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Abstract 

 
When plants establish outside their native range, their ability to adapt to the new environment is 
influenced by both demography and dispersal. However, the relative importance of these two 
factors is poorly understood. To quantify the influence of demography and dispersal on patterns 
of genetic diversity underlying adaptation, we used data from a globally-distributed demographic 
research network, comprising 35 native and 18 non-native populations of Plantago lanceolata. 
Species-specific simulation experiments showed that dispersal would dilute demographic 
influences on genetic diversity at local scales. Populations in the native European range had 
strong spatial genetic structure associated with geographic distance and precipitation seasonality. 
In contrast, non-native populations had weaker spatial genetic structure that was not associated 
with environmental gradients, but with higher within-population genetic diversity. Our findings 
show that dispersal caused by repeated, long-distance, human-mediated introductions have 
allowed invasive plant populations to overcome environmental constraints on genetic diversity, 
even without strong demographic changes. The impact of invasive plants may therefore increase 
with repeated introductions, highlighting the need to constrain future introductions of species even 
if they already exist in an area. 

 
Significance Statement 

 
We found that long-distance dispersal and repeated introductions by humans have shaped 
adaptive potential in a globally distributed invasive species. Some plant species therefore do not 
need strong demographic changes to overcome environmental constraints that exist in the native 
range; simply mixing genetic stock from multiple populations can provide an adaptive advantage. 
This work highlights the value of preventing future introduction events for problematic invasive 
species, even if the species already exists in an area. 

 
Main Text 

Introduction 

Patterns of genetic diversity across a species’ range arise from a complex interplay between the 
diversifying effect of demographic variation across landscapes with different selection pressures, 
and the homogenising effects of dispersal1-3. On one hand, variability in demographic 
performance influences genetic diversity through its influence on effective population size4. Short- 
lived, highly fecund species generally have higher levels of genetic diversity compared to species 
that are long-lived or have low fecundity5,6. On the other hand, dispersal modulates these 
relationships by facilitating gene flow between populations7. Gene flow from seed and pollen can 
increase genetic diversity and reduce genetic differences among populations. While the 
importance of these forces is widely accepted8, there is uncertainty about the relative strength of 
demography and dispersal in shaping genetic structure across global environmental gradients9,10. 

For invasive species, the situation is even more complex because humans disrupt many of the 
natural processes that determine genetic diversity (Fig. 1). For example, repeated introductions 
and long-distance dispersal by humans can release invasive plant species from demographic 
constraints, such as those imposed by the colonisation-competition tradeoff11. Invasive species 
might also overcome climatic constraints on phenotypic traits as a result of rapid adaptation to 
new environments12 or non-adaptive processes such as repeated introductions which can swamp 
locally adapted phenotypes13. Thus, emerging evidence suggests that plants in their non-native 
range can break ecological ‘rules’ because they are not always constrained by the same 
biological and climatic forces that operate in their native range. 

 
Some populations of invasive species lose genetic diversity during invasion through founder 
effects14, but many have higher genetic diversity outside their native range15,16. The mechanisms 
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underlying this phenomenon include admixture (i.e. new genotypes arising from interbreeding 
among divergent source populations)17, hybridisation18, rapid mutation19 and exposure of cryptic 
genetic variation20. Such increases in genetic diversity can enhance colonisation success21 and 
adaptive potential22 in invasive species. Demographic changes can also improve invasive plant 
performance23, which is sometimes associated with release from natural enemies24. 
Unfortunately, demographic and genetic aspects of invasion are often analysed in isolation25, in 
part because labour-intensive demographic studies are typically done at one or a few sites 
making them severely limited in spatial replication26. This means we lack understanding about the 
relative importance of demographic change and global dispersal on biological invasions27,28. 

Here, we present a demographically-informed analysis of neutral and putatively adaptive genetic 
diversity in Plantago lanceolata L. (Plantaginaceae), a common forb native to Europe and 
western Asia, which now has a cosmopolitan distribution (Fig. 2). Plantago lanceolata established 
in its non-native range through long-distance dispersal by humans29, repeated introductions30 and 
cultivation31 – all processes that can increase genetic diversity and invasion success15. The 
overarching aim of the study was to analyse the influences of local demography and global 
dispersal patterns on genetic diversity in P. lanceolata and determine which of these pathways 
drives adaptive capacity. This knowledge is necessary to understand how future introduction 
events will influence the spread of invasive plants. This work was made possible by a globally- 
distributed demographic research network (PLANTPOPNET) and is, to our knowledge, the first 
analysis of genetic diversity at a global scale that integrates field-collected demographic data. 

 
In addition to demographic data, we sampled DNA from 491 individuals including outgroups, 
cultivar lines and 53 naturally occurring populations across the native European range (n = 35) 
and the non-native range (n = 18) in southern Africa, Australasia and North America (Fig. 2). To 
address our main aim, three hypotheses were tested: 

 
(H1) In absence of dispersal, increases in survival and fecundity will drive increases in 
genetic diversity. These effects will be diluted by dispersal between populations. 

 
(H2) Patterns of spatial genetic structure among native populations will reflect dispersal 
limitations across environmental gradients. In the non-native range, gene flow arising from 
multiple introductions will disrupt spatial genetic structure observed in the native range. 

 
(H3) Environmental influences on within-population genetic diversity will be explained by 
demographic variation (density, fecundity and empirical population growth rate). Repeated 
introductions into the non-native range and long-distance dispersal by humans will weaken 
this relationship (Fig. 1). 

