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Highlights 

 A Tigray (Ethiopia) population sample was typed with 46 AIM-indel and 31 AIM-SNPs 

 A ~50% non-African genetic component was seen in Tigray by STRUCTURE analysis 

 AIMs provide differentiation between Tigray and other sub-Saharan African populations 

 Limited differentiation was possible between Tigray and Middle Eastern populations  

 A reference AIMs dataset can help the identification of Eastern African dead migrants 
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Abstract 

Determination of bio-geographical ancestry by means of DNA ancestry informative markers (AIMs) 

can contribute to the identification of human remains in missing person cases and mass disasters. 

While the presence of Eastern Africans among the migrant victims of trafficking accidents in the 

Mediterranean Sea is often suspected, few studies have addressed the ability of autosomal AIM panels 

in current use in forensic laboratories to provide differentiation of populations within the African 

continent. In this study, two assays consisting of 46 AIM-Indels and 31 AIM-SNPs were typed in a 

Tigray population sample from Northern Ethiopia. STRUCTURE analysis showed that the Tigray 

population is characterized by a strong (~50%) non-African genetic component shared with European 

and Middle Eastern populations. The intermediate position of the Tigray sample between sub-Saharan 

African and European / Middle Eastern reference population samples was confirmed by principal 

component analysis. Both AIM panels provided effective differentiation between Tigray and sub-

Saharan African populations. Classification accuracy of other populations involved in the current 

Mediterranean migrant crisis, like South Asians, was superior with the AIM-SNP panel compared to 

the AIM-Indel panel. Misclassification of Middle Eastern samples as Tigray was frequent with both 

AIM-indel (~30% misclassified) and AIM-SNPs (~20%). However, with AIM-SNPs, error rates were 

reduced to acceptable levels by applying cautionary minimum thresholds to assignment likelihoods. 

Establishment of an Eastern African reference database of AIMs that can be genotyped by means of 

low cost, small-scale assays compatible with capillary electrophoresis, sets a balance between the 

need for ancestry inference tools and the budget limitations faced by Italian laboratories engaged in 

the humanitarian identification of dead migrants recovered from the Mediterranean Sea. 

 

Keywords 

Ancestry Informative Markers (AIMs); Indel, SNP; Ethiopia; Humanitarian investigations; 

Mediterranean migration crisis 
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1. Introduction 

In recent years, analysis of ancestry informative markers (AIMs) has emerged as an important 

complementary tool in forensic DNA testing [1]. Although the most straightforward application of 

AIMs is as a genetic-based substitute for eyewitness testimony, ancestry inference of unidentified 

human remains can provide helpful investigative leads in missing persons cases [2] as well as aiding 

historical investigations [3]. Disaster victim identification (DVI) through DNA analysis of candidate 

family members also benefits from ancestry information, since AIMs can guide the choice of the most 

appropriate genotype and haplotype frequencies to be used in kinship calculations [4,5]. In cases 

involving individuals with genetic ancestry outside of well-studied geographic areas, AIMs can help 

identify genetically homogeneous groups of victims that can then be used themselves as genotype 

and haplotype reference datasets in matching probability estimates [6]. Finally, together with other 

types of post-mortem data available (age, stature, etc.), ancestry information can be used to adjust 

prior probabilities in likelihood ratio (LR) calculations [7]. 

All the aforementioned applications of AIMs in DVI cases extend to humanitarian investigations of 

mass disasters caused by the trafficking of migrants across the Mediterranean Sea to European 

countries. It has been estimated that just between January 2014 and June 2017 nearly 14,500 persons 

died in the attempt to reach Europe [8], a number equaling the total reported deaths for the whole 

period of 1988-2013 [9]. The Central Mediterranean route (from Libya to Italy across the Straits of 

Sicily) represents by far the most dangerous migration route, with 208 sunken ship incidents recorded 

between 2014 and 2017, and an average number of 44.8 fatalities per incident [8]. The geographical 

origin of migrants travelling the Central Mediterranean route, while constantly evolving over the 

years due to shifting socio-economic and political factors, spans a wide geographic area from 

Bangladesh to Western Africa, encompassing the Middle East, Eastern Africa and Northern Africa 

[10]. 

