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POLISH TOPOLOGIES FOR GRAPH PRODUCTS OF CYCLIC
GROUPS

GIANLUCA PAOLINI AND SAHARON SHELAH

ABSTRACT. We give a complete characterization of the graph products of cyclic
groups admitting a Polish group topology, and show that they are all realizable
as the group of automorphisms of a countable structure. In particular, we
characterize the right-angled Coxeter groups (resp. Artin groups) admitting a
Polish group topology. This generalizes results from [7], [9] and [4].

1. INTRODUCTION

Definition 1. Let T = (V, E) be a graph and p : V — {p" : p prime and 1 < n} U
{00} a graph colouring. We define a group G(T,p) with the following presentation:

(V] aP® =1, be = cb: p(a) # oo and bEC).

We call the group G(T,p) the T-productl of the cyclic groups {Cpwy v €T}, or
simply the graph product of (T',p). The groups G(T, p) where p is constant of value
oo (resp. of value 2) are known as right-angled Artin groups A(T) (resp. right-angled
Cozeter groups C(I')). These groups have received much attention in combinatorial
and geometric group theory. In the present paper we tackle the following problem:

Problem 2. Characterize the graph products of cyclic groups admitting a Polish
group topology, and which among these are realizable as the group of automorphisms
of a countable structure.

This problem is motivated by the work of Shelah [7] and Solecki [10], who showed
that no uncountable Polish group can be free or free abelian (notice that for T dis-
crete (resp. complete) A(T') is a free group (resp. a free abelian group)). These
negative results have been later generalized by the authors to the class of uncount-
able right-angled Artin groups [4]. In this paper we give a complete solution to
Problem 2 proving the following theorem:

Theorem 3. Let G = G(T',p), and recall that p is a graph colouring (cf. Definition
@), and so we refer to the elements in the range of p as colors. Then G admits a
Polish group topology if only if (T,p) satisfies the following four conditions:

(a) there exists a countable A C T such that for everya €T anda#bel — A, a
is adjacent to b;

Date: September 29, 2018.
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INotice that this is consistent with the general definition of graph products of groups from [2].
In fact every graph product of cyclic groups can be represented as G(I',p) for some I" and p as
above.
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(b) there are only finitely many colors ¢ such that the set of vertices of color ¢ is
uncountable;

(c) there are only countably many vertices of color oo;

(d) if there are uncountably many vertices of color ¢, then the set of vertices of
color ¢ has the size of the continuum.

Furthermore, if (T',p) satisfies conditions (a)-(d) above, then G can be realized as
the group of automorphisms of a countable structure.

Thus, the only graph products of cyclic groups admitting a Polish group topology
are the direct sums G1 @& G2 with G a countable graph product of cyclic groups and
G5 a direct sum of finitely many continuum sized vector spaces over a finite field.
From our general result we deduce a solution to Problem 2]in the particular case of
right-angled Artin groups (already proved in [4]) and right-angled Coxeter groups.

Corollary 4. No uncountable Polish group can be a right-angled Artin group.

Corollary 5. An uncountable right-angled Cozeter group C(T') admits a Polish
group topology if and only if it is realizable as the group of automorphisms of a
countable structure if and only if |[T'| = 2% and there exists a countable A C T such
that for everya € ' and a #b el — A, a is adjacent to b.

In works in preparation we deal with the characterization problem faced here in
the more general setting of graph products of general groups [6], and with questions
of embeddability of graph products of groups into Polish groups [5].

2. PRELIMINARIES
We will make a crucial use of the following special case of [9, 3.1].

Notation 6. By a group term U(J_:) we mean a word in the alphabet {x : x € T},
i.e. an expression of the form x5' ---xr, where x1,...,x, are from T and each €;

n ’

is either 1 or —1. The number n is known as the length of the group term o(Z).

Fact 7 ([9)). Let G = (G,) be a Polish group and g = (g, : n < w), with g, € G*™
and {(n) < w
(1) For every non-decreasing f € w* with f(n) > 1 and (ep)n<w € (0,1)§ there
is a sequence ((n)n<w (Which we call an f-continuity sequence for (G,9,3), or
simply an f-continuity sequence) satisfying the following conditions:
(A) for everyn < w:
(a) ¢n € (0,1)r and ¢, < €p;
(b) Gut1 < Cn/2;
(B) for everyn < w, group term o(xg, ..., Tym— 1,yn) and (h,1) )g<m, (h(e,2))e<m €
G™, thev-distance from o(h1ys s Bm—1,1), Gn) t0 0(R(0,2)5 s B(m—1,2) Gn)
15 < (p, when:
(a) m<n+1;
(b) o(xo,...s Tm—1,Tn) has length < f(n) +1;
(C) h(g)l), h(gg) S Ball(e; <n+1){
(d) GE=ole,...,e,gn) =e.
(2) The set of equations T' = {x, = (2n11)*™d, : n < w} is solvable in G when
for every n < w:
(a) f € w® is non-decreasing and f(n) > 1;

