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Abstract: In this paper, a Leaky Integrate-and-Fire (LIF) model for the membrane potential of a
neuron is considered, in case the potential process is a semi-Markov process. Semi-Markov property
is obtained here by means of the time-change of a Gauss-Markov process. This model has some
merits, including heavy-tailed distribution of the waiting times between spikes. This and other
properties of the process, such as the mean, variance and autocovariance, are discussed.
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1. Introduction

Leaky Integrate-and-Fire (LIF) models have a long tradition in the field of neuronal modeling.
Starting from the Lapique’s Integrate-and-Fire (IF) model (see [1]) which has been later modified to
consider a leakage in the membrane potential of the neuron (see, for a complete review of IF and
LIF models [2,3]), these models gained considerable popularity due their mathematical simplicity.
In particular, a stochastic LIF model has been introduced (see [4]) to include the action of a noise in
the model. Under the classical assumptions, the membrane potential of a neuron is described by an
Ornstein-Uhlenbeck process or, more generally, by a Gauss-Markov process. When the potential reach
a suitable boundary at a random time T, the neuron emits a signal (which is traceable and thus it said
to be a ‘spike’) and then the process is reset by setting V(T) = V(0). For an overview of stochastic IF
model, we refer to [5]. This model has several unrealistic features (see [6]), some of which have been
remedied by different authors with different approaches (such, for instance, considering a different
stochastic model [7], or introducing correlated inputs [8]). For example, in [9] it is observed that the
random time T is a heavy-tailed random variable which may have infinite expectation. This feature is
in general ignored in the literature since, under classical assumptions, the random times have tails
whose asymptotic decays is exponential. Furthermore, resetting the process after each spike is also
unrealistic, since the model completely loses the effect of past events.

The model we study in this paper is a modification of the one introduced in [10] and face the
two issues above. In particular, a random time change of the potential process is introduced and
this delays the first passage time through the boundary sufficiently to make it a heavy-tailed r.v.
An adaptive threshold approach is proposed to avoid the reset problem. Furthermore, the time-change
makes the process semi-Markovian and introduces memory effects which we describe by investigating
the autocovariance function. Some other technical properties of the semi-Markov potential, such
us mean value and variance, are also investigated. It is crucial the comparison of our model with
the popular Unit 240-1, studied for instance in [9,11]. Actually, it is the problem of describing and
producing heavy-tailed distributions of interspike intervals that has become quite popular. After [9,11]
the problem has been studied for instance ten years later in [12], while more recently in [13].
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Besides giving a model that (at least qualitatively) seems to be more accurate to describe the
behavior of a neuron with heavy-tailed ISIs distribution, we also provide an application of a presently
well-known fractionalization procedure to neuroscience. We considered only a simple linear model, i.e.,
the Leaky Integrate-and-Fire model, to give an easy example of application of this fractionalization
procedure and how such procedure produces both a weighted covariance structure that, together with
the non-Markov property, gives us correlation of the spiking times, and a delay in the firing activity
due to the introduction of a sort of stochastic clock. We refer to fractionalization procedure since this
random time-change of Markov processes introduces semi-Markov processes governed by fractional
equations (see, for example [14–17]), which are very popular in applications, and thus we establish a
connection of our model with fractional equations. This procedure can be adapted to various processes.
For instance, one could think to use this procedure to produce a stochastic fractional version of the
Hodgkin-Huxley model, based on the stochastic model of [7]. Thus, to resume the aim of this paper,
we intend to show that our time-changing procedure can actually produce realistic models also when
applied to easy models, and provide an approach that we aim to further generalize to much more
complex processes.

The paper is structured as follows:

• In Section 2 we introduce the semi-Markov Leaky Integrate-and-Fire model and discuss the
semi-Markov property of the membrane potential process;

• In Section 3 we give mean and variance of the membrane potential process;
• In Section 4 we address the problem of the autocovariance function. Despite being already

determined in [18], we use a different approach that leads to two independently interesting
results. In particular, we have in Theorem 1 a formula for the bivariate Laplace transform of
an inverse subordinator while in Theorem 2 a formula for the autocovariance function of a
time-changed stationary Ornstein-Uhlenbeck as defined in [18]. This last result was obtained in
the non-stationary case (for deterministic initial values) by [18]: we provide some changes in the
proof given there to determine the autocovariance in the stationary case. We then use these two
results to determine the autocovariance function of the membrane potential process. In the same
section we show that the autocovariance function is still infinitesimal and decreasing.

• In Section 5 we focus on the effect of the time-change on the distribution of the first spiking times
and the Interspike intervals of this model;

• In Section 6 we compare only qualitative (due to a lack of quantitative data) the features of the
distribution of the Interspike intervals of the model and of the Unit 240-1;

• Finally, in Section 7 we give a resume of the results.

Let us also recall that semi-Markov models are quite used in several fields of application. Just to
cite some of them, we could consider applications in finance (as for instance in [19]), queueing theory
(as for instance in [20,21]), epidemiology (as for instance in [22]) and also social sciences (as for instance
in [23]). For any functional space we will work with (as, for instance, L1

loc or L∞
loc) we refer to [24].

2. The Semi-Markov Leaky Integrate-and-Fire Model

Let us consider a standard stochastic Leaky Integrate-and-Fire model (see, for instance [5,25]),
i.e., let us describe the membrane potential of a neuron with a stochastic process V(t) which is strong
solution of the following stochastic differential equation (SDE)dV(t) =

[
−1

θ
(V(t)−VL) + I(t)

]
dt + σdW(t),

V(0) = V0

(1)

where VL ∈ R is the leak potential, θ > 0 is the characteristic time of the neuron (seen as a leaky RC
circuit, obtained by a modification of the classical Integrate-and-Fire model [1]), σ > 0 is the amplitude
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of the noise, W(t) is a standard Brownian motion (hence dW(t) is a white noise) and I(t) is a L1
loc

function that describes the input stimuli (which could be synaptic or injected).
We say that a neuron fires if the membrane potential V(t) crosses a certain fixed threshold

Vth > V0. In such case, the first passage time

T = inf{t > 0 : V(t) > Vth}

represents the first spiking time of the neuron. Moreover, to model successive spiking times of the
neuron V(t) one can use two different approaches:

• One can reset the process V(t) in the sense that one poses V(T−) = Vth and V(T) = Vr for some
constant Vr < Vth, then one can consider the process V2(t) = V(t− T) to be solution of (1) with
V2(0) = Vr and I2(t) := I(t + T) and study the first passage time of this new process through Vth
(see [4,5,26–31] and references therein);

• One could also consider a suitably modified (time-dependent) threshold such that the n-th passage
time Tn through such threshold represents the n-th spiking time of the neuron (this approach is
called adaptive threshold approach, see [32–34] and references therein).

For the adaptive threshold approach, it can be useful to observe that the sequence (Tn)n∈N is
almost surely increasing. Moreover, the interspike intervals (ISIs) An = Tn − Tn−1 for n ∈ N (where
T0 = 0) are independent and if I(t) ≡ I0 is constant, they are also identically distributed.

It has been shown in [27] that under suitable assumptions on I(t), the probability survival
functions of An t 7→ P(An > t) are asymptotically exponential. However, in some particular settings
this behavior is in contradiction with the experimental data. Indeed, in [9], it has been shown that the
An should be similar to one-sided stable random variables and then, in particular, their probability
survival functions should decay like power laws.

In order then to introduce a sort of delay in this behavior, we now consider a stochastic time scale
for the process V(t). Let us recall that a subordinator S(t) is an increasing Lévy process (see [35,36])
and thus we can define its right-continuous inverse as

E(t) = inf{y > 0 : S(y) ≥ t}.