Efforts to identify deceased migrants are hampered by several factors, including data management 

issues [11] and budget constraints, as exemplified by the case of the 18th April 2015 shipwreck. This 
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was the deadliest accident of its kind ever recorded in the Straits of Sicily; with over 500 recovered 

bodies. The ongoing identification process of the 18th April 2015 victims would have not been 

possible, so far, without voluntary personnel and free equipment supplied by a consortium of Italian 

universities prompted by the National Office of the Commissioner for Missing Persons [12]. 

Moreover, despite the need for appropriate reference populations to accurately infer ancestry in an 

operational context, some of the main regions feeding the current migration flow to Europe, like 

Eastern Africa, are not represented in worldwide reference population datasets commonly employed 

in the development and validation of forensic ancestry panels, such as the Human Genome Diversity 

Project - Centre d’Étude du Polymorphisme Humain (HGDP-CEPH) [13] and the 1000 Genomes 

project [14]. 

With this in mind, we set out to establish a reference AIMs database representative of Eastern Africa 

by analyzing the Tigray population of Ethiopia. According to the latest Ethiopian census, Tigray 

people are the fourth largest ethnic group in Ethiopia, reaching up to 4.5 million and representing 

over 95% of the population in the regional state of Tigray (Northern Ethiopia) [15].  Tigray is also 

the major ethnic group of neighboring Eritrea [16], amongst the most common countries of origin for 

sub-Saharan African refugees crossing the Mediterranean Sea to reach Europe [10].  

 

2. Materials and methods 

2.1. Samples 

Buccal swabs were collected from 252 consenting adult donors (Mekelle University students and 

staff) self-reported as having four grandparents of Tigray origin. The study was authorized by Mekelle 

University Research Ethics Review Committee (ERC 0841/2016). 

2.2. Amplification reactions 

DNA was isolated from buccal swabs with the ChargeSwitch® gDNA Normalized Buccal Cell Kit 

(Invitrogen) and 1 µl of each DNA extract (1-3 ng) was used in the following PCR experiments. A 

total of 77 AIMs were tested comprising: 46 AIM-Indels (herein, “46-I”), amplified according to the 
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multiplex PCR protocol previously described by Pereira et al. [17]; 31 SNPs (“Global AIMs Nano 

set”, herein, “31-N”) amplified according to the multiplex PCR and single base extension (SBE) 

protocols described by de la Puente et al. [18]. Detection and separation of PCR and SBE products 

were carried out using the ABI Prism 3500 Genetic Analyzer and GeneMapper ID software v5.1 

(Thermo Fisher Scientific). 

2.3. Statistical analyses 

Tests of Hardy–Weinberg equilibrium (HWE), pairwise tests of linkage disequilibrium within and 

across the two AIM panels, as well as pairwise genetic distances (FST) were calculated with Arlequin 

software version 3.5 [19]. 

Ancestry inference was performed in comparison to reference population 46-I and 31-N genotypes 

derived from 1000 Genomes phase III data [14], including: sub-Saharan Africans (AFR: Esan n=99; 

Gambian n=113; Luyha n=99; Mende n=85; Yoruba n=108); East Asians (EAS: Han Chinese n=103; 

Dai n=93; Japanese n=104; Southern Han n=105; Vietnamese n=99); Europeans (EUR: British n=90; 

Finnish n=99; Iberian n=106; Toscani n=107; Utah n=99); South Asians (SAS: Bengali n=86; 

Gujarati n=103; Punjabi n=96; Tamil n=102; Telugu n=102). It should be noted that genotypes of 

two Indels in 46-I (rs3031979 and rs4183) are not listed in the 1000 Genomes population data. 

