. Local growth rate for n = 4 (top) and n = 8 (bottom) with arith-
metic CT. For HLLD and Roe the local growth rate exceeds the analyti-
cal limit and shows unphysical spatial variations. The problem does not
affect the HLL and TVDLF solver at moderate resolution. Harten-Lax-
van Leer (green) and TVDLF show exact the same results.

The reason for the “checkerboard” instability is based on
the inconsistent EMF reconstruction of ACT for a plane-parallel
flow as it is described in Sect. 2.2. The Roe and HLLD solvers
include the Alfvén characteristics accurately and evolve the dis-
turbances independently of the resolution (see Fig. 7a). The HLL
and TVDLF solver do not include the Alfvén characteristics. For
moderate resolutions they present correct results in combination
with ACT because the “checkerboard” instability is suppressed
by numerical dissipation. However, at higher resolutions the nu-
merical instability occurs here as well (see Fig. 7b). For HLL
and TVDLF it depends on the dissipation to resolve the numeri-
cal instability related to the Alfvén wave. For the Roe and HLLD
solver the instability is present for basically any resolution.

4.3. Upwind CT and 8-wave

With the upwind CT EMF reconstruction described in Sect. 2.2,
there is no more “checkerboard” pattern visible. Figure 5
presents a contour plot of the azimuthal magnetic field after
eight inner orbits. The HLLD solver with upwind CT and ZEUS
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Fig. 5. Contour plot of the azimuthal magnetic field for arithmetic CT
(top), UCT (middle) and ZEUS (bottom). For the arithmetic CT, the
“checkerboard” instability dominates. For UCT and ZEUS the n = 4 is
most prominent. A change from blue to red indicates a change of sign
in the magnetic field. This snap-shot of the magnetic field is taken after
eight inner orbits.

shows four evolving modes. Figure 6 shows the small difference
of local growth rates between “8-waves” (8W) and upwind CT
(UCT & UCTCONTACT). One sees that the choice of the Riemann
solver has a stronger effect on the growth rate than the MHD
method. Thus, the solution in family “3” appears to be the proper
choice for MRI simulations.

4.4. The resolution of the most unstable mode

In the case of four MRI modes and 64 grid cells in the verti-
cal direction, the resolution in the Z direction is sufficient for
all Riemann solvers to resolve the critical mode, e.g. 16/λ. The
HLLD solver, Roe and ZEUS show the highest growth rate fol-
lowed by TVDLF and HLL. The models for n = 8 are summa-
rized in Table 2 and Fig. 6. The resolution of eight grid cells per
critical mode is not sufficient to resolve the MRI mode. Here,
growth rates are significantly reduced for HLL and TVDLF
solvers because they can only resolve the slower growing 4 mode
for the used resolution. ZEUS and the MHD Riemann solver
Roe and HLLD resolve seven modes. The additional Alfvén
characteristics included in the HLLD solver lead effectively to

Page 6 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912443&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912443&pdf_id=5


M. Flock et al.: The linear growth of MRI. I.

UCT+8W, 4 MRI modes
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Fig. 6. Local growth rate for n = 4 (top) and n = 8 (bottom) with up-
wind CT (solid line), UCTcontact (dashed line) and Powell’s Eight Wave
(dotted line). The high-resolution MHD Riemann solver HLLD and
Roe show the same MRI evolution, producing the same growth rate
as ZEUS. The HLL solver and TVDLF are more diffusive.

lower numerical dissipation. Figure 8 shows a contour plot of
the radial magnetic field after seven inner orbits for the HLLD
solver, ZEUS and the HLL solver. The ZEUS code shows an
MRI pattern very close to those of HLLD and Roe.

With the two different setups (n = 4 & n = 8) we can con-
clude that the HLL and TVDLF Riemann solver need at least 16
grid cells per mode to resolve the fastest growing MRI mode cor-
rectly. The HLLD and Roe solver can resolve the mode starting
with 10 grid cells per mode.

