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Abstract

This thesis treats different aspects of microlocal and time-frequency anal-
ysis, with particular emphasis on techniques involving multi-products of
Fourier integral operators and one-parameter group properties for pseudo-
differential operators.

In the first part, we study a class of hyperbolic Cauchy problems, associated
with linear operators and systems with polynomially bounded coefficients,
variable multiplicities and involutive characteristics, globally defined on R<.
We prove well-posedness in Sobolev-Kato spaces, with loss of smoothness
and decay at infinity. We also obtain results about propagation of singulari-
ties, in terms of wave-front sets describing the evolution of both smoothness
and decay singularities of temperate distributions.

In the second part, we deduce lifting property for modulation spaces and
construct explicit isomorpisms between them. To prove such results, we
study one-parameter group properties for pseudo-differential operators with
symbols in some Gevrey-Hormander classes. Furthermore, we focus on some
classes of pseudo-differential operators with symbols admitting anisotropic
exponential growth at infinity. We deduce algebraic and invariance prop-
erties of these classes. Moreover, we prove mapping properties for these
operators on Gelfand-Shilov spaces of type . and modulation spaces.
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Introduction

One of the fundamental goals of classical analysis is a thorough study of
functions near a point, that is, locally. It is also well known that the decay
properties of the Fourier transform of a distribution, that is, its represen-
tation in the frequency domain, are connected to its smoothness. Starting
from this observation, microlocal techniques were developed, in the second
half of the twentieth century, as part of the study of linear partial differential
equations, to obtain informations on the local behavior of the solutions. The
term microlocal implies localization not only close to a point zq in the config-
uration space X, typically a (smooth) manifold, but also in a neighbourhood
of the covariable (or frequency variable) &, that is, close to points (zg, &y) of
the cotangent space (of an open subset) of X. Loosely speaking, microlocal
analysis is analysis near points and directions, that is, in the phase space,
based on Fourier, and other type of, transforms. Many basic ideas date
back to the original works by Hormander [79], Kohn and Nirenberg [85],
and Maslov |91], in which they generalized existing notions from analysis to
investigate distributions and their singularities. A wide range of even more
comprehensive and careful treatments of this subjects are now available, in
particular, related to the concept of wave-front set of a distribution and to
various functional spaces.

This dissertation consists of two parts, each one focused on related, but
independent, topics and applications of the microlocal analysis techniques,
with R? chosen as configuration space. The various objects of interests will
be anyway globally defined, that is, carrying informations, for instance, on
their “behaviour at infinity” (e.g., decay, regularity with respect to certain
functional or distributional spaces on the whole R?, etc.).

Part [[ deals with a class of hyperbolic partial differential equations and
the corresponding families of Fourier integral operators giving their solu-
tions.

Part [[I] is devoted to study classes of pseudo-differential operators on
the so-called modulation and Gelfand-Shilov functional and distributional
spaces.

To introduce the contents of Part I, we begin by recalling the definition
of Fourier integral operators on R?. Namely, they are linear maps, initially
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defined on ., that, in their simplest form, can be written as

~

Op,()1) (0) = (2)° [ 9 fi@ e, Fes @), )

where a(z,§) is the amplitude or symbol go(x,{) is the phase function, and
the Fourier transform f of fis deﬁne in . In the case of the elemen-
tary phase function ¢(z, &) = (z,£), the Fourler integral operator are
(left-quantized) pseudo-differential operator.

A most widely used class of amplitudes is the one introduced by Hérman-
der in [81], the so called Sg%(RQd) = S, class, that consists of functions

a e CP(R? x R?) satisfying, for m € R, Q, (5 €[0,1], 0 < o,
080 alw, )] < Cap(1 + gy 2 o g e RY,

for suitable Co3 > 0, o, 8 € Zi. In the classical theory, the phase function
0 € OC(RY x (RN0)) is homogeneous of degree 1 in the frequency variable
&. Often it is also assumed to satisfy the non-degeneracy condition, that is,
the mixed Hessian matrix [ 8:5265 ] has non-vanishing determinant. This is

an important assumption when dealing with boundedness of the operators
(0.1) on L? or H® and other functional spaces.

The study of these operators, which are intimately connected to the
theory of linear partial differential operators, has a long history. In [81],
Hormander credits the original local notion of Fourier integral operators to
Lax in the paper [87], where the objective was the study of the singularities
of hyperbolic differential equations (see also Maslov [91]). There is a huge
number of results and applications concerning regularity, boundedness and
compositions (of Fourier integral operators and pseudo-differential opera-
tors). We refer the reader to [42,43,51}76,77.,[81},86,/107] and the references
quoted therein for a wider overview of the existing literature.

In particular, we will be concerned with the application of Fourier inte-
gral operators to the study of hyperbolic type equations. Also this related
literature is quite large, see again the sources quoted above and their list
of references. More precisely, for some T" > 0, we will consider the Cauchy
problem

{ Lu(t,s) = f(t) (t,8)e[0,T],s <t
(DFYu(s,s) =g, k=0,...,m—1,

d
2

'Notice the presence of the normalization factor (27r)~2 in the definition of f .
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with f and gg, £k =0,...,m — 1, chosen in suitable functional spaces,

L= L(t,Dy;x,D;) = D* + Y Pj(t;z, Dy) D"
j=1

m € N, and the differential operators P;j(t;x, D), j = 1,...,m, given by

Pj(t;z,Dy) = Z cja(t;x) Dy,
la]<j
having polynomially bounded coefficients, namely,

08B cjat;x)| S ey Pl ezl zeRe te(0,T). (0.4)

j=1,....,m, a€Z% |a| < j. Denoting by L,, = o, (L) the principal
symbol of L, that is

[op (D)t 75,€) =77 4+ 35 | D) Tallia)e™ [ 777

J=1 | laf=j

where ¢jq, the principal part of ¢;,, satisfies (0.4)), see Chapter [4] for the
precise definition. We assume L to be hyperbolic, that is

m

Lin(t,752,6) = [ [ (r = 7(t; 2, ),
j=1
with real-valued, smooth characteristics roots 7j, j =1,...,m.

Such global problems on the whole of R? have been considered by Cordes
(cf. [41]), mostly in the case of strictly hyperbolic operators, that is, when
the characteristic roots are all distinct and satisfy a “separation condition”
at infinity, see Chapter 4. While the classical setting recalled above is ap-
propriate for the study of the local behaviour of solutions to problems of the
type , it does not allow to obtain informations about their behaviour at
infinity. A better suited environment for this aim is provided by the so-called
SG symbols, introduced independently by Cordes and Parenti [95]. The cal-
culus on R? has been extended to a class of non-compact manifolds (the
so-called SG-manifolds), including the manifolds with finitely many ends,
by Schrohe [106]. Namely, a symbol a(z, &) belongs to the SG symbol class
St (R2d) = S m e R, if a e O (RY x RY) and

D2 Dfa(w, )| < Caglay™ 1ol 2, ¢ e RY,
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for suitable constants Cn,g > 0, o, 8 € Zi. Operators L of the type ,
where the operators P; turn out to be defined by means of parameter-
dependent symbols of order (m — j,m — j), j = 1,...,m, indeed appear as
local representations, on (unbounded) coordinate patches, of natural differ-
ential operators on manifolds with ends (see, e.g., the corresponding example
in [47]).

The systematic study of through Fourier integral operators tech-
niques was performed in [43] in the case of operators L with constant multi-
plicities (see Definition[4.2), based on the calculus of the so-called SG Fourier
integral operators developed in [42]. Therein, the Fourier integral operators
have symbol a € S™*, while the phase function ¢ satisfies ¢ € S!
and

(&) <P, €)) O, elx) <{pi(x,€)) < Clw), xR,

for suitable ¢,C > 0. Notice that no homogeneity assumption on ¢ is
required.

Compared with [43], we will focus here on the more general situation of
involutive operators. That is, those hyperbolic operators L whose charac-
teristic roots fulfill the next main Assumption [A]

Assumption A. Let the characteristic roots ; € C*([0,T]; SH1(R?9)), j =
1,...,m, be an involutive family. FExplicitly, they are real-valued, and, for
any j,k = 1,...,m, there exist real symbols bj , and d; , € C*([0,T]; SO (R??))
such that the Poisson bracket {r — 7,7 — 7} satisfy

/ / / /
{r—715, 7 — T} = O7j — OpTi + Tie Thae — Tia " The

= b7 — k) + djk
holds true on [0,T] x R? x R

Assumption [A] allows to prove the existence of a representation of the
fundamental solution of , involving finitely many SG Fourier integral
operators, related to the characteristic roots of L, analogously to the results
in [86},94,110] in the classical Hormander symbols, local setting. Such well-
posedness result in the naturally associated scale of functional spaces, the
so-called Sobolev-Kato spaces H™?, r, o € R, further generalizes the quoted
results, both in the local as well as in the global setting. To achieve this
result, a careful analysis of algebraic properties of the involved operators
is needed. Namely, completing the work in [8], commutative properties
of multi-products of SG Fourier integral operators are proved under the
Assumption[A]for the symbols generating their phase functions, so extending
the similar results in [864/94,/110] to the SG case. Moreover, a result for the
propagation of singularities for the Cauchy problem is obtained, taking
advantage of the structure of its fundamental solution operator, in terms
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of the global wave-front sets studied in [46-48]. A future application will
concern the study of stochastic versions of the Cauchy problem for a
SG-involutive operator, in the spirit of [10]. The results proved in Part I are
contained in the preprint [1].

To summarize the contents of Part II, we first recall some basic notions
of time-frequency analysis. A time-frequency representation transforms a
function f on R? into a function on the time-frequency space R x R?. The
goal is to obtain a description of f, that is, local both in time and in fre-
quency. The standard time-frequency representations, such as the short-time
Fourier transform and its various modifications known as Wigner distribu-
tion, radar ambiguity function, Gabor transform, all encode time-frequency
information.

A main ingredient of time-frequency analysis are the so-called modu-
lation spaces. They were introduced in [55] by Feichtinger, to measure
the time-frequency concentration of a function or distribution on the time-
frequency space. Nowadays they have become popular among mathemati-
cians and engineers in view of their numerous applications in signal process-
ing [58,59], pseudo-differential and Fourier integral operators [33}34}38,98|
99./109,/111}/112,/118},120,{122,/123.|125,126] and quantum mechanics [39,65].
They are interesting also because, by appropriate choices of the elements
entering their definition, they coincide with many “standard” functional
spaces, like LP, Hj, etc. Since many mapping properties are known for
pseudo-differential and Fourier integral operators acting on such spaces, it
is useful to establish homeomorphisms (lifts) between modulation spaces
and other functional spaces. In particular, if such homeomorphisms can be
expressed terms of pseudo-differential operators, the corresponding calculi
can then provide further mapping properties among the original modulation
spaces themselves.

More precisely, the topological vector spaces V7 and V5 are said to possess
lifting property if there exists a “convenient” homeomorphism (that is, a
lifting) between them. For example, for any weight w on R?, p e (0, 0] and
s € R the mappings f — w-f and f — (1—A)%2f are homeomorphisms from
the (weighted) Lebesgue space Lz(’w) and the Sobolev space H,, respectively,

into LP = Hg, with inverses f — w™'- f and f — (1—A)~%2f, respectively.
(Cf. [80] and Part [lI, Chapter [5| for notations.) Hence, these spaces possess
lifting properties.

It is sometimes relatively simple to deduce lifting properties between
(quasi-)Banach spaces of functions and distributions, if the definition of their
norms only differs by a multiplicative weight on the involved distributions,
or on their Fourier transforms, which is the case in the above example. A
more complicated situation appear when there are some kind of interactions
between multiplication and differentiation in the definition of the involved
vector spaces. This is a typical situation for many functional spaces in
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microlocal and time-frequency analysis, since multiplications on the Fourier
transform side are linked to differentiations of the involved elements. An
interesting example where such interactions occur concerns the extended
family of Sobolev spaces, introduced by Bony and Chemin in [14] (see also
[89]). More precisely, let w,wy be suitable weight functions and ¢ a suitable
Riemannian metric, which are defined on the phase space W ~ T*R? ~ R?4,
Bony and Chemin introduced in [14] the generalised Sobolev space H (w, g)
which fits the Hormander-Weyl calculus well, in the sense that H(1,g) = L?,
and if a belongs to the Hérmander class S(wq, g), then the Weyl operator
Op®(a) with symbol a is continuous from H (wow, g) to H(w, g) (see Chapter
1 below for notation about the pseudo-differential operators and their Weyl
quantization Op"(a)). Moreover, they deduced group algebras, from which
it follows that to each such weight wq, there exist symbols a and b such that

Op®(a) o Op”(b) = Op“(b) cOp®“(a) = I,a € S(wo,9),b € S(1/wo,g), (0.5)

where I is the identity operator on .. In particular, by the continuity
properties of Op”(a) it follows that H(wow,g) and H(w,g) possess lifting
properties with the homeomorphism Op“(a), and Op"(b) as its inverse.

The existence of a and b in is a consequence of solution properties
of the evolution equation

(Gra)(t, -) = (b +log)#a(t, -),a(0, -) = ap € S(w,g), ¥ S(,g), (0.6)

which involve the Weyl product # and a fixed element b € S(1,g). It is
proved that has a unique solution a(t, -) which belongs to S(w??, g)
(cf. [14, Theorem 6.4] or [89, Theorem 2.6.15]). The existence of a and b in
(10.5)) will follow by choosing w = ag =1, t =1 and ¥ = wy.

An important class of operators in quantum mechanics and time-frequency
analysis concerns Toeplitz, or localisation operators. The main issue in
[7273] is to show that the Toeplitz operator Tp(wp) lifts M&gw) into M(pu’g
for suitable wp. The assumptions on wy in [72] is that it should be polynomi-
ally moderate and satisfies wy € S0). In [73] such assumptions have been
relaxed (see the quoted paper for details), but here we work under further
different hypotheses.

One of the main results in Part [lI} which is similar to |72, Theorem 0.1],
can be stated as follows (see Chapter |5 below for the notation).

Theorem 0.1. Let s > 1, w,wy € ﬂgvs(RQd), p,q € (0,00] and let ¢ €

Ss(RY). Then the Toeplitz operator Tpy(wo) is an isomorphism from M(pj

(R24) onto MP )(]RQd).

(w/wo

We notice that, in contrast to [72,/73], such lifting properties also hold
for modulation spaces which may fail to be Banach spaces, since p and ¢
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in Theorem are allowed to be smaller than 1. Moreover, differently
from [73], we do not impose in Theorem and in its related results that
wp should be radial in each phase shift (cf. e.g. [73, Theorem 4.3]). Our
lifting results then extend those proved in [72,/73]. They are contained in
the preprint [3].

Another important family of functional and distributional spaces are the
so-called Gelfand-Shilov spaces of type .. They have been introduced in
the book [64] by Gelfand and Shilov, as an alternative functional setting to
the Schwartz space .7 (R%) of smooth and rapidly decreasing functions, for
Fourier analysis and for the study of partial differential equations. Namely,
fixed s > 0,0 > 0, the space S7(R?) = S7 can be defined as the space of all
functions f € C* satisfying an estimate of the form

270 f ()]

sup Sup ——————— < @0 0.7
a,ﬂeg‘i ace]Rg hletBlalo Bls (0.7)

for some constant h > 0, or the equivalent condition

r\x|% «
sup sup e % @)l < (0.8)

aeZd reR4 hlelate

for some constants h,r > 0. For ¢ > 1, 87 represents a natural global
counterpart of the Gevrey class G° but, in addition, the condition
encodes a precise description of the behavior at infinity of f. Together with
S¢ one can also consider the space X7, which has been defined in [97] by

S

requiring (respectively (0.8))) to hold for every h > 0 (respectively for
every h,r > 0). The duals of S and X7 (R¢) and further generalizations of

these spaces have been then introduced in the spirit of Komatsu theory of
ultradistributions, see [28.(97].

After their appearance, Gelfand-Shilov spaces have been recognized as a
natural functional setting for pseudo-differential and Fourier integral opera-
tors, due to their nice behavior under Fourier transformation, and applied in
the study of several classes of partial differential equations, see e. g. [7{17-22].

According to the condition on the decay at infinity of the elements of
S7 and X7, we can define on these spaces pseudo-differential operators with
symbols admitting an exponential growth at infinity. These operators are
commonly known as operators of infinite order and they have been studied
in [15] in the analytic class and in [26,84},/131] in the Gevrey spaces where
the symbol has an exponential growth only with respect to £ and applied
to the Cauchy problem for hyperbolic and Schrédinger equations in Gevrey
classes, see 26,2732, 83]. Parallel results have been obtained in Gelfand-
Shilov spaces for symbols admitting exponential growth both in x and &,
see |17},/18.|21},22.|25],100].

The above results concern the non-quasi-analytic isotropic case s = ¢ >
1. In [24], the authors consider the more general case s = ¢ > 0, which is
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interesting in particular in connection with Shubin-type pseudo-differential
operators, cf. |[19,23]. We further generalize the results of |24] to the case
when s > 0 and ¢ > 0 may be different from each other. Thus the symbols
we consider may have different rates of exponential growth and anisotropic
Gevrey-type regularity in = and £. More precisely, the symbols satisfy the
conditions

1 1
‘677‘(|$‘ s +[¢le )8%&?&(1’, 5)|
sup sup

<w (0.9)
a,Bezd z,EeRd h|a+5|a!06!5

for suitable restrictions on the constants h,r > 0 (cf. (0.8)). We prove that
if h > 0, and holds true for every r > 0, then the pseudo-differential
operator Op(a) is continuous on §7 and on (S7)’. If instead r > 0, and
holds true for every h > 0, then we prove that Op(a) is continuous on X7
and on (37)" (cf. Theorems [10.8 and |10.14). We also prove that pseudo-
differential operators with symbols satisfying such conditions form algebras
(cf. Theorems [10.17| and |10.18)), and that our span of pseudo-differential
operators is invariant under the choice of representation (cf. Theorem .

An important ingredient in the analysis which is used to prove such prop-
erties concerns characterizations of the symbols above in terms of suitable
estimates of their short-time Fourier transforms. Such characterizations are
deduced in Chapter [9] All these results come from the preprint [2].

Finally, in Chapter we consider pseudo-differential operators, where
the symbols are of infinite orders, possess suitable Gevrey regularities, and
are allowed to grow sub-exponentially together with all their derivatives.
Our purpose is to extend boundedness results, in [120], of the pseudo-
differential operators when acting on modulation spaces.

Similar investigations were performed in [126] in the case s = o (i.e. the
isotropic case). Therefore, the results in Chapter [11] are more general in the
sense of the anisotropicity of the considered symbol classes. Moreover, we
use different techniques compared to [126]. These results are collected in
the preprint [4].




Notation

Let R? be the usual Euclidean space given by
Rd = {($1,$2, .. ',xd) LTy € R}

We denote points in R? by x,7,&,n, ete. Let © = (21, x2,...,24) and
y = (y1,92,...,yq) be any two points in R?. The inner product {z,y) of =
and y is defined by

d
(e, y) =), 2y,
j=1

and the norm |z| of z is defined by

d 3 1
|x| = (Z x?) ={x,x)2.

j=1
The so-called Japanese bracket of  is (z) = (1 + |z|?)"/? when z € R%.

0
On R?, the simplest differential operators are e 0j,7=12,...,d.
Lj

As usual, the operator D,;, given by D, = —i——, where i2

= —1, is

sometimes more convenient, especially when dealing with formulae involving
Fourier transform.

In what follows we write f(6) < g(6), 6 € Q < R? if there is a constant
¢ > 0 such that |f(0)| < ¢|g(8)] for all 8 € Q. Moreover, if f(0) < g(6) and
g(0) < f(0) for all € Q, we write that f = g.

We will make use of multi-indices, which will keep the notation (rel-
atively) short. Given N = Z, = {0,1,2,...}, a multi-index is a vec-
tor a = (aq,...,0q4) € Zfi. For o € Z‘i, we define the length of « as
la] = aq + -+ - + g and its factorial as ! = ay!...ag4!. Moreover, for x € R?
and « € Zi we define 2% = 27" . ..xjd, with the usual abuse of notation
m? =

Ifa,pe Zi, we write § < « if and only if

Bj <aj, forall j=1,...,d.
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The difference (o — ) is the multi-index (a; — 1,2 — B2y ..., aq — Ba)
whenever 8 < a. We also set

(3) -

> = 0 otherwise. It is easy to check that, for a < 3,

B B1)  \Ba)’
with the usual binomial coefficients on the right-hand side.
Any polynomial p : R? — C of degree m € Z, can then be written as

p(z) = Z cax®, cq € C.

|a|<m

«
ifBéozand(
g

7 (R%) is the (Fréchet) space of infinitely differentiable functions u “rapidly
decreasing at infinity”. Explicitly u € .7 (R9) if u € C®(R%) and

sup [2%0%u(z)| < o, a, B e N
x

The space ./ (R%) is the space of tempered distributions, that is, of all
the continuous linear functionals from .7 (R?) to C.

For u € .7 (RY), we denote by .Zu or i the Fourier transform of u, given
by

u(§) = (QW)_% JRd e 7X@y (2) da = fRd e KTy (2) du, (0.10)

where dz = (27r)_%d:13.
We denote by I the identity operator, while I; denotes the d x d identity
matrix.
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Chapter 1

Pseudo-differential and
Fourier integral operators of
SG type

Pseudo-differential operators generalize differential and singular integral op-
erators. Classes of operators globally defined on R? where studied, e. g., by
Shubin [107], Helffer and Robert [76,77] and others. We here focus on the so-
called SG classes of symbols and operators. The investigation of SG pseudo-
differential operators goes back to the works of Parenti [95] and Cordes [41].
SG pseudo-differential operators are defined by mean of Symbols of Global
type. They are also called by Schulze [105] “pseudo-differential operators
with conical exit at infinity”. In the terminology introduced by Melrose [92],
they are also known as “scattering operators”. The calculus of Fourier in-
tegral operators originally developed by Coriasco in [42}|43] is based on the
class of SG symbols.

Standard references about these topics are, e. g., Duistermaat [51], Horman-
der [81], Cordes [41], Grigis-Sjostrand [66], Kumano-go [86], Shubin [107],
Treves |130] and Wong [132]. For an introduction to the main properties of
the theory of pseudo-differential operators with symbols in ST, see, e.g.,
Saint-Raymond [104] and Abels [5]. The present introductory chapter is
mainly based on [1,[8,|41}52}/86,107], from which we took most of the mate-
rials.

Here we will recall some properties of SG pseudo-differential operators.

1.1 Calculus for symbols of SG type

First of all, we present some basic material about the SG calculus. We begin
with the definition of the symbol class which we are interested in.

Definition 1.1. The class S™*(R?*?) of SG symbols of order m,u € R,
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is given by all the functions a € C®(R??) such that, for any multiindices
a, B e Z‘i, there exist constants Cog > 0 such that

|DEDSa(w, )] < Co (o™ Pl (1.1)

hold true, for all x,& € R%. For a € S™H(R??) | m,u € R, we define the
semi-norms ||al|;"" by

lall* = max sup (xy ™ ley T De DBz, ), (1.2)
le+Bl< z,6eRd

where l € 74 .

The quantities (|1.2)) define a Fréchet topology on S™*. Moreover, we
let

SOO,OO(RZd): U Sm,,u(RZd)’ Sfoc,foo<]R2d): ﬂ Sm,,u(R2d)'

m,ueR m,ueR

The functions a € S™*(R??) can be (v x s)-matrix-valued. In such case,
the estimate must be valid for each entry of the matrix. Very often, in
the sequel we will omit the base spaces R, R?? from the notation, and we
write S™H, 7, ', etc. The next technical lemma is useful when dealing
with compositions of SG operators.

Lemma 1.2. Let f € S™*(R??), m,u € R, and g vector-valued in R?
such that g € S®Y(R??) and {g(x,&)) = (&). Then f(z,g(x,€)) belongs to
Sm’“(RQd),

The proof of Lemma can be found in |44, and can of course be
extended to the other composition cases, namely, h(x,§) vector valued in
RY such that it belongs to S0(R2?) and (h(z,¢)) = (x), implying that
f(h(x,€),€) belongs to S™H.

We now recall definition and properties of the pseudo-differential opera-
tors a(z, D) = Op(a), a € S™*.

Definition 1.3. Let a € Z(R?*?), and t € R be fized. Then, the pseudo-
differential operator Op,(a) is the linear and continuous operator on .#(R%)
defined by the formula

(Opy(a)u)(z) = (2m)~ f f VO a((1 — t)a + ty, E)uly) dyde

R2d

(cf. Chapter XVIII in [80]). For generala € /' (R??), the pseudo-differential
operator Op,(a) is defined as the continuous operator from .7 (R%) to 7" (R%)
with distribution kernel

Kia(z,y) = 2m)72(F3  a) (1 - t) + ty,x — ).
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Focusing on the case where a € S™*  if t = 0, then Op,(a) is the so-
called Kohn-Nirenberg representation Op(a) = a(z, D), also known as the
left-quantization, represented as follows

(Op(a)u)(z) = (2m)~% fRd e Oa(z, O)a(e)de, ue s, (L3)

with u is the Fourier transform of u € ., given by ({0.10]).
Moreover, if ¢ = 1/2, then Op,(a) is the so-called Weyl quantization
Op"“(a) = a"(x, D) represented as

(Op"(@u)a) = (20)° [ [ 0 (@ 4 )/2.€) ulw) dydé, w5,
R2d
Theorem 1.4. The operators in (1.3) form a graded algebra with respect to
composition, that is, for mj,p; € R, j = 1,2, we have
Op(s™# (RQd)) o Op(S™M2H2 (R2d)) C Op(§mtmatatie (RQd)).
The symbol ¢ € S™tm2b1t12 of the composed operator Op(a) o Op(b),
where a € S™VHL b e ST2H2 qdmits the asymptotic expansion

il

c(@,6) = Y, Dfa(w,€) Dsb(,0).