 

A genotypic simulation model, parameterised with empirical demographic data from P. lanceolata, 
was used to test H1. We then coupled field-collected demographic data (density, empirical 
population growth rate and fecundity) with single nucleotide polymorphism data (18,166 neutral 
and 3,024 putatively adaptive SNPs) to test H2 and H3. 

 
Results and discussion 

 
Hypothesis 1: Dispersal between populations will dilute demographic effects on genetic diversity 

 

In two simulated populations unconnected by dispersal, with different rates of juvenile survival (j 

= 0.1 and 0.2) and female fecundity (seeds per plant, F 1–100), higher juvenile survival led to 

greater genetic diversity (Fig. 3a). Above the threshold at which populations went extinct (F = 

15), genetic diversity increased sharply until F was approximately 25. Above this point there was 
little influence of fecundity on genetic diversity (Fig. 3a). Population size at the end of the 
simulation was larger with higher juvenile survival (Fig. 3b). Thus, variation in female fecundity 
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appears to have less influence than juvenile survival in determining genetic diversity in P. 
lanceolata. When the two populations were connected by dispersal, differences in heterozygosity 
persisted until the number of migrants per generation exceeded 50,000 (Fig. 3c, d). This number 
is realistic in natural populations since reproductive individuals typically produce a minimum 20- 
100 seeds and migration refers to propagules dispersed before the recruitment process. Male 
fecundity was kept constant in the model as it is very high in P. lanceolata (10,000–54,000 pollen 
grains per anther32) and had no influence on genetic diversity. 

The simulation result supports our prediction (H1) that demography would influence genetic 
diversity in P. lanceolata when dispersal barriers are present and that dispersal would dilute these 
effects. The simulation also suggests that juvenile survival is an important parameter controlling 
heterozygosity. When dispersal barriers are removed however, gene flow from pollen and seed 
will swamp local effects of juvenile survival on heterozygosity. We could therefore expect 
demographic effects on genetic diversity to become undetectable at the upper range of pollen 
and seed movement that occurs in P. lanceolata. 

 
The increases in genetic diversity with juvenile survival (Fig. 3) might not confer an adaptive 
advantage since they reflect genetic diversity arising from neutral demographic processes. The 
relevance of this result however, is that there is enough demographic variability in P. lanceolata to 
shape neutral genetic structure, an assumption underlying the hypotheses in the rest of the study. 
Thus, we can expect juvenile survival to be the dominant demographic parameter underlying 
differences in P. lanceolata genetic diversity when dispersal is limited at local scales. At 
continental scales, genetic diversity is probably influenced less by juvenile survival when gene 
flow is high. This might be especially true in the non-native range where there has been a shorter 
history of local adaptation33 and multiple human-mediated introductions (the human activity 
pathway, Fig. 1). 

 
Hypothesis 2: Global gene flow from multiple introductions will disrupt spatial genetic structure 

 
Admixture analysis of P. lanceolata genotypes with fastSTRUCTURE34 revealed strong genetic 
structure in the native range and a high degree of admixture in the non-native range. The number 
of genetic clusters at Hardy-Weinberg Equilibrium (K) was between K = 6 (model complexity 
maximising marginal likelihood) and K = 13 (model components used to explain structure in the 
data). When K = 6, cultivar lines and outgroups (P. coronopus and P. major) formed two distinct 
clusters and the remaining four clusters were present in the native European range with clear 
spatial structure (Fig. 2). Greece, Italy, the Islands of the North Atlantic and Finland comprised 
almost ‘pure’ lines of these four clusters, while other European populations were admixed. 

 
Genotypes of most non-native populations were admixed and there was relatively little spatial 
structure at a global scale (Fig. 2). This was supported by a significantly higher Diversity Score in 
the non-native range (model estimate, SE = 0.34, 0.04), compared to the native range (0.22, 
0.03) (see SI Appendix, Fig. S6, P = 0.033). Italy and central France were the most similar source 
material for the dominant genotype in the non-native populations. Some cultivar stock was 
identified in the Spanish populations, possibly reflecting the Iberian source of material used to 
breed cultivars. The cultivars were developed in New Zealand, thus the presence of cultivar stock 
in that population might indicate mixing between the naturalised population and pasture plants 
(Fig. 2). At the upper range of K, further spatial structure was identified in Europe (e.g. at K = 13 
Norway was differentiated from Finland), while the non-native populations still showed admixture 
of multiple, mostly Mediterranean sources (see SI Appendix, Fig. S1). The lack of spatial 
structure at a global scale was supported by Analysis of Molecular Variance (AMOVA) showing 
that genetic variation between the native and non-native range was only 2.2%, among individuals 
within populations was 10.7% and among populations within ranges was 11.4%. The remaining 
genetic variation (75.5%) accounted for individual heterozygosity. 
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The minimum number of colonising propagules required to produce the observed level of genetic 
diversity in non-native regions (Propmin) depended on sample size (r = 0.99) and ranged from 5.35 
in New Zealand to 49.95 in North America (Fig. 2). Multiple introductions were therefore required 
to produce observed levels of genetic diversity in the non-native ranges. Relative to sample size, 
Propmin ranged from 0.55 to 0.90 indicating that, in each region, more than half the sampled 
population was required to represent non-native genetic diversity. Propmin was based on the 
alleles present in the native range, but there were also a number of non-European alleles in each 
non-native region (12–159, Fig. 2). Thus, we either failed to sample the full extent of the source 
population (despite extensive sampling across Europe), or new genotypes were produced after 
colonisation. The latter explanation can arise through transgressive segregation35 and is one 
mechanism by which invasive species adapt quickly to new environments. However, we also 
detected private alleles within sites in Europe (see SI Appendix, Table S1) so our sample does 
not represent the full range of genetic diversity in the species. 