4.5. The role of the reconstruction method for primitive
variables

The reconstruction of the states at the interface is the main source
of dissipation in Godunov schemes (see Sect. 2). In this subsec-
tion we test the third order piece-wise parabolic method (PPM)
by Collela (1984) and compare the results with the piece-wise
linear reconstruction method (PLM) used in the previous sec-
tions. Figure 9 shows the difference in local MRI growth rate
for simulations made for PLM and PPM with UCT. The re-
sults of MHD Riemann solver HLLD and Roe are not strongly
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Fig. 7. Top: contour plot of radial magnetic field for n = 8 mode low
resolution run. Even with a resolution of 16 × 8 × 8 the HLLD solver
can resolve the checkerboard pattern for ACT. Bottom: high resolution
run for n = 8 mode and the HLL solver with ACT. The checkerboard
pattern becomes visible (red box).

affected by the choice of reconstruction order, though there is a
slightly higher growth rate visible when PPM is used, indicating
lower dissipation. In contrast, the more dissipative solvers HLL
and TVDLF show a increasing growth rate. With the change to
the PPM method both solvers improve significantly in their re-
production of linear MRI. With PPM, the HLL and TVDLF are
able to resolve the critical mode with 10 grid cells per MRI mode
against 16 grid cells per mode with PLM.

Nevertheless, using an order of spatial reconstruction beyond
the order of time integration can lead to anti-diffusive behav-
ior. This can artificially generate or amplify magnetic fields, as
shown in Falle (2002). Therefore one should avoid to compen-
sate the dissipation of the method with high order reconstruction
and choose instead a high-order Riemann solver as HLLD or
Roe.

5. High-resolution comparison

The models in our convergence test are summarized in Table 3.
We adopt the n = 4 model with 2 different initial perturbations,
white noise and a n = 4 perturbation in velocity.

5.1. The role of initial perturbation

Usually the global 3D simulation of a disk starts with white-
noise velocity perturbation. This initial configuration is least pre-
sumptive in the evolution. All three components of the veloc-
ity are perturbed, and a large range of MRI modes is excited.
Due to the excitation of several radial modes, the growth rate of
the MRI is below the analytical value γMRI = 0.75Ω0 as pre-
sented in Fig. 1. Nevertheless, such a test allows us to compare
the codes in the most complete global setup, not precluding spe-
cific unstable modes. Another approach is to exclusively perturb
the radial velocity with only one chosen mode, for example
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Table 3. Growth rates for the resolution tests with initial 4 mode (4M) and white noise perturbations (WN).

Solver 64 × 32 × 32 128 × 64 × 64 256 × 128 × 128 512 × 256 × 256
ZEUSWN 0.630 0.741 0.711 0.698
HLLDWN 0.573 0.717 0.713 0.699
HLLDWN−PPM 0.630 0.729 0.712 0.702
HLLD4M 0.602 0.727 0.746 0.749
ZEUS4M 0.669 0.729 0.748 0.747
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Fig. 8. Contour plot of the radial magnetic field in code units for the
HLLD solver (top), ZEUS (middle) and HLL solver (bottom). After
seven inner orbits the inner radial part breaks into a nonlinear regime.

vR(z) = v0 sin 4z/H where H is the vertical size of the box. In
combination with an initial magnetic field of Bz = 0.05513/4,
a pure clean n = 4 mode will be exited. Such a perturbation
is highly artificial, yet the purpose is to approach the analytical
value for a linear MRI growth of γMRI = 0.75Ω0. As our tests are
performed in the global framework, there is still the effect of ra-
dial change in orbital frequency, leading to local variation in the
growth rate. Therefore we choose for our analysis one annulus
close to R = 2, where the growth rate seems to be least affected
(see Fig. 2).

5.1.1. White noise perturbation

In the runs ZEUSWN, PLUTOWN, PLUTOWN−PPM we used axis-
symmetric white noise for the radial and vertical velocity per-
turbations. Table 3 summarizes the maximum growth rate for

PLM+PPM, 4 MRI modes
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Fig. 9. Growth rate of MRI for PPM (dashed line) and PLM (solid line).
For the Lax-Friedrichs solver the PPM interpolation leads to growth
rates closer to the analytic solution, which is due to lower numerical
dissipation. Differences between HLLD and Roe solvers are less promi-
nent.

both initial perturbations. For PLUTOWN, PLUTOWN−PPM and
ZEUSWN, the linear MRI tops at a growth rate around 0.7 for
higher resolutions. Only for the lowest resolution we can clearly
see a lower growth rate, which stresses our earlier conclusion
that 8 grid cells per critical mode are not sufficient. For this reso-
lution the HLLD with the PPM reconstruction has the most simi-
lar behavior to ZEUS. In this set of tests, the reason for not reach-
ing the analytical value of γMRI is a physical one. The limit of the
growth rate is set by the various occurring radial modes which
are excited in case of the white noise perturbation (see Fig. 1).
With increasing resolution, smaller and smaller radial modes are
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Fig. 10. Convergence for the white noise (top) and single 4 mode per-
turbation setup (bottom). For the single 4 mode perturbation the growth
rates exhibit a quick convergence to the analytical limit γMRI = 0.75.

resolved and no convergence can be achieved, because the setup
changes. The details of the behavior of both codes for the low
resolution and the white noise setup are available in Fig. 11.