(b) 1< k(n) < f(n);
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(C) (Cn)n<w is an f-continuity sequence;

(d) D(dn,e) < CnJrl-

Convention 8. If we apply Fact[7(1) without mentioning § it means that we apply
Fact[(1) for g, =0, for every n < w.

We shall use the following observation freely throughout the paper.

Observation 9. Suppose that (G,0) is Polish, A C G is uncountable and { > 0.
Then for some g1 # g2 € A we have 3((g1) ‘g2, €) < C.

Proof. First of all, notice that we can find g; € A such that g; is an accumulation
point of A, because otherwise we contradict the separability of (G,0). Further-
more, the function (z,y) — 2~ 'y is continuous and so for every (x1,y1) € G? and
¢ > 0 there is § > 0 such that, for every (wa,y2) € G2, if 9(z1,22),0(y1,y2) <
§, then d((z1) ty1, (z2)"ty2) < (. Let now go € Ball(g1;6) N A — {g1}, then
2((91) g2, (91)"g1) =((91) " 'g2, €) < (, and so we are done. u

Before proving Lemma we need some preliminary work. Given A C T' we
denote the induced subgraph of I' on vertex set A as I'4.

Fact 10. Let G = G(I',p), A CT and Gy = (Ta,p | A). Then there exists a
unique homomorphism p =pa : G — G4 such that p(c) =c ifc€ A, and p(c) =e¢
ifcg A.

Proof. For arbitrary G = G(I',p), let Q1 ) be the set of equations from Definition
M defining G(T', p). Then for the Q- , of the statement of the fact we have Qp ) =
Q4 U Qs U Qg3, where:

() Q1= Qr, pray;

(b) Q2 =Qrp_, pir-a);

(¢) Q3 ={bc=cb:bErcand {b,c} € A}.

Notice now that p maps each equation in ; to itself and each equation in Qs U3
to a trivial equation, and so p is an homomorphism (clearly unique). [

Definition 11. Let (T',p) be as usual and G = G(T', p).

(1) A word w in the alphabet T' is a sequence (ai",...,a%"), with a1 # as # --- #
ar €T and ay, ...,ar € Z — {0}.

(2) We denote words simply as af* ---ay* instead of (aj",...,ap").

(3) We call each a;' a syllable of the word a$" ---a;*.

(4) We say that the word a$" - - - ay* spells the element g € G if G |= g = a" - - - ay*.

(5) We say that the word w is reduced if there is no word with fewer syllables which
spells the same element of G.

(6) We say that the consecutive syllables af* and a;\}" are adjacent if a;Epaii1.

(7) We say that the word w is a normal form for g if it spells g and it is reduced.

(8) We say that two normal forms are equivalent if there they spell the same element
geaq.

As usual, when useful we identify words with the elements they spell.

Fact 12 ([3, Lemmas 2.2 and 2.3]). Let G = G(T,p).

(1) If the word a$" ---ay* spelling the element g € G is not reduced, then there
evist 1 < p < q < k such that a, = aq and a, is adjacent to each vertex

Ap41,Ap42y +oey Ag—1-
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(2) If wy = ai" ---ay* and wy = b?l . ~-b£k are normal forms for g € G, then w;
can be transformed into wy by repetedly swapping the order of adjacent syllables.

Definition 13. Let g € G(T',p). We define:

(1) sp(g) ={a; €T :af*---a" ---ay* is a normal form for g};

(2) F(g) ={af" : al" ---ay* is a normal form for g};

(3) L(g) = {ag* : ai" ---ap* is a normal form for g};

(4) L(g) = {a;;*" : ai* € L(g)}.

Definition 14. We say that the normal form af ---ay* is cyclically normal if
either k =1 or there is no equivalent normal form bfl .- ~bf’“ with by = by.

Observation 15. (1) Notice that if g € G(T', G,) is spelled by a cyclically normal
form, then any of the normal forms spelling g are cyclically normal.

(2) We say that the group element g € G(T',G,) is cyclically normal if any of the
normal forms (which are words) spelling g are cyclically normal.