 
Genetic structure measured by FST (genetic differentiation between all pairs of populations) was 
stronger among populations in the native range (mean FST = 0.16) than the non-native range 
(mean FST = 0.09). To analyse the influence of environmental gradients on FST, we used three 
separate generalised dissimilarity models, one for each range type: native range, non-native 
range and the global population (native and non-native combined). The deviance explained by 
the native model was 74.3% (bootstrap CI = 68.6, 78.3) and two out of six variables fitted in the 
model had a significant influence on FST (Fig. 4, see SI Appendix, Fig. S2). Genetic distance 
increased with geographic distance (Fig. 4a) and sites with similar levels of precipitation 
seasonality were more genetically similar (Fig. 4b) after accounting for other variables in the 
model (see SI Appendix, Fig. S2). No variable significantly affected FST in the non-native range 
(deviance explained = 23.1%, bootstrap CI = 9.4, 34.1) or the global population (deviance 
explained = 10.9%, bootstrap CI = 7.25, 14.33) (see SI Appendix, Fig. S2). Geographic distance 
was included in each model to account for differences in spatial scale. Thus, if environmental 
influences on gene flow had persisted in the non-native range, they should have been detectable. 
Combined with the admixture analysis, these results support our prediction (H2) that multiple 
introductions from diverse source populations and long-distance dispersal can weaken 
environment–genetic structure relationships. Plantago lanceolata reproduces clonally as well as 
sexually and this flexible reproductive mode, combined with high admixture in the non-native 
range, suggests fast expansion after colonisation. This might allow the species to overcome 
ecological constraints, without the need for local adaptation36. 

In the native range of P. lanceolata, the increase in genetic distance with precipitation seasonality 
might partially reflect a historic biogeographical pattern (precipitation seasonality was correlated 
with longitude, r = 0.47). Historical processes occurring along both east-west and north-south 
axes shape contemporary genetic patterns in European plants. For example, glacial refugia in 
Iberia, Italy and the Balkans, were reflected in highly divergent lines of Arabidopsis thaliana south 
of the alpine barrier37. In our dataset, the Italian population was genetically distinct, while two 
eastern sites in Romania were highly differentiated and genetically related to Greece (Fig. 2). 
François et al.37 also found evidence for an eastern refuge in A. thaliana. Further sampling into 
the continental Asian range of P. lanceolata would help uncover whether the observed patterns 
arose from movement with agriculture westward across Europe38,39 or postglacial colonisers from 
the Balkans40. 

Hypothesis 3: Global gene flow will weaken demographic effects on genetic diversity within 
populations 

 

We compared a series of linear models, including additive and interactive effects of range 
(native/non-native) to address the hypothesis that environmental influences on within population 
genetic diversity would differ between the native and non-native ranges (Dataset S1). Our results 
offered partial support for Hypothesis 3 because environmental gradients (characterised by mean 
temperature, temperature seasonality and mean precipitation) affected population growth rate, 
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fecundity and neutral and adaptive genetic diversity in native and non-native ranges of 
P. lanceolata (Fig. 5, see SI Appendix, Fig. S3). Our expectation, however, that genetic 
responses to the environment could be explained by demographic variation had little support (see 
SI Appendix, Fig. S3). Demographic variables responded to environmental gradients, but did not 
induce a response on genetic diversity when used as predictor variables. Demographic and 
genetic parameters within populations were best explained by environmental gradients and, in 
some cases, there were differences in the responses between native and non-native ranges. 

 
The top-ranked models for population growth rate (Fig. 5a) and fecundity (Fig. 5b) had additive 
effects of mean temperature, responding similarly in the native and non-native ranges. Globally, 
warmer sites tended to have lower population growth rates and higher fecundity. Increases in 
fecundity can occur to offset lower survival in stressful environments41, a phenomenon which has 
been recorded in other studies of Plantago42,43. There was also an additive effect of temperature 
seasonality on neutral genetic diversity (Fig. 5c), with highly seasonal sites having greater genetic 
diversity in the native and non-native ranges. Mean temperature and temperature seasonality 
were correlated (r = -0.36, p = 0.02, see SI Appendix, Fig. S4). Thus, the observed responses are 
best thought of as responses to an environmental gradient, with demographic and genetic 
parameters responding to different aspects of the gradient. High genetic diversity in highly 
seasonal sites might have been driven by increased fecundity, since we found some evidence of 
a positive relationship between fecundity and genetic diversity (see SI Appendix, Fig. S3g, 
Dataset S1). 

 

Three of the top-ranked models included an interaction between environment and range, showing 
environmental effects in the native range but not the non-native range. Both neutral (Fig. 5d, 
bootstrap CI = 0.001, 0.010) and adaptive (Fig. 5f, bootstrap CI = 0.004, 0.021) genetic diversity 
decreased across a mean precipitation gradient in the native range, but not in the non-native 
range. Adaptive genetic diversity increased with temperature seasonality, but only in the native 
range (Fig. 5e, bootstrap CI = -0.021, -0.005). There was also support (∆AICc < 2) for non-native 
populations having a weaker response to environmental gradients in terms of fecundity (see SI 
Appendix, Fig. S3a, b), population growth rate (see SI Appendix, Fig. S3c) and neutral genetic 
diversity (see SI Appendix, Fig. S3d). Taken together, these results suggest that non-native 
populations are not constrained by the same environmental forces as their native counterparts. 