5.1.2. Initial 4 mode perturbation

Only with this artificial setup can we assure that we have ini-
tial perturbations independent on resolution, which is necessary
for convergence studies. In the runs PLUTO4M and ZEUS4M
we avoid the excitation of MRI waves kR � 0 by choosing
vR(z) = v0 sin 4z/H for initial disturbance without any radial
dependence. In Fig. 10 we plot the growth-rate evolution for
a specific radial point near R ≥ 2, which presents the region
of the smoothest linear growth regime compared to the outer
annulus at R = 3 (Fig. 2). Table 3 summarizes the maximum
growth rate measured in Fig. 10. Both the codes PLUTO4M and
ZEUS4M converge on the analytical limit of γMRI = 0.75. It is
interesting to note that for the ultimately lowest resolution the
growth rates from PLUTO4M in combination with the second
order piece-wise linear reconstruction method (PLM) is lower
then the ZEUS4M value. The reason for this is buried inside the
PLM method, which causes a higher dissipation compared to
PPM (Fig. 11 dash-dotted line). Additionally, we did not use ar-
tificial viscosity in ZEUS, which one would usually switch on in

 4 mode perturbation
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Fig. 11. Four mode perturbation setup for different reconstruction meth-
ods. For the lowest resolution, the base dissipation of the scheme be-
comes important for the growth rate value. The convex eno reaches the
growth rate value as for the 128 × 64 × 64 run. It seems that 8 grid cells
per critical mode is enough here.

a global simulation and which reduces the growth rate (Fig. 11
dashed line). The dashed red line in Fig. 10 shows the growth
rate for PLUTO with the third order convex-eno reconstruction
(Del Zanna & Bucciantini 2002). The growth rate is closer to
γMRI for the doubled resolution (green lines).

The highest resolution run is almost the limit on even the
fastest computers; it was calculated on the Blue Gene/P taking
nearly 50 000 CPU h for 11 inner orbits. In contrast, global sim-
ulations on viscous times-scales need 10 000 orbits.

6. Conclusions

We have identified a robust and accurate Godunov scheme for
3D MHD simulations in curvilinear coordinate systems through
demonstrating convergence and stability for the well studied
linear growth phase of the MRI. Crucially, the scheme uses
a constrained transport reconstruction of the EMF’s which is
consistent with the plane-parallel, grid-aligned flow, which is
found in Keplerian flows in curvilinear coordinates. By con-
trast, a four-point arithmetic average CT method leads to the
growth of a “checkerboard” numerical instability. The HLLD
and Roe Riemann solvers present this instability independent of
resolution. Both solvers treat the Alfvén characteristics in the
Riemann fan. The numerical instability is obviously connected
to the Alfvén wave (Miyoshi & Kusano 2008). Harten-Lax-van
Leer and Lax-Friedrichs do not resolve the instability for mod-
erate resolutions. The results of our inter-code comparison and
convergence tests stress the importance of properly treating the
Alfvén characteristics in Riemann solvers for flows driven by
the MRI. Alongside loop advection (Gardiner & Stone 2008),
the linear evolution of the MRI is a key test problem. We mea-
sured the linear MRI growth rates in both the finite difference
code Zeus and the Godunov code PLUTO with several differ-
ent Riemann solvers. More than eight grid cells per wavelength
are needed to correctly evolve the MRI mode in both codes.
The numerical dissipation is greater with the Lax-Friedrichs and
HLL solvers than with the finite difference scheme of ZEUS,
owing to the reconstruction of the interface states in the former.
The HLLD and Roe Riemann solvers achieve a lower dissipation
by including additional MHD characteristics. During the linear
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growth, the HLLD and Roe solvers show results similar to the fi-
nite difference scheme ZEUS for the same order of accuracy and
resolution. In addition, the HLLD solver yields an evolution very
similar to that obtained with the Roe solver, despite the neglect
of the slow magneto-sonic characteristic. A consistent upwind
EMF reconstruction in combination with the HLLD Riemann
solver gives a consistent, conservative and efficient scheme for
our future 3D global MHD calculations of accretion disks. In a
follow-up work we will perform and study the non-linear MRI
evolution including resistive MHD.
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