
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Summary of: On Checking Delta-Oriented Software Product Lines of Statecharts

Publisher:

Published version:

DOI:10.1007/978-3-030-34968-4_32

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1725812 since 2020-01-29T18:28:30Z



Summary of: On Checking Delta-Oriented
Software Product Lines of Statecharts

Michael Lienhardt1, Ferruccio Damiani2[0000−0001−8109−1706], Lorenzo Testa2,
and Gianluca Turin3

1 ONERA —The French Aerospace Lab, France (michael.lienhardt@onera.fr)
2 University of Turin, Turin, Italy (ferruccio.damiani@unito.it )

3 University of Oslo, Oslo, Norway (gianlutu@ifi.uio.no)

Abstract. A Software Product Line (SPL) is a set of programs, called
variants, which are generated from a common artifact base. Delta-Oriented
Programming (DOP) is a flexible approach to implement SPLs. This
short paper summarises the contributions published in [10]. A foundation
for rigorous development of delta-oriented product lines of statecharts is
provided by defining: a core language for statecharts, DOP on top of it,
an analysis ensuring that a product line is well-formed (i.e., all variants
can be generated and are well-formed statecharts). An implementation
of the analysis has been applied to an industrial case study.

Keywords: Core calculus · Delta-oriented programming · Software prod-
uct line analysis · Statechart.

1 Background

A Software Product Line (SPL) is a set of programs, called variants, which have
well documented variability and are generated from a common artifact base [6].
Delta-Oriented Programming (DOP) [11, 5] [4, Sect. 6.6.1] is a flexible approach
to implement SPLs. A delta-oriented SPL consists of a feature model, an arti-
fact base, and configuration knowledge. The feature model provides an abstract
description of variants in terms of features—each feature represents an abstract
description of functionality and each variant is identified by a set of features,
called a product. The artifact base provides language dependent artifacts that
are used to build the variants—it consists of a base program (that might be
empty or incomplete) and of a set of delta modules (deltas for short), which are
containers of modifications to a program. For example: for Java programs, a
delta can add, remove or modify classes and interfaces; for statechart programs,
a delta can add, remove or modify states and transitions. Configuration knowl-
edge connects the features in the feature model with the artifacts in the artifact
base by associating to each delta an activation condition over the features and
specifying an application ordering between deltas. Once a user selects a product,
the corresponding variant is derived by applying the deltas with a satisfied acti-
vation condition to the base program according to the application ordering. Thus



configuration knowledge defines a mapping from products to variants, and DOP
supports the automatic generation of variants based on a selection of features.

SPL analysis approaches can be classified into three main categories [13]:
product-based, family-based and feature-based. Product-based analyses work only
on generated variants (or models of variants). Family-based analyses work on the
artifact base, without generating any variant or model of variant, by exploiting
feature model and configuration knowledge to derive results about all variants.
Feature-based analyses work on the reusable artifacts in the artifact base (base
program and deltas in DOP) in isolation, without using feature model and con-
figuration knowledge, to derive results on all variants.

2 Contributions of [10]

The toolchain of the HyVar project [2] supports the development of delta-
oriented SPLs of statecharts [8] expressed in the format supported by Yakindu
Statechart Tools [3]. A Yakindu statechart consists of: an interface defini-
tion part, which declares the elements (e.g., events and typed operations) used
by the statetechart to interact with the external environment; and a state defini-
tion part, which defines the structure of the statechart (i.e., a hierarchical state
machine that can use the elements declared in the interface definition part).
This toolchain has been used to develop product lines of car embedded software
systems [2]. It provides: automatic derivation of a statechart variant, C/C++
and Java code generation, linking to external code artifacts, compilation, and
support for guaranteeing that all the statechart variants can be generated and
are well formed.

In delta-oriented programming, the generation of a variant fails when at-
tempting to apply a delta that contains an operation that cannot be executed
(e.g., for an SPL of Yakindu statecharts, adding an already existing event to
the interface definition part, or removing or modifying a non existing state in
the state definition part).

In Yakindu Statechart Tools, a statechart is well formed if the interface
definition part is well-formed (e.g., there are no duplicated declarations) and the
state definition part is well formed, that is: (i) there are no structural flaws
(like, e.g., a dangling transition); (ii) all the elements used to interact with the
external environment are declared in the interface definition part; and (iii) the
use of each of these elements is correct with respect to its declaration (e.g., each
operation is used according to the type declared for it).

The paper [10] provides a formal account of the SPL family-based analysis
technique implemented in the HyVar toolchain. Namely, it:

1. defines Featherweight Statechart Language (FSL), a core textual
language that captures the key ingredients of Yakindu statecharts (much
as Featherweight Java [9] captures the key ingredients of class-based object-
oriented programming);

2. formalizes for FSL (by a means of a set of typing rules) the well-formedness
checks supported by Yakindu Statechart Tools;

2



3. defines Featherweight Delta Statechart Language (FDSL), a core
textual language for delta-oriented SPLs where variants are written in FSL,
that captures the key ingredients of the delta operations on Yakindu stat-
echarts supported by the HyVar toolchain;

4. defines (on top of the formalization in points 1, 2 and 3 above) a family-
based analysis for guaranteeing that all the variants can be generated and
are well formed; and

5. illustrates how the implementation of the analysis in the HyVar toolchain
has been applied on the HyVar case study.