 
Population growth rate and neutral and adaptive genetic diversity were all higher in the non-native 
range (Fig. 5, Dataset S1), suggesting that invasive populations have a greater capacity for 
colonisation and adaptation. Higher population growth rates in non-native populations were 
probably driven by increases in survival rather than fecundity, since fecundity was lower in the 
non-native range (Fig. 5b, Dataset S1). Thus, our simulation experiments and our field data 
indicated stronger effects of survival than of fecundity on genetic diversity and population growth, 
respectively. 

 
Increases in genetic diversity can arise when environmental heterogeneity drives population 
turnover through increases in sexual reproduction, population growth and survival6,44. In our study 
however, population growth was affected by mean temperature, not variability in temperature; 
cooler sites generally had higher rates of population growth across the first two demographic 
censuses. This is consistent with previous work showing that high mean temperature was 
associated with mortality in P. lanceolata42. Thus, we did not find a clear demographic 
explanation for the effect of temperature seasonality on genetic diversity. Temperature stability 
might have promoted clonality in P. lanceolata, leading to lower genetic diversity45. However, 
rates of sexual and clonal reproduction within species are often inversely related46 and genetic 
diversity was unaffected by rates of sexual reproduction in our study. The influence of global 
variation in clonality on genetic diversity needs further investigation, particularly because clonality 
combined with sexual reproduction can increase invasion success36. 
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Our prediction that environmental effects on genetic diversity could be explained by demographic 
variation had only little support, even in the native range. Except for a weak increase in neutral 
genetic diversity with density (see SI Appendix, Fig. S3f) and fecundity (see SI Appendix, Fig. 
S3g), there was little direct influence of demographic variables on genetic diversity. There are at 
least two explanations for this general lack of a demographic relationship. First, genetic structure 
can arise even under frequent dispersal44. Thus, although we found strong spatial genetic 
structure in the native range, it is possible that dispersal was high enough to mask any influence 
of demography on genetic diversity (the natural dispersal pathway, Fig. 1). Second, the fine scale 
of demographic sampling within sites (a few m2) might not reflect effective population size47. This 
fits with our understanding of abiotic filters operating at all scales, while biotic filters, such as 
inter- and intra-specific interactions affecting demographic performance, generally operate at 
localised scales10,13. Plantago lanceolata is also highly genetically variable, within and outside its 
native range. Thus, the low power within sites might have limited our ability to draw conclusions 
about demographic influences on genetic diversity. Sampling more individuals per site in future 
might reveal stronger effects of fecundity, survival and population growth on genetic diversity. 

 
In summary, genetic diversity in P. lanceolata appears to be shaped predominantly by 
temperature and precipitation gradients related to gene flow and admixture, rather than 
demographic variation. Our data support the prediction, that high dispersal would dilute 
demographic effects on genetic diversity (H1). Globally, our analyses suggest that genetic 
diversity in the non-native range is shaped by admixture from multiple source populations and 
ongoing introductions, leading to high neutral and adaptive genetic diversity (H2). Our data 
suggest that invasive populations can establish in a broad range of environments, without the 
need for associated demographic change. Thus, there was little support for the prediction that 
demographic variation could explain environmental effects on genetic diversity (H3). Our unique 
global demographic data set provides new evidence that invasive species can overcome 
ecological ‘rules’ in their non-native range11-13. Reducing long-distance dispersal and further 
introductions of invasive plants is important, even in areas where they already exist, as this will 
limit future increases in genetic diversity and the formation of new genotypes that confer an 
adaptive advantage in new environments. 

 
Methods 

 

Study overview 
 

Plantago lanceolata is a short-lived (mean, max = 2.8, 8 yr48), perennial forb, native to Europe. It 
reproduces sexually and vegetatively, with gynodioecy, self-incompatibility and protogyny to 
enhance outcrossing49. Flowers are wind pollinated and seeds mature in summer. The species 
occurs in a wide range of habitats including semi-natural grasslands, roadsides, disturbed sites, 
abandoned fields and agricultural land50. Seeds are dispersed locally by wind but seed dispersal 
distances are estimated to be within centimetres or metres of the mother plant51. Widespread 
propagule movement by humans29 and repeated introductions as seed contaminants30 has led to 
the global distribution of P. lanceolata. It has been present in Australia since before 1850 
(www.ala.org.au), in North America since before 183230 and for an unknown time in South 
Africa52. It is cultivated as a commercial pasture plant in New Zealand because it grows well in 
the mild winter and limits soil nitrification31. The species is classed as invasive in its non-native 
range52 because it reproduces prolifically and spreads over large areas53. We follow this definition 
of ‘invasive’ to refer to P. lanceolata and other plant species with this characteristic. We use the 
term ‘non-native’ to refer to the geographic range outside of Europe where the species exists. 

 

We used field-collected demographic and DNA data from populations of P. lanceolata to analyse 
spatial variation in demographic rates and genetic diversity. The demographic data were used to 
parameterise the simulation part of the study (H1) and to analyse the demographic influence on 
genetic diversity across global environmental gradients (H3). For the genetic data set, we 
sampled 454 individuals from 53 naturally-occurring populations in 21 countries across the native 
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European range (35 populations: Denmark, Estonia, Finland, France, Germany, Greece, 
Hungary, Ireland, Italy, Norway, Romania, Spain, Sweden, Switzerland, United Kingdom) and the 
non-native range (18 populations: Australia, Canada, Japan, New Zealand, South Africa, USA) 

(Fig. 2). The latitudinal range of sampling, in absolute terms, was 27.5–61.4. Forty-four 
populations (83%) were established sites in the PLANTPOPNET network (www.plantpopnet.com) 
undergoing an annual demographic census, while the remaining nine were sampled for DNA only 
(see SI Appendix, Table S1). 