In particular, let us consider driftless subordinators, i.e., non-decreasing Lévy processes S(t) such
that their Lévy exponent Φ(λ) can be expressed as

Φ(λ) =
∫ +∞

0
(1− e−λx)ν(dx)

where ν is the Lévy measure of S(t). Moreover, we will assume that ν(0,+∞) = +∞, so that the
process S(t) is strictly increasing.

Now we can define the time-changed LIF model. Consider the process V(t) that is strong solution
of (1). Then let us also consider the inverse E(t) of an independent subordinator. Let us then define
VΦ(t) := V(E(t)) as our new membrane potential process (where Φ is the Laplace exponent of the
subordinator S(t)). Despite losing an easy physical interpretation of the constant θ, we will see in the
following that such process (for a suitable choice of Φ and I(t)) recover some properties (as found
in [9]) of the ISIs distribution. We say that this model is semi-Markovian in the sense that the process
VΦ(t) is semi-Markovian, and so it enjoys the Markov property at any random time T such that
T(ω) ∈ {s : S(y, ω) = s for some y ≥ 0}, as rigorously discussed in [37] Section 4b. The reader might
also consult for example [38] (in particular Example (2.13) and Section 5) for a more general class
of semi-Markov processes including VΦ. Heuristically, the reason the Markov property is lost after
time-change can be summarized as follows. The process E(t) has interval of constancy whose random
length is the length of the jumps of S, i.e.,



Mathematics 2019, 7, 1022 4 of 24

E(t) = y, S(y−) ≤ t < S(y). (2)

Of course, these intervals of constancy are not (in general) exponentially distributed and thus
E(t) is not Markovian. Also V(E(t)) has the same interval of constancies and thus also it is not
a Markov process. It is useful to note that a semi-Markov process can be embedded in a Markov
process by adding a coordinate containing the information which are lost together with the exponential
distribution: hence if we define

γ(t) := t−max
{

sup
{

s ≤ t : Vφ(t) 6= VΦ(s)
}

, 0
}

= t− S(E(t)−), (3)

where we use the convention sup ∅ = −∞, which is the sojourn time in the current position of VΦ,
we find that

(
VΦ(t), γ(t)

)
is a Markov process ([39] Section 4; we suggest to the reader [40] chapter 3

and references therein for an overview of various equivalent definitions of semi-Markov processes.)
In the next sections, we will focus on some characteristics of the process VΦ(t).

3. Mean and Variance Functions of V Φ(t)

3.1. Preliminaries on V(t)

Let us give first some preliminaries on the strong solution V(t) of (1). Let us recall that, solving
the equation, we obtain

V(t) = (1− e−
t
θ )VL + e−

t
θ V0 + e−

t
θ

∫ t

0
I(s)e

s
θ ds + σe−

t
θ

∫ t

0
e

s
θ dW(s). (4)

Let us define the following quantities:

• The process

U(t) = (1− e−
t
θ )VL + e−

t
θ V0 + σe−

t
θ

∫ t

0
e

s
θ dW(s) (5)

which is the solution of (1) when we set I(t) ≡ 0, hence it is a non-stationary Ornstein-Uhlenbeck
process with equilibrium in VL and degenerate initial value V0;

• The function

J(t) = e−
t
θ

∫ t

0
I(s)e

s
θ ds (6)

for a general I(t), which is the integrated stimuli in the process V(t).

Thus, we have
V(t) = U(t) + J(t).

Now, let us observe that (see, for instance [27])

E[U(t)] = (1− e−
t
θ )VL + e−

t
θ V0

and

Cov(U(t), U(s)) =
σ2θ

2
(e−

|t−s|
θ + e−

t+s
θ ).

Thus, being J(t) a deterministic function, we have

E[V(t)] = (1− e−
t
θ )VL + e−

t
θ V0 + J(t)

and

Cov(V(t), V(s)) =
σ2θ

2
(e−

|t−s|
θ − e−

t+s
θ ). (7)
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Concerning the variance, we have in particular

D[V(t)] =
σ2θ

2
(1− e−

2t
θ ).

From now on, for simplicity, let us set λ = 1
θ .

3.2. Mean of VΦ(t)

Let us now consider VΦ(t). We want first to evaluate E[VΦ(t)]. To do this, let us first define
UΦ(t) = U(E(t)) and JΦ(t) = J(E(t)) to obtain VΦ(t) = UΦ(t) + JΦ(t).

Let us now introduce some notation. Let us denote with f (t, y) the probability density function of
E(t) and with g(t, y) the probability density function of S(t). Moreover, let us denote

η(t, z) = E[e−zE(t)]

the Laplace transform of f (t, y) with respect to y. Now we are ready to give the following proposition,
which have been actually obtained in [18], but we recall the proof for the sake of completeness.

Proposition 1. We have
E[UΦ(t)] = VL (1− η(t, λ)) + V0η(t, λ). (8)

Proof. Let us observe that by conditioning

E[UΦ(t)] =
∫ +∞

0
E[U(s)] f (t, s)ds

= VL

(∫ +∞

0
f (t, s)ds−

∫ +∞

0
e−λs f (t, s)ds

)
+ V0

∫ +∞

0
e−λs f (t, s)ds

= VL (1− η(t, λ)) + V0η(t, λ).

Consequently, we obtain the mean of VΦ(t).

Corollary 1. We have

E[VΦ(t)] = VL (1− η(t, λ)) + V0η(t, λ) +
∫ +∞

0
J(s) f (t, s)ds (9)

A particular case in which the mean is explicable in closed form is given by I(t) ≡ I0. Indeed, in
such case we have

J(t) =
I0

λ
(1− e−λt)

and then
E[VΦ(t)] = VL (1− η(t, λ)) + V0η(t, λ) +

I0

λ
(1− η(t, λ)). (10)

Let us observe that if Φ(z) = zα for α ∈ (0, 1), then, denoting Vα(t) := Vzα
(t), we have that

E[Vα(t)] is a solution of a fractional Cauchy problem, i.e., a Cauchy problem with a fractional time
derivative. We recall that the fractional derivative of order α (see [41]) is, for any suitable function f ,

dα f
dtα

(t) =
1

Γ(1− α)

d
dt

∫ t

0
(t− τ)−α ( f (τ)− f (0)) dτ. (11)

In the next result we make rigorous this assertion: observe also that such result is linked to the
definition of fractional Pearson diffusion, as given in [42] and can actually be derived starting from the
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equations studied in such paper. Here we follow a different approach, which relies on the linearity of
the equation.

Proposition 2. If Φ(λ) = λα for α ∈ (0, 1) and I ∈ L∞
loc(0,+∞), then, denoting Vα(t) := Vλα

(t), we have
that E[Vα(t)] is solution of{

dα

dtα E[Vα(t)] = − 1
θ (E[V

α(t)]−VL) +E[I(E(t))], for almost every t > 0

E[Vα(0)] = V0,
(12)

that is to say:

• the function t 7→ − 1
θ (E[V

α(t)]−VL) +E[I(E(t))] is in L1
loc(0,+∞);

• for t ∈ (0,+∞) it holds:

1
Γ(1− α)

∫ t

0
(t− τ)−α (E[Vα(τ)]−Vα(0)) dτ = −1

θ

∫ t

0
E[Vα(s)]ds +

VL
θ

t +
∫ t

0
E[I(E(s))]ds.

Moreover, if I(t) is continuous and bounded, E[Vα(t)] is solution of (12) for every t > 0.