07

Remark 1.5. Theorem implies that the symbol c equals a - b modulo
Sm1+m2—1,u1+u2—1(R2d)‘

The residual elements of the calculus are operators with symbols in the
space
Sfoo,foO(Rmi) _ ﬂ Sm,,u(R2d) _ y(de)7
(m,p)eR?

that is, those having kernel in .%(R??), continuously mapping .#’/(R?) to
S (R9).

Definition 1.6. An operator A = Op(a) is called elliptic (or S™*"-elliptic)
if a € S™H(R?*) and there exists R > 0 such that

C@)™ (&) <la(z, ), |zl + €] = R, (1.4)
for some constant C' > 0.

Theorem 1.7. An elliptic SG operator A € Op(S™*(R??)) admits a parametriz
P e Op(S~"™~H) such that

PA=1+Ki, AP=1+K>,

for suitable Ky, Ko € Op(S™™~%), where I denotes the identity operator.
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It is a well-known fact that SG-operators give rise to linear continuous
mappings from .7 to itself, extendable as linear continuous mappings from
S to itself.

Proposition 1.8. Op(S™#(R?%)) act continuously between the so-called
Sobolev-Kato (or weighted Sobolev) space, that is from H*° to H5~"™7H
where H™?, r,0 € R, is defined as

H"? = {u e ||u

e = [{)"(D)?ul 2 < 0} .
Next we introduce parameter-dependent symbols, where the parameters
give rise to bounded families in S™*.
Definition 1.9. Let Q < RV, for N > 1. We write f € C* (Q, Sm’“(RQd)),
with m, pe R and k€ Z4 or k = o0, if
(i) f=flwz,8), weQ, z, R
(ii) For any w € Q, 0%f(w) € S™H(R2), for all a € ZY, |a| < k.

(iii) {02 f(w)}weq is bounded in S™H(R??), for all v € ZY, |a| < k.

Lemma 1.10. Let Q € RY, for N > 1, a € C* (Q, S™*(R?*)) and h €
Ck (Q, 590 (R?*!) @ RY) such that k € Zy or k = o0. Assume also that
for any w e Q, x,& € RY, the function h(w;x, ) takes value in Q. Then,
setting b(w) = a(h(w)), that is, b(w;x,§) = a(h(w;x,§));x,§), we find b €
Ck (Q, Smr(R2)).

Proof. (i) The fact that b e C* (Qw, C*(RY x R ® ]RN> is an immediate
consequence of hypotheses and definitions.

(ii) For any fixed w € Q, b(w) € S™*. Indeed, by Fad di Bruno formula,
see [13], for >} |vj| + |v] = |a| and > |0;| + || = | 5], we get

9?5?b(w;:r,£)‘ <)) ‘ (e70205a) (h(w;x,&);2,€) Hﬁljagjh(W;m,f)‘
J

< D @m e <H <$>_|”|<5>_5j) = (@™ol P,
J

Notice that the same argument shows that (0%a)(h(w; z,§); x, &) € S

for any o€ Z%, |a| < k and all w € Q.

(iii) By Fad di Bruno formula, for any a € Z%', such that |a| < k, (02b)(w)
is in the span of

H = {(azaxh(w)) H((?Zjh)(w)} c sm

and is bounded, since that is true for all the elements of H. O
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1.2 Multi-product of SG pseudo-differential oper-
ators

This section is devoted to the proof of the next Theorem dealing with
the composition (or multi-product) of (M +1) SG pseudo-differential opera-
tors, where M > 1. This extends the results of Theorem [I.4]to any arbitrary
number of factors.

Theorem 1.11. Let M > 1, pj € S™Hi(R¥), m;,p; e R, j=1,...,M+1.
Consider the multi-product

Qum+1 =P Pup (1.5)

of the operators P; = Op(p;), j = 1,...,M + 1, and denote by qrr41 €
SR, m = my + -+ mare1, po= p1 4 - + pare1, the symbol of
Qnri+1- Then, if each factor p; belongs to a bounded subset U; < S (R24)
for g =1,....M + 1, it follows that qpry1 belongs to a boundedlﬂ subset
U c S™H(R2),

We split the proof of Theorem [1.11|into two steps. The first one consists
in obtaining an expression for gp;11 as an oscillatory integral. The second
one deals with the boundedness claim on g1 in S™*#(R?9), based on the
expression obtained in the first step.

Lemma 1.12. Under the hypotheses of Theorem qm+1 can be written
as an oscillatory integral, namely,

M+1

gy (2,€) = H e W T pj(a +yj-1,€ +ny) dydn,  (1.6)

RAM y RAM Jj=1

where yo = a1 =0€ R, y = (y1,...,ynm), 1= (m, .-, nn), y,n € R,

M M
Dlym) = Dy — ey = Y5 — Y-,
j=1

j=1
and
dyd’l] = dyl cee ddenl oo an
— (21)"%dyy ... (27) " 2dyn (2m) " 2dny . .. (27) " 2dias.

Remark 1.13. We recall that the space of amplitudes of order T € R on RY
for N € Z, denoted by «/™(RY), is defined as

AT (RN) =
{ae CPRYN): for any a € Z% there evists Co > 0 : [0%a(2)| < Culz)}.

"'With respect to the corresponding Fréchet topologies, loosely speaking qar41 depends
continuously on p;, j=1,...,M + 1.
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Moreover, we write

la|}, := max sup {(z) "|0%a(z)|, ke€Zs,
Sk LeRN

for the associated sequence of (monotonically increasing) semi-norms, see
[103).

Proof of Lemma[1.14. We first show that formally holds true, then we
check that the right-hand side can be regarded as an oscillatory integral, in
the sense described, e.g., in [104].

We will prove by induction. First, we show that it holds true for
M = 1. With u € ., in view of the general theory of SG pseudo-differential
operators, we find, formally,

(PLPyu)(z) = [Op(g2)ul(x)

=f ei<"”’">p1(xﬂ7)f e~ <um f eV Epy(y, £)a(€)de dydn
Rd Rd R4

= fff ez‘(<xm>—<ym>+<y,£>)p1(m,n)pQ(y,g)a(g)dgdydn

R4 x R4 x R4

_ fRd xS J J (@ = M+ U= O) (o oo (4 €) Ay | A(E) At
R xRE

= go(,€) = f f T, (o ) pa(y, €) dyiln

Ra xRd
(1.7)

= ff e TSV (2, € + my)pala + y1, €) dyrdi,
R4 x R4

which is with M = 1. The final expression of g5 in actually holds
true, in view of the general theory of oscillatory integrals, which allows to
exchange the order of integration and linear change of variables. In fact,
(yr,m) is nondegenerateﬂ

It only remains to prove that ag¢(yi,m) = p1(z, & + m)p2(x + y1,§) is
an amplitude of some order with respect to (y1,71). By Peetre’s inequality

2The Hessian is indead the identity matrix. Alternatively, as observed in [104], the
identity

1
y,m) = 1 (Iyr +ml* = lyr = m|?) (1.8)

explicitly shows its d positive and d negative eigenvalues.
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(see, e.g., Lemma 1.18 of [104]), with o, B € Z4,

0% 05 [p1 (@, & + m)pa(a + y1,9)]

< Cagla)™ (€ +my 1ol 4 yrym2=Pleye
< Capl@)™ (€ + m)" (x + y1 )™ (E)H
< Coglay™m2(eyatuzy simal iy, ylml

< Coglz)™ M yr,m)™ ", (1.9)

where m = my + ma, p = p1 + p2, m = |ma| + |mal|, & = || + |pel,
Cyr,m)? = 14|y +|m|?. Tt follows that a, ¢(y1,m) is, for any (z,€) € R*,
an amplitude with respect to (y1,m1), of order (m+ f1). Hence, is a well
defined oscillatory integral. From the general theory of oscillatory integrals,
see [104], denoting by [t] = max{k € Z: k < t} the integer part of t € R, we
have

ff 6*i<y1,m>aw,£(y1, m) dyrdni| < C |ax’5 g;fm+ﬁ+1] < C~1<x>m1+m2<§>ﬂl+ﬂ27
dyRd
(1.10)
which implies, for o, 8,7, € Zi, vy<a, d<pB, and Cupys = (:) . <§>7

0200 s (2, )| =

=| 2. Casy er_i@l’m(@lagpl)(%ﬁ + M) (05770 po) (@ + w1, €) dyn iy

VSOOSB pdRa

< Cop Z <x>m1—|7|+m2—\a—v\<§>u1—lf5|+u2—lﬁ—5\ < 5'aﬂ<$>m—locl<§>u—|5\’
r<a,6<pB

(1.11)

that is, go € S™*, as stated, and the desired claim holds true for M = 1.
Assume now that (|1.6)) holds true for M > 1. Let u € ., and write

[Qur+2u](z) =[Op(qar+2)u](x)
=[((PLP2 -+ Pyri1) Purv2)ul(z) = [(Qar 1 Pars2)ul(z),

with Qa1 = Op(qar41) and gar41 € S™* given by (1.6 and (1.5)), respec-
tively. Using (1.7]), with gas+1 and pps42 in place of p; and pa, respectively,
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arguing as above we find
am+2(z,§)

= JJ e~ UMD g (2, €4 g4 ) P2 (T Yar+1, €) BYnr1dnarit,

R4 xR4
(1.12)

then, in view of (L.11)), qa42 € S(mat-tmarir)+marie, (Pt +pn1) o4z |
Moreover, with

Y(y,m) =<{y1,m) for M = 1
M-1

Y(y,n) = Zl Yismi — N1y + ynr,muy for M = 2,
Jj=

inserting (1.6)) into ([1.12)), in view of the inductive hypothesis, it follows that

qu+2(x,€) =

e WM g (2, €+ 1) P2 (T + Yh, §) Ayar @i

R4 xR4

_ Jf e,i<yM+1,nM+1>pM+2(x + YM+1, f) X
Rd x R4

M
[ ff e—zd)(yﬂ?) (H pj(x + yj_l,f +n; + 77M+1)>
RIM yRdAM J=1

pr+1(T +yYm, § + M) El‘yd‘n} dyn+1dnnr+1-
After the change of variables n; = 7; — np41, j = 1,..., M, and writ-

il’lg TNIM+1 = TNM+1, ﬁMJrQ = 07 37] = Yy, j = 175M+ 1) go = 07
gz(371:---,17M+1),77:(7717'--777M+1)7W6 get

N M2
RA(M+1) w RA(M+1) j=1
where:
o if M =1,

(@, n) = {y1,m) + y2,m2) = i, — N2 + Y2, 12)
M+1
= @i = Ty + BTl — sy = Y, W 1l — Tje1)
=1
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o if M >2

N M-—1
V(Y. 1) = i nj — Nj+1) + ynes ) + Ynr+1, Mv41)

j=1

M-1

= i — M1 + Ons T — a1y + U1, Tv+1)
J

I
—

M M+1
= > 5, = Wiy + G Marer — Mgy = O, @ Ty — Tja)-
j=1 j=1

That is, (1.13) is (1.6) with M + 1 in place of M, as desired.

From the general theory of oscillatory integrals, it follows that all the
computations in the induction step, namely, linear changes of variables and
exchange of integration order, are justified. In fact, the phase function % is

M+1
y,m) = H pj(x + yj—1,€ + n;) is an amplitude
j=1
of order |my| + -+ 4 [mars1| + 1] + - - - + [ar+1| with respect to (y,n), for
any M > 1, (z,¢) e R*,
M = 11is already proved. For M > 2, with arbitrary ag,...,ans,

nondegenerate, and aM+1(

B, .. ,ﬁM e 74 9, setting aprqy1 = B =0 € Z‘i, a similar arguments show
that
M+1
opt - opogt o 1] il + yimn. 6+ )
j=1
M+1

< Cal_”BM H ‘ aﬁj 185 pj) 33+yj—1a§+77j)‘

M+1
< Cgéll.-.-.OJM H (& +y; Y™ 1B5— 1|<§_~_77 i ey
(1.14)
N M+1
< CglljﬂM H <x + Y- 1> ]<£ + 77J>“J
M+1

gren T ™y g )mal(eytt (o]

C
j=1

< (G er) ™.

where we used Peetre’s inequality, such that

m=mi+ -+ My, el i R N DV ST
A= fma| o fmagetl, =l + o+ sl
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It only remains to prove that ¥ (y,n) is a nondegenerate phase function for
any M. By means of , we already proved it for M = 1. For M > 2,
we proceed in a similar way, rewriting ¢ as a linear combination of squared
norms of suitable vectors, obtained through invertible linear maps applied
to y and 7. Again, this shows that ¢ has dM positive and dM negative
eigenvalues. Indeed, observe that, for M > 2

M M—1
n) = Dy — s = Y, iy = nyea) + yns )
j=1 J=1
| M1
=5 2 (s +m =il = lyy = nj + 01+ lyas + ma* = lyar — 1)
7j=1
Z ‘y,] +Cj ‘y,] | ) C =n;— 7]j+1:j:“~1M_1>
j=1 CM=nm
The proof is complete. O

Remark 1.14. Recalling the first inequality in , which holds true for
any amplitude in any dimension and any nondegenerate phase function, the
last part of the proof of Lemma shows also that it is possible to prove
directly qar41 € S™(R?*®). In fact, it is enough to extend (L.11), as it is
possible, to a product of M + 1 factors, and use .

Proof of Theorem[I.11} In view of Lemma we can write the symbol
qv+1(x, &) of the multi-product Qpr41 in the form (1.6). Taking into ac-
count Remark the proof of Lemma also shows that the semi-
norms of qpr41 in S"™H(R??) depend continuously on the semi-norms of p;
in S+ (R?4), 5 =1,..., M + 1 (see, in particular, and (L.11))). This
implies the claimed boundedness result. ]

1.3 Fourier integral operators of SG type

Here we give a short summary of the main properties of the class of Fourier
integral operators we will be dealing with. In particular, we recall their com-
positions with the SG pseudo-differential operators, and the compositions
between Type I and Type II operators.

The Fourier integral operators defined, for u € .7 (R%), as

we (Opy@)e) = o [ s (115)
and

w > (Op3 (b)) (x) = (2m) f f Oy Euly) dyde,  (1.16)

R2d
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with suitable choices of phase function ¢ and symbols a and b, are often
called Fourier operators of type I and II, respectively.

The operators Op,(a) and Op(a) are called SG Fourier integral op-
erators of type I and type II, respectively, when a € S™*", and ¢ satisfies
the requirements of the next Definition Note that a type II operator
satisfies Op;(a) = Op,,(a)*, that is, it is the formal L?-adjoint of the type I
operator Op,,(a).

Definition 1.15 (SG phase functions). A real-valued function o € C*(R??)
belongs to the class P of SG phase functions if it satisfies the following
conditions:

(1) e 51’1(R2d).
(2) {Pi(@,8)) = (&) as |(x,£)] — .

(3) {pe(@,€)) = (x) as |(x,§)] — .

The SG Fourier integral operators of type I and type II, Op,(a) and

Opy,(b), are defined as in (1.15) and (1.16]), respectively, with ¢ € P and
a,b e S"™". Notice that we do not assume any homogeneity hypothesis on

the phase function ¢. The next Theorem treats compositions between
SG pseudo-differential operators and SG Fourier integral operators. It was
originally proved in [42], see also [47},49,/50].

Theorem 1.16. Let ¢ € P and assume p € SH7(R??), a,b € S™H(R??).

Then,
Op(p) o Op,(a) = Op,(c1 + 1) = Op,(c1) mod Op(S~* P (R*)),
Op(p) © Op}(b) = Opk(ca +12) = Opk(cz) mod Op(S~*~*(R*)),
Op,,(a) o Op(p) = Op,(c3 +r3) = Op,,(c3) mod Op(S~*~*(R*%)),
Op;(b) © Op(p) = Opj(ca + 74) = Opf(ca) mod Op(S~*~*(R*?)),

for some c; € SMHLHAT(R2) e SO TO(RHM) G =1,... 4.

In order to obtain the composition of SG Fourier integral operators of
type I and type II, some more hypotheses are needed, leading to the defini-
tion of the classes P, and P,(7) of regular SG phase functions, cf. [86].

Definition 1.17 (Regular SG phase function). Let 7 € [0,1) and r > 0.
A function @ € P belongs to the class Pr(T) if it satisfies the following
conditions:

(1) |det(pye)(z,€)| =7, for any x,& € R
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(2) The function J(x,§) := o(x,&) — {x,&) is such that
|Dg DY J(,))|

sup <T.
acerd (xHI-IBICEI
la+B|<2

(1.17)

If only condition (1) holds, we write ¢ € P,.

Remark 1.18. Notice that if condition holds true for any o, B € Zi,
then J(x,€)/T is bounded with constant 1 in SY1(R??). Notice also that
condition (1) in Definition 1s authomatically fulfilled when condition
(2) holds true for a sufficiently small T € [0,1).

For ¢ € N, we also introduce the semi-norms
|DgD7J (,€)]
i Y f

HJ‘ su 1-18| 1—|a|’
2<|a+6|<2+4 (z,€)eR <x> <‘£>

and 5
D2DLI(x,€)
sup al
sgerd (T)1=IAICE)
la+BI<1

Notice that ¢ € P,(7) means that of Definition and ||J||o < 7 hold,
and then we define the following subclass of the class of regular SG phase
functions.

Definition 1.19. Let 7 € [0,1), r > 0, £ > 0. A function ¢ belongs to the
class Pr(7,0) if ¢ € Pp(7) and ||J||¢ < T for the corresponding function J.

Theorem below shows that the composition of SG Fourier integral
operators of type I and type II with the same regular SG phase functions is
a SG pseudo-differential operator cf. [43].

Theorem 1.20. Let p € P, and assume a € S™H(R?), b e SH7(R??).
Then,

Op,(a) o Opg(b) = Op(cs + r5) = Op(cs) mod Op(S~ %~ *(R?%)),

[T ]le := +1J

|2.0-

Op;;(b) o Op,(a) = Op(ce + 76) = Op(cs) mod Op(S~~*(R24)),
for some c; € ST (R2D) ;e S0~ 0(RM) j =5 6.

Furthermore, asymptotic formulate can be given for ¢;, j = 1,...,6, in
terms of ¢, p, a and b, see [42]. Finally, when a € S™* is elliptic and ¢ € Py,
the corresponding SG Fourier integral operators admit a parametrix, that
is, there exist by, by € S™™ ™ such that

Op,(a) o Op(b1) = Op(b1) 0 Op,(a) = I mod Op(S™*~%),
OpZZ(a) o Op¢(b2) = Opw(bg) o OpZ‘;(CL) = I mod Op(S~2~%),
where I is the identity operator, see again [42./4750].



SG calculus 15

Theorem 1.21. Let p € P, and a € S™H(R??), m,u € R. Then, for any
r,0 € R, Op,(a) and Opj(a) continuously map H™(RY) to H™ ™0 I(RY),

1.4 Multi-products of SG phase functions and reg-
ular SG Fourier integral operators

Here we recall a few results from [8] concerning the multi-products of SG
phase function and Fourier integral operators of type I. Let us consider a
sequence {¢;}jen of regular SG phase functions ¢;(z,&) € Pp(75), j € N,
with

o]

D7 =1 < 1/4. (1.18)

By Definition and assumption ((1.18), the sequence {Ji(z,&)/Tk} k=1
bounded in S (R??) and for every £ € N there exists a constant ¢, > 0 such
that

o0
| Telloe < come and > [ Jkl2e < cemo. (1.19)
k=1

We set 7y = ij\il 7j. With a fixed integer M > 1, we denote, for x = xg
and § = {41,

(X)E) = ($07x1)'"7‘TM5517"'7§M’€M+1) = (‘T7Ta®)€)7
(T’@) = (xlw'"xMagla---ng)a

and define the function of 2(M + 1)d real variables

Z @j(xj-1,85) = <@5,§)) + em+1(Tar; Enr41)-

For every fixed (z,§) € dekthe critical points (Y, N) = (Y, N)(z,£) of the
function of 2Md variables ¥(T,©) = 1 (z,T,0,¢&) are the solutions to the
system

Ve (X, EB) = @ie(@j1,&) —2j =0 j=1,..., M,
Uy (X, B) = @y ,(25,&41) =& =0 j=1,..., M,

in the unknowns (7,0). That is (Y,N) = (Y1,..., Yy, N1,..., Ny)(z,€)
satisfies, if M =1,

[1]

{mx,&) = ¢ (2, N1 (2,€))
Nl(l‘ag) = (pg,m(yi(xvg)vé_),
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or, if M = 2,

Yi(z,€) = ¢ ¢(x, Ni(z,))

Yi(z,8) = ¢ (Yj1(2,8), Nj(x,€),  j=2,....M
Nj(z,&) = ¢j11,(Yj(@,8), Njsa(2,€), j=1,....M—1
Ny (2,€) = i1, (Yar (2,6),6).

In the sequel we will only refer to the system (|1.22)), tacitly meaning (|1.21])
when M = 1.

(1.22)

Definition 1.22 (Multi-product of SG phase functions). If, for every fized
(z,€) € R¥, the system (1.22)) admits a unique solution (Y,N) = (Y, N)(z, £),
we define

¢($7£) = (901 ﬁ e ﬁ SOM+1)($7£) = w(CB,Y(IE,f),N(LL‘,f),f) (123)
The function ¢ is called multi-product of the SG phase functions ¢1, ..., On+1-

The following properties of the multi-product of SG phase functions can
be found in [§].

Proposition 1.23. Under the assumptions (1.17) and (1.18)), the system
(11.22) admits a unique solution (Y, N), satisfying

{(Y; = Yj_1)/7j}jen is bounded in SI’O(RQd),
{(Nj — Njt1)/Tj+1}jen is bounded in SO’I(RQd).

Proposition 1.24. Under the assumptions (1.17) and (1.18), the multi-
product ¢(x, &) in Definition is well-defined for every M = 1 and has
the following properties:

(1) There exists k = 1 such that ¢(x,&) = (p1 § -+ 8§ ome1)(z,§) €
Pr(kTars1) and, setting

JM+1($35) = ((101 oo ﬁ (;DM+1)(1:’£) —<l',£>,

the sequence {Jnri1/Tar1} =1 s bounded in ST (R?).

(2) The following relations hold:

{¢;<x,s> = ¢ (2, N1(2,€))
¢{§<$7f) = (P/M+1,§<YM(xa§)’€)v

where (Y, N) are the critical points ((1.22)).
(3) The associative law holds true:

o1t (P2t Boms) =(p1 8 - fom) B orm-
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(4) For any ¢ = 0 there exist 0 < 7* < 1/4 and ¢* = 1 such that, if
;€ Pr(tj, L) for all j and 19 < 7%, then ¢ € Pp(c*Tars1,¥).

Passing to regular SG Fourier integral operators, one can prove the fol-
lowing algebra properties (cf. [8]).

Theorem 1.25. Let p; € P.(15), j = 1,2,....M, M > 2, be such that
T+ + T ST < % for some sufficiently small T > 0, and set

Po(z, &) =<z, &),
Q1 = 1,
O =iy, =2,..., M,
Dnrj = oibojt- o, j=1,..., M —1,
P = oM,

Parvr1(z, ) = (x,8).

Assume also a; € S™i#i (R?1), and set A; = Op%_(aj), j=1,...,M. Then,
the following properties hold true:

(1) Given qj,qun; € SOO(R2), j =1,..., M, such that
Ops,(g;) © Opg, (1) =1, Opg,, (1) °Opg,, (ar;) =1,
set Q7 = Opy,(45), Q@m,; = Ops,, (qr,5), and
R; = Opg, ,(1)0A;0Q%, Rury = QurjoAjo0ph,, . (1), j=1,...,M.
Then, R;, Ry j € Op(S*O(R?)), j =1,..., M, and
A= Ajor--0Apy = Rio - 0Ry0O0pg,, (1) = Opy,, , (1)oRar10- - -0 Rn, -

(2) There exists a € S™H(R?*), m = my + -+ mpr, o= pi1 + - + pns
such that, setting ¢ = p1t--- o,

A=A10~--OAM=Op¢(a).

(8) For anyl € Z, there existl' € Z, C; > 0 such that

M
llall™* < Co ] T ezl
j=1
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1.5 Eikonal equations and Hamilton-Jacobi sys-
tems in SG classes

Given a real-valued symbol a € C([0,T]; S¢*(R?%)) with ¢ € [0, 1], consider
the so-called eikonal equation

{ at@(t73;xa§) = a(t’ x, 90;3(757871:75))7 te [OuTO]a (1 24)
QD(S,S;$,£) =<.Z',§>, S € [OaTO]v ’

with 0 < Tp < T.

Remark 1.26. Note that the eikonal equation (1.24]) appears in the so-
called geometric optics approach to the solution of Lu = f, u(0) = wug for
the hyperbolic operator

L =D, —a(t;z,Dy) on [0,T],
where Dy = —1i0;.

We now focus on the Hamilton-Jacobi system corresponding to the real-
valued Hamiltonian a € C([0, T]; S*!(R?)), namely,

orq(t,siy,m) = —ag (tq(t, s;y,m),p(t, s59,m))
§ (1.25)
ap(t,siy,m) = ay(t;q(t, s;y,m),p(t, s;9,m)),

where ¢,s € [0,T], T > 0, and the Cauchy data

{ Q(S7 8; y’ 77) = y7 (126)
p(s,89,m) = 1.

We recall how the solution of ((1.25)), (1.26]) is related to solution of
(1.24]) in the SG context. We mainly refer to known results from [41, Ch.
6] and [43].