 
We characterised the environment at each site using four variables from BioClim54 at 30” 
resolution: annual mean temperature, annual mean precipitation, temperature seasonality 
(standard deviation of annual mean temperature) and precipitation seasonality (coefficient of 
variation in annual mean precipitation). We selected these variables because they were important 
for morphological variation in P. lanceolata in preliminary analyses and multi-collinearity was not 
high (variance inflation factor < 3, maximum r between pairs of environmental variables = 0.43 
(mean temperature and seasonality in precipitation) and between range (native/non-native) and 
environment (mean temperature) = 0.59)55. 

Field demographic census & DNA sampling 
 

PLANTPOPNET is an ongoing research project that began in 2014 and annual censuses of P. 
lanceolata populations are planned for the long-term. Our analysis used data collected between 
2014 and 2017, but not all sites began data collection at the same time (i.e. year 0 varied among 
sites, see SI Appendix, Table S1). In most populations (61%), year 0 was 2015 and 73% of 
populations were sampled twice during this study period (number of annual censuses per 
population = 1–3, see SI Appendix, Table S1). At each census site in year 0, a series of adjacent 
50 x 50 cm quadrats was established along transects until the quadrats covered 100 individual 
plants. Researchers established transects where P. lanceolata was present in sufficient numbers 
for demographic studies, so density estimates might reflect upper estimates across local 
populations. Quadrats were permanently marked to enable repeat censuses from year 1 
onwards. Each plant was individually tagged and all rosettes on each plant were measured 
according to a standard protocol56 which included leaf length, number of flowering stems, 
inflorescence length and stage of seed development. 

 
At each site, fresh leaf tissue from seven to nine individuals was collected and placed 
immediately in silica gel (see SI Appendix, Table S1). Sampled individuals were close to 
(approximately 5–20 m), but outside of, census plots and were separated from each other by 
approximately 5–10 m. Thus, we avoided damage to permanently marked individuals in the 
census population, ensured that samples were closely related to the census population and 
minimised the chance of sampling clones. We included two samples each from one population of 
P. coronopus (Spain) and four populations of P. major (Australia x 2, Ireland x 1, Romania x 1) as 
outgroups. To investigate if naturally occurring populations were influenced by genetic stock from 
commercial pasture lines, we included nine individuals from each of three cultivar lines derived 
from P. lanceolata: AgriTonic, Ceres Tonic and Tonic Plantain. The whole data set thus included 
491 individuals. The data are publicly available in Dataset S2 
(https://doi.org/10.5281/zenodo.3579579). 

 
Genotyping 

 

Samples were genotyped at Diversity Arrays Technology P/L (Canberra, Australia) using double 
restriction enzyme complexity reduction and high-throughput sequencing (DArTseq). Total 
genomic DNA was extracted with a NucleoSpin 96 Plant II Core Kit (MACHEREY-NAGEL) and 
purified using a Zymo kit (Zymo Research). The enzymes PstI and MseI were chosen following 
tests of different enzyme combinations for P. lanceolata. DNA samples were processed in 
digestion / ligation reactions following Kilian et al.57 but substituting the single PstI adaptor for two 
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adaptors corresponding to restriction enzyme-specific overhangs. The PstI adaptor was modified 
to include Illumina sequencing primers and variable length barcodes following Elshire et al.58. 
Mixed fragments (PstI-MseI) were amplified in 30 rounds of PCR using the following reaction 

conditions: 94 C for 1 min, then 30 cycles of 94 C for 20 sec, 58 C for 30 sec, 72 C for 45 sec, 

followed by 72 C for 7 min. After PCR, equimolar amounts of amplification products from each 
sample were bulked and applied to c-Bot (Illumina) bridge PCR followed by single-read 
sequencing on an Illumina Hiseq2500 for 77 cycles. Raw sequences were processed using 
DArTseq analytical pipelines (DArTdb) to split samples by barcode and remove poor quality 
sequences. Genotypes for co-dominant, single nucleotide polymorphisms (SNPs) were called de 
novo (i.e. without a reference genome) from 69 bp sequences using DArTseq proprietary 
software (DArTsoft). Replicate samples were processed to assess call rate (mean = 79%), 
reproducibility (mean = 99 %) and polymorphic information content (mean = 22%). 

 
SNP filtering 

 

Starting with 37,692 SNPs that passed DArTseq quality control, we filtered the data for minimum 
minor allele frequency (1%), call rate (50%) and reproducibility (98%) using custom R scripts59 
(Dataset S2). Loci in Hardy-Weinberg (HW) and linkage disequilibrium hold important biological 
information about population structure but extreme disequilibrium can indicate genotyping errors 
which bias estimates of population structure60. Within sites, there was limited power to reliably 
test for patterns of HW and linkage disequilibrium (7–9 individuals per site). It was not possible to 
combine samples from multiple populations because we detected strong genetic structure, even 
within countries, which would have produced biologically meaningful patterns of disequilibrium 
arising from the Wahlund effect61. Thus, to identify SNPs with consistent patterns of HW 
disequilibrium, we tested each locus in every population separately using Fisher’s exact tests62 
and used un-adjusted P values given the low power within sites. Loci which deviated from HW 
equilibrium in > 5 populations were removed63. We used the correlation between genotype 
frequencies64 to test for linkage disequilibrium between each pair of loci in each population. 
Following the same rationale as for HW disequilibrium, we removed a locus if it was in a 
correlated pair (r > 0.75) in > 5 populations. To reduce the chance of disequilibrium from physical 
linkage, we also filtered SNPs that occurred in the same 69 bp sequence as another SNP, 
keeping the one with the highest call rate. The data comprised 21,190 SNPs after applying these 
filters. 