Proof. First of all, let us show that E[I(E(t))] and E[Vα(t)] are in L1
loc(0,+∞). To do this, let us first

observe that

E[I(E(t))] =
∫ +∞

0
I(s) f (t, s)ds

thus, we have ∫ t

0
|E[I(E(τ))]|dτ ≤

∫ t

0

∫ +∞

0
|I(s)| f (τ, s)dsdτ ≤ Ctτ

since
∫ +∞

0 f (τ, s)ds = 1 for any τ > 0, where Ct = ‖I‖L∞(0,t).
Moreover, we have that for any t ∈ [0, T]

|J(t)| ≤ e−
t
θ

∫ t

0
|I(s)|e

s
θ ds ≤ Ctθ(1− e−

t
θ ) ≤ CTθ,

thus, also E[V(t)] is in L∞
loc(0,+∞). Observing that

E[Vα(t)] =
∫ +∞

0
E[V(s)] f (t, s)ds, (13)

we have that E[Vα(t)] ∈ L1
loc(0,+∞). Now, starting from (13) and taking the Laplace transform

(denoting with Ṽα(z) the Laplace transform of E[Vα(t)]), we achieve

Ṽ(z) = zα−1
∫ +∞

0
E[V(s)]e−szα

ds

where zα−1e−szα
is the Laplace transform of f with respect to t (see [43]). It is already well known that

E[V(t)] is an absolutely continuous function solving the following Cauchy problem{
d
dt E[V(t)] = − 1

θ (E[V(t)]−VL) + I(t), for almost every t > 0

E[Vα(0)] = V0,

hence we can integrate by parts to obtain

Ṽα(z) = z−1V0 + z−1
∫ +∞

0

dE[V(s)]
ds

e−szα
ds,
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that is to say

Ṽα(z) = z−1V0 −
z−1

θ

∫ +∞

0
E[V(s)]e−szα

ds + z−1
∫ +∞

0

(
1
θ

VL + I(s)
)

e−szα
ds

and then, multiplying everything by zα−1

zα−1Ṽα(z) = z−1(zα−1V0)− z−1
(

1
θ

∫ +∞

0
E[V(s)]zα−1e−szα

ds +z−1
∫ +∞

0

(
1
θ

VL + I(s)
)

zα−1e−szα
ds
)

.

Taking the inverse Laplace transform (and recalling also the Laplace transform of the power
function) we have

1
Γ(1− α)

∫ t

0
(t− τ)−α E[Vα(τ)]dτ =

V0

Γ(1− α)

∫ t

0
τ−αdτ − 1

θ

∫ t

0

∫ +∞

0
E[V(s)] f (τ, s)dsdτ

+
VL
θ

∫ t

0

∫ +∞

0
f (τ, s)dsdτ +

∫ t

0

∫ +∞

0
I(s) f (τ, s)dsdτ

that is to say, using that
∫ +∞

0 f (τ, s)ds = 1,

1
Γ(1−α)

∫ t
0 (t− τ)−α E[Vα(τ)]dτ − V0

Γ(1−α)

∫ t
0 τ−αdτ = − 1

θ

∫ t
0 E[V

α(τ)]dτ + VL
θ t +

∫ t
0 E[I(E(τ))]dτ. (14)

Rearrange (14) to get

1
Γ(1− α)

∫ t

0
(t− τ)−α (E[Vα(τ)]−Vα(0)) dτ = −1

θ

∫ t

0
E[Vα(τ)]dτ +

VL
θ

t +
∫ t

0
E[I(E(τ))]dτ (15)

and note that the equality is true for any t > 0 by uniqueness of Laplace transform since both sides
of (14) are continuous functions of t > 0. Thus, we have shown that E[Vα(t)] is solution of Equation (12)
for almost every t > 0.

If I is continuous and bounded, also J(t) (and then E[V(t)]) is a continuous and bounded function.
Moreover, recalling that (see [43])

f (t, s) =
t
α

s−1−1/αgα(ts−1/α)

where gα is the density of S(1), we have that

E[I(E(t))] =
∫ +∞

0
I(s) f (t, s)ds =

∫ +∞

0
I(s)

t
α

s−1−1/αgα(ts−1/α)ds =
∫ +∞

0
I
((

t
w

)α)
gα(w)dw

where w = ts−1/α. From this it is easy to show that t 7→ E[I(E(t))] is continuous and the same holds
for E[Vα(t)]. Thus, the right-hand side of Equation (15) is C1 and can be differentiated in (0,+∞).

Remark 1. The definition of solution is given in the same spirit as the definition of Caratheodory solution for an
ordinary differential equation (see [44]). In particular, one has that dα

dtα E[Vα(t)] exists for almost every t > 0
and the first equation of (12) actually holds for such t.

Let us also recall that Equation (12) is actually the equation of a fractional order LIF model, as introduced
in [45].

3.3. The Variance of VΦ(t)

In the same way as we did before, we can obtain the variance of the process VΦ(t).
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Proposition 3. We have

D[VΦ(t)] =
σ2

2λ
(1− η(t, 2λ)) (16)

Proof. By conditioning we have

D[VΦ(t)] =
∫ +∞

0
D[V(s)] f (t, s)ds

=
σ2

2λ
(
∫ +∞

0
f (t, s)ds−

∫ +∞

0
e−2λs f (t, s)ds)

=
σ2

2λ
(1− η(t, 2λ)).

From this equality we can deduce in particular that for any t > 0 we have VΦ(t) ∈ L2(P).
This observation will be useful for the evaluation of the autocovariance function.

Remark 2. Since by dominated convergence η(t, z)→ 0 as t→ +∞ for any z > 0, we have that

lim
t→+∞

D[VΦ(t)] =
σ2

2λ
> 0.

4. The Autocovariance Function of V Φ(t)

In this Section we want to describe the autocovariance function of the membrane potential process
VΦ. Here we want to follow a different approach from the one given by [18]. Actually, in Corollary 2
we determine the autocovariance of VΦ by splitting the integral in two pieces: one is given by the
bivariate Laplace transform of the inverse subordinator while the other is the autocovariance of a
stationary Ornstein-Uhlenbeck process. Therefore, in the next Subsection we will determine a formula
for the first piece, then in Section 4.2 we will do the same for the second piece and finally in Section 4.3
we will glue together these results.

4.1. The Bivariate Laplace Transform of E(t)

As we said before, we know that VΦ(t) ∈ L2(P) for any t > 0. Hence we have that for any couple
(t, s) ∈ (0,+∞)2, by a simple application of the Cauchy-Schwartz inequality,

Cov(VΦ(t), VΦ(s)) < +∞.

The covariance of VΦ(t) has been already determined in [18]. However, we follow here a
different approach which gives a slightly more explicit result. Therefore, let us define first for any
(t, s) ∈ (0,+∞)2 the measure

H(2)(t, s, A) = P((E(t), E(s)) ∈ A) for any A ⊆ R2 measurable.

We first want to determine the bivariate Laplace-Stieltjes transform of H(2)(t, s, A). The following
theorem provides a formula for such bivariate Laplace-Stieltjes transform.

Theorem 1. Let us suppose that for any z > 0 we have

∂

∂t

∫ +∞

0
P(E(t) ≤ u)e−zudu =

∫ +∞

0

∂

∂t
P(E(t) ≤ u)e−zudu.



Mathematics 2019, 7, 1022 9 of 24

Then, for any z > 0 and t ≥ s > 0, we have∫ +∞

0

∫ +∞

0
e−z(u+v)H(2)(t, s, dudv) = η(t, z) + η(s, 2z)

+
1
2

∫ s

0
η(t− y, z)

∂

∂y
η(y, 2z)dy.

(17)

The proof is given in Appendix A.

4.2. The Autocovariance Function of a Time-Changed Stationary Ornstein-Uhlenbeck Process

We will also need to determine the covariance of a time-changed stationary Ornstein-Uhlenbeck
process. In particular let us consider a stationary Ornstein-Uhlenbeck process US(t) and its
time-changed process UΦ

S (t) := US(E(t)). For the inverse stable subordinator, the covariance has
been already determined in [46], while for the non-stationary case it has been already achieved in [18].
Here we consider the general stationary case by using the same approach.