Notation 16. Given a sequence of words wi,...,wi with some of them possibly
empty, we say that the word wy - --wy, s a normal form (resp. a cyclically normal
form) if after deleting the empty words the resulting word is a normal form (resp.
a cyclically normal form).

Recall that given A C I" we denote the induced subgraph of I' on vertex set A
as 'z

Fact 17 ([, Corollary 24]). Any element g € G(T',p) can be written in the form
wywowzwhwy L, where:

(1) wiwawswhwy ' is a normal form;

(2) wswhws is cyclically normal;

(3) sp(wz) = sp(wy);

(4) if wa # e, then T gy, is a complete graph;

(5) F(ws) N L(wh) = 0.

Proposition 18. Let G = G(T,p), and assume that p has finite range {c1,...,c:}.
Let p be a prime such that if ¢; # oo then p > ¢;, fori =1,...,t. Then for every
g € G we have sp(g) C sp(gP).

Proof. Let g be written as wywowzwhw; ' as in Fact [ and assume g # e. We
make a case distinction.

Case 1. w3 = e.

Notice that wowh # e, because by assumption g # e, and that wow is a normal
form (recall Notation [[G). Let af"---ap* be a normal form for wowj. Then by
items (3) and (4) of Fact [['ll we have:

_ «a «a -1 _ pai pag, —1
g¥ =wi(af" ---al*)Pwy = wial™t a0 wy .

Now, necessarily, for every ¢ € {1,...,k}, al™ # e, since the order of a; does not

divide ay and p is a prime. Thus, we are done.

Case 2. wy = e.

By item (3) of Fact[MTlalso w) = e, and so, by item (2) of Fact [T wswhws = w3 # e
is cyclically normal. Let ai" ---ag* be a normal form for ws.

Case 2.1. k= 1.

In this case, letting a;* = a®, we have g? = wlapo‘wfl, and so, arguing as in Case
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1, we are done.
Case 2.2. k > 1.
In this case gP is spelled by the following normal form:

-1
Wy w3 w3z wy -,
——
P

and so, clearly, we are done.

Case 8. w3 # e and ws # e.

In this case, letting w{, stand for a normal form for wsw)ws, g? is spelled by the
following normal form:

/ / /o —1
g7 = wiwa wy - - - Wy WawWHwW
———

p—1
Furthermore, by item (3) and (5) of Fact [T sp(w() = sp(ws) U sp(ws) = sp(ws) U
sp(wh) = sp(ws) U sp(wsz) U sp(w}), and so we are done. |

Proposition 19. Let G = G(T,p) and g € G.

(1) If a1,a2,b1,b2 € T — sp(g) are distinct and a; is not adjacent to b; (i =1,2),
then for every n > 2 the element gaflagbflbg has no n-th root.

(2) If a,b1,ba,b3, by € T are distinct, a is not adjacent to b; (i = 1,2,3,4), and
{b1,b2,b3,b4} N sp(g) = 0, then for every n > 2 the element ga_lbflbgabgllu
has no n-th root.

Proof. We prove (1). Let g. = gaj "asby *ba, A = {az,bs} and p = p4 the homo-
morphism from Fact[I0l Then p(g.) = a2bs. Since as is not adjacent to by, for every
n > 2 the element asbs does not have an n-th root. As p4 is an homomorphism,
we are done.

We prove (2). Let g, = ga_lbl_lbgabglb4, A = {a,b1,b3,b3,b4} and p = pa the
homomorphism from Fact There are two cases:

Case 1. p(g) =e.

Then p(g.) = a’lbl_lbgabglm. Since a is not adjacent to b; (i = 1,2,3,4), for
every n > 2 the element a_lbflbgabglm does not have an n-th root.

Case 2. p(g) # e.

Since sp(p(g)) C sp(g) N {a,b1,be,b3,b4} C {a} and p(g) # e, we must have
sp(p(g)) = {a}. Hence, p(g.) = a®by *boabz ‘b4, for a € Z — {0}. Since a is not
adjacent to b; (i = 1,2,3,4), for every n > 2 the element ao‘bl_lbgabg_lb4 does not
have an n-th root. ]

3. NEGATIVE SIDE

In this section we show that conditions (a)-(d) of Theorem [B] are necessary.
Concerning conditions (a)-(c) we prove three separate lemmas: Lemmas 20 2T] and
Lemmas 21] and 22] are more general that needed for the proof of Theorem [3]
and of independent interest. Concerning condition (d), it follows from Lemma
and Observation 24] which are also more general that needed for our purposes.