 
Detecting loci under putative selection 

 

Neutrality was an assumption underlying the population structure models we used, thus, we 
investigated if SNPs were putatively under selection using one population-level method 
(BayeScan) and two individual-level methods (PCAdapt and LFMM). BayeScan uses an MCMC 
algorithm to examine outlier loci against background values of population differentiation (FST) 
among pre-defined populations65. PCAdapt and LFMM both define background population 
structure as K principal components derived from individual genotypes66,67. In PCAdapt, each 
SNP is regressed against each principal component. LFMM uses the principal components as 
latent factors in a Gaussian mixed model, where the genotype matrix is modelled as a function of 
an environmental matrix67. While BayeScan is suitable for our population-level sampling design, 
PCAdapt and LFMM are more reliable for species with complex, hierarchical population structure 
(e.g. multiple divergence events) and are less sensitive to admixed individuals and outliers in the 
data68,69. Thus, we considered outliers identified in any of the three methods to be putatively 
under selection. 

 

For BayeScan, we set the prior odds at 200 (appropriate for the number of markers in our data70), 
ran the model using default parameters (100,000 iterations with a thinning interval of 10, a burn-in 
of 50,000 and 20 pilot runs of 5,000 iterations), and checked the distribution of the log likelihood 
across iterations to ensure model convergence (see SI Appendix, Fig. S5). For both individual- 
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level methods, we examined scree plots to determine K and used the first 10 components which 
captured the majority of population structure in the data (see SI Appendix, Fig. S5). We defined 
the LFMM environmental matrix using the four 30” BioClim variables described above and three 
additional variables: elevation (metres above sea level, measured at the site) and two variables 
extracted from CliMond71 at 5’ resolution: annual mean moisture index and seasonality in 
moisture (CV of annual mean moisture). To control for false discovery rate, we calculated q- 
values from p-values and classed SNPs as outliers where q < 0.05 for BayeScan and PCAdapt 
and q < 0.1 for LFMM (to account for the small number of loci identified with this method, see SI 
Appendix, Fig. S5). The three analyses identified a total of 3,026 outlier SNPs and, as commonly 
reported in other studies69, there was little overlap among methods (see SI Appendix, Fig. S5). 
After filtering the putatively adaptive loci, our final data set comprised 18,164 neutral SNPs. 

 
Simulated genetic diversity (Hypothesis 1) 

 

We conducted two simulation experiments in MetaPopGen 0.0.472 to determine if realistic levels 
of variation in P. lanceolata survival and fecundity would influence genetic diversity and whether 
dispersal would override demographic influences on genetic diversity. Gametes in the model are 
produced via Mendelian segregation and mating is random72. We modelled two distinct 
populations to examine different rates of juvenile survival and female fecundity. In Experiment 1, 
the two populations were unconnected by dispersal, while in Experiment 2 they were connected 
by varying levels of dispersal. 

 

Male fecundity M in P. lanceolata is high (10,000–54,000 pollen grains per anther32) and had no 

influence on genetic diversity. Thus, we set M at 10,000 and focussed on variation in female 

fecundity (seeds per plant) F, adult σa and juvenile σj survival rate, and between-population 
dispersal δ (number of migrants per generation). In both experiments each of the two populations 
i, had two age classes x (juvenile xj, adult xa), three genotypes p representing all combinations of 
two alleles (00, 01 and 11) and a starting size Nxp of 25,000 individuals. The model was not 
spatially explicit, but we wanted each population to represent a 1 ha site with a density of 15 
individuals / m2 (based on census data from year 0). Generation time in P. lanceolata is 
approximately 3 years (range 1–3 years73,74). Thus, we ran the model for 100 time steps to 
represent population dynamics over 100–300 years, accounting approximately for the time P. 
lanceolata has been present in its non-native range. Population sizes reached a steady state 

within 10 time steps. We estimated juvenile carrying capacity as K = (F * (N*p)) * g, where g is 
the estimated field germination rate (0.039). We kept K time- and population-constant. 
MetaPopGen can only simulate one locus at a time, so we repeated the experiments 300 times to 
simulate sampling 300 independent loci (following72). 

In Experiment 1, we tested the influence of F on genetic diversity (1–100, based on census data 
from year 0) and σ (σji1 = 0.1; σai1 = 0.84; σji2 = 0.2; σai2 = 0.71) with no dispersal between 
populations (δ=0). Survival rates were based on a total population estimate of 5% alive after five 
years (exp(log(0.05)/5)) (ref. 73) and adjusted for commonly reported low survival in juveniles42. In 
Experiment 2, we tested the influence of δ (migration rate: 0–0.04 = number of migrants: 0– 
60,000) on the difference in genetic diversity between populations. Each population had the same 

survival rates as Experiment 1 and F was kept constant at 20. The migration rates produce large 
numbers of migrants because each plant produces 20 ‘newborns’ and migration occurs before 
recruitment in the model72. Thus, δ is influenced by K and will always be higher than recruitment. 
We summarised expected heterozygosity at the end of each simulation and calculated the mean 
and 95% confidence interval across the 300 loci. The experiments can be reproduced with the 
code in Dataset S2. 
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Population genetic structure (Hypothesis 2) 