Theorem 2. Suppose that for any z ≥ 0∫ +∞

0

∂

∂t
P(E(t) ≥ v)e−zvdv =

∂

∂t

∫ +∞

0
P(E(t) ≥ v)e−zvdv.

Then, for any z > 0 and t ≥ s > 0 we have

∫ +∞

0

∫ +∞

0
e−z|u−v|H(2)(t, s, dudv) = z

∫ s

0
η(t − y, z)

∂

∂y
E[E(y)]dy − 2 + 2η(s, z) + η(t, z). (18)

The proof is given in Appendix B.

Remark 3. Since for a stationary Ornstein-Uhlenbeck process US(t) of parameter λ > 0 the covariance is
given by Cov(US(t), US(s)) = e−λ|t−s|, Formula (18) gives also the value of Cov(UΦ

S (t), UΦ
S (s)) as z = λ.

4.3. The Autocovariance Function of VΦ(t)

Now we are ready to obtain the autocovariance function of VΦ(t).

Corollary 2. Suppose that for any z ≥ 0∫ +∞

0

∂

∂t
P(E(t) ≥ v)e−zvdv =

∂

∂t

∫ +∞

0
P(E(t) ≥ v)e−zvdv.

Then, for any 0 < s < t,

Cov(VΦ(t), VΦ(s)) =
σ2

2λ

(
λ
∫ s

0
η(t− y, λ)

∂

∂y
E[L(y)]dy

− 2 + 2η(s, λ)− η(s, 2λ)

−1
2

∫ s

0
η(t− y, λ)

∂

∂y
η(y, 2λ)dy

)
.

(19)

Proof. For t ≥ s > 0, using (7) we have

Cov(VΦ(t), VΦ(s)) =
σ2

2λ

∫ +∞

0

∫ +∞

0
(e−

|u−v|
θ − e−

u+v
θ )H(2)(t, s, dudv).
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Equations (17) and (18) give us the fact that the involved integrals are finite, hence we can split
the integral in two parts and then use the aforementioned equations.

Concerning the autocovariance function of VΦ, it is interesting to observe that two important
properties are preserved.

Proposition 4. Let us fix t > 0 and define the function

cΦ
t (s) = Cov(VΦ(t + s), VΦ(t)).

Then:

a cΦ
t (s) is decreasing;

b lims→+∞ cΦ(s) = 0.

Proof. Let us show a. To do this, let us consider 0 ≤ s1 < s2 and the measure

H(3)(t + s2, t + s1, t, B) = P((E(t + s2), E(t + s1), E(t)) ∈ B)

for any Borel set B ⊆ R3. In particular, such a measure is concentrated in the set

A = {(u, v, w) ∈ R3 : u ∈ (0,+∞), v ∈ (0, u), w ∈ (0, v) }.

Moreover, let us define c(t, s) = Cov(V(t), V(s)). Now let us observe that

cΦ
t (s1)− cΦ

t (s2) = Cov(VΦ(t + s1), VΦ(t))−Cov(VΦ(t + s2), VΦ(t))

=
∫ +∞

0

∫ u

0

∫ v

0
(Cov(V(v), V(w))−Cov(V(u), V(w)))H(3)(t + s2, t + s1, t, dudvdw)

=
∫ +∞

0

∫ u

0

∫ v

0
(c(v, w)− c(u, w))H(3)(t + s2, t + s1, t, dudvdw) ≥ 0

since, being w < v < u in A, c(v, w)− c(u, w) ≥ 0 (since we already know that the function t 7→ c(t, s)
is decreasing when t ≥ s). Now let us show b. To do this, let us observe that E(t) is almost surely
increasing and (pathwise) limt→+∞ E(t) = +∞ almost surely. Thus, let us write

cΦ
t (s) = Cov(VΦ(t + s), VΦ(t))

= Cov(V(E(t + s)), V(E(t)))

= E[c(E(t + s), E(t))]

=
∫

Ω
c(E(t + s, ω), E(t, ω))dP(ω).

Now observe that c(t, s) is a continuous function and limt→+∞ c(t, s) = 0. Moreover, for fixed
s, the function t 7→ c(t, s) is bounded hence, in particular, |c(E(t + s), E(t))| ≤ C(t) almost surely
and lims→+∞ c(E(t + s), E(t)) = 0 almost surely. Thus, we can use dominated convergence theorem
to obtain

lim
s→+∞

cΦ
t (s) = lim

s→+∞

∫
Ω

c(E(t + s, ω), E(t, ω))dP(ω)

=
∫

Ω
lim

s→+∞
c(E(t + s, ω), E(t, ω))dP(ω) = 0

concluding the proof.

This last result tells us that we do not lose the main features of the covariance function, i.e., it is
still infinitesimal and decreasing with respect to the time gap. However, the asymptotic behavior
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depends now on the choice of Φ, in particular on the behavior of η. It is for instance known (see [46])
that the asymptotic behavior of the covariance when Φ(λ) = λα is the one of a power function with
exponent less than 1, hence the process is long-range dependent. Thus, we have that with a suitable
choice of Φ we can alter the asymptotic behavior of the covariance to reproduce different memory
effects at the level of the autocovariance of the process. Let us remark that changing the asymptotic
behavior of the covariance has been already used to describe long-memory effects of the membrane
potential process (see for instance [8]).

5. First Spiking Times and Interspike Intervals

5.1. Spiking Times in Case of Excitatory Stimuli

From now on, let us consider I(t) to be an L1 excitatory stimuli, i.e., I(t) ≥ 0. We are now
interested in the first passage time of VΦ(t) through the threshold Vth > V0. In this case, it is easy to
see that the process V(t) is a Gauss-Markov process and satisfies the hypotheses of [10] Corollary 3.4.4,
hence, denoting T1 = inf{t > 0 : V(t) > Vth}, we have E[T1] < +∞. Concerning the behavior as
t→ 0+ of t 7→ P(T1 ≤ t), recalling (see [10] Corollary 3.2.4) that the ratio of the Gauss-Markov process
V(t) is given by

rV(t) =
1

2λ

(
e2λt − 1

)
we have that rV is a strictly increasing C2(0,+∞) function by [10] Remark 3.5.5 we know that we are
under the hypotheses of [10] Proposition 3.5.5, thus

lim
t→0+

P(T1 ≤ t)
tγ

= 0 (20)

for any γ ∈ R. One can also show that T1 is an absolutely continuous random variable whose density
is infinitely differentiable with L1 derivatives (since they are the unique weak solution of initial-value
parabolic problems, see [47]).

Now let us consider the process VΦ(t) and let us define T1 = {t > 0 : VΦ(t) > Vth}, which
represents the first spiking time of the neuron. Concerning the asymptotic behavior of the survival
function and the cumulative distribution function we have the following proposition as an application
of the results in [10].

Proposition 5. With the notation above, we have

i If Φ is regularly varying at 0+ with index α ∈ [0, 1). Then as t→ +∞

P(T1 > t) ∼ E[T1]

Γ(1− α)
Φ
(

1
t

)
; (21)

ii If t 7→ ν(t,+∞) is an absolutely continuous function, then T1 is an absolutely continuous random variable;
iii If t 7→ ν(t,+∞) is an absolutely continuous function and there exist r0, C > 0 and γ ∈ (0, 2) such that∫ r

0
s2ν(ds) < Crγ, ∀r ∈ (0, r0)

then the density pT1 of T1 is infinitely differentiable and all the derivatives are bounded;
iv Under the hypotheses of iii, if Φ is regularly varying at +∞ with index α ∈ [0, 1), then as t→ 0+

lim
t→0+

P(T1 ≤ t)
tγ

= 0 (22)

for any γ ∈ R.
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Proof. (i) We have already shown that E[T1] < +∞, so this property follows from [10] Corollary 2.2.3;
(ii,iii) These are just [10] Propositions 2.3.1 and 2.3.2;
(iv) We have already observed that T1 is an absolutely continuous random variable whose density
is infinitely differentiable with L1 derivatives (hence Laplace transformable), thus from (20) and [10]
Theorem 2.5.4 we obtain the desired property.