Reference samples were complemented with a Middle Eastern (MEA) reference population derived 

from HGDP-CEPH (Druze from Israel n=42; Bedouin from Israel n=46; Palestinians from Israel 

n=46; Algerian Mozabite n=29). 46-I genotypes of MEA populations were obtained from the 

literature [17,20]. Genotyping of MEA HGDP-CEPH samples with the 31-N set was performed in 

house, as previously described [18]. Although the 46-I and 31-N panels were shown to reliably 

distinguish other major population groups such as Native Americans and Oceanians [17,18], no 

reference populations from these geographic areas were included in the present study, as they lack 

relevance in the ongoing Mediterranean migration crisis. 

Population analyses with STRUCTURE v. 2.3.4 [21] were performed with the following parameters:  

three replicates (for inferred clusters K:2 to K:7) of 100,000 burnin steps and 100,000 MCMC 
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iterations; correlated allele frequencies under the Admixture model (POPFLAG, both with and 

without LOCPRIOR option). The estimated logn probability of data (-lnP(D)) values were plotted 

using STRUCTURE HARVESTER [22]. Ancestry membership plots were constructed using a 

combination of CLUMPP v. 1.1.2 [23] and distruct v. 1.1 [24].  

Principal Component Analysis (PCA) was performed using the princomp function in R programming 

language environment [25] and an in-house developed script. The naïve Bayes classifier implemented 

in the Snipper 2.0 app suite (http://mathgene.usc.es/snipper/) was used to evaluate the classification 

success of AIMs in the tested populations through cross-validation, and to estimate log LRs of 

individual assignment probabilities [26]. Snipper cross-validation comparisons were also used to 

obtain Shannon’s Divergence measures for each AIM [26]. Rosenberg’s informativeness-for-

assignment metric (In) [27] was then derived from divergence values by converting the natural log to 

log(2). 

 

 3. Results 

3.1. Genetic characterization of the Tigray population 

Genotypes of 252 Tigray individuals for the tested 46-I and 31-N markers are reported in 

Supplementary Table S1. 31-N genotypes of reference MEA HGDP-CEPH population samples are 

given in Supplementary Table S2. Tigray population allele frequency estimates are shown in 

Supplementary Table S3 together with the results of HWE test. No deviation from HWE was 

observed after Bonferroni correction for multiple testing (α = 0.0006). Pairwise test of LD in the 

Tigray sample indicated significant LD between Indel marker rs16384 and SNP marker rs8137373 

(p < 0.00001) after Bonferroni correction for multiple testing (α = 0.000016). This is the closest pair 

of AIMs in the two sets, located on chromosome 22 and separated by 316 kilobases (dbSNP build 

151).  

Supplementary Table S4 reports for each AIM, the population specific divergence value obtained by 

comparing the Tigray sample with five population reference groups combined (InTIG), plus pairwise 
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divergence values calculated by comparing the Tigray sample with each population reference group. 

It can be seen that the markers displaying higher divergence values between Tigray and combined 

reference populations were mainly SNPs from the 31-N set, with the top Indel rs25630 ranking only 

10th in the general list of InTIG values. 

Pairwise FST values between Tigray and reference populations are shown in Table S5. All pairwise 

comparisons were statistically significant (p < 0.00001). It is also evident that FST values obtained 

with the 31-N panel were consistently higher than those from the 46-I set. 

3.2. Ancestry analysis 

STRUCTURE ancestry estimates with both admixture and admixture LOCPRIOR models showed a 

plateau in -ln P(D) values was reached after K=4, whether 46-I or 31-N panels were analyzed 

separately or in combination (Supplementary Figure S1). Ancestry membership proportions applying 

a four-group clustering (admixture LOCPRIOR) are plotted in Fig. 1A. It was evident that the Tigray 

population could not be separated using the present AIM panels, and it could be described as a 

balanced combination of African and non-African (European) components.  