We denote the cyclic groups by C,,, Coo (Or Zy,, Zoo = Z in additive notation).

Lemma 20. Let G = G(T',p), with |T'| = 2%. Suppose that there does not exist a
countable A C T such that for everya € I and a # b € ' — A, a is adjacent to b.
Then G does not admit a Polish group topology.
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Proof. Suppose that G = (T',p) is as in the assumptions of the theorem, and that
G = (G,0) is Polish. Then either of the following cases happens:
(i) in T there are {a; : i < w1} and {b; : i < wi} such that if i < j < wy, then
a; # aj, b; # b;, [{ai,a;,b;,b;}| =4 and a; is not adjacent to by;
(ii) in I there are a, and {b; : i < w1} such that if ¢ < j < w1, then [{a, b;,b;}| =
3 and a, is not adjacent to b;.
Case 1. There are {a; : i < w;} and {b; : i < w1} as in (i) above.
Without loss of generality we can assume that all the {a; : ¢ < w1} have fixed
color ki and all the {b; : i < wi} have fixed color k3, for some ki, k5 € {p" :
p prime and 1 < n} U {oo}. Let p be a prime such that if kj # oo then p > kj,
for £ = 1,2. Recalling Convention [§ let (¢n)n<w € (0,1)g be as in Fact [1 for
f € w* constantly p + 10. Using Observation [0 by induction on n < w, choose
(in, = i(n), jn = j(n)) such that:
(a) if m < n, then jpn, < in;
(b) In < Jn < wi;
(c) D(@;(i)ai(n), 6)70(17;(11)1%(71), e) < Gnts-
Consider now the following set of equations:
A ={z, = (zns1)Ph; ! i n < w},
where h,, = b; ! bj(n)ai_(l)aj(n). By (c) above and Fact [7(1)(B) we have 0(h,,!,e) <

(n)
Cn+1, and so by Fact [[(2) the set A is solvable in G. Let (g/,)n<. witness this. Let

A the set of vertices of color k] or k3, p = pa the homomorphism from Fact [I0]
and let g, = p(g,,). Then for every n < w we have:

G = (gn41)" = gnhn,
and so by Proposition [I§ we have:

5p(gn) € 5p(90) U {bice), bje), aiey, ajiey : € < m}.

Let n < w be such that sp(go) N {bi(n)» bj(n), @i(n)s @jn)} = 0. Then:

(gn+1)p = gnb;(i)bj(n)a;(i)aj(n) and Sp(gn) N {bi(n)a bj(n)7 Qi(n)s aj(n)} =10,
which contradicts Proposition [[9(1).
Case 2. There are a, and {b; : i < wy} as in (ii) above.
Let kf = p(a.). Without loss of generality, we can assume that all the {b; : i < w1}
have fixed color k3, for some k5 € {p" : p prime and 1 < n} U {co}. Let p be a
prime such that if k& # oo then p > kJ, for £ = 1,2. Let (¢n)n<w € (0,1)§ be as in
Fact [ for g, = (a.) (and so in particular ¢(n) = 1) and f € w* constantly p + 10.
Using Observation @ by induction on n < w, choose (i, = i(n),jn = j(n),i, =
i'(n), jI, = j'(n)) such that:
(a) if m < n, then j/, < in;
(b) in < jn < i, < jl < wi;
(C) D(bj_(iz) bi(n)v 6), a(b;%n)bl/(n), 6) < <n+8-
Consider now the following set of equations:

A= {2, = (xns1)Ph, ' :n < w},

where h, = a*_lbi_(i)bj(n)a*b;(ln)bj/(n). By (c) above and Fact [[(1)(B) we have
o(h,; 1, e) < Cut1, and so by Fact[72) the set A is solvable in G. Let (g/,)n<. Witness
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this. Let A be the set of vertices of color ki or k3, p = pa the homomorphism
from Fact [I0 and let g, = p(g,,). Then for every n < w we have:

G ): (gn-‘rl)p = gnhn,
and so by Proposition [I8 we have:

5p(gn) € sp(g0) U {ax} U {bi), bj(ey, bircey, bjr(ey : € < m}.
Let n < w be such that sp(go) N {bz(n)7 bj(n)abi’(é)a bj/(g)} = (). Then:

(gn+1)? = gnallb{(}z)bj(n)a*b;(ln)bjf(n) and sp(gn) N {bi(n): bj(n)s bi_/(ln)bj’(n)} =10,
which contradicts Proposition [[9(2). ]
Recall that we denote the cyclic group of order n by C,,.