With this proposition, we have summarized some of the properties we can obtain concerning the
regularity of T1 and the asymptotic behavior of its survival and cumulative distribution functions.
However, we can extend these results to successive spiking times by using an adaptive threshold
method. To do this, instead of resetting the process, let us consider some other barriers

V(n)
th = Vth + (n− 1)(Vth −Vr)

where Vr ∈ R is a constant representing the reset potential, i.e., the membrane potential after the
depolarization. However, since we want the first passage times of our process through such threshold
to be the spiking times of the neuron, we need to spatially translate the whole process of (n− 1)(Vth−Vr)

after a spike. To do so, we need to modify Equation (1) asdṼ(t) =
[
−λ(Ṽ(t)−VL(t)) + I(t)

]
dt + σdW(t),

Ṽ(0) = V0
(23)

where this time VL(t) is a suitable stochastic process. In particular, let us set for t ∈ [0, T1) VL(t) ≡ VL.
Now let us suppose we have defined VL(t) up to Tn = inf{t > 0 : V(t) ≥ V(n)

th }. Then we pose

Tn+1 = inf{t > 0 : V(t) ≥ V(n+1)
th } and VL(t) = VL + n(Vth − Vr) for t ∈ [Tn, Tn+1). This is a sort

of feedback definition: we do not know Tn+1 until we define VL(t), but we can define VL(t) in Tn and
then start the process with such fixed value of VL(t) until it reaches the threshold V(n)

th . Using this
modification for the classical stochastic Leaky Integrate-and-Fire model could allow us to say that
the Tn represent the n-th spiking time of the neuron (as they are equivalent to the ones obtained by
resetting the process). However, this leads to a much more difficult process to handle with. Indeed,
to write the solution of (23), let us define the counting process

N(t) =
+∞

∑
n=1

χTn≤t

where for any A ∈ F

χA(ω) =

{
1 ω ∈ A

0 ω 6∈ A.

Thus, we can exploit the process Ṽ(t) as

Ṽ(t) = e−λtV0 + (1− e−λt)VL + N(t)(Vth −Vr)−
N(t)

∑
i=1

(Vth −Vr)e−λ(t−Ti)+

+ e−λt
∫ t

0
I(s)eλsds + σe−λt

∫ t

0
eλsdW(s) (24)

which is quite complicated. However, to obtain again the starting process, we can again modify
the threshold, which will become stochastic. Indeed, let us suppose we want to observe the n-th
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spike. Hence we are conditioning with respect to the event {N(t) = n− 1}. Under such conditioning,
Ṽ(t) ≥ V(n)

th if and only if

V(t) ≥ V(n)
th − (n− 1)(Vth −Vr) +

n−1

∑
i=1

(Vth −Vr)e−λ(t−Ti).

Hence let us define the new stochastic threshold as

V(n)
th (t) = Vth +

n−1

∑
i=1

(Vth −Vr)e−λ(t−Ti).

In this way, we can say that Tn = inf{t > 0 : V(t) ≥ V(n)
th (t)} still represents the n-th spiking

time of the neuron. In particular, if we are conditioning the process V(n)
th (t) with the knowledge of

(T1, . . . , Tn−1), this is an exponentially decaying threshold such that limt→+∞ V(n)
th (t) = Vth.

Now, since we are dealing with the semi-Markov model, let us consider Tn = inf{t > 0 : VΦ(t) ≥
V(n)

th (t)}. For such random variables, after conditioning with respect to (T1, . . . ,Tn−1), we cannot
directly extend Proposition 5. However, one can use [10] Propositions 2.2.6 and 2.2.7 to express some
properties of the limit superior and limit inferior of some quantity involving the survival and the
cumulative distribution function. In a forthcoming paper we aim to show that Proposition 5 can be
actually extended to some cases of time-varying thresholds.

5.2. The Interspike Intervals

Another important property of the times Tn relies on their representation. Indeed, we have

Tn
d
= S(Tn).

This property can be used to determine the distribution of the interspike intervals. Indeed, let us
observe that Tn+1 ≥ Tn almost surely. Thus, if we define the measure µ(2)(B) = P((Tn+1, Tn) ∈ B) for
any Borel set B ⊆ (0,+∞)2, it is easy to see that it is concentrated on the set

A = {(u, v) : u ∈ (0,+∞), v ∈ (0, u)}.

Hence, we have, by using the fact that S(t) is independent from Tn+1 and Tn,

P(S(Tn+1)− S(Tn) ≤ t) =
∫ +∞

0

∫ u

0
P(S(u)− S(v) ≤ t)µ(2)(dudv).

Now, observe that in A we have u > v, hence, by using the fact that S(t) is a Lévy process, since

S(u)− S(v) d
= S(u− v),

P(S(Tn+1)− S(Tn) ≤ t) =
∫ +∞

0

∫ u

0
P(S(u− v) ≤ t)µ(2)(dudv) = P(S(Tn+1 − Tn) ≤ t). (25)

Hence if we define Kn = Tn − Tn−1 (where T0 = 0) and Kn = Tn − Tn−1, we obtain from (25)

P(Kn ≤ t) = P(S(Kn) ≤ t)

that is to say Kn
d
= S(Kn). This property allows us to determine the distribution of the interspike

intervals Kn from the distribution of S(Kn). In particular, if we denote with gn the density of Kn

we have

P(Kn ≤ t) =
∫ +∞

0
P(S(y) ≤ t)gn(y)dy.
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Moreover, Kn are independent and then also Kn. Indeed, we have

P(Kn ≤ t1,Km ≤ t2) = P(Tn − Tn−1 ≤ t1,Tm − Tm−1 ≤ t2)

= P(S(Tn)− S(Tn−1) ≤ t1, S(Tm)− S(Tm−1) ≤ t2).

Now let us suppose m < n. Then m ≤ n− 1 and m− 1 < n− 1. Thus, if we consider the measure
µ(4)(B) = P((Tn, Tn−1, Tm, Tm−1) ∈ B) for any Borel set B ⊆ R4, it is easy to see that it is concentrated
on the set

A = {(u, v, w, z) : u ∈ (0,+∞), v ∈ (0, u), w ∈ (0, v), z ∈ (0, w)}.

Hence we have, by using the fact that S is a Lévy process and (v, u) and (z, w) are disjoint intervals,

P(Kn ≤ t1,Km ≤ t2) = P(S(Tn)− S(Tn−1) ≤ t1, S(Tm)− S(Tm−1) ≤ t2)

=
∫ +∞

0

∫ u

0

∫ v

0

∫ w

0
P(S(u)− S(v) ≤ t1, S(w)− S(z) ≤ t2)µ

(4)(dudvdwdz)

=
∫ +∞

0

∫ u

0

∫ v

0

∫ w

0
P(S(u)− S(v) ≤ t1)P(S(w)− S(z) ≤ t2)µ

(4)(dudvdwdz)

=
∫ +∞

0

∫ u

0

∫ v

0

∫ w

0
P(S(u− v) ≤ t1)P(S(w− z) ≤ t2)µ

(4)(dudvdwdz).