The same pattern was seen in MEA reference populations, which showed a prevalent European 

component, with an increase in African ancestral proportions in the Mozabite population sample from 

Algeria. The non-African component in the Tigray population was 58% measured by the 46-I panel, 

and 45% with 31-N (51%, when applying the combined AIM sets).   
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These results are mirrored in the 2D PCA plots (PC1 vs PC2) in Fig. 1B, with Tigray samples 

occupying an intermediate position between the AFR and EUR population clusters. Slightly improved 

clustering of Tigray, SAS and MEA populations was evident for the 31-N panel when compared to 

46-I.  

3.3. Classification success of AIM panels 

The Snipper cross validation success rates of the Tigray study sample and reference population groups 

are shown in Table 1. This data indicates that 100% correct classification of Tigray samples could be 

achieved using the 46-I set alone. In contrast, 2.4% of Tigray samples were wrongly classified with 

the 31-N set, half of these erroneous samples being assigned to the MEA population group. In the 

reference population groups, a large proportion of MEA samples was misclassified as Tigray; with 

error rates ranged between 31.9%, when applying the 46-In set, to 17.8% for the 31-N set. In other 

reference population groups, samples wrongly classified as Tigray were always <1% with 31-N, while 

>3% of AFR and SAS samples were assigned to the Tigray population with 46-I. Combining the two 

AIM panels, while eliminating classification error in the Tigray sample, increased misclassification 

rates of SAS and MEA samples compared to 31-N alone. 

 

To evaluate if the high sensitivity but low specificity displayed by the two AIM panels when used as 

tools to identify Tigray samples, could be explained by the difference in sample size between the 

study sample and reference MEA population samples, the Tigray sample was randomly split into six 

subsets (n=42) of a size comparable to MEA population subgroups. These subsets were then used 

separately in replications of the cross validation test. Average classification success of Tigray samples 

in replicates was 99.2% (±1.2% SD) with 46-I, and 96.8% (±1.2% SD) with 31-N, while 100% correct 

classification was confirmed when using the combination of 46-I and 31-N markers. Average 

misclassification rates of MEA samples as Tigray remained the same: 28.3% (±3.8% SD) for 46-I; 

15.5% (±2.3% SD) for 31-N; 19.8% (±2.4% SD) for the combined AIM panels. 

Jo
ur

na
l P

re
-p

ro
of



In the identification of human remains, DNA degradation can interfere with genotyping success of 

AIMs and consequently reduce the number of markers available for ancestry inference. The effect on 

classification accuracy as determined by cross validation using a reduced set of AIMs is shown in 

Supplementary Fig. S2. Markers were removed one by one from each panel in order of decreasing 

InTIG value. Elimination of the five Indels with the top InTIG values had minimal effect on 

classification rates, whereas a modest reduction of classification success of Tigray samples (from 

96.8% to 93.6%) was seen in 31-N after exclusion of rs1871534, which ranked as the 5th most 

informative SNP in terms of InTIG, but which was also one of the most divergent loci in pairwise 

comparisons between Tigray and EUR, SAS and MEA reference population samples. Classification 

success rates with the combined 46-I and 31-N sets after removing from each panel the five markers 

with highest InTIG values matched those observed for the reduced 31-N panel alone, except for a 

slight increase in classification accuracy of Tigray samples from 93.7% to 97.6%. In contrast, the 

combined use of the top ten markers in terms of InTIG from the two AIM panels was necessary in 

order to achieve classification success rates equivalent to those attained with the 31-N complete set 

alone. 

To improve balance between Snipper classification success and error rates, different thresholds were 

applied to LR values obtained through cross validation. Only samples with pairwise LR assignment 

probabilities that exceeded the set LR threshold were classified. The effect of thresholds was 

investigated only for population groups primarily involved in the Mediterranean migration crisis, i.e. 