The Yakindu statecharts language is defined as an ECore metamodel [1].
In the HyVar toochain, the language of deltas on Yakindu statecharts is defined
by the DeltaEcore tool suite [12], which supports developers in defining delta
languages for Ecore metamodels. The core languages FSL and F∆SL, which
capture the key ingredients of delta-oriented programming on Yakindu state-
charts, have been designed in order to enable providing a formal account of the
SPL analysis (cf. point 4 above).

The proposed family-based well-formedness checking mechanism for delta-
oriented SPL of FSL statecharts is inspired by the type checking approach for
delta-oriented SPLs of Java-like programs proposed in [7]. In [7], starting from a
set of typing rules for IFJ [5] (an imperative version of Featherweight Java [9]),
it is shown how to define a family-based type-checking analysis for SPLs writ-
ten in IF∆J (a language for delta-oriented SPLs of IFJ programs). In order to
enable using the technique proposed for IF∆J SPLs to define a family-based
well-formedness analysis for SPLs written in F∆SL, the notion of well-formed
FSL statechart has been formalized by a means of a set of typing rules. Since the
structure of an FSL statechart is more complex than the structure of an IFJ pro-
gram, the technique proposed in [10] had to address this additional complexity.
In particular:

– An IFJ program has only classes and attributes, while statecharts have a
recursive structure where composite states can contain composite states that
can contain states themselves—in the formalization of the analysis this has
been addressed by introducing a notion of path to identify where an element
is placed in a statechart.

– The elements of an IFJ program have only one dependency slot (classes
depend on their super classes, and fields and methods depend on the types
and method they use in their declaration), while the elements in a statechart
have a more fine grain structure where several parts can be changed (for
instance, each part of a transition can be changed)—in the formalization of
the analysis this has been addressed by introducing the notion of dependency
slots.

3 Conclusion and Future Work

The paper [10] originated in the context of the HyVar project, while enhancing
the preliminary version of the HyVar toolchain (that supported delta-oriented

3



SPLs of Yakindu statecharts) by adding support for an SPL analysis that au-
tomatically checks that all the variants can be generated and are well formed.
The paper [10] provides a formal account of the well-formedness SPLs analysis
technique integrated into the toolchain, and illustrates how the analysis has been
applied to an industrial case study.

In future work we would like to further evaluate the implementation by con-
sidering other case studies. We also plan to define other static analyses for delta-
oriented SPL of Yakindu statecharts (like, e.g., model checking) and to incor-
porate them into the HyVar toolchain.

References

1. Eclipse Modeling Framework (EMF). www.eclipse.org/modeling/emf/
2. The HyVar home page. www.hyvar-project.eu
3. Yakindu statechart tools. www.itemis.com/en/yakindu/state-machine/
4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product

Lines: Concepts and Implementation. Springer (2013)
5. Bettini, L., Damiani, F., Schaefer, I.: Compositional type checking of delta-

oriented software product lines. Acta Informatica 50(2), 77–122 (2013).
https://doi.org/10.1007/s00236-012-0173-z

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Ad-
dison Wesley Longman (2001)

7. Damiani, F., Lienhardt, M.: On type checking delta-oriented product lines. In:
Integrated Formal Methods: 12th International Conference, IFM 2016. Lecture
Notes in Computer Science, vol. 9681, pp. 47–62. Springer International Publishing,
Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 4

8. Harel, D.: Statecharts: a visual formalism for complex systems. Science of
Computer Programming 8(3), 231 – 274 (1987). https://doi.org/10.1016/0167-
6423(87)90035-9

9. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal
core calculus for Java and GJ. ACM TOPLAS 23(3), 396–450 (2001).
https://doi.org/10.1145/503502.503505

10. Lienhardt, M., Damiani, F., Testa, L., Turin, G.: On checking delta-oriented prod-
uct lines of statecharts. Science of Computer Programming 166, 3 – 34 (2018).
https://doi.org/10.1016/j.scico.2018.05.007

11. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Software Product Lines: Going Beyond -
14th International Conference, SPLC 2010. Lecture Notes in Computer Science,
vol. 6287, pp. 77–91. Springer (2010). https://doi.org/10.1007/978-3-642-15579-6 6

12. Seidl, C., Schaefer, I., Aßmann, U.: Deltaecore - A model-based delta language gen-
eration framework. In: Modellierung 2014, 19.-21. März 2014, Wien, Österreich.
LNI, vol. 225, pp. 81–96. GI (2014), http://subs.emis.de/LNI/Proceedings/
Proceedings225/article2.html

13. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and sur-
vey of analysis strategies for software product lines. ACM Comput. Surv. (2014).
https://doi.org/10.1145/2580950

4