Proposition 1.27. Let a € C ([0,T]; SM(R??)) be real-valued. Then, the

solutions q(t,s;y,n) and p(t,s;y,n) of the Hamilton-Jacobi system (|1.25)
with the Cauchy data (1.26)) satisfy

t,s;y,m)) =<y, <ot sy,m)) = () (1.27)

Proposition 1.28. Under the same hypotheses of Proposition the
mazimal solution of the Hamilton-Jacobi system (|1.25|) with the Cauchy data
(1.26]) is defined on the whole product of intervals [0,T] x [0,T].

Proposition 1.29. The solution (q,p) of the Hamilton-Jacobi system (|1.25))
with a € C*([0,T]; SVH(R??)) real-valued, and the Cauchy data (1.26)), sat-

isfies
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(i) q belongs to C*([0,T]?; S1-O(R?)).
(ii) p belongs to C*([0, T]?; SO1(R2%)).
Lemma 1.30. The following statements hold true:

(i) Leta e C([0,T]; SV (R?%)) be real-valued. Then, the solution (q,p)(t, s;

y,m) of the Hamilton-Jacobi system (1.25)) with Cauchy data ((1.26)
satisfies, for a sufficently small Ty € (0,T] and a fized t such that

0<s,t< Ty, s#t,

(q(t,s;y,m) —y)/(t —s) is bounded in SI’O(RM) (1.28)
(p(t,s;y,m) —n)/(t —s) is bounded in ~ S%'(R??) '
and
q(t, s;y,m), q(t, s;y,m) —y € CHI(Ty); SHO(R)), 129)
p(t, s;y,m), p(t, s;y,m) —n e CH(I(Ty); SV (R?)),

where, for T >0, I(T) = {(t,s): 0 < t,s <T}.

(i4) Furthermore, if, additionally, a belongs to C*([0,T]; S (R?%)), then,
a(t, sy,n) —y € C(I(Tp); SHO(R*)) and p(t, s;y,n) —n € C*(I(Th);
SO’I(RM)).

The proof of Lemma [1.30] combines techniques and results similar to
those used in [41], [43] and [86]. For the sake of completeness we prove it.

Proof. From the Hamilton-Jacobi system (|1.25)) one can use the fact that
owq(t, s;y,m) = —ag(t; q(t, s;9,m), (L, 53 9,m)),

where a(t; x,€) belongs to SV1(R?) for all ¢ € [0,T]. Then it follows that
there exists a constant C' > 0 such that

lag(t;q(t, s;9,m), p(t, s39,m))| < CLq(t, s;y,n)), for any t,s € I(Ty), y,n € R

Using that together with the initial condition (|1.26]) we can write
¢
q(t,s;y,m) —y = J (0eq) (7, s3y,m) dr,

S

then we get, for a suitable constant C' > 0,
¢
alt, i) — o] < [ Galrossyamyar < Cli = sl
S

where we also use (1.27)).
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Similarly, we prove that

p(t, s;y,m) — 0| < CJt — s[(n),

for some C' > 0.
Now following [86], let us fix

oq op
P = t. s t s
(Qla 1) <ay(75ay,77),ay(,373/,77)>
and

0q op
P — . .
(Q?? 2) <8n<tas7y7n)7 an<tas7y7n>> )

that is we consider the case when |a + 3| = 1. Then, we can write the
derivative of the matrix constructed by the columns (Q1, P1) and (Q2, P»)

d Q1 Q) _ [ —age —aig Q1 Q2 (1.30)
dt\ P P Ay o agé P P )’ ’
with Cauchy data at t = s

Ql QQ o Id 0 . . . ) .
( P P | “\o 1, ) with I; the identity matrix of size d.

(1.31)
Then, integrating the left hand side of (1.30)) between s and ¢, using its
Cauchy data (|1.31)), we get the following block matrix

0 0
atsiyn) —1Io Ft.siy.m)
0 0 :
s tsiyn)  Gtsiyn) — g
Using the fact that

0q 0 t
“q . [, == .
ﬁy (tasayvn) d 5y <L atq(TaSayﬂ?) dT> )

by an induction argument on the derivatives, the results hold true.

By ([1.25)), Proposition and (1.30)), together with the Cauchy data
(1.31)), one can get the next estimate

L 25(7’, 8)'(_ag,§)(7, Q(T, 5),])(7’, 8))+2§(T’ 8)'(_0’/5/15)(7—7 q(T’ S)’p(T’ 8)) dr

t
0
J %(_aé(Tu Q(TJ S3Y, n)vp(Tu S3Y, U))dT

< Cht — s,
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with C7 > 0. It follows

B

% <Cylt—s|,
2 1]t — 5|

(ta S y?ﬁ) - Id

and s H . f‘“’)H < Coft — sl

Using the same argument as before and Proposition we conclude that

5q(

¢ oq ” op
B o)

op "
) 87’] + 5'7”’( aé-’g) dr

< Colt = s| (W)~ + @Xay ™) < Calt — sl

Same steps as before give as the following inequalities

t,S;y,n)’ -

Hts a| < Chlt — s,

Hay( °)

Thus, there exists a constant C3 > 0 such that

< ot — s|<y) ™ ).

q “1, | %
=2 —=(t,s)| < Cs|t — s,
‘5y al| + <y Hﬁn( ,8) 3|t — s
@ | L(t,s)| + | Lt,) — 1| < Calt
U ay ) 67’] ) di| =< V3 .
So far, we proved that our statement is true for |a + 5| = 1. Now,

assume that it holds true up to | + 3| = r with r = 2. By induction, one
can conclude. In fact for |+ | = 2, we get 650707‘q|t:5 = 0585p|t:5 = 0, then
we have

55(3“ t,s) f aﬁaa —ag(7,q(7,5),p(1, ) dr,

where the derivatives 6583‘ (—a’g(T, q(7,s), p(T, 3))) in the span of terms of
the type

lo| 1l

(83% (—aé) (1,q(T, s) ) H@'B] n’q(T,8) H&B n'p(T,s), (1.32)

where [a; + ;] = 1, |af + B8] = 1, Doy + X aj = a, D85+ 3B = B. The
tensors agag (—aé) in (1.32) and vectors 85J o’ q(T, s), 851{(9?;1)(7', s) are to
be contracted in arbitrary order, ¢ with d,, p with 0.
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Differentiating with respect to y or 7, such that to order of the
differentiation is equal to 1 and using our assumption for |a + 8| = r > 2,
we conclude the proof of , the argument is similar to the one used to
show the second part of (L.28), i.e. the boundedness of 8583‘(1) —n)/(t—s)
for a4+ B = 2

Now, we prove (1.29). Indeed, for any (t,s) € I(Tp), if we write

Bsa(t, 5) = (s, . j (0a(7, 5)(a) + Bsp(r, 5)(all o)y,
(1.33)

Bup(t, s) = —al(s, 4,1 f (0uq(r, 5)(a",) + aup(r. s)(d” o) }dr,

from the Hamilton-Jacobi system (|1.25) and ([1.33)), one can write 858%‘ (054
(t,s)) for |a + 3| =1 as

t
(6% (6% (6% a
0002 (0sq(t, s)) = Y ogag(s,y,n) + Laﬂa 0sq(7, 8)al ¢ + 050} 0 q a—a ne

+ d5q(r, 8)2500%p(r, s) he +000%0.p(T, s)ay ¢

o¢ e

N 0
+ 65056,7 q(1,8)=—

. aféé + 8sp6502‘p(7, s)

aé_a&ng

Then, by Proposition and Proposition we can conclude
0505 (0sa(t, )] < Cr W) )™+ oyl = sl Py,

where C1,, ,Cs, , > 0. This implies that holds true for |a + g| = 1,
then by iteration we conclude the proof for any order of @ and S. Similar
proof holds for the proof of the second part of , and holds by
induction after the use of (i) and . O

Now, we observe that there exists a constant 77 € (0,7p] such that
q(t,s;y,m) is invertible with respect to y for any (¢,s) € I(T1) and any
n € R?. Indeed, this holds by continuity and the fact that

Jq
Q(Sv S5 y777) =Yy= 67(87 s Y, 77) = Id-
Yy
We denote the inverse function by g, that is

y =1q(t,s) = q(t,s;z,m) < x = q(t, 83, ),
which exists on I(T}). Moreover, G € COO(I?Tl ; SLO(R2)), cf. [41,43).
1.30

Observe now that, in view of Lemma ! H% — Iy| — 0 when ¢t — s,
uniformly on (7). Then, one can deduce the following result, which is an
extension to the analogous ones that can be found e.g., in [41,86).
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Lemma 1.31. Assume that a € C([0,T]; S (R??)) is real-valued, and let
Ty € (0,To], €1 € (0,1] be constants such that on I(Th) we have

8
Haz—fd <1—e. (1.34)

Then, the mapping x = q(t,s;y,§) : Rg 5y — 2 e RY with (t,s,€)
understood as parameter, has the inverse function y = q(t, s;x, &) satisfying

a(t, 5:2,€) — = belongs to CH(I(Ty); SYO(RX)),
{(q(t,s;2,€) — ) /|t — s|} is bounded in SVO(R??),0 < s,t < Ty;8 # t.
(1.35)

Moreover, if, additionally, a € C*([0,T]; S (R??)), we also have q(t, s; x, €),
(a(t, s;2,€) — x) € C*(I(Th); SO(R*)).

Proof. Setting F(z,y) = = +y — q(t, 5;v,€), it follows F(z, -) : R 5y —
F(z,y) € R? is a contracting map for any x € R? by (1.34). Then, the

inverse y = q(t, s; , ) in uniquely determined as the fixed point and it has
the same regularity as q. The boundedness of the inverse function claimed

in ([1.35) is an immediate consequence of (1.28)) and (1.29). All other claims

follow by similar arguments. O

Proposition 1.32. Let a € C([0,T]; SV (R?9)) be real-valued, q(t,s;y,n),
p(t, s;y,n) and q(t, s;z, &) be the symbols constructed in the previous Lemmas

and|1.31 We define u(t, s;y,n) by

t

u(t,s;y,n) =y, m) + f

S

<a(T; q(1,859,m),p(7,839,1))
(i q(r 5 y.m), (. s;y,m),p(r,s;y,n») dr, (1.36)

and
o(t, s;3,8) = u(t, s;q(¢, 5,2, €), §). (1.37)
Then, ¢(t, s;x,€) is a solution of the eikonal equation (1.24]) and satisfies

pe(t,s;2,8) = q(t,832,€), (
wult,s;2,6) = plt,s;q(t, s32,6), ), (

Osp(t, s;2,8) = —a(s; pe(t, 532, €), §), (1.40
(Pt s32,€)) = (&) and {p(t, s;2,§)) = (). (
]

that T < 1, o(t, s;x,€) belongs to Pr(ci|t — s|,1) and {J(t,s)/|t — s|} is
bounded in SV (R??) for 0 < t,s < Tj < Ti,t # s, where J(t,s;2,€) =
C,O(t,S;CC,f) - <£E,€>
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Proof. The function ¢ defined in ((1.37)) is the solution of (|1.24]) with its
Cauchy data. In fact using the definition of x and the Cauchy data of the

Hamilton-Jacobi system ((1.26f), we get
(s, s39,8) =y = q(s,82,8) ==

which implies that ¢(s,s;z,§) = {(x,&) is the desired Cauchy data for the
eikonal equation ([1.24). Now, we have to check that ¢ satisfies,

dup(t, 532, 8) = alt; z, ¢ (t, 5, €)). (1.42)
Following [43], let u be defined as in . Then, is equivalent to
o(t, s:q(t, 5;9,€),€) = ult, 539, ). (1.43)
Let
U(t, 519, 8) = uy(t, s39,€) — gZ(tvs;y,f) -p(t, 539, 6),

where the last part of the right hand side is a product between a matrix and
a vector. Hence

%ﬁ(sas;yag):g—ld'f:&

Recalling that ¢ solves (1.42) and (g, p) is solution of the Hamilton-Jacobi
system and ([1.39) holds true. First, we observe that

ou
E(ta S$3Y, 5) = (6t§0)(t7 S5 Q(t, Y, 5)) + Solx(t7 S Q(t, s Y, 5))atq(t7 s Y, é)
= Oip(t, s3q(t, 539,8)) +p(t, 59, 6) - (—ag)(t, q(t, 559, 8),p(t, 59, 6)).
Moreover,
oq
0eV = 0y(0u) — at(@ “p)
J /
= aiy (a(taQ(t’S;yug)up(tu 5,2%5)) - <a§(t7Q(t7Say7£)’p(t787ya€))7p>)
2 (dq) @
- oy p—= dy otp
/ /
Ly ) )
oy T oy oy & oy oy oy °
= 0.

Therefore, we have 1(t,s;y,£) = 0 for all (¢,s;y,&) € I(Ty) x R?¢, which
implies that

wy(t,5,9,§) = ‘ (. s:9,€) - p(t, 839, €). (1.44)

%
oy
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Moreover, by (1.43]) we have

oq
w (t, s;y,€) = a*y(t,ssyyﬁ) -l (t, 53q(t, 539,€),6), (1.45)
and by ([1.44]), (1.45) and the fact that ¢ is invertible in I(T}), it follows that

p(t, s;9,6) = v, (t,s:q(t, 519, €),6). (1.46)

Differentiating ([1.43|) with respect to ¢, and inserting ((1.25), (1.36]) and
(1.46)), it follows that ¢ indeed satisfies ([1.24]).

Equality (1.46]) implies (1.39)), then in order to prove (|1.38)) we use (|1.36])
and modify the function ¢ as follows:

50,9 bl 50.9).

Obviously ¥(s, s;y,&) = y, and derivative with respect to t shows that v is
constant. Then

(L, 839, 8) = ue(t, 839, 6) —

0
KZ(@ 3 yaé) p(ta S; y7§) =Y.

Moreover, by the equality (1.39) and the derivative of ([1.43|) with respect

to &, we get (I-38).

We can show that - holds true, after showing the independence of
Osp from t. Indeed using ) and (| -, we get

at (as@)(ta S Q(t7 8)7 g)
= (atasgp) (t7 S; Q(ta 3)7 f) + <(as§0;c) (tv S; Q(tﬂ S)? g)a at‘](tv S)>
= (010sp) (t, 57q(t,5), &) — {(9s0%) (t,554(t, 5), ), ag(t; q(t, s), p(t, 5)))

Ué(t, S5 yvé) -

2=q(t,59,§)

=0.

The last equality follows by ((1.24]). Moreover, (1.24)), (1.38) and the in-
dependence of (Js¢) from the variable ¢, together with the observation

z = q(t,59,)|,_, =y, imply

Osp(t, 532, 8) = (0s0) (5, 854(s, 8),§) = (ds0) (5,59, €)
= {ale(t,t;y,6)] — () (t, 15y, 6} |,_,
= {0({y,©) — als;y, ¥ (s, 59,))}

_a(s; Y, 5) = _a(s; ‘Plg(ta 5, 6)7 5)7
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which concludes the proof of .

With the aim of determining the class of the function ¢ cited in ,
the next lemma is an adapted version from Lemma 2.3 in [43].

Using Lemma and recalling that a € C([0,T]; S%!) is real-valued,
q € C*(I(Ty); S*0), p e C®(I(T1);S"1),q € C®(I(Ty); S*?), as defined
above, we conclude that ¢ belongs to C1(I(Ty); S%!) and it is a real-valued
function. Concerning the regularity condition, we have npgd s = 1a- Then
by a continuity argument, one can possibly decreasing T3, obtain for
all t,se I(Ty), =, € R?

1/2 < det (¢} ¢) < 3/2. (1.47)

In view of Proposition [1.27, (1.38) and (1.39); we get the equivalences
(1.41). Now, for 0 < ¢o|t — s| < 1, we show the following:

DgDLI(t,51,6)|
sup
seert - (oy'TPe

la+8|<2

< ¢olt — 5. (1.48)

Here, as usual, we can restrict 1(7}) to obtain ¢g|t — s| < 1, so that, by

(37) and (138), we get
J(t,52,€) =

¢
J a(7; 2, p(1;5,9(7, 8),€))—Cae(m; 2, p(7, 5:4(7, 5), €)), p(7, 5: (7, 5), §)) dT.

(1.49)
Then, observing that

|Dg DL, s:2,6))|

t ! B!
! !
- D¢Dla— N T (DD, D DEp) | dr,
|J:9 e altas=a 1!0(2!51!62!< ¢ * ¢ ’ > |

B1+pP2=0

and for |+ /3| < 2, Lemmall.2land Proposition[L.27]imply that the integrand
is a SG symbol of order (1,1). This implies the desired estimate (1.48]).
Therefore, ¢(t, s) € Pr(co|t — s|) where ¢y depends on the semi-norms of a.
Next we show that ¢(t,s) € Pr(c|t — s|,1). In fact, using in addition
both a and <a’5,p> are in S™!, thus imply that for any [ > 0 there exists
a constant ¢; > 1 and T; € [0,77] such that for | + ] < 2 + [, the next
estimate holds for (¢, s) € I(1})

Dg DI (t, 5,€)
<m>1—|ﬁ|<£>1—|a|

The above estimate confirms also that J(t,s)/|t — s| bounded in St1. [

< Cl‘t— S‘.
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As a simple realization of a sequence of phase functions satisfying (|1.17))
and (1.18]), we recall the following example, see [8] and [86].

Example 1.33. Let p(t, s; x, &) be the solution of the eikonal equation (|1.24)
with € = 1. Choose the partition Ayry1(T1) = Aq of the interval [s,t],
0<s<t<T, given by

s=ty41 <ty <<ty <tgp=t,

and define the sequence of phase functions

Xj(2,8) =47 .
<x & j=M+2
me Proposztzonu we know that x; € Pr(1j) with 7; = co( 1 —t;) for
1<j7<M+1 and with 7; =0 for j = M + 2. Condition 1s fulfilled
by the choice of a small enough positive constant Ty, since
0 M+1 1
Z Z Co t] 1—tj)—60(t—5) COTI<Z

if Ty < (4co)™t. Moreover, from Proposition |1.32, we know that |J;|2,0 <
colty — ]1|—T]f07’all1<] M+1andJ—0f0rj M + 2, so each

one of the J; satisfies (|1 .

Corollary 1.34. Let a € C([0,T]; S (R??)) be real-valued, and let q, p
and q be the symbols constructed in Lemma and Lemma [1.31), re-
spectively. Then, J € CYI(Ty); SH(R%%)). Moreover, if, additionally,
ae C*([0,T]; SV (R2Y)), we find J € C*(I(Ty); SY (R2)).

1.6 Classical symbols of SG type

In the last chapter of Part [ we will focus on the subclass of symbols and

operators which are SG-classical, that is, a € S[{"*(RY) < S™#(R?). In this

section we summarize some of their main properties, using materials coming
from [11] (see, e. g., [52] for additional details and proofs).

Definition 1.35. i) A symbol a(x,&) belongs to the class SGZL(’Q) (R9) 4f
there exist apm—i.(x,€) € ,}%’Zm_i(Rd), i=0,1,..., homogeneous func-
tions of order m — ¢ with respect to the variable &, smooth with respect
to the variable x, such that, for a 0-excision function w,

N-1
Z w(§) am—i,. (z,6) e STNHRY), N=1,2,...;
1=0
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ii) A symbol a(z,&) belongs to the class SGZ(’;L) (RY) if there exist a. ,_y

(x,€) € %ﬂ_k(Rd), k=0, ..., homogeneous functions of order i — k
with respect to the variable x, smooth with respect to the variable &,
such that, for a 0-excision function w,

a(z, &) — Z r)a., g(z,6) e ST NRY, N=1,2,...

Definition 1.36. A symbol a(x, &) is SG-classical, and we write a € S’Cl(x 6
(RT) = S (RT) = S, if

C

i) there exist am—j.(z,§) € ﬁm_j(]Rd) such that, for a 0-excision func-

tion w, w(§) am—j.(x,€) € SZL( IH(RY) and

N-
2 ) am—j.(x,&) € S Nu@RY, N=1,2,...;

ii) there exista. ,—p(x,§) € j?/“_k(Rd) such that, for a 0-excision function

w, w(x)a.,—k(x,§) € S:f(g "(RY) and

N-1
a(z,€) = Y w@ape S NRY), N=1,2,....
k=0

We set Lgll(ﬁ,ﬁ)

The next two results are especially useful when dealing with SG-classical
symbols.

(RT) = Lg"(RT) = Op(Sg™" (R*)).

Theorem 1.37. Let ay, € S:f_k’“_k(RQd), k =0,1,..., be a sequence of
SG-classical symbols and a = ZZO:O ap its asymptotic sum in the gemeral
SG-calculus. Then, a € S (R??).

Theorem 1.38. Let B? = {x e R?: |2| < 1} and let x be a diffeomorphism
from the interior of B to R such that

x(x) = for x| > 2/3.
|»”U!( )
Choosing a smooth function [x] on R? such that 1 —[x] % 0 for all x in the
interior of BY and |z| > 2/3 = [z] = |z|, for any a € SGI"(R??) denote by
(D™a)(y,n), m = (m, ), the function

b(y,n) = (L= [n)"™ (1 = [y])™alx(y), x(n))-

Then, D™ extends to a homeomorphism from Sgl’“(de) to C* (B x BY).
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Note that the definition of SG-classical symbol implies a condition of com-
patibility for the terms of the expansions with respect to x and £. In fact,
defining JZ_] and o/ " on S:f(’g and S:f(f ) respectively, as

O-:pnij(a)(x’g) :am*j,'(l‘?g)a .] :0717"'7
O-gii(a)(m?f) = a',u—i(xag)a 1= 07 17 ceey

it is possible to prove that for the homogeneous components a,,—j,—; =

a;ne*j’“fi(a) one finds

am—jpu—i = oy, (0t 7)) = ot ™0} (),

j=0,1,...,i=0,1,....

Moreover, the algebra property of SG-operators and Theorem [I.37] imply
that the composition of two S(G-classical operators is still classical. For A =
Op(a) € L" the triple 0(A) = (0y(A),06(A),0pe(A)) = (am,. s Gy Gmop)
is called the principal symbol of A. This definition keeps the usual mul-
tiplicative behaviour, that is, for any A € L;’, B € L3°, r,p,s,0 € R,

0(AB) = o(A)o(B), with componentwise product in the right-hand side.
We also set

op (A) (2,8) = op(a)(z,8) =
= am(x, ﬁ) = w(f)am,'(xa {) + w(a:)(a.#(a;, f) - w({)am#(x, f))

for a O-excision function w. Theorem below allows to express the ellip-
ticity of SG-classical operators in terms of their principal symbol.

Theorem 1.39. An operator A € LZ}’“(RM) is elliptic if and only if each
element of the triple o(A) is everywhere non-vanishing on its domain of
definition.

Remark 1.40. The composition results in the previous Section have
classical counterparts. Namely, when all the involved starting elements are
SG-classical, the resulting objects (multi-products, amplitudes, etc.) are SG-
classical as well.






Chapter 2

Commutative law for
multi-products of SG phase
functions

In this chapter our aim is to prove, under suitable hypotheses, the commu-
tative law for multi-product of regular SG phase functions. Through this
result, we further expand the theory of SG Fourier integral operators. In
particular we will be able to apply it to obtain the solution of Cauchy prob-
lems for weakly hyperbolic linear differential operators, with polynomially
bounded coefficients, and involutive characteristics. Notice that roots of
constant multiplicities are always involutive, the converse is not true in gen-
eral see, e.g., [9,41]. An example of operator with involutive roots having
variable multiplicities can be found, e.g., in [10}94].

More precisely, we focus on the f-product of regular SG phase functions
obtained as solutions to eikonal equations. Namely, let [¢;(t,s)](z,&) =
©;(t,s;2,€) be the phase functions defined by the eikonal equations ,
with ¢; in place of ¢ and a; in place of a, where a; € C([0,T]; ™), a;
real-valued, j € N. Moreover, let I, (t,s) = I, (1.5) = Opy, (1,5 (1) be the SG
Fourier integral operator with phase function ¢;(t, s) and symbol identically
equal to 1.

Assume that {a;}jen is bounded in C([0, T]; S*!). Then, by Proposition
there exists a constant ¢, independent of j, such that

(,Dj(t, S) € PT(C|t - S|)7 ] eN.
Definition 2.1. We make a choice of T1, once and for all, such that
cl < T0 (2.1)

for the constant 7o defined in (1.18]). Moreover, for convenience below, we
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define, for M € 7.,
tM+1 = (t07' .. 7tM+1> € A<T1)7
tyri1,(7) = (to, -5 tj—1, Ty tj1, oo targn),

where A(Tl) = AM+1(T1) = {(tO,---,tM-i-l): O0<ty+1 <ty <<ty <
).

2.1 Parameter-dependent multi-products of regu-
lar SG phase functions

Let M > 1 be a fixed integer and a; € C([0,T]; S™1), j = 1,..., M+1. Then,
trivially, {a]}M 1 is bounded in C([0,T];S"') and we have the following
well-defined multl product

d(tari1; 7, &) = [p1(to, t1)iwa(tr, t2)8 - - doms1(tam, ten)] (2, €),  (2:3)

where we set tg = t, tpr41 = s, for tayp1 € A(Th) from (2.2). Explic-
itly, ¢ is defined as in , by means of the critical points (Y, N) =
(Y, N)(trr+1;,§), obtained, when M > 2, as solutions of the system

-

Yl(tM-l—l;wvé-) = Q0,17£<t0,t1;.%',Nl(tM+1;$,€))
Vi(barsi2,8) = @ e(tjon, b5 Y1 (barg1; 3, ), Ng(tMHax £)),
(J=2,....,M)

Ni(tars152,8) = @hiaq(t tien Yilbarins 2, 6), ]+1(tM+17x £));

| Nur(tare12,8) = Ohypr (st Y (a2, ),5)

(2.4)
namely,

M
¢(tM+]_,.T 5 Z |:S0] Jj— 17tj7Y (tM-i-la‘r 5) (t’M-‘rlax 5))

= Yj(tar41;37,8), Nj(tars15 2, €)>] + om+1(tars tars1; Yo (bar413 2, §), §).
(2.5)
Next, we give some properties of the multi-product ¢. The next Propositions

and Corollary and Proposition are extension of analogous
results from [8] to the parameter-dependent case needed here.