AFR, SAS, MEA and Tigray representing Eastern Africa. Results are shown in Table 2. The error 

rates shown in Table 2 indicate that, leaving aside the MEA population, an LR threshold of 103 

reduced error rates to <1% in both AIM panels. A striking difference between the two AIM panels 

was seen in the magnitude of LR assignment probability values obtained for SAS samples. With the 

46-I panel, 93.9% of SAS individuals could not achieve LR assignment probabilities >103. Using the 

31-N set, the ratio of unclassified SAS samples when applying the same LR threshold was reduced 

to 18.4%. Always assuming an LR threshold of 103, the misclassification rate of MEA samples was 
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1.8% for the 31-N panel compared to 11% for 46-I.  The percentage of unclassified MEA samples 

was also smaller in 31-N (65.6%) than in 46-I (76.1%). Combining the two AIM panels generally 

reduced the ratio of unclassified samples observed at different LR thresholds and allowed for 

marginal improvement of classification success in Tigray samples. However, this came at the cost of 

an evident increase in error rates for SAS and MEA samples, in particular, compared to the 31-N 

panel alone. 

 

Fig. 2 shows ranked pairwise (Tigray vs MEA) LR assignment probabilities obtained from cross 

validation in the four MEA population subgroups. It can be seen that, with a few exceptions in 

Palestinian and Bedouin samples, misclassification with high LR assignment probabilities (e.g. LR > 

103) always involved individuals from the Mozabite population from Algeria. 

 

 4. Discussion 

The 41-I AIM-Indel and 31-N AIM-SNP panels employed in this study were primarily designed to 

achieve ancestry inference at intercontinental level, separating sub-Saharan Africa, East Asia, Europe 

and Native America (plus Oceania for 31-N) [17,18]. Evaluation of a population sample from Eastern 

Africa (Tigray) confirmed that both AIM panels could effectively discriminate between Tigray and 

the non-African populations of Europeans and East Asians. In particular, of the top three AIMs in 

terms of InTIG, two (rs9809818 and rs17822931) were previously identified to be among the best 

markers separating East Asian and non-East Asian populations [1]. The 46-I panel was also 

previously shown to be able to differentiate Central South Asian populations in the CEPH-HGDP 

panel [21]. However, our results indicated an increased ability of the 31-N panel to distinguish 

between the South Asian reference populations from 1000 Genomes project and other populations 

(including Tigray) compared to 46-I, especially when cautionary thresholds based on LR assignment 

probabilities were applied.  
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Notably, both the 46-I and 31-N panels allowed for ancestry inference within Africa, differentiating 

with accuracy between Eastern Africans (Tigray) and other sub-Saharan African populations. This is 

in accordance with previous data showing that Tigray and, in general, Semitic and Cushitic speaking 

populations from the Horn of Africa region stand out among sub-Saharan African populations as 

being characterized by a strong (40%–50%) non-African component [28], probably reflecting ancient 

Eurasian backflow into Eastern Africa [29,30]. A clear non-African component in populations from 

the Horn of Africa is also evident in previous studies conducted with compact AIM panels built for 

forensic purposes. Similar STRUCTURE patterns were seen for Somalis, Ethiopian Jews and 

admixed African populations (African Americans) when applying a global 55-SNP panel [31]. 

Somalis displayed almost equal African and European cluster proportions when tested with a  126-

SNP panel (EUROFORGEN Global ancestry panel) [32] and shared a minor membership proportion 

(averaging 26%) with Eurasian populations, if analyzed with a custom-built 111-SNP ancestry panel 

developed to analyze North African and Middle Eastern populations (EUROFORGEN NAME 

ancestry panel) [33]. The single most divergent AIM between Tigray and other sub-Saharan African 

population was rs2414778 located in the Duffy antigen receptor for chemokines locus, known to be 

the most differentiated marker between African and non-African populations [1]. The T>C mutation 

at rs2414778 leads to failure of Duffy antigen expression on the surface of red blood cells in humans, 

conferring resistance to Plasmodium vivax malaria, and is therefore under strong natural selection in 

malaria-endemic regions [34]. The C variant, while fixed in sub-Saharan African reference samples, 

had a reduced frequency of 0.687 in Tigray. Nevertheless, single removal of the rs2414778 SNP from 

the 31-N panel did not affect overall classification accuracy of the assay in Tigray and sub-Saharan 

African samples.   