Now let us consider the function s : (u, t) 7→ P(S(u) ≤ t). Then

P(Kn ≤ t1,Km ≤ t2) =
∫ +∞

0

∫ u

0

∫ v

0

∫ w

0
P(S(u− v) ≤ t1)P(S(w− z) ≤ t2)µ

(4)(dudvdwdz)

= E[s(Tn − Tn−1, t1)s(Tm − Tm−1, t2)]

= E[s(Kn, t1)s(Km, t2)].

Now let us consider the measures η
(2)
n,m(B2) = P((Kn, Km) ∈ B2) for any Borel set B2 ⊆ R2 and

η
(1)
n (B1) = P(Kn ∈ B1) for any Borel set B1 ⊆ R. Then, since Kn and Km are independent we have

η
(2)
n,m(dudv) = η(1)(du)η(1)(dv) and we have

P(Kn ≤ t1,Km ≤ t2) = E[s(Kn, t1)s(Km, t2)]

=
∫ +∞

0

∫ +∞

0
P(S(u) ≤ t1)P(S(v) ≤ t2)η

(2)(dudv)

=
∫ +∞

0
P(S(u) ≤ t1)η

(1)(du)
∫ +∞

0
P(S(v) ≤ t2)η

(1)(dv)

= P(S(Kn) ≤ t1)P(S(Km) ≤ t1)

= P(Kn ≤ t1)P(Km ≤ t2),

so Kn and Km are independent.
Now let us suppose that I(t) ≡ I0. Then we know that Kn are i.i.d. random variables. Thus also Kn

are i.i.d. random variables. In particular, K1 = T1 and then all the interspike intervals are distributed
as T1. Thus, we can conclude that if I(t) ≡ I0, then the law of the first passage time of V(t) through
Vth describes not only the first spiking time, but also all the interspike intervals. In particular, we can
extend in such case Proposition 5 to the variables Kn.

6. Comparison with the Unit 240-1

In [11], the authors give an overview of quantitative methods to study spontaneous activity of
neurons. In particular, they considered some neuronal units in the cochlear nucleus of the cat. Let us
focus our attention on two particular neuronal units: Unit 259-2 and Unit 240-1. Using the exact words
of the aforementioned paper 〈〈The histogram for Unit 259-2 appears to be unimodal and asymmetric
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[...] while that of Unit 240-1 is unimodal and asymmetric, but on a quite different time scale than that
of Unit 259-2.〉〉 Indeed, the authors then assert that 〈〈The spike trains of Unit 259-2 and Unit 240-1 do
not appear to be easily characterizable.〉〉

In the same paper, the authors try to give a characterization of the interspike intervals of Unit 259-2.
Indeed, they assert that 〈〈The fact that the interval histogram rises rapidly to its mode (at 3 msec.),
together with the exponential decay, suggests that the process generating the spike train might be a
Poisson process with dead time 〉〉, hence, in particular, the interspike intervals should be exponentially
distributed. However 〈〈when the histogram of Unit 240-1 is replotted on a semilogarithmic scale, the
decay is clearly seen to be non-exponential.〉〉 The fact that the histograms of the interspike intervals of
the Unit 259-2 remind of an exponential distribution, while the ones of the Unit 240-1 do not have an
exponential decay, but still are similar to the ones of Unit 259-2 but on a different time scale, suggests
that the distribution of the interspike intervals of the Unit 240-1 could be similar to the one of a
Mittag-Leffler random variable, or maybe to the one of a stable random variable, or at least it should
have an heavy tail.

Thus, in [11] a first attempt to study and characterize the interspike interval distribution of
the Unit 240-1 is done, but the rescaling they did were not enough to find such distribution. After
that paper, other papers focused on trying to reconstruct the distribution of Unit 240-1. In [48],
the interspike interval distribution of the Unit 240-1 is fitted for instance with a gamma distribution,
while in [9] Figure 5, as suggested by the scaling invariant property of the histograms, it is fitted
by an inverse Gaussian distribution. However, each of these two distributions are exponentially
decaying. An interesting solution is found in [9]: here the scaling invariant property of the histograms
is interpreted as a stability property and then a stable distribution is used to fit the data concerning the
Unit 240-1. In particular, the authors take in consideration Cauchy distribution (which is power-like
decaying) since it 〈〈[...] has essentially the same invariance property as that found for the density of
interspike intervals of Unit 240-1.〉〉.

Concerning linear models such as the Leaky Integrate-and-Fire, it is not enough to describe the
behavior of the Unit 240-1. Indeed, for long time, the distribution of the interspike intervals for the
spontaneous activity (hence, being I(t) ≡ 0, they are i.i.d. random variables) generated by a Leaky
Intergrate-and-Fire model are asymptotically exponentially distributed (see [27]), hence their decay is
too fast to accord to the one of the Unit 240-1. However, if we consider Φ(λ) = λα for some α ∈ (0, 1),
our semi-Markov Leaky Integrate-and-Fire model admits interspike intervals that are i.i.d. and the
asymptotically equal to power laws for long times (in particular the asymptotic behavior is similar to
the one of a Mittag-Leffler function). This decay is much more in accord to the one obtained by [11] for
Unit 240-1, since it preserves the heavy tails that have been observed. Moreover, it is not so distant
from the description of [9], since the decay is a power law of exponent α ∈ (0, 1) that can be tuned
with the data. Moreover, other choices of Φ can be done according to the data to obtain a more precise
fit of the histograms, since Proposition 5 guarantees that if Φ is of regular variation at 0+, then the
survival function of the interspike intervals decay as the product of a power and a slowly varying
function, which is quite similar to a power-law decay.

7. Conclusions

In this paper, we used a fractionalization procedure to produce heavy-tailed non-Markov neuronal
models from easy Markov linear models. This procedure consists of using a stochastic timescale
inside the process itself: this random time is given by the inverse of a subordinator independent of
the original Markov process. First, this procedure leads a semi-Markov process (whose evolution
depends on the current position and on the current sojourn time in it) in place of the Markov process
describing the membrane potential of the neuron. As a consequence, despite we did not modify two
fundamental properties of the covariance, i.e., being decreasing and infinitesimal, we can actually
obtain different asymptotic behavior and thus force the process to be long-range dependent (it is the
case of the stable subordinator for instance, as observed in [46]). As we already discussed, long-range
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dependent processes (or, more in general, non-delta correlated noises) can be used to describe memory
effects in neuronal models and provide a first generalization of the easy linear models, in such a way
to obtain realistic data (see [8,31]). The most important consequence is related to the spiking times:
the time-change forces a delay in the dynamics of the membrane potential, which leads to a delay
in the distribution of the spiking times. In particular, we achieve heavy-tailed first spiking times.
Moreover, we preserve independence and identical distribution of the interspike intervals in the case of
spontaneous activity, thus leading to the heavy-tailed distributions of such intervals in the spontaneous
activity case. Finally, we compare (only qualitatively, due to a lack of data) the behavior of our process
(as Φ(z) = zα, i.e., in the α-stable case) with the behavior of the Unit 240-1, which is seen to admit
heavy-tailed interspike intervals (see [9,11]). As we also stated in the introduction, the problem of
the power-law decay of the distribution of the spiking times has been more recently studied in [13].
From this comparison we notice that the Mittag-Leffler-likely behavior of the interspike intervals of
the Unit 240-1, together with the power-law decay, are reproduced by our model. However, this does
not mean that our model is in accord with the data and a statistical and experimental study must be
done on them.