 

All population structure analyses used our panel of neutral SNPs; a choice dictated by the model 
assumptions being based on Hardy-Weinberg and linkage equilibrium. We first conducted an 
Analysis of Molecular Variance in poppr 2.8.075 to determine how neutral genetic diversity was 
partitioned across levels: within individuals, among individuals within populations, among 
populations within ranges, and between the native and non-native range. To assess genomic 
relationships and the degree of admixture in the global data set, we used fastSTRUCTURE34. 
This model determines the number of genetic clusters in the data that would maximise Hardy- 
Weinberg and linkage equilibrium (K). We investigated K=1 to K=20 and assigned each individual 
to a cluster based on the model complexity that maximised marginal likelihood and the model 
components used to explain structure in data34. To quantify the level of admixture for each 
individual (i) across the most likely K, we calculated a Diversity Score76 as: 

DS = 
K 
i=1 ∙ ln(Ci) 
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–Hmax 

where Ci is the cumulative admixture and Hmax is a scaling factor (Hmax = K · ((1/K) · ln(1/K))), 
making DS relative to complete evenness for each individual. We used a linear mixed model to 
evaluate whether there was a difference in DS between the native and non-native range, with site 
fitted as a random effect. 

 

To determine whether multiple introductions of P. lanceolata had occurred in non-native regions 
(Australia, Japan, New Zealand, North America and South Africa) we estimated the minimum 
number of propagules required to produce the observed level of genetic diversity in non-native 
regions (Propmin)77. We defined the source population as all of Europe because non-native 
individuals were usually composed of admixed genotypes from multiple European populations. 
For each non-native region, we calculated the number of alleles not present in Europe and 
removed these from the reference panel of non-native alleles. Individuals from the native range 
were then randomly cumulatively sampled without replacement. Propmin was the number of 
individuals sampled at the point when all alleles in the non-native panel were represented 
(Dataset S2). We repeated the process 1000 times to obtain a mean and standard error. We also 
calculated the number of unique alleles in each of the 53 sites as a measure of uniqueness. 

 
To assess the influence of environmental gradients on spatial genetic structure, we used 
generalised dissimilarity models78,79. We fitted one model for the native range, a second for the 
non-native range and a third for the global data set (native and non-native). We calculated 
genetic differentiation as FST between all pairs of populations in GENEPOP 4.680. Environmental 
distances between all pairs of populations i and j were calculated from the four BioClim variables 
x (xi – xj)79. For each of the three data sets, we fitted geographic distance and all environmental 
distances as predictor variables in a single model. The importance of each variable, given all 
other variables, was assessed by comparing the fitted model to 500 models with a permuted 
environmental matrix79. Thus, the effect of each environmental variable can be interpreted 
independently and differences in spatial scale are accounted for by the geographic distance 
variable. P values were Bonferroni-adjusted across all terms within each model. We used 
deviance explained to assess goodness-of-fit of the three models. Given samples size differences 
between the three data sets, we used a bootstrap estimate from 10,000 replicates of the deviance 
explained to assess the accuracy of the model fit. We assumed the deviance explained to be 
accurate if bootstrap 95% confidence interval (CI) did not include zero. 

 
Demographic & dispersal effects on genetic diversity (Hypothesis 3) 

 
We used linear regression to determine if environmental influences on within-population genetic 
diversity could be explained by demographic variation and whether this effect would be weakened 

– Σ Ci 
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by mass dispersal into the non-native range (Hypothesis 3). The observation-level for all analyses 
was the population and the number of observations was 44 (i.e. all populations with genetic and 
demographic data, see SI Appendix, Table S1). 

 

Genetic diversity was calculated as allelic richness in hierfstat81, separately for the neutral 
(18,166 SNPs) and adaptive (3,024 SNPs) datasets. Allelic richness was highly correlated with 
expected heterozygosity (He) (r = 0.98) and, because it was standardised for sample size, it 
eliminated a weak correlation we observed between He and sample size. We characterised the 
environment using the four BioClim variables. For demography, we used three variables that can 
influence genetic diversity (Table 1): population density (rosettes/m2), fecundity and empirical 
population growth rate. For fecundity, we used reproductive effort, estimated as the rosette-level 
inflorescence length x number of flowering stems per m2. Empirical population growth rate was 
calculated as r = log(Nt+1/Nt), indicating the strength and direction of change in rosettes/m2 in the 
first two years of the study (for 38 of the 44 populations with two years of data, see SI Appendix, 
Table S1). Thus, r reflects the combined influence of fecundity and survival (the variables 
explored in simulation Experiment 1). We used rosette-level data for all metrics to reduce 
potential observer bias in assessing clonality, but plant- and rosette-level metrics were highly 
correlated (r = 0.94). Fecundity was log-transformed to address a strongly skewed distribution 
and all predictors were standardised prior to analysis (x − mean(x)/SD(x)). 

 
We tested environmental and demographic effects separately, to determine which variables best 
described variation in genetic diversity. The analysis comprised two stages. First, we analysed 
the effect of each environmental variable on genetic diversity. Here, we also modelled the 
environmental effect on demography (i.e. using the three demographic variables as response 
terms) to establish a baseline for environmental influences on demographic rates. Second, we 
examined whether each demographic variable influenced genetic diversity. In both stages we 
analysed environmental and demographic interactions with range (native/non-native). Because 
data limitations (n = 44) it was not possible to fit complex models with multiple interaction terms 
so we modelled each predictor separately. 