Limited specificity was observed when trying to differentiate between Tigray and Middle Eastern 

populations, with ~30% (46-I) to ~20% (31-N) of Middle Eastern reference samples identified as 

Tigray. Also in this case, the 31-N panel gave an overall better classification performance compared 

to 46-I. The 31-N error rates could be reduced to a much more acceptable ~5%, by applying a 
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cautionary LR threshold of 102, while retaining the ability to correctly identify ~50% of the Middle 

Eastern samples. In contrast, for the 46-I set the same error rate of ~5% was associated with over 90% 

of samples falling below the LR classification threshold. Misclassification rates and LR assignment 

probabilities in pairwise Tigray / Middle East comparisons of Middle Eastern samples increased 

according to an East-West gradient, reaching a maximum in the Mozabite population sample. This 

reflects a documented cline of sub-Saharan African ancestry decreasing from Western Sahara 

eastward [35]. Notably, no misclassification was observed between the Israel Druze population 

sample and Tigray, in agreement with a subdivision of Levantine populations in two main branches: 

one, including the Druze, genetically close to European and Central Asian populations; the second, 

including Palestinians and Bedouins, with stronger affinities with North African and Ethiopian 

populations [36]. Recently, it was shown that limitations in the ability to classify Middle Eastern 

samples, as observed in the present study, could not be completely overcome even by adopting an 

extended 237 AIM-SNP assay (EUROFORGEN Global and NAME panels combined) with a 

reported assignment error rate of 22.4% in cross-validation studies including six continental 

populations plus Northern Africa (but not Eastern Africa) [33]. In the context of the present European 

refugee crisis and of the efforts being made to identify deceased migrants, discrimination between 

Middle Eastern and Eastern African individuals can also rely on additional genetic data, including 

differential distribution of Y-chromosomal [37,38] and mitochondrial DNA variation [39], and to 

some extent on additional non-genetic tools such as cranial morphometric analysis [40]. However, 

identification by high-density SNP genotyping of putative autochthonous ancestral components in 

Eastern and Northern Africa [28,35] suggests the future possibility to implement current worldwide 

AIM panels with complementary assays improving ancestry inference within this specific 

geographical area, in a similar way to what was previously achieved for the Mediterranean basin [41], 

Eurasia [33,42] and the Pacific region [43].  

In general, combined use of the two AIM panels did not lead to a significant improvement in overall 

classification accuracy, compared to that provided by the 31-N set alone. A further factor was the 
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presence of a pair of closely linked markers in the two AIMs sets (rs16384 and rs8137373), shown to 

be in strong LD in the Tigray population. Use of multiple markers located on the same genomic 

segment may affect likelihood calculations and can bias co-ancestry proportion estimates in admixed 

individuals [44]. The 46-I, therefore, could play the role of a complementary set of AIMs when 

several 31-N markers fail to amplify due to DNA degradation. A further reason to include 46-I in the 

analysis of challenging samples is to screen for DNA mixtures and contamination, given the ability 

of AIM-indel assays to readily identify unbalanced heterozygous peaks in genotypes [45]. 