Proposition 2.2. Let ¢ be the multiproduct (2.5), with real-valued a; €
C([0,T]; SH1(R??)), 5 = 1,...,M + 1. Then, the following properties hold
true.
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(i)
(Ot d(tars1; 2, §) = ai(to; @, ¢ (4152, €))
O 0(tar 4152, ) = ajr1(ty; Yi(tar 2, 8), Nj(targ1; 2, §))
—aj(ty; Yi(tam+1;2,8), Ni(tu+152,6)),
(j=1,...,M))
(Ot @(tr152,8) = —anr1 (Ears1, @ (B3 2, ), §).

(2.6)

(it) For any p; solution to the eikonal equation associated with the Hamil-
tonian a;, we have

{ goi(t,s)jjgoj(s,s) = Soi(tas)
Qoi('SvS)ﬁSOj(tvS) :on(t?S)a

foralli,j=1,...,M + 1.

Proof. The claim (i) comes from the fact that ¢ is defined by , that
@; is the solution of the eikonal equation related to a; and satisfies
the properties of Proposition and that (Y, N) satisfy . Moreover,
Example 3.3 of [§] shows that holds true. O

Proposition 2.3. Let {a;}jen be a family of parameter-dependent, real-
valued symbols, bounded in C*([0,T]; S (R?9)), and (Y, N) be the solution
of . Then, for v, € Z4, k = 0,1..., M + 1, the following properties
hold true.

()

tavr41

{000 ... 0]+ (Nj — Njt1)}jen is bounded in SO (R??).

thr+1

{{8?00 L OPMTN(Y — Yio1)}en ds bounded in STO(R?), (2.7)

(i4) For Jyi1(ta+1;7,8) = ¢(tu1;7,§) — (x, &), we have

{op ... 0:;\‘;: Jy41} is bounded in SY(R?).
Proof. From the fact that y;(tmi1;2,8) = Y; — Vo1 = Ji (Y1, Nj),
nj(tmv1;2,8) = Nj — Njp1 = Jiq (Y5, Nji1) (cf. [8, Lemma 3.5]) and
that a; belongs to C®([0,T]; S11), for j > 1, then 0;°0,"*' J;(t, 5; 7, ) be-
longs to S™! as stated in Corollary From this and Theorem we
get for |y = v + -+ + vm+1 = 0, and Proposition implies , for
|7] = 0. We now proceed by induction on ~.

Step |y| = 1. We need to check (i) for the first order derivatives with
respect to the t; variables where k = 0,..., M + 1. Let us start with the
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to = t derivatives. To this aim, we switch from the system (1.22)) in the
unknown (Y, N) to the equivalent system ([2.9) in the unknown (Y, N) =

Y1y yats M, - -, nar) € R2M4 ag follows. Define
20 =0
2 = Zi;lyk, j=1,....M (2.8)
¢ =Y, j=1,....M
CMHL
and consider the system
g = Jpe(@+ 264 ¢F), k=1, M 29)

M= Jj1 @+ 256+ ), k=1,...,M.
Then, we have

Oy = 5tJIQ’5(fU + 2R e+ R + J,fu,’y LT+ L€ 4 (FYop R
+ Jpge(z + e+ Mok,

O = Ocdjy o+ 256+ CFH) + T (e + 28 6+ (R0 2P
+ J,’€’+17x§(az + 28 € 4 R gkt
(2.10)

In view of and Corollary we obtain
@)™ eyl + <7 - o]
<@y { @+ T |0+ G e+ YT At
+ a1 (O {E Y+ @+ 25 TRE + o] + ok

From [8, Theorem 3.6] we have
2oy <@+ < Sy and (O <€+ < 54O,

then we get

@ O™ e <™ {560 + 10+ 2010

b ©7 - { 3© + Ko K104 + g}
4 M M
<n- {3 £ 3@ owd + 27 Y |amk|}
k=1 k=1

4 M M
g {3 +2 30 @ o] + ), <s>—1ramk} ,
k=1 k=1
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where in the last inequality, we have used (2.8). Summing for &k = 1,..., M,
we get, for any z, & € R?,

M
Y (@7 1ol +<©7" - [omel )

k=1

4 & L&
<STmygt D@y o] + 207D dmgl
k=1 k=1

M
+ TM 41 { Z ey Gyl + Z & lamk}

M
<3P {1 £ (@7 ol +<©7 - o) } .

k=1

The last inequality implies that

37’0

M
-1 -1
) (@7 lawd +©7 - laml ) < 775 <3,

and this hold true due to (1.18). Substituting the above estimate in (2.10]),
we obtain

ol < ko { 5oy + 1014+ 2ax©) " 01c* |

M
<2|Jk||2,o<x>{ 2(<x>— Joeyell + <&~ ||amk||)}

With similar computation, we obtain

[Oem]| < | , {<£ + DS 4 (o 4 2R TIE + R0 + HatCkH”}

0{5©+ 27Ol + 11}
< 2| Jkr1]2,0(6) {1 + <x>_1\|atzk’|| + <£>_1HatCk+1H}

M
< 2 Jis1l2008) {1 + 3 (@7 1ol + <7 ||amk|)}
k=1

< Cy
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Similarly, for any z,£ e R and , v = 1,..., M + 1, we have

100,y (2, O < CullJkll2z0¢), [0, me(z,8)] < Cul[Ts1l2,06)-

This conclude the step |y| = 1.
Inductive step. We assume that our construction holds true for |y| =
N, and prove the estimate for |y| = N + 1. Using (1.17)), we obtain

tar+1

30 o < ©),

tAr41

‘6:00 . 07M+1yk) < «x), 2.11)

for |y = Nand k =1,..., M. We need (2.11)) for the boundedness of y;, and
Nk with respect to J;° ... é’zﬂﬂfjll where |y| = N + 1. Thus we compute the

|v| derivative of ¢,y where |y| =N, v=0,...,.M+1land k=1,..., M.

aZ)O---aWMH{atl,yk} _ a;y(?”‘aw/fﬂ {atl,J]/cjg(ZU + Zk_l,f—F Ck)

thr+ thv+i
F T (@ + 26+ (Mo 2T+ Tl (w4 25 6+ Ck)atuCk} . (2.12)

We use Fad di Bruno formula to obtain estimates on (2.12]) i. e., obtaining
the v derivatives of d;,yi with respect to tas+1. Hence, we get the following

formula for the derivative of Hy where Hy € {0, J; ¢, Jy crr Jj g} With

YM+1
.. 0tM+1

respect to ;0 . , where |y| = N:

S T
OOl Hy + O0FH [ [ o .. oph b Tare . api ik,

te—1 “Ytma a1

Applying (2.11]), we obtain

070 At (B0, Tl + 25 (b)), €+ Cltarn)) ) | < 1

2,0{T)
+ > Corr

[T l2q4<€) ™)' T {E) - () <) - )
o1t +ortp1t+e+pg=" —

0;#0; p;#0 gtimes rtimes

2,7<®),

< CWHJR

moreover

00 ot (el + 25 (bari0), €+ b)) ) | < Ol

’2,\7\7

and

00 ot (T el + 27 bare), € + CFltarsn) ) |

< Oy | Ji

2, TN
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Thus, substituting these last estimates in (2.12]) and using (2.8]), we get
A MOy < C2 || Tk lla, <)

tAr41

M
k20 Y5 (1000 o 0w + 2 . o o mH ) -
k=1
(2.13)
By similar computation, we can show that
1965 - O Ol < Gl sl g €€) + 1 |2.0(2) ™ (8
M
3 (2100 A G+ @XM G i) - (234)
k=1

Summing up (2.13) and (2.14) for k =1,..., M, we get

M
> (1050 G Gl + X T - S i)

v=1
M
<3 <Z | k41 2,0) :
k=1

M
2 (1000 G e, | + @XM G B} )

v=1

_ M M
+C, (2 T 2,14 + Z | Tk41 2,|’y|> (@)
v=1 k=1

M
<3eom ) (1900 20 @ ui + XTI A B e )
v=1

+ 2¢}y70(7),

where ¢o and ¢}, are the constants defined in (1.19). Using the fact that
co =1, we get

M
(1600 oy + X A o)
v=1

70
14*3ﬂ)
The last inequality holds true thanks to the choice of 7 in ([1.18)). Substi-
tuting (2.15)) in (2.13) and (2.14)) we finally obtain

|05+ Ol " 0w yk | < O[Tk, (s (2.16)

2,7|<E)- (2.17)

~/
<

(x) < Cl{x). (2.15)

000 o7 0, mie | < O )| T

[JVES]
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The proof of (i) is complete since (2.16)) and (2.17]) are the desired estimates
for || =N + 1.
follows from the boundedness of the Hamiltonian {a;} using (i) and

2:6). O

Corollary 2.4. Under the hypotheses of Proposition we have, for some
Ty € (0,T] as in Proposition[1.39, and j =0,..., M + 1,

Y; belongs to C* (A(Ty); SYO(R?*))
N; belongs to C*(A(Ty); SO (R??)).

Proof. The proof follows by induction on j. For j = 1, Yi(tar4152,8) =
Yi(tars1; 2, &) — o+ observing that o € S0 and for any a, 3 € Zi we have

220y <

050g (Vi — )| +

oioga| < Capta)' gy,

since, by Proposition {Y; — Yj_l}jj‘il is bounded in C*(A(Ty); S*0).
Now, assume that the statement holds true up to j = M — 1. Then, Y); €
S0 in view of to the fact that Yy, = (Yar — Yar—1) + Yar—1, the inductive
hypothesis Yas—1 € C®(A(T1); ') and (2.7). The same argument implies
that N; € C*(A(Ty); S*1). O
For any {a;} = C*([0,T]; S™1), we consider the solution (g;, p;)(t, s;y,7)
of the Hamilton-Jacobi system , with the Hamiltonian a; in place

of a. We define the trajectory (g;,p;)(tj—1,0;9,7), for (y,n) € R? x R4,
tj—l € A(Tl), o€ [tjutj—]_]y j € N, by

(q1,p) (o, 05y,m) = (qi,;m)(o:t0;y,m),  t1 <o <to,
(@,p)(t5-1,059,m) = (a5, p5) (0, tj—15 (Gj—1,Pj—1)(tj-1;4,7)),
(2.18)

Proposition 2.5. Let (Y,N) = (Y, N)(tyr+1;2,€) be the solution of ([2.4))
under the hypotheses of Proposition|2.5. Then, we have
{Q1(t17t0§$a ¢p(t+137,€)) = Yi(tms132,§)

(2.19)
p1(ty, tosx, @ (tarr1: 2, §)) = Ni(tars1; 2, €),

qj(ti, ti—1; Yio1(trs1;7,6), Nj—1(twrv132,€)) = Yj(tars1; @, €),

pi(tj ti—1; Yi—1(tas152,8), Nj—1(targ152,8)) = Nj(tars1; 2, ),
(2<j< M),
(2.20)

and, for any j < M,

(@5, 05) (s 2, @ (tarv15 2, €)) = (Vy, Nj) (tar 415, 6). (2.20;)



Commutative law 39

Proof. Arguing as in [86, Chapter 10, Section 4], taking into account that
(g,p) is a solution to the Hamilton-Jacobi system , from the fact that
the equation = = q(¢,s;y,£) has the unique solution y = q(t, s;x, &), for
0<s<t<T,uz&eR?, using and , see Proposition with

@; in place of ¢, we get the following equalities for any j > 1:

q](t7 S; @;f(tv 55T, €)7 5) =z
pj(tv S3 903,5(157 ST, 5)7 5) = @;,z(ta S;T, 5)
Thus, using the uniqueness of the solution to the Hamilton-Jacobi system

(1.25)) for a = a;, we get
j g

q;(s,t; 2,5, (t, 532, €)) = ¢l (£, 853, €), (221,)
pi(s iz, ¢, (L, s32,8)) =&
From Proposition recalling , it follows
Pp(tars1; 2, 6) = @ L (to, trs o, Ni(tars1; 2, €)).

Using this with and with 7 = 1, we obtain

q1(t1, to; T, ¢ (tar+152,€)) = qu(t, tos @, 97 4 (to, t1; 2, N1(tar1152,6)))
= ¢y ¢(to, t1; 2, Ni(tarsa; 2, €))

3 =Y1(tr157,6)

p1(te,to;x, ¢4 (tarr1; 2, €)= pa(te, to; @, 07 (Lo, trs 2, N1(tars; 2, €)))
= Ni(trp+1;7,6),

which is . In view of

@52 (ti—1, 5 Yic1 (taryn; 2, €), Nj(taryn; @, 6)) = Nj—a(taryn; 2,6), § = 2.

Using (2.21,)), we find

qi(tj, ti—1: Yj—1 (a5 2, €), Nj—1 (barg15 2, )

= qi(tj tj—1; Vi1 (barsn; 2, 6), @) o (i1, b5 Vi (bar 152, €), Nj(tar1; 2, €)))
= @ e(tj1,t5; Yima(taryn; @, 6), Nj(taryn; @,6)) = Yi(tarsi; @, ),
and
pi(tj,tj-1;Yj—1(tamrr152,8), Nj—1(tar 4157, §))
=it tj—1; Vi1 (barsn; 2,8), @ o (ti—1, 55 Yica (barsn; @, 6), Nj(tarsa; ¢, €)))

= Nj(tar41;2, ),
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which give (2.20]). The proof of (2.20;) is obtained by an inductive argument,
based on ([2.20)). [

Notice that, from the Propositions [2.3] and we obtain also the fol-
lowing result.

Proposition 2.6. Let {a;}jen be a family of parameter-dependent, real-
valued symbols, bounded in C*([0,T]; SV (R??)). Then we have, for the

trajectory (i, 57) (15 1,0, m) defined in (215).
{0300 . ajjjj oy i }jen, t_1eA(T1), oc[t; t;_1] 1S bounded in SLO(R2),

{6200 .. 6:]7: 63j]5j}jeN7 tj_1eA(Ty), o€ty t;1] S bounded in SO (R??),

where v, € Zy for 0 < k < j.

2.2 An auxiliary equation

Consider the following quasi-linear partial differential equation

Oy Y (1) — L(C(bar+1), tarvn) - Yo (bare1) — H(targ1,5(Y(tar41))) =0,

Tlt]'_1=tj = tj+1
(2.22)

where, for s € R, ta41,;(s) is defined in (2.2), T(tar41) = T(tar41;2,€) €
CP(A(Ty); %), and L(7,tar41) = L(7, tary1; 2, €) is a vector-valued family
of symbols of order (1,0) such that L € C®([t;41,tj—1] x A(Ty), S*0), where
T) is the same as in (2.1). For the sake of brevity, in (2.22)) we have writ-
ten L(Y (tar41), tar+1) in place of L(Y (tar+1;x,&), tars1; ¢, §) and similarly,
H(tp41,(T(tar41))) in place of H(tar41,;(T(tar+1;2,€)); @, §).

We also assume that

H(tars1,(7)) = Hbarary(7)i,€) € C7(A(T1): S°0),
is such that
H(tM+1;$,§> > 0, H(tM-t,-l;fL',g)‘tj:t]-_l =1,

for any tar1 € A(Ty), (z,€) e R%,
The following Lemma (cf. [110]) is the key result to prove the main
Theorem In fact, it gives the solution of the characteristics system
Ot R(tas1) = —L(K(tars1), tarer; R(tars1), §)
Oy K (bar1) = H(barenj (K (tar41)); R(6ar41),€) (2.23)
Ry, y—t; =y, Kj;_=t; = tjs1,
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which then easily provides the solution to the quasi-linear equation ([2.22)).
The latter, in turn, is useful to simplify the computations in the proof of
Theorem 2.101

Lemma 2.7. There ezists a constant Ty € (0,T1], Th from Definition
such that (2.23|) admits a unique solution (R,K) = (R, K)(typr41;y,€) €
C®(A(Ty); (SYO(R2) @ RY) x SOO(R2)), t;_1 € [t, To], which satisfies, for
any tary1 € A(Th), (y,€) € R¥,

OR

’ay(tMH; Y, §) — IH < C(tj—1 — tjs), (2.24)

for a suitable constant C > 0 independent of M, and

{ tiv1 < K(tus139,€) <tj

(2.25)
Kltj_1=tj = tj+1'

Proof. First, we notice that, as a consequence of Lemma the com-
positions in the right-hand side of are well-defined. Moreover, they
produce symbols of order (1,0) and (0, 0), respectively, provided that (R, K)
belongs to C®(A(T); ST x S%9) and K (tar41) € [tj41,tj-1] for any tar41 €
A(Ty).

We focus only on the variables (t;_1,tj,tj11;y,§), since all the others
here play the role of (fixed) parameters, on which the solution clearly de-
pends smoothly. We then omit them in the next computations. We will also
write, to shorten some of the formulae, (R, K)(s) = (R, K)(tam4+1,-1(5);v, &),
s € [t;,T2], Ty € (0,T1] sufficiently small, to be determined below, ty/41 €
A(Ty), (y,€) e R*.

We rewrite in integral form, namely

S
R(s) =y~ | LIK@)0.ty ty01: Rl0).€) do
b (2.26)
K(s) =tjq1 + L H(o,K(0),tj11; R(0),§) do,
J

s € [t;, T], tms1 € A(Th), (y,€) € R?4, and solve (2.26) by the custom-
ary Picard method of successive approximations. That is, we define the
sequences

S

Rier(s) =y = | L(K(0)i0,85, 1120 Ri(0),) do
b (2.27)
Kip1(s) = tje1 + fH(U, Ki(0),tj+1; Ri(0),§) do,

4
for [ = 1,2, ..., SE [tj,TQ], tM+1 € A(Tg), (y,f) S de, with

Ro(s) =y, Ko(s) = s —t; + tj41.
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We start by showing that {R;}; and {K;}; are bounded in C*(A(Ty); S*0)
and C®(A(Ty); S*0), respectively. Also we aim at showing that and
hold true for R; and K; in place of R and K, respectively, for any
l € Z,, uniformly with respect to [, j, M. This follows by induction.

Namely, notice that all the stated properties are true for [ = 0. Indeed,
it is clear that Ry € C*(A(T3); S10) and Ko € C®(A(Ty); S%0), with semi-
norms bounded by max{1, 275}. with Ry in place of R is trivial, while
with Ko in place of K follows immediately, by inserting s = ¢;_1 in
Ko(S) and recalling that tp;4q € A(TQ) =1tj1—tj+1tj41€ [tj+1,tj,1].

Assume now that and hold true for (R, K/) for all the values
of the index £ up to [ = 0. We then find, by the same composition argument
mentioned above, R, 1 € CP(A(Ty); S10) and K41 € C®(A(Ty); SO), with
semi-norms uniformly bounded with respect to [, since they depend only on
the semi-norms of L, H, R;, K;, and Ts. It follows that holds true
also for R, in place of R, since

H OR; 41

ti—1 5\
. | £ @ty Rio). )1 do

;oY

(bara1;,€) — IH _

for a suitable constant C' > 0 independent of [. By the definition of K,
for [ = 0, clearly we get

Kl+1(tM+1§y>£)|tj_1=tj =tjy1

It is also immediate that the hypotheses and the definition of K1, 1 > 0,
imply that Kp41(tars15y,€) is, for any fixed (y,€) € R,

0<tapr < tj1 <tjo1 <o tg < Tp < T4,

a monotonically decreasing function with respect to t; € [tj11,t;-1]. (2.25)
with Kj,1 in place of K, [ = 0, follows by such property and the hypotheses
on H. Observing that, for any I > 0, tyr41 € A(Th), (y,€) € R*, s €

[tit1,ti-1],

Kia(tar1,5-108)5 9 ) t=t;00 = 80 Kia(bare,j-108)5958)ey=s = tjr1,
(2.28)

which, in particular, also shows

K1 (b398 lty=t500 = tj—1,  Kipa(bars159,§)|g=t,0, = tir1. (2:29)

Notice that (2.29)), together with the monotonicity property of Kj 1(tar41;
y,€) with respect to t; € [tjz1,t;-1], 1 = 0, tarr1 € A(Th), (y,€) € R*,
complete the proof of (2.25) with K;,1 in place of K and the argument.
Then, it just remains to prove (2.28]).
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We again proceed by induction. (2.28]) is manifestly true for K. Assume
then that it holds true for K, for all the values of the index ¢ up to [ = 0.
We find, in view of the hypotheses on H and the inductive hypothesis,

Kl+1 (tM+1,j71(8); Y, 6) |tj:t]'+1

=tj+1 +J H(o, Ki(tar1,5-1(0), tjr1,tj1159, &), Ri(0), ) do
t

1
S S

=141 —l—f H(o,0,tj11; Ri(0),8) do = tjq1 + f do = s,
[ZES tit1

Kip1(tamr+1,5-1(8); 4, )|t =s
S
=tj+1 +J H(o,Ki(ty41,j-1(0),8, 4159, &), Ri(0), &) do = tj,1,
S

which completes the proof of (2.28]).
In order to show that {R;} and {K;} converge, we employ Taylor formula
with respect to the variable ¢;_;. For an arbitrary N € Z, we can write

(0 Fi) (1) = (0 50) (1)) (11 — )"
k!

Kip1(tj—1)—Ki(tj—1) = Z
k<N
+ % ftjl(tjl —a)¥ (<5g_+11Kl+1) (o) — (6@_’:1&) (G)) do  (2.30)

tj

and

<<8§71Rz+1) (tj) — <5Z,1Rz> (%‘)) (tj—1 —t;)"
k!

Risi(tj1)—Ri(tj1) = ),
k<N

+ % J:_jl(tj—l —a) <<5ijilRl+1> (o) — (ai]jjllRO (a)) do, (2.31)

respectively. The summations in the above equalities and are
actually identically vanishing. To prove this assertion, we proceed by in-
duction on N. Indeed, the claim trivially holds true for N = 1, where we
immediately see

Ki1(ty) — Ki(t;) = 0, and Ryy(t;) — Ri(t;) =0,

in view of (2.27)), which implies, for any [ > 0, K;(t;) = tj+1 and R;(t;) = v.
Also, when N = 2 we find

atjflKl-i-l(tj) - atj71Kl(tj) = a153‘71Rl+1(tj) - atj71Rl(tj) =0,
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since, for any £ > 0,
(atj,lKK-‘rl) (5) = H(Sv Kf(s)v Lit1; RZ(S)a g)a

and

(atj71R€+1) (S) = _L(K€(8)7Svtjvtj-‘rl;Rf(S)vg)'

Now, assume that the claim holds true at the step N+1, N > 1. By Faa
di Bruno formula for the derivatives of composed functions, one can show
that

ﬁt]jfllRZH(tj) = =0 [LOK(-); 5t tins Ri(), )1 (1))

is in the span of

. J1 o . oo o] . ,
—(@L) (Haijem) (aile)(axQ [T ryo | ), (2:32)
(=1

1=1

where j1 + jo + |a| = N, >, 5 = |af.
Similarly,

5fjflle+1(tj) = 0p  [H(, Ki() tigns Ri(), €)1 (t)
is in the span of

) ) j2 o lof
(e, (et1) (H@ifﬂffz> (%) (T m . )

=1 i=1

where j; + jo + |a] = N, >, 8; = |a|. Using (2.32)) and ([2.33]), and the fact
that the coeflicients in the expressions of the derivatives under examination
are independent of [, we conclude that

Op Ky () — o0 1K)

B d B 5
61' 51’
- Z Hjy jo e (H 62_"_11(1 H O fu — H atﬂjz—lKl*1 H atj—lRll> (t5),
=1 i=1 =1 i=1

where g

Hj17j2,a = Cj1,j2704 (51{]-1,1}[) <a§jH> ( oxc )(tj)7
and Cj, j, o is a suitable constant. The right-hand side of the above for-
mula is identically zero, in view of the recurrence assumption on both the
sequences, that is, for £ < N + 1 we have

op Kipa(ty) —of Ki(t;) =0, and & Rij(tj) —of  Rilt;) = 0.
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Then, the expression can be rewritten as a linear combination of products in-
volving only such differences. The argument for <(7gj11 Riy1(t)) — 6,{;:1 R, (tj))
is completely similar. This proves the claim on the summations in (2.30)

and .

Now, using standard inequalities for the remainder, together with the
fact that {R;}; is bounded in C*(A(T3); S*?), while {K;}; is bounded in
C*(A(Ty); S%0), from (2.30)) and (2.31) we get, for any o, 3 € Z,

sup 0907 (Kie1 — ) (bars1,j-1(ti—1); 9. €)' )
(y,§)eR2d
(tj—1 — )"
< Cug Nl (2.34)
with Cyg independent of j and N. Similarly, we get
sup (0907 (Rip1 — Ri) (barsj1 (ti—1); 5, €) )y~ Tl
(y,)eR2?
o (fa o — N
(-1 = %) (2.35)

< Cop~t—5—,
TN+ 1)

where CN‘QB independent of j, N.