Finally, let us recall that this is actually a toy example. Despite being a simple (linear) example,
it seems to work according to already known phenomena (this is the case of Unit 240-1). However,
here we propose this approach as an exemplary procedure to produce more complex delayed or
heavy-tailed neuronal models and thus we aim to study different time-changed models (eventually
also non-linear ones, such as the stochastic Hodgkin-Huxley model in [7]).
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Appendix A. Proof of Theorem 1

Proof. Let us denote with G(u, v) = e−z(u+v) and let us observe that G is a C1 function. Let us first
consider for any couple (a, b) ∈ (0,+∞)2

∫ a

0

∫ b

0
G(u, v)H(2)(t, s, dudv) =

∫ a

0

∫ b

0
H(2)(t, s, [u, a]× [v, b])G(du, dv)

+
∫ a

0
H(2)(t, s, [u, a]× [0, b])G(du, 0)

+
∫ b

0
H(2)(t, s, [0, a]× [v, b])G(0, dv)

+ H(2)(t, s, [0, a]× [0, b])G(0, 0)

(A1)

where we used bivariate integration by parts formula (see [49] Lemma 2.2). Now let us observe that
since G is a C1 function we have

G(du, v) = −ze−z(u+v)du

G(u, dv) = −ze−z(u+v)dv

G(du, dv) = z2e−z(u+v)dudv



Mathematics 2019, 7, 1022 17 of 24

and then ∫ a

0

∫ b

0
G(u, v)H(2)(t, s, dudv) =

∫ a

0

∫ b

0
H(2)(t, s, [u, a]× [v, b])z2e−z(u+v)dudv

−
∫ a

0
H(2)(t, s, [u, a]× [0, b])ze−zudu

−
∫ b

0
H(2)(t, s, [0, a]× [v, b])ze−zvdv

+ H(2)(t, s, [0, a]× [0, b]).

(A2)

Now let us define

I1(a, b) =
∫ a

0
H(2)(t, s, [u, a]× [0, b])ze−zudu

I2(a, b) =
∫ b

0
H(2)(t, s, [u, a]× [0, b])ze−zvdv

I3(a, b) =
∫ a

0

∫ b

0
H(2)(t, s, [u, a]× [v, b])z2e−z(u+v)dudv

and let us work with I1(a, b). Since the integrand is non-decreasing, by monotone convergence theorem
we have

lim
a→+∞

I1(a, b) = lim
a→+∞

∫ +∞

0
H(2)(t, s, [u, a]× [0, b])χ[0,a](u)ze−zudu

=
∫ +∞

0
H(2)(t, s, [u,+∞)× [0, b])ze−zudu.

Taking then also the limit as b→ +∞ we have, also by monotone convergence theorem,

lim
b→+∞

lim
a→+∞

I1(a, b) = lim
b→+∞

∫ +∞

0
H(2)(t, s, [u,+∞)× [0, b])ze−zudu

=
∫ +∞

0
H(2)(t, s, [u,+∞)× [0,+∞))ze−zudu.

First, let us observe that since we are only using monotone convergence theorem, we have the
same result if we exchange the order of the limits. Now let us observe that

H(2)(t, s, [u,+∞)× [0,+∞)) = P(E(t) ≥ u, E(s) ≥ 0) = P(E(t) ≥ u)

hence we have

lim
b→+∞

lim
a→+∞

I1(a, b) =
∫ +∞

0
P(E(t) ≥ u)ze−zudu

= −
∫ +∞

0
(1− P(E(t) ≤ u))d(e−zu)

= 1−
∫ +∞

0
e−zu f (t, u)du = 1− η(t, z).

In the same way we have

lim
b→+∞

lim
a→+∞

I2(a, b) = lim
a→+∞

lim
b→+∞

I2(a, b) = 1− η(s, z).
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Concerning I3(a, b), we have, by using again monotone convergence theorem,

lim
b→+∞

lim
a→+∞

I3(a, b) = lim
a→+∞

lim
b→+∞

I3(a, b)

=
∫ +∞

0

∫ +∞

0
H(2)(t, s, [u,+∞)× [v,+∞))z2e−z(u+v)dudv.

Finally, let us also observe that

lim
a,b→+∞

H(2)(t, s, [0, a]× [0, b]) = H(2)(t, s, [0,+∞)× [0,+∞)) = 1.

Hence, we can take the limit as a, b → +∞ in (A2) and, since lima,b→+∞ I1(a, b),
lima,b→+∞ I2(a, b),lima,b→+∞ I3(a, b) and lima,b→+∞ H(2)(t, s, [0, a]× [0, b]) are all finite and G(u, v) ≥
0, we have ∫ +∞

0

∫ +∞

0
G(u, v)H(2)(t, s, dudv)

=
∫ +∞

0

∫ +∞

0
H(2)(t, s, [u,+∞)× [v,+∞))z2e−z(u+v)dudv− 1 + η(t, z) + η(s, z). (A3)

Now let us denote

I4 =
∫ +∞

0

∫ +∞

0
H(2)(t, s, [u,+∞)× [v,+∞))z2e−z(u+v)dudv

and observe that
H(2)(t, s, [u,+∞)× [v,+∞)) = P(E(t) ≥ u, E(s) ≥ v)

to obtain

I4 =
∫ +∞

0

∫ +∞

0
P(E(t) ≥ u, E(s) ≥ v)z2e−z(u+v)dudv

=
∫∫

u<v
P(E(t) ≥ u, E(s) ≥ v)z2e−z(u+v)dudv

+
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)z2e−z(u+v)dudv.

Now, since t ≥ s, we have

I4 =
∫∫

u<v
P(E(s) ≥ v)z2e−z(u+v)dudv

+
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)z2e−z(u+v)dudv.

(A4)

Let us set

I5 =
∫∫

u<v
P(E(s) ≥ v)z2e−z(u+v)dudv

I6 =
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)z2e−z(u+v)dudv.
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Concerning I5 we have

I5 =
∫∫

u<v
P(E(s) ≥ v)z2e−z(u+v)dudv

=
∫ +∞

0
P(E(s) ≥ v)(−z)e−zv

(∫ v

0
(−z)e−zudu

)
dv

=
∫ +∞

0
P(E(s) ≥ v)(−z)e−2zvdv−

∫ +∞

0
P(E(s) ≥ v)(−z)e−zvdv

=
1
2

∫ +∞

0
(1− P(E(s) ≤ v))d(e−2zv)−

∫ +∞

0
(1− P(E(s) ≤ v))d(e−zv)

= −1
2
+

1
2

∫ +∞

0
f (s, v)e−2zvdv + 1−

∫ +∞

0
f (s, v)e−zvdv

=
1
2
+

1
2

η(s, 2z)− η(s, z).

(A5)

Concerning I6, let us use [50] Equation 2.17 so that we can express P(E(t) ≥ u, E(s) ≥ v) for t ≥ s
and u > v. Set

D(t, s) = {(x, y) ∈ R2 : y ∈ [0, s], x ∈ [0, t− y]}

to obtain

I6 =
∫∫

u>v

(∫∫
D(t,s)

g(v, y)g(u− v, x)dxdy
)

z2e−z(u+v)dudv

=
∫∫

u>v

∫∫
D(t,s)

g(v, y)g(u− v, x)z2e−z(u+v)dxdydudv

=
∫∫

D(t,s)

∫∫
u>v

g(v, y)g(u− v, x)z2e−z(u+v)dxdydudv

=
∫∫

D(t,s)

∫ +∞

0
g(v, y)(−z)e−zv

(∫ +∞

v
g(u− v, x)(−z)e−zudu

)
dvdxdy.

(A6)

Let us use the change of variable w = u− v to obtain

∫ +∞

v
g(u− v, x)(−z)e−zudu = e−zv

∫ +∞

0
g(w, x)(−z)e−zwdw

and then we have in Equation (A6)

I6 =
∫∫

D(t,s)

(∫ +∞

0
g(v, y)(−z)e−2zvdv

)(∫ +∞

0
g(w, x)(−z)e−zwdw

)
dxdy. (A7)

Now let us pose

I7 =
∫ +∞

0
g(x, w)(−z)e−zwdw

I8 =
∫ +∞

0
g(y, v)(−z)e−2zvdv.