 
To determine the importance of each environmental or demographic predictor, we used AICc to 
compare model fit across five alternative model forms: a null model (no predictor variation), a 
predictor only model, a range only model, an additive model (predictor + range) and an interactive 
model (predictor x range). We considered a model to have support from the data if it improved the 
fit over the null model by ∆AICc > 2 (ref. 82). Among models that out-fitted the null, those within 
∆AICc ≤ 2 of each other were considered to have equal support from the data. In these cases, we 
presented the top-ranked model in the main document and supported models in the Supporting 
Information. To interpret interaction models in light of sample size differences between the native 
(30) and non-native (14) ranges (e.g. a strong response in the native range and no response in 
the non-native range), we obtained a bootstrap 95% confidence interval (CI) from 10,000 
bootstrap replicates of the interaction coefficient using the adjusted bootstrap percentile method. 
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Figures and Tables 
 

Figure 1. Conceptual diagram showing how demographic performance and dispersal collectively 
shape genetic diversity in plant populations (+ indicates a positive relationship expected). Genetic 
diversity is influenced through natural pathways (solid line), such as local environmental 
conditions which affect demographic performance and effective population size4. Environmental 
conditions also affect genetic diversity though dispersal (e.g. by facilitating dispersal vectors or 
creating dispersal barriers). Dispersal can increase genetic diversity directly by providing a source 
of new genetic material (outcrossing) or indirectly through immigration and consequent effects on 
demography. High propagule pressure arising from high fecundity can influence source-sink 
dynamics7,83, increasing rates of dispersal (hence the double arrow between demography and 
dispersal). Human activity can affect genetic diversity (dashed lines) by altering environmental 
conditions (e.g. climate change) and by changing dispersal rates and dispersal pathways (e.g. 
admixture). When this occurs, demographic performance can also be affected (e.g. through 
enemy release associated with dispersal across biogeographic boundaries) which can cause 
invasive plants to overcome biotic constraints on life-history11 and environment-trait 
relationships13. Although genetic architecture can influence demography and dispersal, the 
overall quantity of neutral genetic diversity across the genome is more likely to be the outcome of 
demographic and dispersal processes, hence the one-sided arrows between these panels. 
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Figure 2. Global genetic structure in Plantago lanceolata. (a) Coloured bars represent the 
proportion of individual genotypes in each population assigned to one of six genetic clusters 
identified with fastSTRUCTURE. For clarity, multiple sites were aggregated where overlapping 
bars had similar assignment probabilities (e.g. southern Ireland, Switzerland). Dark grey points 
are P. lanceolata records from GBIF/BIENGBIF 84,85. For each non-native region, the minimum 
number of propagules (mean ± standard error), overall (Propmin) and relative to sample size 
(Propmin / N), indicates that multiple introductions would be required to produce observed levels of 
genetic diversity. The number of non-European alleles indicates that more genetic diversity was 
present in non-native regions than could be explained by the native sample. (b) Probability of 
assignment for 491 individuals to six genetic clusters, with individuals grouped by population 
within region. Three commercial cultivar lines and two outgroups (P. coronopus and P. major) 
were included. Country codes for each population are shown on the x-axis. 
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925 Figure 3. The simulated effect of demography and dispersal on genetic diversity (expected 

926 heterozygosity, ± 95% confidence interval) in two populations of Plantago lanceolata. (a) When 

927 there was no dispersal between populations, the population with high juvenile survival (j = 0.2) 

928 had greater genetic diversity than the population with low juvenile survival (j = 0.1). At very low 

929 levels of female fecundity F, populations went extinct (†) but F had little influence on genetic 

930 diversity at approximately > 25 seeds per plant. (b) Variation in j influenced population size at 

931 the end of the simulation. (c) The difference in heterozygosity between the two populations was 
932 influenced by dispersal between them (where fecundity was kept constant at 20 seeds / plant). (d) 
933 Genetic differences persisted until high levels of dispersal (> 50,000 migrants per generation) 
934 indicated by the 95% confidence interval crossing zero. 
935 
936 
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937 Figure 4. Genetic distance (FST) between pairs of Plantago lanceolata populations in the native 
938 European range was explained by two variables: (a) geographic distance and (b) distance in 
939 precipitation seasonality (coefficient of variation of annual mean precipitation) between sites. A 
940 generalised dissimilarity model indicated these variables had a significant (adjusted P < 0.001) 
941 effect on FST, given all other variables in the model (geographic distance, mean temperature, 
942 mean precipitation, temperature seasonality and precipitation seasonality). Deviance explained 
943 by the model was 74.3% and the model splines are shown in SI Appendix, Fig. S2. 
944 
945 
946 
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947 Figure 5. Environmental influences on demography and genetic diversity within populations in the 
948 native European (n = 30) and non-native (n = 14) range of Plantago lanceolata (model estimates 
949 and 95% confidence intervals shown over raw data). First-ranked models are shown for 
950 environmental influences on (a) population growth rate, (b) reproductive effort, (c–d) neutral 
951 genetic diversity and (e–f) adaptive genetic diversity. In all models except (e), the additive and 
952 interactive models both had support from the data (∆AICc < 2, see SI Appendix, Fig. S3 and 
953 Dataset S1). For (e), the interaction between temperature seasonality (standard deviation of 
954 annual mean temperature at each site) and range (native/non-native) was the only model  
955 supported by the data (AICc weight = 0.95). 
956 
957 
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Table 1. Demographic variables used to analyse population processes that are important to 
genetic diversity. The relevance of demographic variables to genetic diversity is outlined in Fig. 1 
and described in detail by Ellegren and Gaultier4 

 
 
 

 
 
 