Writing [ in place of N in the right-hand side of and , it
easily follows that (R;, K;) converges, for | — 400, to a unique fixed point
(R, K), which satisfies the stated symbol estimates. Since, as we showed
above, the properties (2.24]) and (2.25) hold true for (R, K;) in place of
(R,K), | = 0, uniformly with respect to M, j,[, they also hold true for the
limit (R, K). The proof is complete. O

The next Corollary [2.8] is a standard result in the theory of Cauchy
problems for quasi-linear partial differential equations of the form ,
see, e.g., [53]. Its proof is based on the hypotheses on L and H, and the
properties of the solution of .

Corollary 2.8. Under the same hypotheses of Lemma denoting by

R(tyr41;,€) the solution of the equation
R(tMJrl;y)é-) =T, tM+1 EA(TQ)ax’SERda

the function

YT(tar1;2,€) = K(tvv1; R(tv4152,6),6)

solves the Cauchy problem [2.22) for z,& € RY, tyr,1 € A(Ty), for a suffi-
ciently small Ty € (0,T1].
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Remark 2.9. Notice that ([2.24) implies that, for all y,& € R, tyr41 €
OR

A(Ty), Ty € (0,T1] suitably small, the Jacobian matriz a—(tMH;y,f) be-
Y

longs to a suitably small open neighbourhood of the identity matriz, so it
is invertible, with norm in an interval of the form [1 —e,1 + €], for posi-
tive, arbitrarily small €. A standard argument in the SG symbol theory (see,
e.g., [41,42.|44]), shows that R € C*(A(T), S*°(R?*) @ R?) and that

(Rtar+159,6)) =), (Rlty+152,8)) = <2),

with constants independent of tyro1 € A(Ty), &€ € R%. This also implies
that Y satisfies tj11 < Y(tar1;2,8€) < tj1, tms1 € A(Tw), 2,€ € RY and
T e C*(A(Ty); S“O(R?)).

2.3 Commutative law for multi-products of SG phase
functions given by solutions of eikonal equa-
tions

Let {a;j}jen be a bounded family of parameter-dependent, real-valued sym-
bols in C*([0, T]; S*1) and let {;}en be the corresponding family of phase
functions in P, (c|t — s|), obtained as solutions to the eikonal equations as-
sociated with aj, j € N. In the aforementioned multi-product , we
commute ¢; and ¢;;1, defining a new multi-product ¢;, namely

bi(tarr1;2,8) = (w1(to, t1)fpa(tr, t2)t - . fpj—1(tj—2,tj—1)t

i1 (ti—1, )i (ts, tiv1)t

fojro(tjrr, tiva)t . dons1 (tas tae)) (2, 6),
(2.36)
where tM+1 = (to,tl, ey .tM+1) € A(Tl).

Assumption I (Involutiveness of symbol families). Given the family of
parameter-dependent, real-valued symbols {a;}jen = C%([0,T]; SLH(R2Y)),
there exist families of parameter-dependent, real-valued symbols {b; }; ken
and {d; 1} ken, such that bk, d;j € C*([0,T]; S%°(R*)), j,k € N, and the
Poisson brackets
{7_ - aj<t7 z, g)? T = a’k(ta z, g)} = 5ta'j(t7 xz, 5) - 5tak(t7 xz, 5)
+ a;f(t; x,§) - a;w(t; x,§) — a;-@(t; x,§)- a%vg(t; x,§)

satisfy

{r—a;(t;z,8),7 —ap(t;z, &)} = bjr(t;x, &) - (a5 — ag)(t; 2, &) + dj(t; 2, §),

for all j,keN, te[0,T], z,£ € RY,
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We can now state our first main theorem.

Theorem 2.10. Let {a;} en be a family of parameter-dependent, real-valued
symbols, bounded in C* ([0,T]; SLH(R?Y)), and let p; € Pr(c|t—s|), for some
¢ > 0, be the phase functions obtained as solutions to (1.24)) with a; in place

of a, j € N. Consider ¢(tyr11) and ¢;(tar41) defined in and ,
respectively, for any M > 2 and j < M. Then, Assumption ] implies that
there exists T' € (0, T3], independent of M, such that we can find a symbol
family Z; € C°(A(T"); SOO(R2)) satisfying, for all tpr1 € A(T'), z,€ € RY,

tiv1 < Zj(tygrsx,6) < tj_,

(2.37)
Zj|tj=tj—1 =tjt1, and Zj|tj=tj+1 =tj-1.

Moreover, we have
¢j(tM+1;xa€)
= S(tars1,5(Zi(tars1; @, )); 2, 6) + Wi (tar 152, €), targr € A(T'), 2, € € R?
where Wj € CP(A(T"); SYO(R24)) satisfies
U, =0 if djjr1=0in Assumption|[]

Proof. We show that the argument originally given in [110] extends to the
SG setting, in view of Lemma[2.7above. Let {(Y1, ..., Yar, N1,..., Nar)H(bars;
x, &) be the solution of the critical point system

zj = et ti 251, 65)
§ = @ity tiv 5, 841),
such that z;,§; € RY, 29 = x, and £3741 = & (cf. [8[86]).
In view of (2.36)), let (171, Y Ny NM) (tar41: 2, ) be the solu-

tion to the critical points problem, for the phase functions in modified order,

namely,
T = Phe(th—1, ks Th—1, k) ifkefl,....j-Lj+2..., M}
x] — 80‘/7.+17€(tj_1,tj;xj7§j)7
Tj+1 = 90;7§(tjvtj+1;xj’€j+l)’
§ = Poytoh 15 Thy Ska1) ifhefl, . j=27+1,.... M}

§i1 = Pi(ti-1ti-1,€),

& =t 54),
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where g = z and &j74+1 = €. For convenience below, we also set

aO(t;xag) = 07
Yo = f/O =T,
No=¢l,, No=

Let ¥, be defined as
Ui(tar157,8) = ¢j(tmr157,8) — o(tare1,(Zj (k115 7,€)); 2, 6). (2.38)

Here we look for a symbol Z; = Z;(tar41;2,§) satisfying 1_} such that
U, € C*(A(T"); S°9), T" € (0,T3]. In view of Proposition [2.2] and (2.36)),
we find

atj71\11j(tM+l; $,§)
= (0; 1 95) (tmr+1;2,8) — (Ot; 1) (bar41,5(Z5 (b5 2, €)); 2, §)
- (atj¢)(tM+l,](Zj(tM+173:76))7 ) atg 1

tM+17x 5)

Zj(
)
—aj_1(tj—1;Yj_1(tars1; 2,6), Nj—1(tars1; 2, 6))
]

[a“](t] 17Y (tM+17'1" 5) Jj— 1(tM+lax g)) - Z

i=4j tMJrl xaf)

= aj+1(tj—1; Y1 (tmrs132,8), Nj—1(tars1; @,

+[aJ 1(t1 1’Y (tM—I—l,l" f) j— 1(tM+1a ’g))]tj=zj(tM+1§ £)

- (3tj¢)(tM+1,j(Zj(tM+1§$af)) z,8) - O, Zj(tm+1;7,6).
(2.39)
When j > 2, we use the trajectory (gj—1,pj—1) (tj—2,0;y,n) defined in
(2.18). Then (cf. Proposition , we have, for o = t;_1, the equalities

(@j—1,95-1) (152, P (tary1;2,8)) = (Yio1, Njo1)(tars1; 7, €),

(@1, D5-1) (65152, &, (bar152,€)) = (Vjo1, Njo1) (b5 2, ).
Next, we set
{ 041(0-;27() ZGQ(J;Z7€>7

aj(05tj-2;2,C) = (aj41 — aj—1) (03 (Gj—1,Pj—1) (tj—2,032,C)), j = 2.
(2.40)
In (2.40) the compositions are well-defined, in view of the properties of the

symbols (Gj—1,pj—1) in Proposition which imply that the conditions
of Lemma are satisfied. Thus, a; € C®(A(Ty); SY), j = 1,..., M.



Commutative law 49

Moreover, o satisfies
Oéj(tj,Q,O';IL‘,Qb;(tM_;,_l;lL‘,g)) =
(aj41—aj—1) (o3 Yj_1(tars152,8), Nj—1(tars152,€))
aj(tj_Q,O';CU, ;‘,x(tM-‘rl;xlg)) =

(aj41 — aj—1) (03 Yic1(tars15 2, €), Njo1 (barg1; 2, €)),
(2.41)

and when j = 1 the variables (t;_2,0) reduce to o.
Finally, let [T;(7)](tar+1;2,€) = Tj(7, tar41; 2, &) be defined as

1
T}(’T) = J;) O‘;‘,g (tgla$7p¢;,m(tM+1»$af) + (1 - p)¢;(tM+1,j(T)’x’§)> dp

Notice that, by Lemma [1.10] and the properties of the involved symbols,
we find Tj € C®([tj11,tj—1] x A(T1); S ® RY). Indeed, in view of the
fact that both ¢ and ¢; are regular SG phase functions, for all p € [0, 1],
7 € [t tj-1],
(P 0 (trr+132,€) + (1 = p)d(brr41,5(7); 2, 8)) = <&),

uniformly with respect to all the involved parameters.

We now show that ¢; satisfies a certain partial differential equation,
whose form we will simplify using the results in Section First of all, we
observe that

a;j(tj-152, @ 4 (tars1; 2, €)) — (152, ¢ (tar41,4(7); 7, )
(2.42)
= B30 (G tari ) — G tara ()i ) )

From (2.38) it follows

qj;,x(tM-i-l; z, f) = ¢;,x(tM+1; z, f)_(atj¢)<tM+17j(Zj); T, g)'Zj/',x(tM-‘rl; x7§)
(2.43)

Now, we rewrite o,_, ¥; from , using , and :
Ot Vi(tarsn; 2, €) = o (152, ¢, (tars1; 2, €))
— oy (tj-152, @ (barg, (25 (bars1; 2, €)); 2, 6))
- (atj¢)(tM+1,j(Zj(tM+1§ xvé—)); 33»5) : (atj71Zj)(tM+1;$af)
= (a5 = aj41) (tj—1; Vi1 (4132, ), Njm1 (6004152, 6)] (60101 m0)

= <1}(Zj(tM+1; x?&))v \Ij;,x(tM-‘rl; xa€)>_(atj¢)(tM+17j(Zj(tM+1; x,ﬁ));x,{)
: <atj1Zj(tM+1; 33',6) - <11](ZJ(tM+17 QZ’,&)), Z;,a:(tM+17x7£)>>>

— [(aj = ajy1) (815 Y1 (a3 2,8), Nica (bar 152 )]z 6 yig) -
(2.44)
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Once more, we use the solution (g;,p;) (¢, s;y,n) of the Hamilton-Jacobi
system ((1.25)), with a replaced by a;, and define &; as

aj(o,t;y,m) = (aj — aj41) (05 (g5, p5) (0, 5y, m)).
Then, after a differentiation with respect to o, we have
Ootj(0,t;y,m) = 0o ((aj — ajt1) (0 (g5, p5) (0,8 ,7m))
= (0waj) (03 (g5, p5) (0. t;y,m) — (Qraj+1)(0s (a5, p5) (0,89, m))
+4aj . (03 (g5, p5) (0. ty,m)) — aj1..(03 (a5, p5) (0,89, 1)), Qe (o, Ly, m))
+{df (05 (g5, p5) (0,55,9,m)) — aji1.6(03 (g5, p5) (0,859,m)), Qepj (o, 159, m)),
and we use to write
Ooj(0,t;y,m) = [05(a; — aj+1)] (03 (a5, p5) (0,19, m))
+{aj (05 (g5, p5) (0,5:9,m)), @41 4(03 (05, 05) (0, 559,m)))
—{aj . (05 (a5, 05) (0, t;9:)), @1 ¢ (03 (a5, 05) (0,859, m)))
= {7 —a;,7 — aj+1}(0; (g5, pj) (0, 4, m)).
Assumption [[] then implies
O Cij(0,t;y,m)

= bjj1(0;(q5,p) (0. t59,m)) - &j(o, t;y,m) + dj j+1(0;5 (g5, p5) (0, t:9,m)).
(2.45)

Solving ([2.45)) as a first order linear ordinary differential equation in o with
unknown &;(o,t;y,n), and writing b; in place of b; j11, d;j in place of d; j41,
respectively, we see that

aj(o,t;y,m) = exp (J bi(7; (a5, ;) (T,t;y,n))dT) ' [dj(tj,t; y,n) +
tj

+fdj (v; (g5, p;) (v, t59,m)) - exp (- r bj (s; (g5, p5) (s t;9,m)) d<> dV] :

j v
Once again, notice that all the composition performed so far are well-defined,
and produce SG symbols, in view of Lemma , and recalling that
he S%0 = exp(h) € S0 (see, e.g., [42,44]).

As stated in Proposition we can write &; in terms of the solution to

the critical points problem (|1.20)). Indeed, by (2.19)), (2.20]) we get
aj(tj, ti—1; (g, p5) (5. tj—1; Yj—1(tars1;2,€), Nj—1(barg152,€))) =
= a;(tj, tj—1: Y (tarr1: 2, §), Nj(tar413 2, )
= (

aj = aj1) (; Yi(taea;2,€), Nj(barga; 7, €))-
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Moreover, using Proposition we obtain the equality

a;j(tj ti—1; (g, p5) (5 tj—1; Yj—1(bars1; 2, ), Nj—1 (barg13 2, €))) =
= 0y P(tarr1;2,6).  (2.46)

Define also

Gj(tj) = Gj(tmir;2,8) =

J

ti—1
= exp U bi (73 (qj.p5) (T tj—1: Vi1 (b1 2, &), Nj—1 (bargr; @, §)))dr
t

and

ti 1
Fj(tj) = Fj(tay1;0,8) = Ut dj (v; (g5, p5) W, ti-159,m)) -

3
tj—l
- exp (—J bj (s (gj,15) (S tj—159,m)) d<> dV] ,
v (ym)=(Yj-1,Nj—1)(trmr+152,8)

where both G and Fj, as a consequence of Lemma and the properties of
bj, dj, (¢j,pj) and (Y;—1, N;_1), are symbols belonging to C®(A(Ty); S°Y).

Then, using the formulae (2.44) and (2.46) above, we find that ¥; must
fullfill

0y V5 = (T5(25), V5 ) — Fj(Z;)

— (01;0)(Z5) (0t,, Z5 — {T(Z5), Z oy — G(Z5)) ,  (2.47)
where we omitted everywhere the dependence on (tary1;2,§), (0¢;0)(Z;)
stands for (¢, ¢)(tar41,5(Z;(tm+1;57,€))5 2, ), and

Fi(Z;) = Fj(tars1,5(Z(ta1;2, )5 2, €),
Gj(Z;) = Gj(bu1,i(Z(bm152,€)); 2, 6).

Now, in order to simplify (2.47)), we choose Z; as solution to the quasi-
linear Cauchy problem,

o Z;  ={T3(Z;), 2+ G;(Z;
tji—14] < ]( ]) j,> J( J) (248)
Z|tj:tj_1 = tj+1'

in order to simplify ([2.47).
It is easy to see that (2.48]) is a quasi-linear Cauhcy problem of the type
considered in Section[2.2] In view of Lemmal[2.7} we can solve (2.48) through
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its characteristic system (2.23), with 7} in place of L and G in place of H,
choosing a sufficiently small parameter interval [0,7"], T" € (0,T>]. Indeed,
by Corollary [2.8] and Remark defining

Zi(tars1;2,6) = K(tarsn; R(tari1;2,),6),  tarr € AT, z, & e RY,

gives a solution of ([2.48)) with all the desired properties. That is, the symbol
Zi(tam+1; 7, €) belongs to CP(A(T); S%0) for any j < M, it also satisfies

{ tiv1 < Zj(tpg;@,8) <t
Zj|tj=tj71 =tj+1, Zj’tj:thrl =tj-1,
and we have
di(tars1:2,€) = d(tar+1,;(Zj(tars1:2,6))s 2, &) + Vj(tars1; @, §).

Finally, due to the fact that Z; is a solution to (2.48)), the equation ([2.47])
is reduced to

O Uy = Tj(Z;), ¥} ) — Fi(Z;), (2.49)
with the initial condition

U = 0. (2.50)

Itj-1=t;
Notice that (2.50) holds true since we have Zj|tj:tj71 = tj+1, and in
Proposition [2.2] gives

Wj(tare1,-1(tj); 2, 8) =

Qsj(tMJrl,]fl(tj%x?g) - ¢(t07 o 7tj—27tj7 Zj|tj:tj_17tj+17 o ,tM+1;.T,§)

= (wl(to,tl)ﬁ---ﬁ%‘1(tj2>tj)ﬁisﬁjﬂ(tjatj)ﬁ@j(tj,tjﬂ)}

iy
=p;(tjtj+1)

fojra(tivt, tiva)t. . oare1(tar, tM+1)> (z,€)

- (901@0, tf - o1 (-2, )89 (1 tir)bpj 1 (t41, L))

=;(tjtj+1)

fojr2(tivt, tiva)t. . fonrv1(tar, tM+1)> (z,€) =0.

Then, the method of characteristics, applied to the linear, non-homogeneous
partial differential equation (2.49)), shows that we can write ¥; in the form

tj—1 -

U(targ12,6) = J Fi(tar1,j-1(7); 0(7;0(7;2,€),€),6) dr,  (2.51)

tj
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where
Fy(tars132,€) = —Fj(tarsj(Zi(bar1132,€)); 2, ), (2.52)
0(m59,8) = 0(tar+1,(7);,€), (2.53)
O(r;z,€) = O(tars1,j-1(7);2,8), (2.54)

for suitable vector-valued functions 0, 6. By arguments similar to those in
Subsection (cf. [110]), both # and 6 turn out to be elements of C*(A(T”);
SL0 @ RY), satisfying

Otarsr(7);y,6)) =), Blbarsrj1(7);3,8)) = (w),

with constants independent of ty;.1 € A(T'), z,& € RE Such result, to-
gether with the properties of Z; and another application of Lemma m,
allows to conclude that ¥; € C®(A(T"); S%0), and it is identically zero
when d; = 0, as claimed. The proof is complete. ]

Corollary 2.11. Under the same hypothesis of Theorem [2.10, there exists
a constant C' independent of M such that

‘5,5‘ij + 1| < C(to — tM+1). (255)

Proof. Set Z;- = 0, Zj(trp41; 7, &), then from the quasi-linear equation (2.48)),
we can write d¢; , Z} as
atj71Z; = <CZ__’](Z])7 Z‘;,Z‘> + G]’

where
Gy = Cylbarasin &) = @y, (T)(2))) . 20> + 0, (Gi(Z5)) . (2:36)
Moreover, we can write Z; = Z;(tar41;,€)

Zj=tj1

ti1
7 @@ a1 5 tar11 (i€, Z e tarr g ()i, )

tj

+ Gj(t(), cestioo, T, Zj(tM_,_l’j_l(T);x,{), e ,tM+1;x,§)] dr. (2.57)

Since ZJ/',xt]-_th = 0, after a differentiation with respect to t; of (2.57) we
get
Z;-t];l:tj = —=Gj(to, ..., tj—2, tj tjs1, tjen, oo b1 3, §) (2.58)

2
= — expf bjdr.
t

Jj+1
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As in the proof of the Theorem [2.10, we have the quasi-linear equation
a75]'—123/' = <TJ'(ZJ')7 Zjl',:c> + Gj’
with initial data
tj
I —_— .
th]-_1=t]- = —exp ftjﬂ bjdr.
Hence, as in (2.51)) we can write the solution Z} as

tj—1

Z; = ZJ/'tj,1=tj + Gji(to, ... tj—o, Tyt tars; 05(1505(m; 2, €),€),€) dr,
t

(2.59)

where CN}j,Hj and 0; are as in (2.56), ([2.53) and (2.54) respectively.
Then, (2.58) and ([2.59)) imply the desired estimate (2.55)). O



Chapter 3

Fundamental solutions for
involutive SG-hyperbolic
systems

In the present chapter we deal with the Cauchy problem

LU, s) = F(t), (t5)e Ar

(3.1)

U(s,s) = G se[0,7),

on the simplex Ap := {(¢,$)] 0 < s <t < T}, where
L(t,Dy;x, Dy) = Dy + A(t; 2, D) + R(t; z, Dy), (3.2)

A is a (m x m)-dimensional, diagonal operator matrix, whose entries A;
(t;z,Dy), j = 1,...,m, are pseudo-differential operators with real-valued,
parameter-dependent symbols \;(¢; z,£) € C*([0,T]; SY1), R is a parameter-
dependent, (m x m)-dimensional operator matrix of pseudo-differential op-
erators with symbols in C*([0,77]; S*?), F € C*([0,T], H"® @ R™), G €
H?QR™, r 0€R.

The system is then of hyperbolic type, since the principal symbol
part diag(\;(¢;x,&))j=1,..,m of the coefficient matrix is diagonal and real-
valued see |41, Chapter 6]. Then, its fundamental solution E(t,s) exists
(see [41]), and can be obtained as an infinte sum of matrices of Fourier in-
tegral operators (see [86,110] and Section 5 of [8] for the SG case). Here we
are going to show that if is of involutive type, then its fundamental
solution E(t, s) can be reduced to a finite sum expression, modulo a smooth-
ing remainder, in the same spirit of [86,(110], by applying the results from
Chapter

The fundamental solution of is a family {E(t,s)|(t,s) € Ap} of



56 Fundamental solutions for SG-hyperbolic systems

operators satisfying
LE(t,s) =0 (t,s)€ Ap,
E(s,s)=1 s€[0,7"),

for 0 < T" < T. For T’ small enough, see Section 5 of [8], it is possible to
express {E(t,s)} in the form

E(t,s) = I(t,s) + Jt I,(t,0) i W, (6, 5) b,
s v=1

where I,(t, s) is the operator matrix defined by
I, (t,5) 0
Isa(ta s) =
0 I, (t,s)

and I, := Opy, (1), 1 < j < m. The phase functions ¢; = ¢;(t,s;2,§), 1 <
j < m, defined on A x R?? are solutions to the eikonal equations
with A; in place of a. The sequence of m x m-matrices of SG Fourier integral
operators {W,(t, s); (t,s) € A/ }yen is defined recursively as

t
Wi (t, s:2, Dy) = j Wi (t, 0 2, Da)Wo(6, 5: 2, D) dB,

starting with W; defined as
LI,(t,s) =iWi(t,s). (3.3)
We also set
wi(t,s;2,8) = o(Wj(t,s;2,Dy)), j=1,...,v+1, (3.4)

the (matrix-valued) symbol of Wj.

The following result about existence and uniqueness of a solution U (%, s)
to the Cauchy problem (3.1)) is a SG variant of the classical Duhamel formula,
see [841}43].

Proposition 3.1. For F e C*([0,T]; H"*(R?) @ R™) and G € H""(R?) ®

R™, the solution U (t, s) of the Cauchy problem , under the SG-hyperbolicity

assumptions explained above, exists uniquely for (t,s) € A, T" € (0,T] suit-

ably small, it belongs to the class ﬂ C*(Aq; HFe7F(RY) @ R™), and is
keZ 4+

given by

U(t,s) = E(t,s)G + z‘f E(t,0)FO)d), (t,5) e A, se[0,T).



Fundamental solutions for SG-hyperbolic systems 57

Notice that, since the phase functions ¢; are solutions of eikonal equa-
tions ([1.24) associated with the Hamiltonians —\;, we have the relation

Dily; + Aj(t; - D)y (1,5) = OPy, 1) (boj (£, 5)),  boj(t, s) € SYOR?),
j=1,...,m. Then,
Bya(t,s) 0
Wi(t,s) == —i + R(t)I,(t,s) |, (3.5)
0 Bom(t,s)
with Bo,j(t,s) = Opy,(1,s)(bo,; (¢, 8)) and bo;(t, s) € SO0 5 =1,...,m, and

R(t) = R(t;z, D) given in (3.2)).
By (3.5) and Theorem one can rewrite equation (3.3)) as

= Z W@ (t,s)
j=1

where, for 1 < j < m, 17/% (t,s) are m x m matrix with entries given by
Fourier integral operators with parameter dependent phase function ¢; and
symbol in S%°. Thus, if we set M, 1* MN” for v > 2, the operator
matrix W, (¢, s) can be written in the form of iterated integrals, namely

1 t1 ty—2
j J f DWWttt s) dbyy . dy,
s Js peM,

where
W (tty, . tyor,s) = W, (L1 Wy, (t1,12) ... W, (ts—1, 5)

is the product of v Fourier integral operators s matrices with phase functions
¢m; and symbols J(W¢mj (tj—1,t5)) = fio'(chmj (tj—1,t;)) € SO0 By (2)
in Theorem WW(t, t1,...,t,—1,5) is a matrix of Fourier integral op-
erators with phase function ¢*) = @, #...#¢,, and parameter-dependent
symbol w® (t,t1,...,t,_1,s) of order (0,0). Consequently, we can write

E(t,s) = I,(t,s) + J I(t, 0){ Z Wy, (0,5)

s j=1

t1
+Z > JJ f T (0,1, ..., ty_1,8)dt,_1. dtl}de.

v=2 pueM,
(3.6)
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Theorem 3.2. Let (3.1)) be an involutive SG-hyperbolic system, that is, As-
sumptionm is fulfilled by the family {)‘j}?:y Then the fundamental solution
(3.6) can be reduced, modulo smoothing terms, to

E(t,s) =I,(t,s) + Y. W (t,5) (3.7)
j=1

m t prt1 ti—2 i
+Z Z J J f W(#)(t,tl,...,tj_l,s) dtj_l...dtl,
j:2 t S S S
ueMj

t
where the symbol of W:L]. (t,s) is f w;(0,s)dl, with w; in (3.4), the multi-

s
index pp = (m1,...,m;) € Mj ={p=(mi,....m;) e Mj : my <---<
m;}, and W) (t,t1,...,tj—1,5) is a m x m dimensional matriz of Fourier
integral operators with phase function qb(’ﬂ) = Omt.. -fom; and matriz-
valued, parameter-dependent symbol w(Hh) (t,t1,...,tj—1,8) € SO0 (R24),

For the proof of Theorem we need some preparation. Given y € M,
let u(j) = (ma,...,mj—1,mjp1,mj,...,my) be the permutation where we
exchange the order of m; and mj 1, for 1 <j<v -1

The following proposition is a reformulation of Theorem [2.10] for the
sharp products of the phase functions ¢;, j = 1,...,m, appearing in the
expression of E(t,s).