Let us evaluate I7. To do this, let us observe that

g(x, w) =
∂

∂x
P(S(w) ≤ x) =

∂

∂x
P(w ≤ L(x)) = − ∂

∂x
P(L(x) ≤ w)

hence, by the hypothesis, we have
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I7 = − ∂

∂x

∫ +∞

0
P(L(x) ≤ w)(−z)e−zwdw

= − ∂

∂x

∫ +∞

0
P(L(x) ≤ w)d(e−zw)

=
∂

∂x

∫ +∞

0
e−zw f (x, w)dw =

∂

∂x
η(x, z).

Analogously we have I8 = 1
2

∂
∂y η(y, 2z). Using these two equalities in (A7) we have (recalling that

η(0, z) = 1)

I6 =
1
2

∫ s

0

(∫ t−y

0

∂

∂x
η(x, z)dx

)
∂

∂y
η(y, 2z)dy

=
1
2

∫ s

0
η(t− y, z)

∂

∂y
η(y, 2z)dy− 1

2

∫ s

0

∂

∂y
η(y, 2z)dy

=
1
2

∫ s

0
η(t− y, z)

∂

∂y
η(y, 2z)dy− 1

2
η(s, 2z) +

1
2

.

(A8)

Now, using Equations (A5) and (A8) in (A4) we obtain

I4 = 1 + η(s, 2z)− η(s, z) +
1
2

∫ s

0
η(t− y, z)

∂

∂y
η(y, 2z)dy (A9)

Now, by using Equation (A9) in (A3) we finally obtain

∫ +∞

0

∫ +∞

0
G(u, v)H(2)(t, s, dudv)

= η(t, z) + η(s, 2z) +
1
2

∫ s

0
η(t− y, z)

∂

∂y
η(y, 2z)dy. (A10)

Appendix B. Proof of Theorem 2

Proof. Let us denote G(u, v) = e−z|u−v|. Observe that this time G is not a C1 function. Let us fix a
generic couple (a, b) ∈ (0,+∞)2 and then let us use bivariate integration by parts formula to obtain
again (A1). Now let us define

I1(a, b) =
∫ a

0
H(2)(t, s, [u, a]× [0, b])G(du, 0)

I2(a, b) =
∫ b

0
H(2)(t, s, [u, a]× [0, b])G(0, dv)

I3(a, b) =
∫ a

0

∫ b

0
H(2)(t, s, [u, a]× [v, b])G(du, dv).

Let us first work with I1(a, b). As done in the previous theorem, we can pass to the limit as
a, b→ +∞ to obtain

lim
a,b→+∞

I1(a, b) =
∫ +∞

0
P(E(t) ≥ u)G(du, 0)

Now let us observe that

G(du, v) = (−ze−z(u−v)χu>v(u, v) + ze−z(v−u)χu≤v(u, v))du

G(u, dv) = (ze−z(u−v)χu>v(u, v)− ze−z(v−u)χu≤v(u, v))dv.
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Thus, we have

lim
a,b→+∞

I1(a, b) =
∫ +∞

0
P(E(t) ≥ u)(−z)e−zudu

=
∫ +∞

0
(1− P(E(t) ≤ u))d(e−zu)

= −1 + η(t, z)

(A11)

In the same way we obtain

lim
a,b→+∞

I2(a, b) = −1 + η(s, z) (A12)

Hence, as before, by taking the limit as a, b → +∞ in (A1) and using the fact that
lima,b→+∞ I1(a, b),lima,b→+∞ I2(a, b) and lima,b→+∞ H(2)(t, s, [u, a]× [v, b]) are finite we obtain

∫ +∞

0

∫ +∞

0
G(u, v)H(2)(t, s, dudv) =

∫ +∞

0

∫ +∞

0
H(2)(t, s, [u,+∞)× [v,+∞))G(du, dv)

− 1 + η(t, z) + η(s, z).
(A13)

Now let us set

I4 =
∫ +∞

0

∫ +∞

0
H(2)(t, s, [u,+∞)× [v,+∞))G(du, dv)

=
∫∫

u<v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv)

+
∫∫

u=v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv)

+
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv)

(A14)

and then let us set

I5 =
∫∫

u<v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv)

I6 =
∫∫

u=v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv)

I7 =
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)G(du, dv).

Let us first work with I6. We have

I6 =
∫∫

u=v
P(E(s) ≥ u)G(du, dv).

Now, from the expression of G(du, v) we have that G(du, dv) in u = v is given by 2zdu. Hence
we have

I6 = 2z
∫ +∞

0
P(E(s) ≥ u)du = 2zE[E(s)]. (A15)

Now let us work with I5. We have

I5 =
∫∫

u<v
P(E(s) ≥ v)G(du, dv)

with G(du, dv) = −z2e−z(v−u)dudv for u < v hence we have
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I5 =
∫ +∞

0
P(E(s) ≥ v)(−z)e−zv

(∫ v

0
zezudu

)
dv

=
∫ +∞

0
P(E(s) ≥ v)(−z)e−zv(ezv − 1)dv

=
∫ +∞

0
P(E(s) ≥ v)(−z)(1− e−zv)dv

= −z
∫ +∞

0
P(E(s) ≥ v)dv +

∫ +∞

0
(1− P(E(s) ≤ v))d(e−zv)

= −zE[E(s)]− 1 + η(s, z).

(A16)

Now let us work with I7. We have, since G(du, dv) = −z2e−z(u−v)dudv for u > v,

I7 = −z2
∫∫

u>v
P(E(t) ≥ u, E(s) ≥ v)e−z(u−v)dudv.

Let us use as before [50] Equation 2.17 to obtain

I7 = −
∫∫

u>v

∫∫
D(t,s)

g(v, y)g(u− v, x)z2e−z(u−v)dxdydudv

= −
∫∫

D(t,s)

∫∫
u>v

g(v, y)g(u− v, x)z2e−z(u−v)dxdydudv

= z
∫∫

D(t,s)

∫ +∞

0
g(v, y)ezv

(∫ +∞

v
g(u− v, x)(−z)e−zudu

)
dvdxdy

= z
∫∫

D(t,s)

(∫ +∞

0
g(v, y)dv

)(∫ +∞

0
g(w, x)(−z)e−zwdw

)
dxdy.

(A17)

Denote now

I8(y) =
∫ +∞

0
g(v, y)dv

I9(x) =
∫ +∞

0
g(w, x)(−z)e−zwdw

and observe that, as before, I9(x) = ∂
∂x η(x, z). Concerning I8(y), we have

I8(y) =
∂

∂y

∫ +∞

0
P(E(y) ≥ v)dv =

∂

∂y
E[E(y)].

By using these two equalities in (A17) we have

I7 = z
∫ s

0

(∫ t−y

0

∂

∂x
η(x, z)dx

)
∂

∂y
E[E(y)]dy

= z
∫ s

0
η(t− y, z)

∂

∂y
E[E(y)]dy− z

∫ s

0

∂

∂y
E[E(y)]dy

= z
∫ s

0
η(t− y, z)

∂

∂y
E[E(y)]dy− zE[E(s)]

(A18)

Now let us use (A18), (A16), (A15) in (A14) to obtain

I4 = z
∫ s

0
η(t− y, z)

∂

∂y
E[E(y)]dy− 1 + η(s, z) (A19)
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and then use (A19) in (A13) to obtain∫ +∞

0

∫ +∞

0
G(u, v)H(2)(t, s, dudv) = z

∫ s

0
η(t− y, z)

∂

∂y
E[E(y)]dy− 2 + 2η(s, z) + η(t, z) (A20)

concluding the proof.
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