Lemma 21. Let G = G'©G", with G" =P, ., Gn, Gn = Bycr, Cr(n)s No < A,

k(n) = pff"), for p, prime and 1 < t(n), and the k(n) pairwise distinct. Then G
does not admit a Polish group topology.

Proof. Suppose that G = (G, ) is Polish and let ((,)n<w € (0,1)% be as in Fact
[ for f € w* such that f(n) = k(n) + 2. Assume that G = G’ ® G” is as in the
assumptions of the lemma. Without loss of generality we can assume that either of
the following cases happens:

(i) for every n < m < w, pp < Pm;

(i) for every n < w, p, = p and [[,_,, p"¥) is not divisible by p!(™.
Using Observation @ by induction on n < w, choose g, h, € G, such that g,, h,
and h,;'g, have order k(n) and d(h;, 'gn, e) < (n11. Consider now the following set
of equations:

U= {z, = (zp31)*™h g, :n < w}.

By Fact [7(2) the set T is solvable in G. Let (dy)n<w witness this. Let then n < w
be such that dy € G' © @,_,, Gi. Notice now that:

do = (d1)"Ohgtgo

((d2)¥ DRy g1) KO hgtgg

Let p = p,, be the projection of G onto G,,. Then we have:
GnEFe=dy= (p(dnJrl)k(n)h;lgn)HK" k@) = (hrjlgn)nkn k(i),

which is absurd. [ ]

When we write G = EB(K)\ Zz,, we mean that x, is the generator of the a-th
copy of Z. This convention is used in Lemmas 22] and 23] and Observation 241

Lemma 22. Let G = G| © Go, with Go = @,y Lz and A > Ro. Then G does
not admit a Polish group topology.

Proof. Suppose that G = (G, 0) is Polish and let (¢;)n<w € (0,1)% be as in Fact [1]
for f € w* constantly 24 10. Assume that G = G; ® G, is as in the assumptions of
the lemma. Using Observation[@ by induction on n < w, choose (i, j») such that:
(i) if m < n, then jp, <in;
(il) ip < jn <wi < A
(111) b(:z:l-n,xjn) < <n+1-
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For every n < w let:
(a) @i, = hn;

(b) @5, = gn;
(C) inn @ZIJn = Hn

Consider now the following set of equations:
I ={z, = (¥p31)%h, gn : n < w}.
By Fact [[(2) the set I' is solvable in G. Let (dp)n<, witness this. Let then n < w
be such that dy € G1 ® @,_,, H,. Notice now that:
do = (di1)*hy'g0
= ((d2)hy'91)%hg " g0
(- ((dn41)?h ' gn)? - h6190-
Let p be the projection of G onto H,,. Then we have:

Hn ': €= dO = (p(dn+1)2h;19n)2n = (hr_ngn)TLa

which is absurd, since H,, = Zx;, & Zxj, is torsion-free and h; 'g, # e. ]
In the rest of this section we use additive notation.

Lemma 23. Let G = (G,0) be an uncountable Polish group, p a prime and 1 <
t < w. Suppose that G = G1 ® Ga, with Go = P LT If X > N, then there
is § € G such that:

(a) §= (Yo : a < 2%0);
(b) p'ya =0 and, for £ <t, p'ys #0;

(c) if a < B, then p'(ya —ys) =0, and, for £ < t, p*(ya — ys) # 0;
(d) if a < B, then yo — yp is not divisible by p in G.

a<A

Proof. By induction on n < w, choose (i,,Jn) such that:
(i) if m < n, then jp, <in;
(il) ip < Jn < wi;
(i) (2, ,zj,) < 272",
For A C w and n < w, let:
Yan = Z{xlk —zj, k€A k<n}
Then for every A C w, (Ya.n)n<w is Cauchy. Let y4 € G be its limit. Then by

continuity we have:
(a) p'ya =0, and, for £ < t, p‘ya # 0;
(b) if A # B C w, then y4 and yp commute, p'(ys — yg) = 0 and, for £ < t,
P'(ya —y) #0.
We define the following equivalence relation E on P(w):
AIEA2 < dr e G(yAl —Ya, :p(E)
We then have:
(I) E is analytic;
(Il) if BCw, n € Band A= B — {n}, then =(yaEyp);
(III) by [8, Lemma 13] we have |P(w)/E| = 2¥.