Proposition 3.3. Let {\y(t;2, &)}, = C®([0,T]; SH1(R*)) satisfy As-
sumption @ and let p € M, with v > 2. Denote, respectively, by ¢
and ) the sharp products in and with M = v — 1. Then,
for a sufficiently small constant T', independent of v, there exist symbols

Zj(-”)(tl,;x,f) and \Ilg-“)(ty;:c,§) in C(Ap; SPO(R?)), t, € Aq, such that,
foranyl<j<v-—1,

i < 20 (tiw,§) <t (lo=tt, =), (3.8)

ZJ('#)|tj=tj—1 =1j+1, ZJ('u)|tj:tj+1 = tj-1, (3.9)

oW (t,;2,€) = 6P (b,5(Z; (b2, €));2,6) + W (h2,6)  (3.10)
where t, ;(T) is defined in and
105, 2% (852,€) + 1] < O(t — 5), (3.11)
for a suitable C > 0 independent of v.

In the next result we treat the invertibility of the symbols Z ](.“ ), weM,,
j=1,...,v—1, and the properties of its inverse.
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Proposition 3.4. Under the hypothesis of Proposition[3.3, assume further-
more that T" satisfies CT' < , where C' is the constant in , and, for
pwe M, 1<j<v-—1, deﬁne

¢ = ZW(t,;(0);2,). (3.12)
Then, ¢ is invertible with inverse 6 = @y‘)(tl,, €);z,§), @(“ belongs to
C®(Agr; SOO(R2)) and satisfies tj11 < O ) <
Proof. Set

(n
;o S ti-1

Qz{@(t H02,6) € O (Ar x B¥) 1141 < O(b,5(0):2,6) < 51,

Olc=t; 1 = i1, Ope=tyy = tj-1, =2 < 0O(ty,;(C); 2, 8) < 0}7
and consider the map
T:Q30—T(0) =
defined by

H = H(t,j(C); 2,6) = —C+ 2 (6,5 (0(t,5(C); 2, €)); 2, €) + O (b1, (C); , €),

where tg =t and t,, = s.
Since tjy1 < O(t,, (C) x,€) < tj_; for © € , the mapping T is well
defined. Indeed, from (3.9} , (3.11) and CT" < 1/2 we get

|C=t]'_1 =—tj_1+ Z]('LL) (tl/J(@'C:tj_l; ) )) + ®\C=tj_1
= Z('u)( (s ) i
- t]-‘rl?
(1) .
le=t;41 = it ZJ“ < ’j<®|4:tj+1’ K )) T Ote=tya
) = —tj1 + 2 (bt 1)) + L
= tj—l)
(OG0 i 411 = |[3,28 0y Ot Qi ) + 1]
0cO(ty,;(¢);2,8)| < 20T <1,

(3.13)
the last inequality in (3.13) implies —2 < (0cH)(t,,;(¢);2,&) <0, so

tjy1 = H|C =tj1 S H < H|C=tj+1 =tj-1
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holds true and we proved 7 : Q — Q.
Now, let {On}%_, be the sequence in 2 defined by

O =tj1—(C+tjm
Oni1 = T(OnN).

From (3.11)) and the fact that CT”" < 1/2, we get for some positive constant
¢ independent of N

|@N+1 — ®N| < C2_N.
(1)
J
function of (3.12). The property @g“)(ty7]~(g’);x,f) e C®(Aqr; SO0 (R2))
follows by Lemma [1.10] and a standard invertibility argument in the SG
classes (see, e.g., [42.}44]). O

Therefore, 7 admits a unique fixed point © = 03" € Q, providing the inverse

The next Proposition |3.5|can be proved by an induction argument, using
Fa& di Bruno formula.

Proposition 3.5. Let p(t,; x, &) € CP(Ap; SOO(R?)), {©4}5, and {gr}7,
be subsets of C®(Ar; S%O(R?*)). For a fived sequence {jx}_, where 1 <
Jk < v —1, consider the sequence {pi}{_,, defined inductively by

pk(tyywvf) = Pk—1 (tl/,jk (@k(tlla x7§)) 71.75) : gk‘(tllv x7§)7

for pg =p, tog =t and t, = s. Then, for any | there exists Cy, independent
of k and v, such that

el < cFpl”,
where

0,0
-

0) _ I
Pl = max max |, pl

Proof of Theorem[3.4. We split the proof into four steps.

e Step I:
Let W (#) (t,t1,...,t,—1,8) be a Fourier integral operator with the phase

function ¢ for = (my,...,m,), and symbol wt (¢, t1,...,t,_1,5)
in C®(Aps; S%0). Assume that yu satisfies

{my,...,my} ={mq,...,my}, for k < m, (3.14)

for pup = (my,...,my) € M;L Then, we can define a Fourier in-

tegral operator W (k) depending only on the k + 1 time variables
(t,t1,... te_1,s), with symbol &) (¢, 1, ..., tx_1,s) € CP(Aqs; SO0,
such that the following equality holds true
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t1 ty—2
W= JJ WW (@t ty, .ty 1, s)dty ... dt,_y (3.15)

t1 lp—2
J f WMk)(t,tlj...,tkfl,s)dtl...dtkfl.

Moreover, from the fact that the symbol w( (¢, t1,...,t,_1,s) belongs
to %0 and depends smoothly on all the parameters, we can show that,
for any v € Zl_frl and any integer /, there exists some constant C. g,
independent of v, such that

o2 &w) @)l < Co /v =k (w=m+1,...).  (3.16)

If we admit (3.15) and (3.16)), then the proof of Theorem is com-

pleted. Indeed, . ) follows from and ( -, and by - we

find that

Wttt 1, 8)
ee}
Z Z&’)(Mk)(t,tl, coytg_1, 8) € CP(Aqr; SO0)
v=k+1

where the second Summation extends to all py satisfying (3.14). In
the next steps we will prove and ( -

o Step II:
Let p(k) = (mq,...,mg_1, Mgy1, Mk, Miy2,...,m,) and set
522(M)
w(“(k))(tu;fﬂ,ﬁ) = w(#) (ty,k(Z( ( ) x g) x g) (th 5)
k

(3.17)

Let W#( ) (t,) be a Fourier integral operator with phase function
#*F) (t,) and symbol w#*¥)(t,). Notice that

th—2 te—1 Th41
W = J dty .. J dtklf dtk+1j dtg o

ty—2 ti—1
. J dty_1 f W dg,.
s trp41
By (B.10) and (3.17) we get

T tr_
gy = [ e g,

trt1 tht1
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Therefore, we have

t ty—2
W = J‘...J‘ WHED ¢ty by, s)dty .ty (3.18)

Step I1I:

For a fixed N > 3m, we divide p = (mq,...,my) into (my,...,my),
(MN+15- -3 MaN); -+, (MN[—1/N]+15 - - -, ™) and transpose the ele-
ments of the starting vector (mxn+11,. .-, M(441)n) to obtain the vector
(M2 niqs--- 7m?}£+1)N> satisfying

0 0
MEN+1 S S M )N

where k =0,...,[(v —1)/N] and (k + 1)N =v if k = [(v — 1)/N].

Set u® = (mY,...,m%). The number of transpositions

((mgs 1) = (M1, mi)) to change i into

is not larger than Cn([(v — 1)/N] + 1), where Cy,, denotes the
largest number of transpositions which is necessary in changing any
N-repeated-permutation of elements of {1, ..., m} into the N-repeated
permutation with elements arranged in ascending order of magnitude.
By repeated transpositions of the type (mg, mi+1) — (mgs1,my) we
get the equality (3.18) with W(#(*) replaced by W) The symbol
wt(t,) of W) is defined by the product of at most Cnm([(v —
1)/N]+1) factors of type 0;Zy, the composition of w#) with elements
of {Zx}, and products of (derivatives of) (0,0)-order factors of type

exp [Z\I'](C” L)]. Consequently, by Proposition we can conclude

[ w1, b, ) [ < O s ROV DN - (3.1)

where h = max max max [0y Zi(t,t1,...,t5, ..., tu_1,5)].
1<k<m 1<j<m s<t;<t | t; k( 1, IRV s lbv—1, )|

Step IV:

From the definition of ¥ and Proposition it follows that the phase
function ¢ (¢, t1,...,t,—1,s) is independent of at least [(1/2)] ele-

ments of the set {t; }]” 11 Hence, for a fixed ¢ such that (v —1)/3 <

t < (v —1)/2, we have

PE by, b1, 8) = Sttt ),

for some p, = (my,,...,my,). Then, we obtain

t1 t—2 5 5 5 B
V= J j Wy, Ey, s)dy T,

(=t j=1,...,0—1),
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where the symbol w() (¢, ty,...,t,_1,5) of WW)(t,#,,...,£,_1,5) is
determined by the integral of w(“o)(t,tl, .oy ty—1,8) with respect to
{t; }J”;ll \{1; };11 From the integral representation and (3.19)), we have

<w(ML)(t’ ‘E17 . ,‘ELfla 5)>g0)

_ F\ri—1 . I \vo—vi—1 g o \Ww—1—vy,
< ti) ! X(tl _752) — 1) X”'X(tyil_ Sz |1 X<w(”0)>§0)
(r1 —1)! (vg —1v1 —1)! (v—1—-v,1)!
(t—s)

v Cnm((v=1)/2)
(V_L)! XCO7£Xh N s

0<s<t1,< - <t <)
Here, we used [(v —1)/N] + 1 < (v — 1)/2. Applying the previous

procedure to the Fourier integral operator W) in place of W) we
get the equality

t t,—2
V= f f W (L by, oty 1, 8) diy ... dt,
S S
for some W) 1/3 < p < 1/2, whose symbol satisfies

<w(ﬂp) (t’ t17 P ,tp717 S)>§O)

(t—s) y (t—s)—"P
-0 =)

X Oy x hONm((=D/2+(=1/2) (3 90)

By repeated applications of this process, we finally obtain (3.15]).

Since p < /2 < v/(1/2)%, the number of needed transpositions is at
most Cn,m x (v —1). This fact and (3.20]) lead us to (3.16) with v = 0,

since, from the Stirling formula, it follows that
(v — ) (p1 — p2)! - (g — k) = CF x (v — k),

for some constant Co > 0if 3p; > pj—1 =2u; (j =1,...,d, po =v).

Considering 7, w (t,t1,...,t,_1,s) in place of w™ (¢, t1,... t,_1,5),
noting that the number of transpositions is at most multiplied by v,

we get (3.16]) with v # 0.

The proof is complete. O

Remark 3.6. Theorem extends to the case of a N x N system such
that A is diagonal and its symbol entries \;, j = 1,..., N, coincide with the
(repeated) elements of a family of real-valued, parameter-dependent symbols
{Tj}gnzl satisfying Assumption E In such situation, it is enough to work
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inatially “block by block” of coinciding elements, and then perform the re-
duction of to . Indeed, product of factors associated with different
time vartables can be commuted as above. Then, we obtain a multi-product
in such a way that the phases ¢; are nearby with different time variables.
Thereafter, we use the associative properties of the multi-products mentioned
in Proposition [2.9.



Chapter 4

S(G-Hyperbolic Cauchy
problems with involutive
characteristics

Here we apply the results from the previous chapter to the study of Cauchy
problems associated with linear hyperbolic involutive differential operators
of SG type. After obtaining the fundamental solution, we study the prop-
agation of singularities in the case of SG-classical coefficients. We recall a
few basic definitions, see [41-44,49] for more details.

Definition 4.1. Let m e N, T > 0, and L be a differential operator of order
m, that is

m
L=L(t,Dy;x,D;) = D" + Y Pj(t; 2, Dy) D)™
j=1

m
=D+ ) > cjalt;z)DIDI.
Jj=1la|<y

The symbol o(Pj) of the pseudo-differential operator P;(t;x, Dy) is given by
pi(t;,&) = ) cjalt; 2)E%,

la|<j
such that p; € C*([0,T]; S (R?)), that is
0FdBcja(t;z)| < ayPl Bezd,j=1,....m aeZl, |a] <j (41)
We denote by
- o (L) its symbol, that is

[0 (D)](t,752,8) = 7™ + > pj(t; 2, 7™,
j=1
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- Ly, = 0, (L) its principal symbol, that is

[op (D](t, 752,8) = 7™ + ) qj(t2, )7
j=1
where q;(t;z,§) = Z Cia(t; 7)€% belongs to C([0,T]; S99 (R?)), & o

|a|=j
satisfies (A1) for |a| =7, j=1,...,m, and is such that

[0 (L) = op (D)](t, 752, €) = Z (t; 2, )T

7j=1
where r; € C([0, T]; ST~ I~ 1(R2d)).
Definition 4.2. An operator L of the type introduced in Definition is
called hyperbolic if

m

Lin(t,752,6) = [ [ (r = 75(t; 2, ), (4.2)

J=1

with real-valued, smooth roots 7j, 7 = 1,...,m. The roots 7; are usually
called bicharacteristics. More precisely, L is called:

(1) Strictly SG-hyperbolic, if Ly, satisfies (4.2) with real-valued, distinct
and separated roots 7j, j = 1,...,m, in the sense that there exists a
constant C > 0 such that

I7j(t; 2, €) = m(t;2,€)| = CLaX€), Vi # k, (t2,€) €[0,T] x R*.

(2) (Weakly) SG-hyperbolic with (roots of) constant multiplicities, if Ly,
satisfies and the real-valued, characteristic roots can be divided into
w groups (1 < pu < m) of distinct and separated roots, in the sense that,
possibly after a reordering of the t;, j = 1,...,m, there existly,...l, € N
with Iy + ...+ 1, = m and p sets

G, = {Tl == Tll}’G2 = {Tl1+1 == Tl1+l2}7
. -G,u = {Tm—lu+1 == T’I’I’L}a

satisfying, for a constant C > 0,

7, €Gp,me€Gq, p#q, 1<pg<p
= |7j(t, 2, &) — T(t, 2, 8)| = Cx)E), (4.3)

for all (t,z,€) € [0,T] x R?; notice that, in the case . = 1, we have
only one group of m coinciding roots, that is, L, admits a single real
root of multiplicity m, while for u = m we recover the strictly hyperbolic
case; the number | = max;—_1 ., 1; is the mazimum multiplicity of the
roots of L,
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(3) (Weakly) SG-hyperbolic with involutive roots (or SG-involutive), if Ly,
satisfies (4.2]) with real-valued characteristic roots such that the family
{7371, satisfies Assumption E

The proof of the next observation can be find cf. e.g., [9,/41]

4.1 Fundamental solution for SG-involutive oper-
ators of order m e N

We will focus here on SG-involutive operators, see the references quoted
above for the known results about SG-hyperbolic operators with constant
multiplicities. In particular, we deal with the case when there is no splitting
of characteristic roots 7;, 7, 5,k = 1,...,m, k £ j, into groups Gj,k =
1,..., u < m satisfying . It is possible to translate the Cauchy problem

(4.4)

Lu(tas):f(t> (t,S)EAT
Dfu(s,8)=gr k=0,....m—1, se[0,7)

for a SG-involutive operator L in the sense of Definition [4.2] into a Cauchy
problem for an involutive system with suitable initial conditions, under
an appropriate factorization condition, see below.

We write ©; = Op(7;), and also set, for convenience below, I'; = D; —
©;, j = 1,...,m. Moreover, with M}, from Chapter [3| and their sorted

counterparts M,i, 1 < k < m, we introduce the notation
m—1 m
My={@}, M=|])M, M= UM,i
k=0 k=1
For a € My, 0 < k < m, we define dim(a) = k and
Iy =1, oy =Tq, ... Ty,

a=(a1,...,ax) € My, and {a} = {ai,...,q} for k> 1.

The proof of the following Lemma can be found in [44]. Analogous
results are used in [86] and [94].

Lemma 4.3. When {);} is an involutive system, for all o € M,, we have

To =T1...Tm+ ] Op(q§(t)Ts, (4.5)
peM

where g5 € C*([0,T7]; SO0(R2dY),
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A systemization and well-posedness (with loss of decay and regularity)
theorem can be stated for the Cauchy problem under a suitable con-
dition for the operator L. This result is due, in its original local form, to
Morimoto [94] and it has been extended to the SG case in [43], where the
proof of the next result, based on Lemma can be found.

Proposition 4.4. Assume the SG-hyperbolic operator L to be of the form

L= 111 T 1—‘m + Z Op(pa(t))roc mod Op(COO([OaT]v SiOQioO(RQd))%
ae Mt
(4.6)
with po, € C([0,T]; S%°(R??)). Moreover, assume that the family of its
characteristic roots {7; ) sastisfies Assumption|l. Then, the Cauchy prob-
lem (4.4) for L is equivalent to a Cauchy problem for a suitable first order
system (3.1)) with diagonal principal part, of the form
(Dy+ K(t)U(t,s) = F(t), (t,s)e€ Ar, (47)
U(s,s) =G, se[0,7), '

where U, F and G are N -dimensional vector-valued, K a (N x N )-dimensional

matriz, with N given by (4.8). U is defined in (4.9), (4.10), and (4.11).

Namely,
m—1
m!
N=)> —~, (4.8)
= (m=j)!
Uu="1 (U@ = Uy U1 - Um)s U(1,2) U(2,1)5 - - - Uars - - ) , (4.9)
with a € M, and
- forae Mg, 0 <k<m-—2 andj=max{l,... m}\{a}, we set
Ljua = uq, (4.10)
with Q= (j,al, ey ak) € Mk+1;
- for a € My,—1 and j ¢ {a}, we set
Djua =f = Y} Op(ps(t)us + Y Op(qs’ (¢))us, (4.11)

IBeM’( BeM

with oj = (J, a1, ..., ar) € My, and the symbols pg, qg from (4.5) and
[E9).

Remark 4.5. We call the SG-hyperbolic operators L satisfying the factor-
ization condition (4.6|) “operators of Levi type”.
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Remark 4.6. Since, for « € My, k = 1, we have

k-1
T'o = Df+ ) Op(Y4(s))D], T e C*([0,T]; S¥7+ (R*)),
=0

the initial conditions G for U can be expressed as

Gy(s,5) = go,

dim(a)—-1 .
Ga(sv 3) = Gdim(a) + Op(Té{(s))gb a € M, dim(a) > 0.
j=0
(4.12)
Notice that, in view of the continuity properties of the SG pseudo-differential
operators and of the orders of the Y, (£.12) implies

Gy € Hm—1mdim(@)p—l—dim(e)(pdy = ¢ Mf. (4.13)

The next Theorem [£.7]is our third main result, namely, a well-posedness
result, with decay and regularity loss, for SG-involutive operators of the
form . It is a consequence of Proposition in combination with the
main results of Chapter

Theorem 4.7. Let the operator L in be SG-involutive, of the form

considered in Proposition . Let f € C®([0,T]; H?(RY)) and the ini-

tial data g, € HrTm-l=ketm=l-kRd) | = 0,....m — 1. Then, for a

suitable T' € (0,T], the Cauchy problem admits a unique solution

u(t, s) belonging to ﬂ CF(Aq; H™Re=*(RY)), given, modulo elements in
keZ

C* (A 7 (RY)), by

¢
u(t,s) = . Wal(t,s)Ga+ Y, | Walt,0)f(0)do, (t,s) € Apr,s€[0,T"),
aeM a€My_1"8
(4.14)
for suitable parameter-dependent families of (iterated integrals of) regular
SG Fourier integral operators W (t,s), o € M, (t,s) € Aqr, with phase
functions and matriz-valued symbols determined through the characteristic
roots of L.

Proof. By the procedure explained in Proposition and Remark we
can switch from the Cauchy problem to an equivalent Cauchy problem
, with u = Ug. The uniqueness of the solution is then a consequence
of known results about symmetric SG-hyperbolic systems, see [41], of which
is a special case.

The fundamental solution of is given by the analog of for
, in view of Theorem and Remark It is a matrix-valued,
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parameter-dependent operator family E(t,s) = (E,,/),,wem(t, s), whose ele-
ments E,,,,/(t,s), p, ¢/ € M, are, modulo elements with kernels in C* (Agr; ),
linear combination of parameter-dependent families of (iterated integrals of)
regular SG Fourier operators, with phase functions of the type

i
¢(N) = Pmq, ,u’T = (m1> € ML

i .
¢(“):<Pm1ﬁ---ﬂ¢mj7 Mf:(mham])EMj:j>2>

wr solution of the eikonal equation associated with the characteristic root
7, of L, k =1,...,m, and parameter-dependent, matrix-valued symbols of
the type
i
w(“)(t,Hl,...,Hj_l,s)eSO’O, MEM;,
j =1,...,m. Then, the component Uy = u of the solution U of (4.7) has

the form (4.14)), with W, = Eg,, taking into account (4.11f) and (4.12]).
We observe that the k-th order t-derivatives of the operators Wy, a € M,

map continuously H™¢ to H"~%¢=% ke 7, in view of Theorem and
of the fact that, of course,

i
(@t s))]
= 0D, 1) 1. {000 (1, ) - w8, 5) + Q0 (8, 5),

at [Op(b(m)(

t,s

obtaining a symbol of orders 1-unit higher in both components at any t-
derivative step. This fact, together with the hypothesis on f, implies that
the second sum in (4.14)) belongs to ﬂ CF(Ap; H™Re=k(RYY).
k€Z+
The same is true for the elements of the first sum. In fact, recalling the

embedding among the Sobolev-Kato spaces and (4.13)), since « € M = 0 <
dim(«) < m — 1, we find
Wa(t, S)Ga c ﬂ Ck(AT/; Hr+m—1—dim(oz)—k,g+m—1—dim(a)—k)
k€Z+
— ﬂ CF(Ap; HRe™Fy  ae M,
k€Z+

and this concludes the proof. O

4.2 Propagation of singularities for classical SG-
involutive operators

Theorem together with the propagation results proved in [47], implies
our fourth main result, Theorem [4.20] below, about the global wave-front set
of the solution of the Cauchy problem , in the case of a classical SG-
involutive operator L of Levi type. We first recall the necessary definitions,
adapting some materials appeared in [46-48].
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Definition 4.8. Let B be a topological vector space of distributions on R?
such that
S (RY < Bc . (RY

with continuous embeddings. Then B is called SG-admissible when Op,(a)
maps B continuously into itself, for every a € S%°(R%?). If B and C are
SG-admissible, then the pair (B,C) is called SG-ordered (with respect to
(m, 1) € R?), when the mappings

Opi(a) : B—C and Opyb) : C - B
are continuous for every a € S™H(R??) and b e ST H(R2?),

Remark 4.9. .7(R%), H"?(R?), r, 0 € R, and .'(RY) are SG-admissible.
(7 (RY), .7 (RY), (H"e(RY), Hme-#(RY)), 7, g € R, (#'(R), .7 (RY)) are
SG-ordered (with respect to any (m,pu) € R%). The same holds true for
(suitable couples of ) modulation spaces, see [40)].

Definition 4.10. Let p € P, be a regular phase function, B, By, Ba, C, C1,
Ca, be SG-admissible and Q < R? be open. Then the pair (B,C) is called
weakly-1 SG-ordered (with respect to (m, u, p, <)), when the mapping

Op,(a) : B—C

is continuous for every a € S™H(R2?) with support such that the projection
on the &-azxis does not intersect R\Q. Similarly, the pair (B,C) is called
weakly-1I SG-ordered (with respect to (m, p, p,<2)), when the mapping

Op,(b) : C— B

is continuous for every b e S™H) (R24) with support such that the projection
on the x-axis does not intersect RN\Q. Furthermore, (By,Ci,Ba,Co) are
called SG-ordered (with respect to my, pi,mo, po, @, and ), when (B, C1)
is a weakly-I SG-ordered pair with respect to (my, pu1,¢,2), and (B2,Cs) is
a weakly-II SG-ordered pair with respect to (ma, 12, p, Q).

Remark 4.11. ((R%),.7(R%)), (H™2(R?), H=™¢~H(R%)), where r, 0 €
R, (' (RY), " (R?)) are weakly-I and weakly-II SG-ordered pairs (with re-
spect to any (m,u) € R%, ¢ € P, and Q = ). The situation is more
delicate in the case of modulation spaces, even just on Sobolev-Kato spaces
modeled on LP(R?), p € [1,0), p # 2, see [46] and the references quoted
therein.

Now we recall the definition given in [46] of global wave-front sets for
temperate distributions with respect to Banach or Fréchet spaces and state
some of their properties. First of all, we recall the definitions of set of
characteristic points that we use in this setting.
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We need to deal with the situations where ((1.4) holds only in certain
(conic-shaped) subset of R? x R%. Here we let Q,,, m = 1,2, 3, be the sets

Q; = R? x (RN0), Q= (RN0) x RY,
4.15
Q3 = (RN0) x (RN0). (19

Definition 4.12. Let Q, k = 1,2,3 be as in (4.15)), and let a € S™H(R??).

(1) a is called locally or type-1 invertible with respect to m, u at the point
(x0,&0) € Qu, if there exist a neighbourhood X of xg, an open conical
neighbourhood I' of & and a positive constant R such that holds
forze X, el and [£| = R.