Markers included in the 31-N set are a selection of the 128 AIMs previously identified as those 

displaying maximum divergence at inter-continental level after thorough bioinformatic interrogation 

of public genomic data [44]. Besides providing basic bio-geographical ancestry inference between 

the main areas of origin of migrants travelling the Central Mediterranean route, the 31-N SNaPshot 

assay possesses additional features making it suitable for the humanitarian identification of migrant 

victims drowned in the Straits of Sicily. First of all, it was specifically designed to target short-

amplicon markers, thus enabling the genotyping of low-level DNA samples [18,46]. Recovery of 

low-level DNA is expected in the case of human remains submerged in sea water for long periods of 

time [47], such as those retrieved from the 18th April 2015 shipwreck [12]. Moreover, it represents a 

validated, low cost and time-effective method compatible with standard capillary electrophoresis 

(CE) equipment, thus fitting in to the current budget limitations imposed on Italian laboratories 

involved in the identification efforts of migrant victims [12]. 

 

 5. Concluding remarks 

A reference database of 77 AIMs was established in the Tigray population of Ethiopia. Markers 

consisted of 46 Indels and 31 SNPs from two small-scale CE genotyping assays that can be easily 

integrated in operational forensic laboratories. The provided dataset can act as an Eastern African 

reference for general investigative purposes and in missing persons or DVI cases. The availability of 

new AIMs data will hopefully contribute to identification procedures in migration accidents occurring 
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in the Mediterranean Sea, in which the identification of victims of Eastern African ancestry is 

frequently required. 

Finally, even though only eight SNP markers in the 31-N AIM set overlap with those included in 

commercially available AIM assays recently developed for massive parallel sequencing (MPS) 

platforms [48,49], it is expected that some of the caveats indicated by the present study will also apply 

to MPS-based AIM-SNP panels. In particular, the non-African genetic component observed in 

Eastern Africa, while allowing accurate differentiation from other sub-Saharan African populations, 

can lead to possible misclassification with admixed individuals from populations displaying variable 

proportions of African ancestry. Although specific data for the Ethiopian Tigray population is not 

presently available, it was shown that, when analyzing a neighboring Eastern African population 

(Somalia) with the 165-SNP Precision ID Ancestry Panel AIM, 5% of the samples were erroneously 

reported as African American and 3% as Middle Eastern in origin [50]. For the same reason, it is 

advisable in the future to include Eastern African reference samples in validation studies of custom-

built MPS assays aimed at the differentiation of Eurasian sub-population groups. 
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Figure captions 

 

 

Figure 1. (A) STRUCTURE ancestry analysis of the Tigray study sample (TIG) and reference 

population groups (K:4, admixture LOCPRIOR ancestry model) using 46-I (top), 31-N (middle) and 

combined 46-I and 31-N AIM panels (bottom). Order of population samples within reference 

population groups is as specified in section 2.3. (B) Principal component analysis (PC1 vs PC2) of 

the Tigray study sample (TIG) and reference population groups. Left to right: 46-I; 31-N; combined 

46-I and 31-N AIM panels. 
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Figure 2. Plot of ranked pairwise assignment probabilities in MEA population subgroups using: (A) 

46-I; (B) 31-N; (C) combined 46-I and 31-N AIM panels. The Y axis is a log scale of the LR of Tigray 

classification probability / MEA classification probability. 
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Table 

 

46-I AFR EAS EUR SAS MEA TIG 

AFR 96.03 % 0.00 % 0.00 % 0.00 % 0.00 % 3.97 % 

EAS 0.00 % 98.41 % 0.00 % 1.59 % 0.00 % 0.00 % 

EUR 0.00 % 0.00 % 45.92 % 13.52 % 40.16 % 0.40 % 

SAS 0.00 % 0.00 % 0.00 % 62.99 % 33.54 % 3.48 % 

MEA 0.00 % 0.00 % 0.00 % 0.00 % 68.10 % 31.90 % 

TIG 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 % 

       