Hence, we can find (y, : @ < 2%°) as wanted. ]
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Observation 24. Let G = (G,0) be an uncountable Polish group, p a prime and
1 <t <w. Suppose that G = Gy ® G1 B Ga, with Gy countable, G1 abelian, A > Ry
and Gy = @\ Lpta. Let (yo : o < 2%0) be as in Lemma 23 with respect to the
decomposition G| ® G4 for G| = Go & G1 and Gy = G3. Then there is a pure
embedding of H = @, _ono Zpt Yo into the abelian group G @ Go.

Proof. Define:

Uy ={a< 2% forno & € @ Zytyp we have y, — & is divisible by p in G1 & G2},
B<a

Uy = {a < 2% for no € € @ Zyryp and £ < t we have p‘(y, — &) = 0}.
B<la

Let U = Uy NUs. For oo ¢ U, let (€q, L) be witnesses of o ¢ U, with £ =t if o ¢ U;.
Claim 24.1. |U| = 2%0.

Proof. Suppose that || < 2%° and let 1 = Ng + |U|. Hence U N ™ is bounded. Let
a, = sup(UNp™). By Fodor’s lemma for some stationary set S C pu™ — (a. +1) we
have « € S implies (€4, la) = (&4, 04). Let a1 < ag € S. Then if £, = ¢ we have that
Yoy — Yo, is divisible by p in G1 © G2, and if £, < t we have that p’(Ya, — Ya,) = 0.
In both cases we reach a contradiction, and so || = 2%o. n
Let now py be the canonical projection of G onto Gy (¢ = 1,2). Then, by the claim
above, {(p1 + p2)(¥a) : @ € U} is a basis of a pure subgroup of G; & G4 isomorphic
to H, and so we are done. [ |

4. POSITIVE SIDE

In this section we prove the the sufficiency of conditions (a)-(d) of Theorem

Lemma 25. Suppose that G = G(T',p) satisfies conditions (a)-(d) of Theorem [3
and || = 2¥. Then G is realizable as the group of automorphisms of a countable
structure.

Proof. Let G = G(T',p) be as in the assumptions of the theorem. Then we have:

G=Ho P P zp,

P 1y a<A(p,n)

for some countable group H, natural number n. < w, and A¢, ) € {0, 280} (here we
are crucially using conditions (a)-(d) of the statement of the theorem, of course).
Since finite sums of groups realizable as groups of automorphisms of countable
structures are realizable as groups of automorphisms of countable structures, it
suffices to show that for given p™ the group:

~ w
H= & 2, =2
a<2%o

is realizable as the group of automorphisms of countable structure. To this extent,
let A be a countable first-order structure such that Aut(A) = Zyn. Let B be the
disjoint union of Ng copies of A, then Z, = Aut(B), and so we are done. ]



10

[9)

GIANLUCA PAOLINI AND SAHARON SHELAH

REFERENCES

Donald A. Barkauskas. Centralizers in Graph Products of Groups. J. Algebra 312 (2007),
no. 1, 9-32.

Elisabeth R. Green. Graph Products. PhD thesis, University of Warwick, 1991.

Mauricio Gutierrez, Adam Piggott and Kim Ruane. On the Automorphism Group of a Graph
Product of Abelian Groups. Groups Geom. Dyn. 6 (2012), no. 1, 125-153.

Gianluca Paolini and Saharon Shelah. No Uncountable Polish Group Can be a Right-Angled
Artin Group. Axioms 6 (2017), no. 2: 13.

Gianluca Paolini and Saharon Shelah. Group Metrics for Graph Products of Cyclic Groups.
Topology Appl. 232 (2017), 281-287.

Gianluca Paolini and Saharon Shelah. Polish Topologies for Graph Products of Groups. Sub-
mitted, available on the ArXiv.

Saharon Shelah. A Countable Structure Does Not Have a Free Uncountable Automorphism
Group. Bull. London Math. Soc. 35 (2003), 1-7.

Saharon Shelah. Can the Fundamental (Homotopy) Group of a Space be the Rationals? Proc.
Amer. Math. Soc. 103 (1988), 627-632.

Saharon Shelah. Polish Algebras, Shy From Freedom. Israel J. Math. 181 (2011), 477-507.

[10] Slawomir Solecki. Polish Group Topologies. In: Sets and Proofs, London Math. Soc. Lecture

Note Ser. 258. Cambridge University Press, 1999.

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, [SRAEL

EINSTEIN INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, ISRAEL AND

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, U.S.A.



	1. Introduction
	2. Preliminaries
	3. Negative Side
	4. Positive Side
	References