(2) a is called Fourier-locally or type-2 invertible with respect to m,u at
the point (xo,&o) € Qa, if there exist an open conical neighbourhood T' of
xo, a neighbourhood X of & and a positive constant R such that
holds for x €', |x| > R and € € X.

(3) a is called oscillating or type-3 invertible with respect to m,u at the
point (xg,&o) € Qs, if there exist open conical neighbourhoods Ty of xg
and I's of &, and a positive constant R such that holds for x € 'y,
|| = R, £€T9 and |€| = R.

If £ € {1,2,3} and a is not type-k invertible with respect to m,u at
(x0,&0) € Q, then (x0,&) is called type-k characteristic for a with respect
to m, . The set of type-k characteristic points for a with respect to m, y s
denoted by Charﬁ%u(a).

The (global) set of characteristic points (the characteristic set), for a
symbol a € S™H(R??) with respect to m, p is defined as

Char(a) = Chary, ,(a) = Char,ﬁ%u(a) U Char%lyu(a) U Char%uu(a).

In the next Definition A.13] we introduce different classes of cutoff func-
tions (see also Definition 1.9 in [45]).

Definition 4.13. Let X < R? be open, T' € RN\0 be an open cone, 9 € X
and let &y € T.

(1) A smooth function o on R® is called a cutoff (function) with respect to xg
and X, if 0 < o <1, p e CP(X) and ¢ = 1 in an open neighbourhood
of zg. The set of cutoffs with respect to xo and X is denoted by €, (X)
or Gy, -

(2) A smooth function 1 on R? is called a directional cutoff (function) with
respect to & and T', if there is a constant R > 0 and open conical
neighbourhood I'y € ' of &y such that the following is true:
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0<vY <1 andsuppy €I}
o Y(t&) =Y(§) whent =1 and |§| = R;
e (&) =1 when €Ty and || = R.

The set of directional cutoffs with respect to & and I' is denoted by
‘Kgr(l“) or Cﬁgr.

Remark 4.14. Let X < R be open and T',T1,Ty < Rd\O be open cones.
Then the following is true.

(1) ifxoe X, &€ET, o€ €ro(X) and i € ‘Kg‘iir(F), then ¢ = © ®1 belongs
to SO0 (R2?), and is type-1 invertible at (xo,&);

(2) ifzo €T, §e X, e €I(T) and ¢ € 6, (X), then ca = p @1 belongs
to SOO(R?), and is type-2 invertible at (xo,&);

(3) if wo € T'1, & € Ta, Y1 € €go'(T1) and 4o € €™ (T2), then ez = 1 ® o
belongs to SOO(R?), and is type-3 invertible at (zo,&).

The next Proposition shows that Op,(a) for t € R satisfies conve-
nient invertibility properties of the form

Op,(a) Op;(b) = Op,(c) + Op,(h), (4.16)

outside the set of characteristic points for a symbol a. Here Op,(b), Op,(c)
and Op,(h) have the roles of “local inverse”, “local identity” and smoothing
operators respectively. From these statements it also follows that our set of
characteristic points in Definition are related to those in [48}80].

Proposition 4.15. Let k € {1,2,3}, m,u € R, and let a € S™H(R??).
Also let Qi be as in (4.15)), (xo,&0) € Q, when k is equal to 1, 2 and 3,
respectively. Then the following conditions are equivalent, k = 1,2, 3:

(1) (x0,&) ¢ Charffn’#(a);

(2) there is an element c € S0 which is type-k invertible at (zo,&o), and an
element b€ ST such that ab = ¢;

(3) ([&16)) holds for some c € S*0 which is type-k invertible at (xq,&o), and
some elements he S~V and be STk

(4) ([@.16) holds for some c;, € S*° in Remark|4.14 which is type-k invertible
at (xo,&0), and some elements h and b € S~ where h € .¥ when
ke {1,3} and h € S~ when k = 2.

Furthermore, if t = 0, then the supports of b and h can be chosen to be
contained in X x R* when k =1, in T' x R when k = 2, and in T'; x R?
when k = 3.
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We can now introduce the complements of the wave-front sets. More
precisely, let Q, k € {1,2,3}, be given by , B be a Banach or Fréchet
space such that .7 (R%) € B < .#/(R%), and let f € ./(R%). Then the point
(z0,&0) € Q is called type-k regular for f with respect to B, if

Op(ck)f € B, (4.17)

for some c;, in Remark k =1,2,3. The set of all type-k regular points
for f with respect to B, is denoted by @’f;(f).

Definition 4.16. Let k € {1,2,3}, Qf be as in (4.15)), and let B be a Banach
or Fréchet space such that .7 (R%) < B < ' (RY).

(1) The type-k wave-front set of f € .#/(R?) with respect to B is the com-
plement of O%(f) in Qu, and is denoted by WFE(f);

(2) The global wave-front set WFg(f) < (R? x RY)\0 is the set
WF5(f) = WFs(f) | JWF&() | WFB(F).

The sets WFg(f), WF%(f) and WEF%(f) in Definition are also called
the local, Fourier-local and oscillating wave-front set of f with respect to B.

Remark 4.17. In the special case when B = H™?(RY), r,0 € R, we write
WEFE (f), k = 1,2,3. In this situation, WF,,(f) = WE} ,(f) UWFZ,(f)
UWF§7Q(f) coincides with the scattering wave front set of f € .7'(RY) in-
troduced by Melrose [92]. In the case when B = .7 (R%), WF5(f) coincides
with the . -wave-front set considered in [4§].

Remark 4.18. Let Q,,, m = 1,2,3 be the same as in (4.15).

1. If Q € O, and (xg,&) € Q <= (x9,0&) € Q for o = 1, then Q is
called 1-conical;

2. If Q < Qq, and (x¢,&) € Q@ < (sx0,&) € Q for s = 1, then Q is
called 2-conical;

3. If Q <€ Qs, and (x9,&) € Q < (sxp,0&) € Q for s,0 =1, then Q
1s called 3-conical.

By (4.17) and the paragraph before Definition it follows that if m =
1,2,3, then ©F(f) is m-conical. The same holds for WFg(f), m = 1,2,3,
by Definition[{.16, noticing that, for any zo € R"\{0}, any open cone T 5 z,
and any s > 0, €37(T') = €I (T). For any R >0 and m € {1,2,3}, we set
Mr={(8e;[f| >R}, Qr={(z¢ec;z>R}
Qr={(2.8)€Qs;|],[¢| > R}

Evidently, QF is m-conical for every m € {1,2,3}.
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From now on we assume that B in Definition is SG-admissible, and
recall that Sobolev-Kato spaces and, more generally, modulation spaces, and
7 (RY) are SG-admissible, see [46,147].

The next result describes the relation between “regularity with respect
to B” of temperate distributions and global wave-front sets, cf. [46].

Proposition 4.19. Let B be SG-admissible, and let f € ' (R?). Then
f el = WFB(f) = .

The next Theorem extends the analogous result in [47] to the more
general case of a classical, SG-hyperbolic involutive operator L of Levi type,
and the one in [110] to the global wave-front sets introduced above. It is a
consequence of Theorem and of Theorem 5.14 in [47].

Theorem 4.20. Let L in be a classical, SG-hyperbolic, involutive
operator of Levi type, that is, of the type considered in Proposition [{.4] with
SG-classical coefficients, of the form . Let gy € By, £ =0,...,m—1,
with the m-tuple of SG-admissible spaces (Bo,...,Bmnm-1). Also assume that
the SG-admissible space C is such that (By,C), k = 0,...,m—1, are weakly-1
SG-ordered pairs with respect to

k—jk—jk=0,....,m—1,j=0,....k ¢ aeM, and &.

Then, for the solution u(t, s) of the Cauchy problem (4.4)) with f =0, (t,s) €
A, se€[0,T"), we find

wrst )< ) | U U WFE, (90))™, k = 1,2,3,
j=1 =0

e HEA(T!) £
I to=t,t;=s

where VU for V. < Qy, is the smallest k-conical subset of Qy which in-
cludes V, k € {1,2,3} and ®,(t;) is the canonical transformation of T*R?
into itself generated by the parameter-dependent SG-classical phase func-
tions qS(O‘)(tj) e P, ace M;[, tie A(T), to = t, t; =s, 7 =1,...,m,
appearing in (4.14).

Proof. The result for j = 1, a € M{, to = t, t1 = s, and u(t,s) =

Yiaer, Wal(t, 8)Ga is essentially the one proved in [47, Theorem 5.14].
For 5 = 2,

m t rt1 ti_o
u(t73) = Z Z J ‘[ ’ Wa(m)(t,tl,...,tj_l,S)Ga dtj_1...dty,
j:Q M S S S
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i 1
where W) = W )(t,tl, ...,tj—1,s) given by an analog of (3.7) for (3.1,
in view of Theorem [3.2] and Remark [3.61 Let

(Y0, 70) € Qk\G U U WO (WEE, (g0)™, k =1,2,3.

j= (XEM)[ tJEA(T/) =0
T to= =t,tj=s

This is equivalent to the fact that

._\

m

(Y0, m0) ﬂ ﬂ ﬂ ”ﬁ] ( Fg, ge))con’“>

=2 qemt tEA(T)
I to=t,t;=s

<

NN N (eken=).
(

aeM! t5€ ") l=
Jt

(y0,m0) €

13

[en]

=S
Let (xo, &) satisfy
(yo,m0) = 5 (t5570,&0) <= (20, 0) = Palt;;yo,m0)-

Let ¢ € S%0 be a symbol as in (4.17) and Remark such that
Op(ck)u € By for ¢ = 0,...,m — 1. Let Cy = Op(ck), and let Va(m =
V(M) (t,t1,...,tj—1,s) be the parametrix of WOEM). Then for some gy we

o
have

t1 j 2 p
JJ WD o O o VI dt,_y . dty,

or equivalently,

t rt1 tj—2 "
ff Qk,aOWO(CM)dtj—l---dtl

t1 2
J j v W R Yen dtj—1...dty mod Op(S™%~%).

In view of [47, Theorem 3.18] and the fact that ®,(t;) is a canonical
transformation of T*R? into itself, we have Gk = Ck O <I>;1 mod S~
which implies that g, € S°Y. Since

t1 tjg )
Jf f Gy dt; s ...

t1 ti—2 i
Eff W (CuGo) dt;_y ... dty

S
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where Wo([“l)(CkGa) belongs to C*(A(T");C) by the hypothesis on (By,C),
for £ =0,...,m —1, then

cony,

2

t1 tj—
($07§0 G@c Z Z f f )Gadtj_l...dtl
This means that

ﬁ ﬂ ﬂ ﬂ@ (05, (ge)) ™

j=2 OLEMJ( t,; EA(T’) =0
J t() ttj=s

ZZH“

Complementing (4.18)) with respect to €, we get the desired result.

Remark 4.21. 1. The canonical transform generated by an arbitrary
reqular phase function ¢ € P, is defined by the relations

cony,

ti—2

)Ga Cltjfl ...dty . (4.18)

O]

y = pe(z,m) = ¢ (z,m),

(:c,§)z<I>(,) —
S £ = ¢l (z,m).

2. Assume that the hypotheses of Theorem|4.20 hold true. Then WFE(u(t, s)),
(t,s) € Apr, k=1,2,3, consists of unions of arcs of bicharacteristics,
generated by the phase functions appearing in (4.14) and emanating
from points belonging to WFg. (gr), k =0,...,m —1, cf. [48,94,|110].

Corollary 4.22. The hypotheses on the spaces By, k =0,...,m—1, C, are

authomatically fulﬁlled for By = Hrtm—lzkerm—l=k(Rd) ¢ = gre(RY),
roeR, k=0,. — 1. That is, the results in Theorem and[g in

Remarku above hold true for the WFF olult, s)) wave-front sets, 7,0 € R,
k=1,2,3
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Chapter 5

Modulation spaces,
Gelfand-Shilov spaces and
pseudo-differential calculus

Time-frequency analysis is an interdisciplinary area of research, with branches
in pure and applied mathematics, physics and signal theory. It has one
root in the work by Wigner and Weyl on the mathematical foundations of
quantum mechanics from the 1930s. Exclusively, the theory of the short-
time Fourier transform and modulation spaces of scalar-valued functions and
tempered distributions is a very well developed theory of representation of
tempered distributions in the time-frequency (phase) space.

The standard reference about this topic is the well known book by K.
H. Grochenig [67].

In this chapter we recall some basic facts on modulation spaces, Gelfand-
Shilov spaces of functions and distributions and pseudo-differential operators
with symbols on Gelfand-Shilov classes (cf. [54-5860L62.(67.(71}80481}/89,/99,
108,[112,[114l[116/119]).

5.1 Classes of weight functions

Weights are used to quantify growth and decay conditions. For instance,
if wxz) = (1+]z])™, m € R and |f||re = sup,ega |f(z)w(r) < o, then
|f(z)] < C(1 + |z|)~™. If m > 0, then this condition describes the poly-
nomial decay of f of order m, whereas if m < 0, then f grows at most
like a polynomial of degree m. Combining this intuition with LP-spaces,
one obtains the weighted LP-spaces which are defined by the norm | f|» =
[fwllp = Sga | £ @) [Pw ()P dt.

A weight on R is a positive function w € L¥ (R%) such that 1/w €

loc

L (RY). If w and v are weights on R?, then w is called moderate or v-

loc
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moderate, if
w(z +y) < Cw(x)v(y), z,yeRY, (5.1)

for some constant C' > 1. The set of all moderate weights on R? is denoted
by Zr(R%). We notice that if the weight v is even and is fulfilled with
w =vand C = 1, and that v(x) > c for some c € (0, 1], then vy (z) = ¢~ lv(x)
satisfies the same properties, as well as vi(z) > 1.

The weight v on R? is called submultiplicative, if it is even, bounded from
below by 1 and holds for w = v and C' = 1. From now on, v always
denotes a submultiplicative weight if nothing else is stated. In particular,
if holds and v is submultiplicative, then it follows by straightforward
computations that
w(z)

C*l

o(9) <w(z +y) < Cw(x)u(y), 52)

v(x+y) <v@)v(y) and v(z) =v(—z) =1, =zyeRL
Submultiplicative weights occur in time-frequency analysis in the investi-
gation of twisted convolution, in the definition of “good windows” and spaces
of test functions, and in the construction of algebras of pseudo-differential

operators.

If w is a moderate weight on R, then by [120] and above, there is a
submultiplicative weight v on R? such that (5.1) and (5.2) hold true (see
also [67,/114,/116]). Moreover if v is submultiplicative on R%, then

1 <o(z) < el (5.3)
for some constant » > 0 (cf. [70]). In particular, if w is moderate, then
wlz+y) Sw@)e and el <w(z) <l oz ye R (5.4)

for some r > 0. Next we introduce suitable subclasses of &g, which are
adapted to the Gelfand-Shilov spaces that we consider in the sequel.

Definition 5.1. Let s > 0. The set Pp 4(RY) (ﬂ%s(Rd)) consists of all
we Z5(RY) such that

1
w(@+y) Sw@) e,z yeR?, (5.5)
holds true for some (every) r > 0.

By it follows that 9%,51 = Prs, = Pr when s1 < 1and sy < 1.
For convenience we set Z%(R%) = 229 (R?). For the analysis performed
in the last two chapters of this part we need more general classes of weight
functions.
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In similar ways as above, if 5,0 > 0, then Z; ,(R*?) (29 (R??)) consists
of all submultiplicative weight functions w on R?? such that

w(z +y,&+1) <w(z, e r(lyl =+l ) z,y,&,meRY, (5.6)

for some r > 0 (for every 7 > 0). In particular, if w € 2, ,(R*®) (20 ,(R*?)),
then

—r(l#l5 4E19) < (g, £) < ellal* HE?) (5.7)

for some r > 0 (for every r > 0). For more facts about weights, see [70].

5.2 Gelfand-Shilov spaces
Let h, s, sg, 0,00 € Ry, and let Sgh(Rd) be the set of all f € C*(R?) such

that
|27 0% f ()|

HfHSZh = Sup h|a+6|04!0,8!8

is finite. Here the supremum is taken over all o, 8 € Z% and z € R%.
Obviously S;’h(Rd) is a Banach space which increases as h, s and o

increase, and is contained in .%(R%), the set of Schwartz functions on R?. If
in addition s +o0 >1and sg + 09 =1

L(RY)  and U Saon(R
h>0
are dense in .7 (R%). Hence, the dual ( gh)’(Rd) of Sgh(Rd) is a Banach
space which contains ./ (R?).

The spaces S7(R?) and X7(R?) are the inductive and projective limits,
respectively, of Sgh(Rd) with respect to h. The space S7(RY) (X7(R%)) is
called the Gelfand-Shilov space of Roumieu type (of Beurling type, respec-
tively) of order (s, o). This implies that

SIRY) = | 87,(RY) and  XI(RY) = (] SI,(RY), (5.8)
h>0 h>0

and that the topology for Sg(]Rd) is the strongest possible one such that
each inclusion map from 87, (R?) to S7(R?) is continuous.

The Gelfand-Shilov distribution spaces (S7)'(RY) and (27)(R%) are the
projective and inductive limit respectively of (S7,)(RY). Hence

(S2Y(RY) = [V(82,)(RY) and  (2)'(RY) = | J (S RY). B
h>0 h>0

We have that (S7)/(R?) and (£7)'(R%) are the topological duals of S7(R?)
and X7(R%), respectively (see [97]).
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We also set Ss(RY) = S$(RY) and Z3(RY) = X$(R9), and similarly for
their distribution spaces.

The classes S7(R?) and related generalizations were widely studied, and
used in the applications to partial differential equations, see for example
[12,31,137,/74,93,99]. We recall the following characterisations of S7(R%).

Proposition 5.2. Let s,0 > 0, p € [1,0] and let f € .#(RY). Then the
following conditions are equivalent:

(1) feSIRY) (feBI(RY)) .
(2) For some (every) h > 0 it holds

2% flloe < nlelats  and ’|§'BfHLp <hlPlgle o Be Zﬂlr.

(8) For some (every) h > 0 it holds

|z f| e S Bt and 0P f|e < WP, ezl

(4) For some (every) h > 0 it holds

12208 f(x)| e < BITPla* B17, o, B e Zl.
(5) For some (every) h,r > 0 it holds
1
le" 1= 0% fl e < Wl (a7 e Zd.
(6) For some (every) r > 0 it holds
1 ~ 1
If e <o and |f-e 1| < 0.

Remark 5.3. Any of the conditions (2)-(6) in Proposition[5.9 induce the
same topology for ST(R?) and X7 (R?).

Remark 5.4. Let s,0 > 0. Then, XI(R%) is a Fréchet space with semi-
norms | - |so,, h > 0. Moreover, S?(RY) # {0} if and only if s + 0 > 1,
and $J(R?) # {0} if and only if s + o =1 and (s,0) # (3,3). If ¢ >0 and
s+o =1, then

ZI(RY) € SI(RY) € BT (RY) = S (RY)
c S (RY) = (BZ2)'(RY) < (87)' (RY).
If in addition (s,0) # (3, 3), then

(89)'(RY) = (Z9)'(RY).
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The Gelfand-Shilov spaces are invariant and possess convenient map-
ping properties under several basic transformations. For example they are
invariant under translations, dilations, and under (partial) Fourier transfor-
mations.

The Fourier transform .# on .#(R?) extends uniquely to homeomor-
phisms on .#/(R%), S/(RY) and X’ (R?), and restricts to homeomorphisms
on S;(R%) and X,(R%), and to a unitary operator on L?(R%).

Some considerations later on involve a broader family of Gelfand-Shilov
spaces. These spaces will be used in Chapters [9] [I0] and More precisely,
for s;,0; € Ry, j = 1,2, the Gelfand-Shilov spaces Sgl5?(R4+42) and
YIg2(R4+d2) consist of all functions F' e C®(R%+92) such that

|m‘f‘1x5‘265} 8§§F(a:1,x2)| < hlonteatBitfal g 19145152 5,191 8,12 (5.9)
for some h > 0, respectively for every h > 0. The topologies, and the duals

(801702)/(Rd1 -‘rdg) and (Eol,ag)l(Rdl-l-dg)

51,82 51,52

of

So1:02 (Rdl +d2) and 291,92 (Rdl +d2>

851,82 51,82 )

respectively, and their topologies are defined in analogous ways as for the
spaces S7(RY) and ©7(R%) above.

The following proposition explains mapping properties of partial Fourier
transforms on Gelfand-Shilov spaces, and follows by similar arguments as in
analogous situations in [64]. The proof is therefore omitted. Here, .71 F' and
FoF are the partial Fourier transforms of F'(z1,x2) with respect to x; € R%
and o € R%, respectively.

Proposition 5.5. Let sj,0; >0, j = 1,2. Then, the following holds true:
(1) The mappings F1 and Fo on & (RU+%) restrict to homeomorphisms

F + ST (Rdl +d2) — §51,02 (Rdl +d2)

81,82 01,52

and

Fo 801,02(Rd1+d2) _,301,82(Rd1+d2)'

81,82 51,02

(2) The mappings F, and Fo on .7 (RU+92) are uniquely extendable to
homeomorphisms
T (801,02)/(Rd1+d2) N (881,02>/(Rd1+d2)

51,52 01,52

and

22 . (Sol,ag)l(Rdl—‘rdg) s (801782)/(Rd1+d2).

51,82 51,02
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The same holds true if the S&l o2 (RM*92)-spaces and their duals are
replaced by the corresponding 2;’;’;’; (Rd1+d2) -spaces and their duals.

The proof of the next result can be found in [28].

Proposition 5.6. Let sj,0; > 0, j = 1,2. Then the following conditions
are equivalent.

(1) F e SRG RN (Fe S B@RIS)

(2) For some r >0 (for every r > 0) it holds

1 1
|F(z1,22)] < e (@1l Haa52) g Ia (51752” < |gl\01 +|§2‘02)

We notice that if s; + o < 1 for some j = 1,2, then Sgl 72 (R41792) and
Yole2 (RU+d2) are equal to the trivial space {0}. Likewise, if s; = o = 3

for some j = 1,2, then X7172(R%+d2) = {0}.

5.3 The short-time Fourier transform and Gelfand-
Shilov spaces

The short-time Fourier transform measures the time-variant frequency con-
tent of a distribution f using a well-localized and smooth window ¢ €
L*(R%) centered at the origin of R, In order to move it to some point
z = (2;€) € R?? one uses time-frequency shifts 7(z), i.e. applying first the
translation operator T,¢(y) = ¢(y — x) and then the modulation operator
Meo(y) = €6 (y), thus 7(z) = McTy.

Definition 5.7. Let ¢ € .Z(RY) be fized. For every f € .7’ (RY), the short-
time Fourier transform Vy f is the distribution on R2¢ defined by the formula

(Vof)(@,8) = Z(fo(- —2))(&) = (f.0(- —2)e’ ). (5.10)

We observe that for regular distributions and suitable intangibility con-
ditions, the short-time Fourier transform can be expressed as

(Vo) (@,€) = (2m) % j f@)dly — D ¥ dy = (f.n(z)¢y (511

It provides a description of f in which time and frequency play a symmetric
role. In general, the bracket (-, -) extends the inner product on L?(R%) to
any dual pairing between a distribution space and its space of test functions,
for instance ¢ € .7 (R%) and f € .%/(R%), but time-frequency analysis often
needs larger distribution spaces.

Next we recall some mapping properties of Gelfand-Shilov spaces under
short-time Fourier transforms.



Modulation spaces 87

The short-time Fourier transform is unitary L?(R%) — L?(R??) provided
]2 = 1, a topological isomorphism . (RY) — .#(R?4), and extends to a
topological isomorphism .#’(R%) — .#/(R??). The adjoint operator is given
by

Vig=(2m)2 H 2, &) MTyip dade, (5.12)
R2d

where V; g in general is interpreted as the functional

(Vg = (2m)8 f f o0, ) (MeTop, 7y dade, ~e F[RY.  (5.13)
RQd

The next result can be found in [67].

Proposition 5.8. Suppose that ¢, o € L?(RY), such that {p, ¢ # 0. Then,
for all f e L*(R?)

f= o Vol

(¢ ¢>
We recall that if T'(f, ¢) = V4 f when f,¢ € Sl/Q(Rd), then T is uniquely
extendable to sequentially continuous mappings
T :S[(RY) x Sy(RY) — S[(R*) () 0™ (R*),
T :S(RY) x Sy(RY) — S((R™),

and similarly when Sy and 8! are replaced by X, and X, respectively, or
by . and ., respectively (cf. [35,120]). We also note that Vyf takes the
form

Vof(2,€) = ZJ )l — e dy E10)
when f € LP

(w)(Rd) for some w € Zr(RY), ¢ € £1(RY) and p > 1. Here
L’gw)(]Rd), when p € (0,00] and w € Pg(RY), is the set of all f € LT (RY)
such that HfHL? = | f-wlrr is finite.

The following characterizations of the S¢; o2 (R4 +d2) ¥371:72(Ré1+d2) and
their duals follow by similar arguments as in the proofs of Propositions 2.1
and 2.2 in |123] .

Proposition 5.9. Let s;,0; > 0 be such that s; +0; > 1, j = 1,2. Also let
¢ € STLI2(RU+AN0. Then the following properties hold true:

(1) f e SLT2(RU+) if and only if

Vo f(z1,22,6,8) S e o] T a2 4161 [T +6a]72) (5.14)

holds true for some r > 0.
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(2) If in addition ¢ € X392 (RA+42)\0, then f e X702 (RUT92) if and only
if
R
Vo f (21, 2, €1, &2)| < el Fleal 2 HG [T HIE[72) (5.15)

holds true for every r > 0.