31-N AFR EAS EUR SAS MEA TIG 

AFR 99.21 % 0.00 % 0.00 % 0.00 % 0.00 % 0.79 % 

EAS 0.00 % 99.80 % 0.00 % 0.20 % 0.00 % 0.00 % 

EUR 0.00 % 0.00 % 92.84 % 1.19 % 5.96 % 0.00 % 

SAS 0.00 % 0.00 % 0.00 % 97.96 % 1.43 % 0.61 % 

MEA 0.00 % 0.00 % 0.00 % 0.00 % 82.21 % 17.79 % 

TIG 0.79 % 0.00 % 0.00 % 0.40 % 1.19 % 97.62 % 

       

46-I+31-N AFR EAS EUR SAS MEA TIG 

AFR 99.60 % 0.00 % 0.00 % 0.00 % 0.00 % 0.40 % 

EAS 0.00 % 100.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

EUR 0.00 % 0.00 % 81.31 % 0.80 % 17.89 % 0.00 % 

SAS 0.00 % 0.00 % 0.00 % 92.64 % 6.54 % 0.82 % 

MEA 0.00 % 0.00 % 0.00 % 0.00 % 79.75 % 20.25 % 

TIG 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 100.00 % 

Table 1 Comparison of classification success (shown in bold) estimated from Snipper cross-

validation of the Tigray study sample (TIG) and reference population groups using 46-I (top), 31-N 

(middle) and combined 46-I and 31-N AIM panels (bottom). 

 

 LR ≥101 LR≥102 LR≥103 LR≥104 LR≥105 LR≥106 

 N C W N C W N C W N C W N C W N C W 

46-I                   

AFR .069 .911 .020a .163 .833 .004a .278 .720 .002a .448 .552 .000 .653 .347 .000 .821 .179 .000 

SAS .444 .394 .162b .759 .200 .041c .939 .059 .002c .992 .008 .000 1.0 .000 .000 1.0 .000 .000 

MEA .282 .509 .209a .540 .319 .141a .761 .129 .110a .896 .043 .061a .957 .006 .039a .982 .000 .018a 

TIG .008 .992 .000 .028 .972 .000 .068 .932 .000 .139 .861 .000 .238 .762 .000 .425 .575 .000 

31-N                   

AFR .024 .976 .000 .079 .921 .000 .238 .762 .000 .448 .552 .000 .732 .268 .000 .966 .034 .000 

SAS .045 .947 .008d .092 .906 .002c .184 .816 .000 .341 .659 .000 .523 .477 .000 .689 .311 .000 

MEA .202 .694 .104a .448 .497 .055a .656 .326 .018a .804 .184 .012a .908 .086 .006a .975 .019 .006a 

TIG .075 .909 .016e .206 .790 .004f .294 .702 .004f .472 .524 .004f .663 .337 .000 .837 .163 .000 

46-I+31-N                   

AFR .002 .996 .002a .016 .982 .002a .032 .968 .000 .062 .938 .000 .137 .863 .000 .224 .776 .000 

SAS .075 .892 .033c .127 .855 .018c .201 .797 .002c .315 .683 .002c .421 .579 .000 .546 .454 .000 

MEA .135 .693 .172a .227 .632 .141a .399 .509 .092a .521 .399 .080a .632 .313 .055a .748 .203 .049a 

TIG .000 1 .000 .000 1 .000 .000 1 .000 .028 .972 .000 .036 .964 .000 .075 .925 .000 
a All classified as Tigray 
b 96.6% classified as MEA; 0.4% classified as Tigray 
c All classified as MEA 
d 75.0% classified as MEA; 25.0% classified as Tigray 
e 50.0% classified as AFR; 25.0% classified as SAS; 25.0% classified as MEA  

f All classified as AFR 
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Table 2. Classification success (cross validation) of the Tigray study sample (TIG) and reference 

population groups using 46-I (top), 31-N (middle) and combined 46-I and 31-N AIM panels (bottom) 

when applying different LR thresholds. N indicates samples with assignment probability below LR 

threshold, which could not be classified. C indicates samples with assignment probability above LR 

threshold, which were correctly classified. W indicates samples with assignment probability above 

LR threshold, which were wrongly classified. 
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