A proof of Proposition can be found in e.g. [74] (cf. [74, Theorem
2.7]). The corresponding result for Gelfand-Shilov distributions is the fol-
lowing improvement of [120, Theorem 2.5]. See also [123].

Proposition 5.10. Let sj,0; > 0 be such that s; +0; > 1, j =1,2. Also
let ¢ € SILTF(RU+RNO and let f e (STL02) (RUF42), Then the following
properties hold true:

(1) fe(S357) (RNF%), if and only if
1 N T
Vi f (21, 22, &1, &2)| < emlloal™ Flazl®2 Ha] 1 +e]72) (5.16)
holds for every r > 0.

(2) If in addition ¢ € LILZ2(RA+N0, then f e (D70:02) (RU+2) | if and
only if

1 1 1 1
Voo f (1, T2, &1, &)| S erllorlT Hea 22 HaIT +]62]72) (5.17)
holds for some r > 0.
Remark 5.11. We notice that any short-time Fourier transform of a Gelfand-
Shilov distribution with window function as Gelfand-Shilov function or even
a Schwartz function makes sense as a Gelfand-Shilov distribution.
In fact, let
Ty : (87)'(RY) x (87)(RY) — (87)'(R*),
and
Ty : (87) (R*) — (87 (R*)
be the continuous mappings
Ti(f,0) = f®d, f.de (SR,

and

(IF)(z,y) = Fly.y —x), Fe (S [RY).
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Also let (FoF)(x, -) be the partial Fourier transform of F(x,y) with respect
to y € R, which is continuous from (S7)'(R?) to (S257) (R?4). Then

Vof = (F20TyoTh) (f, ). (5.18)

By defining V,f as the right-hand side of (5.18)) when f,¢ € (S7)'(R?), it
follows that the map
(f,0) = Vo f (5.19)

is continuous from (S7)(R%) x (S7)(R?) to (S5) (R??).
In the same way (5.19) extends uniquely to a continuous map from
(Z2)'(RY) x (22)'(RY) to (225)'(R*).

5.4 Function classes with Gelfand-Shilov regular-
ity

The next result shows that for any w € Zg(R%) one can find an equivalent
weight wy which satisfies suitable Gevrey regularity.

Proposition 5.12. Let w € Zx(RY) and s > 0. Then there is an wy €
Pi(RY) A CP(R?) such that the following properties hold true:

(1) wo = w.
(2) |0%wo(x)| < hllatswy(z) = hlelal*w(z) for every h > 0.

Proof. We may assume that s < 1, such that s # 1/2. It suffices to prove
that (2) hold true for some h > 0. Let ¢g € 35 (R?)\{0}, and let ¢ = |¢o]>.
Then ¢ € ¥5_(R?), giving that

1
0% (z)| < Blele el g1,
for every h > 0 and » > 0. From now on we fix the value of r to the one

given in (5.4). Now let wp = w * ¢.
We have

|0%wo ()| =

[ wtmieora -
Rd
< h'o‘a!sf w(y)e_dx_y'm dy
Rd
%
< h'aa!‘sj wla + (y —z))e eV gy
Rd

1
< h'aa!sw(li)f e~ sle—yl1=s dy = h|a|a!5w(x),
Rd
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where the last inequality follows from ([5.4)) and the fact that, for any =,y €
1 a1
RY, erle=vle=rle=vl=* < e=rlz=vl"=*  This gives the first part of (2).
The equivalences in (1) follows in the same way as in [120]. More pre-
cisely, by (5.4]) we have

o) = [ wl)ole—)dy = [ wlo+ (=)ot~ dy
w(x eyl (z — = w(x).
<o) [ P ol - y)dy = )
In the same way, gives
o) = [ wl)ole—)dy = [ i+ (=)o —v) dy

2w [ o ) dy = wlo),

and (1) as well as the second part of (2) follow.

The cases where s = % or s = 1 follow by using different ¢g € X

e

and

1
¢ € X2 respectively, using the fact that the estimate on ¢y holds for every
r > 0. O

A weight wy which satisfies Proposition (2) is called elliptic or s-
elliptic.

Proposition 5.13. Let w € Z5(R?*?) and s,0 > 0. Then there exists a
weight wg € Pr(R21) A C*(R?Y) such that the following is true:

(1) wo = w.
(2) For every h > 0,

1080 wo(, €)] < WOt lat? Bwy (z, €) = hloHFlat? 1w (a, €).

Proposition [5.13] is equivalent Proposition In fact, by Proposition
5.12, we have that Proposition [5.13| holds with s = . Hence, Proposition
implies Proposition On the other hand, let sg = min(s, o). Then
Proposition [5.12| implies that there is a weight function wp = w satisfying

020 wo(, €)] < hloTPl(al Bl wo(x, &)
< hlotBlate g1swy (, €),

giving Proposition [5.13]
An important class of Gevrey type symbols is the following.



Modulation spaces 91

Definition 5.14. Let s > 0 andw € P(R?). The class r (RY) (Fg;) (RY))
consists of all f € C*(RY) such that

D f(z)| < h¥at*w(z), =eRY (5.20)
for some h > 0 (for every h > 0).

Evidently, by Proposition it follows that if s < 1, the family of
symbol classes in Definition [5.14] is not decreased when the assumption w €
25 (R%*) is replaced by the more restrictive assumption w € Zg (R?*?) or
by w e L@%’S(Rm).

By similar arguments as in the proof of Proposition [5.12] we get the
following analog of Proposition 2.3.16 in [88].

Proposition 5.15. Let s > 1/2, w € Z5(R*), and ¢ € X4(R?*?). Then
w * ¢ belongs to F((fs).
The following definition is motivated by Lemma 2.6.13 in [8§].

Definition 5.16. Let s > 1, w e Zg(R?) and 9y = 1 + |logw|. Then a is
called comparable to w with respect to s = 1 if

(1) ||a —logw|ro < o0.

(2) ae FS%)(]R{d) and 0%a € Fgl)(Rd), when |a| = 1.
Proposition 5.17. Let w,v € Zg(R?) be such that v is submultiplicative
and w is v-moderate. Also let

vi(z) =1+ |logv(x)] and wi(z)=1+ |logw(x)|.
Then vy is submultiplicative and wy is vi-moderate, satisfying (b.1)) with
1+logC =1 in place of C' = 1.
Proof. If w(x + y) = 1, then the second inequality in ([5.2)) gives

wi(z+y)=1+logw(z+y)
<1+ logC + logw(zx) + logv(y)
< (14 1logC)(1 4+ |logw(x)|) (1 +logv(y))
< (1+10gC)wn () w1 (y).
If instead w(z + y) < 1, then the first inequality in gives

wi(zr+y) =1-logw(z +y)
<1+ logC —logw(x) + logv(y)
(1 +1ogC)(1 + |logw(x)|) (1 + logv(y))
(1 +log C) wi(z) v1(y),
which implies that wy is vi-moderate with the stated constants.

By choosing w = v and C' = 1, we deduce the submultiplicativity for vy,
and the result follows. O

<
<
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Lemma 5.18. Let s > 1, w € Z5(RY) and 99 = 1 + |logw|. Then the
following properties hold true:

(1) There exists an elliptic weight wy € ZPp(RY) N r{ (RY) such that
w=uwy, logwyelWIRY) and 1+ |logwo|e PpR?) AT (RY).

(2) There exists an element ¢ which is comparable to wy with respect to s.

Proof. The assertion (1) follows by letting wy be the same as in Proposition
Indeed, the needed estimate is trivially true when no derivatives are
applied on log wy. If instead some derivatives have been applied, then one
ends up with certain numbers of fractions of the form 0“wg/wp, which are
multiplied and summarized to each others. Using the estimates in Propo-
sition [5.12] and Fda di Bruno’s formula then gives the needed estimates.
Where (2) follows by letting a = logwy and using the ellipticity of wy. O

Remark 5.19. For a weight function wy, S“0)(R?%) denotes the set of all
smooth a which satisfies

|0%a| < Cawo, for some Cy > 0. (5.21)
It is clear that F(()i‘;O)(RQd) c r&“O)(RM) c Swo)(R24). In the sequel, for the

weights w1, we and wsz involved in the definition of F(()wl)(R2d), Fng)(RZd)

and S©3)(R??) we always assume that they belong to Pg (R??), @%’S(Rm)
and P (R??) El, respectively. Explicitly, they should satisfy

1 1
wi(X +Y) (X)) wp(X +Y) s wa(X)e?*, (5.22)

and w3(X +Y) Sws(X)(1 + Y)Y, (5.23)

for some r1 >0 and N > 0, and every ro > 0.

5.5 Anisotropic symbol classes

Next we introduce function spaces related to symbol classes of the pseudo-
differential operators we will consider in the sequel. These functions obey
various conditions of the form

0200 a(x,€)| < WPl Bliw(x, €), (5.24)

on the phase space R??. For this reason we consider norms of the form

o307 alz, €|
lor = su “u , 5.25
I IIFMh aﬁegi (@ﬁed <ha+6|a!06!5w(x,§) (5:29)

indexed by h > 0.
' 2(R?®) denotes the set of polynomially moderate weights on R?? satisfying (5.23)
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Definition 5.20. Let s, o and h be positive constants, let w be a weight on
R2e and let

wn (3, €) = erllal T HIE?),

(1) The set F?j);h(RQd) consists of all a € C*(R*?) such that |a|pe.sn in
(@)

(5.25) is finite. The set T35 (R2) consists of all a € C*(R*) such
that || po.sin is finite for every r > 0, and the topology is the projective
(wr)

limit topology of F?wsr)h (R24) with respect to r > 0.

(2) The sets F‘(Tws‘) (R24) and I‘Z;S');O(Rw) are given by

T @) = [ JTT R and TTR™) = () T7" (R,
h>0 h>0

and their topologies are the inductive and the projective topologies of
FE‘;)S);}L(RM) respectively, with respect to h > 0.

Furthermore we have the following classes.

Definition 5.21. Fors;,0; >0, j = 1,2, and h,r > 0 and f € C*(Ru+d2)
let

(5.26)

0t 032 f(x1, @
|\f|\<h,r)zsup< 03202 (1, 22)] )

1 1
h|a1+a2|a1!01a2!02e7’(\$1\Sl +lz2|%2)

where the supremum is taken over all oy € Z‘il,ag € Z‘f,xl e R™ and
X9 € R4z,

(1) 505 (RUF9) consists of all f € CP(RDT%2) such that | f| ) is finite
for some h,r > 0.

(2) TIV72 (RA+42) consists of all f € C®(R1T92) such that for some h > 0,

51,523

”f”(h,r) 18 finite for every r > 0.

(3) TT20(RE+EY consists of all f € C®(RUT%2) such that for some r > 0,
I fll(h,ry is finite for every h > 0.

(4) Fgllv’;Q;;(?(Rlerd?) consists of all f € C®(RUT4) such that | f||(sr) is finite
for every h,r > 0.

In order to define suitable topologies of the spaces in Definition let
(T893 (hry (RY1H92) be the set of f € C®(R¥M792) such that | f||,) is finite.
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Then (I'Z):57) (h,r) (R4T9) is a Banach space, the sets in Definition are
given by

FUl,Gz(Rlerdz) _ U (F01702)(h7r)(Rd1+d2)’

S$1,52 51,52
h,r>0

Lgo2o(RA*E) = | (ﬂ(FZi,’sZZ)(h,m (RE2)

)
h>0 \r>0 )

DgsO(RA ) = | (ﬂ (D792 oy (RDH2)

r>0 \h>0

and

FU1,02;0(Rd1 +d2) _ ﬂ (1—‘01702)(}1,7") (Rd1+d2),

51,82;0 81,582
h,r>0

and we equip these spaces by suitable mixed inductive and projective limit
topologies of (I'S}67) (5 (R¥T42).

5.6 Modulation spaces

Modulation spaces measure the decay of the Short-time Fourier transform
on the time-frequency (phase space) plane. These spaces were introduced by
Feichtinger in the 80’s [55], for weight of sub-exponential growth at infinity,
sometime called weights of infinite order.

Before giving the definition of modulation spaces we recall the definition
of quasi-Banach spaces. A functional f — | f|% on a (complex) vector space

2 is called a quasi-norm of order r € (0, 1], or an r-norm, if | f|z = 0 for
all f € # with equality only for f = 0,
I+l <277 (Ifl2 + lgl0)  fog€ B, (5.27)
and
le- fllz =lcl-fl2 fe#, ceC. (5.28)

By Aoki and Rolewi¢ in [6,[101] it follows that there is an equivalent quasi-
norm to the previous one which additionally satisfies

If + 9l < 1flz + gl fge®. (5.29)

From now on we suppose that the quasi-norm of % has been chosen such
that both and hold true.

The space Z above is called a quasi-Banach space or an r-Banach space,
if the topology is defined by | - | %, and that 2 is complete under this
topology.
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Definition 5.22. Let ¢ € ¥1(R9)\0, p, q € (0, 0] and w € P (R??) be fived.
Then the modulation space Mf%(Rd) consists of all f € ¥4 (RY) such that

g = ([ (], Wet@outwop az)ae) " <0 530)

(with the obvious modifications when p = o and/or ¢ = ). Evidently,
| flazpg s given by
IFIagps = [Hpaoplio,  Hpop() = Vaf (€Ol (5.31)
We set M? . = MP?, and if w = 1, then we set MP4 = MP? and MP =
(w) (w) (w)
MP
(W)’

The modulation spaces thus quantifies the asymptotic decay of f €
Z"(R?) in the time and frequency variables.

The following proposition is a consequence of well-known facts in [5563)

67,(122]. Here and in what follows, we let p’ denote the conjugate exponent
of p,i.e.

o0 when p € (0,1]
p = p%l when p € (1, 0)
1 when p = 0.

Proposition 5.23. Let p,q,p;,qj,r € (0,0] be such that r < min(1,p, q),
i o= 1,2, let w,wi,wo,v € Pp(R??) be such that w is v-moderate, ¢ €
M, (Rd)\O, and let f € ¥4 (RY). Then the following properties hold true:

(1) fe Mpq(]Rd) if and only if (5.30) holds, i. e. M(pg(Rd) is independent of

the chozce of . Moreover, Mﬁfﬁ 1s an r-Banach space under the r-norm

in (5.30), and different choices of ¢ give rise to equivalent r-norms. If

in addition p,q = 1, then M&%(Rd) is a Banach space.

(2) If p1 < p2, @1 < q2 and wy < wy, then
Z1(RY) Mt (RY) M2 P (RY) < 4 (RY).

(w1 (w2)

Remark 5.24. For modulation spaces of the form Mg:j with fixed p,q €

[1,00] the norm equivalence in Proposition [5.25(1) can be extended to a
larger class of windows. In fact, assume that w,v € Pg(R*)) with w being
v-moderate and

1 <r<min(p,p,q,q)-
Let ¢ € M(Tv)(Rd)\{O}. Then, a Gelfand-Shilov distribution f € ¥} (R%)
belongs to M{Z’; (RY), if and only if Vs f € L@q) (R2?). Furthermore, different
choices of ¢ € M, (RH\{0} in HV¢fHLz(aq) give rise to equivalent norms. (Cf.

Theorem 2.6 in [121)].)
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In essential parts of our analyses in Sections and it is convenient
to use symplectic formulations of modulation spaces with functions and dis-
tributions defined on the phase spaces R??. They are defined in the same
way as the modulation spaces above, except that the short-time Fourier
transforms in are replaced by symplectic analogies in the definition
of modulation space norms.

In fact, let o be the standard symplectic form on R?¢, i.e. it should
satisfy

G(Xa Y) = <y>§> - <.7}, 77>7 X = (.%',f) € dea Y = (%"7) e R (5'32)

(Here observe the difference between the notation o for the symplectic form
in (5.32)), and the positive number o used as parameter for the Gelfand-

Shilov spaces, e.g. in Sections and ) If
{e1,...,€4,€1,--.,€4} (5.33)
is the standard basis of R??, then
o(ej,er) =0, o(ej,ex) =05, and o(gj,e5) =0 (5.34)

when j, k € {1,...,d}. More generally, a basis of R?? which satisfies
is called a symplectic basis of R?? to the symplectic form o. Evidently,
the standard basis of R2 is a symplectic basis, and is sometimes called the
standard symplectic basis of R2?.

Let ¢ € ¥1(R?)\0. Then the symplectic Fourier transform and symplec-
tic short-time Fourier transform of a € L'(R??) are defined by the formulae

(Foa)(X) = 7~ f o(Z)e2oX2) 4z (5.35)
RQd
and
(Vya)(X,Y) = 7~ f W 2)5(Z V)29 XD) a7 (5.36)
RQd

By straight-forward computations, using Fourier’s inversion formula, it fol-
lows that Z, = T'o (F ® (# 1)), when (Ta)(x, &) = a(é, x), F2 and

(Va)(X,Y) = 2%(Vya) (2, €, —2n,2y), X = (z,€) eR*, Y = (y,n) e R*.

(5.37)
In particular, all continuity and extension properties valid for the usual
Fourier transform and short-time Fourier transform carry over to their sym-
plectic relatives. For example, .%, is continuous on Ss(R??), and extends
uniquely to a homeomorphism on S’ (R??), and to a unitary map on L?(R?9),
since similar facts hold for .%.
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For any p,q € (0,0], w € Zg(R?*? x R??) and a € X} (R??), let HaHMa(o%
be defined by (5.31)) after Vf is replaced by Vya. Then the symplectic
modulation space M} (R24) consists of all a € ¥} (R??) such that HaHqu) is
finite.

By (5.37)) it follows that
NS (R2) = ML (RH) when w(r,€,yn) = wo(a, & ~29, 2y).

(w) (wo

Hence, the symplectic modulation spaces are merely other ways to formulate
the modulation spaces considered in the first part of the subsection.

5.7 A broader family of modulation spaces

In Chapter [l we consider mapping properties for pseudo-differential opera-
tors when acting on a broad class of modulation spaces which are defined by
imposing (quasi-)norm conditions on the involved short-time Fourier trans-
forms of the forms given in the following definition. (Cf. [54-58,60./62].)

Definition 5.25. Let # < LfOC(Rd) be a quasi-Banach space of order r €
(0,1], or an r-norm, and let v e Pg(R?). Then % is called a translation

invariant Quasi-Banach Function space on R?, or invariant QBF space on
R?, if the following conditions are fulfilled:

(1) If e R% and f € B, then f(- —x) € B, and

17C = 2)lz < v(@)]f]z- (5.38)

(2) If f,g e LT _(RY) satisfy g€ B and |f| < |g|, then f € B and

loc

[z < llgllz-

Note that a quasi-Banach space is a complete quasi-normed vector space.

Definition 5.26. Assume that A is a translation invariant QBF-space on
R w e Pp(R%*), and that ¢ € L1(RH)\0. Then, the modulation space
M (w, B) consists of all f € ) (R?) such that

1 F 0t (.2 = Vo f wllz
18 finite.

If v belongs to P ,(R%) (W%ys (RY)), then 4 in Definition @ is called
an invariant BF-space of Roumieu type (Beurling type) of order s.

It follows from (2) in Definition that if f € # and h € L™, then
f-heB, and

If - hlz < 1 flzlh] e (5.39)
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If r = 1, then £ in Definition [5.25| is a Banach space. The space £ in
Definition is called an invariant BF-space (with respect to v) if r = 1,
and Minkowski’s inequality holds true, i.e. f * ¢ € % when f € & and
@Y e El(Rd), and

Ifsols < U flalely, . fe@ peTa®). (540

Example 5.27. Assume that p,q € [1,0], and let LY (R??) be the set of
all f e LY (R*) such that

ige = ([, ([ 156 opaz) " a) "

if finite. Also, let L5(R??) be the set of all f € L} (R??) such that

loc

oo = ([ (] terrag)™ ar)™”

is finite. Then, it follows that LY'" and LYY are translation invariant BF-
spaces with respect to v = 1.

We observe that M(pu’)‘i(Rd) = M(w, %) when % is equal to L}7(R??)
from Example It follows that many properties which are valid for the
classical modulation spaces also hold for the spaces of the form M (w, %). For
example we have the following proposition, which shows that the definition
of M(w, %) is independent of the choice of ¢ when Z is a Banach space.
The completeness assertions follows from |96], and the other parts follow by
similar arguments as in the proof of Proposition 11.3.2 in [67], (see also [96]
for topological aspects of M (w, A)).

Proposition 5.28. Let & be an invariant BF-space with respect to vy €
Pp(R??). Also let w,v e Pg(R?*?) be such that w is v-moderate, M (w, B) is
the same as in Definition and let ¢ € M(lvov) (RY\O and f € % (RY).
Then M(w, %) is a Banach space, and f € M(w, #) if and only if Vyfw €
AB. Moreover different choices of ¢ gives rise to equivalent norms in M(w, B).

We refer to [54-58,60,62,63,/67,(102,|122] for more facts about modu-
lation spaces. For translation invariant BF-spaces we make the following
observation.

Proposition 5.29. Assume that v e Zg(R?Y), and that A is an invariant
BF-space with respect to v such that holds true. Then, the convolution
mapping (o, f) + @ * f from CP(RY) x B to B extends uniquely to a
continuous mapping from L} \(RY) x % to B, and holds true for any

(v)
fePB and pe L%U)(Rd).
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The result is a straightforward consequence of and the fact that
Y1 is dense in L%U .

The quasi-Banach space 4 above is, usually, a mixed quasi-normed
Lebesgue space, given as follows. Let E be the ordered basis {ey,...,eq} of
R9. Then the ordered basis E' = {¢], ..., €/} (the dual basis of E) satisfies

(ej, €y =2mb;, forevery j k=1,....d

The corresponding parallelepiped, lattice, dual parallelepiped and dual lat-
tice are given by

H(E)={$1€1+"'+$d€d; (xlv"'axd)ERd7 ngk’gla k‘:l,...,d},
Ap = {Gier + -+ Jaeas (us- -, ja) € 27},

K(E') = {€1€) + -+ &gely; (€1, &) eRY, 0< & <1, k=1,...,d},
and

= Aw = {ney +- -+ wey; (u,.. ) € 27},

respectively. Note here that the Fourier analysis with respect to general
biorthogonal bases has recently been developed in [103].

We observe that there is a matrix T such that eq,...,eq and €],. .., €
are the images of the standard basis under T and T = 27(Ty 1)t, respec-
tively.

In the sequel we let

max ¢ = max(qq,...,qq) and ming = min(qi,...,qq)

when q = (g1, . .,q4) € (0,00]%.

Definition 5.30. Let E be an ordered basis of R?, p = (p1,...,pq) € (0,00]¢
and r = min(1,p). If f e L7 (R?), then HfHLg is defined by

loc
I£lze = lga—1llLraw)
where g(zx), 2z € R7F k =0,...,d — 1, are inductively defined as

go(xl, o ,:L'd) = \f(xlel + -+ $d€d)|,
and

9k(2k) = |ge—1(- 5 z6) |l rery, k=1,....,d—1

The space L%, (R?) consists of all f € L}, (R?) such that HfHLz;: is finite, and

loc

is called E-split Lebesgue space (with respect to p).
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For the next definition we recall that o(X,Y’) denotes the standard sym-
plectic form on the phase space (cf. (5.32))).

Definition 5.31. Let E = {eq,...,eaq} be an ordered basis of R** and let
Ey ={e1,...,eq}. Then Ey is called a phase split of E, if

o(ejex) =0, o(ej,eqer) = —2m0k, and o(edtj,earr) =0
when j, ke {1,...,d}.

If (5.33) is the standard basis of R?? and eq; = 27e; for j € {1,...,d},

then (5.34) shows that {e1,...,eq} is a phase split of {eq, ..., e24}.
The following definition takes care of our most common QBF-spaces.

Definition 5.32. The space % is called a normal QBF-space (on R??) if it is
either an invariant BF-space on R?*? or % = L%(de) for some p € (0, 0]??
and phase split basis E of R2?.

5.8 Pseudo-differential operators with symbols on
the Gelfand-Shilov classes

We use the notation M(d,2) for the set of d x d-matrices with entries in
the set Q. Let s > 1/2, a € S4(R??), and A € M(d,R) be fixed. Then, the
pseudo-differential operator Op4(a) is the linear and continuous operator
on Sy(R?) given by

(Op4(@)1)(@) = (2) [ aler — Ala = ).8) Fw) = g (5.41)
R2d
when f € S;(R?). For general a € Si(R??), the pseudo-differential operator

Op4(a) is defined as the continuous operator from Ss(R%) to S’ (R9) with
distribution kernel given by

_d
2

Koale,y) = @0) 5 (F3 )@ — Alw —yla—y).  (5.42)

Here .7, F is the partial Fourier transform of F(z,y) € S%(R??) with respect
to the y variable. This definition makes sense, since the mappings

Fo and F(x,y)— F(z — Alx —y),y — ) (5.43)

are homeomorphisms on S/(R??). In particular, the map a — K, 4 is a
homeomorphism on S%(R?9).

Remark 5.33. For any K € Si(R%*%)  let Ty be the linear and continuous
mapping from S(R%) to S.(R9%), defined by the formula

(T f, 9)L2(Rd2) = (Kag®7)L2(Rd2+d1)' (5.44)
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It is well-known (see e.g., [29,90]), that the Schwartz kernel theorem also
holds in the context of Gelfand-Shilov spaces.

In fact, let L(V1, V) be the set of linear continuous mappings from the
topological vector space Vi to the topological vector space Vo. Moreover, if
V; are quasi-Banach spaces, then | - ||zq, 1) denotes the quasi-norm in
LV, Va). We also set L(V) = L(V, V).

If A € M(d,R), then the mappings K — Tg and a — Opy(a) are
homeomorphisms from S.(R??) to L(Ss(RY), S.(RY)). Similar facts hold true
if Ss and S, are replaced by X and X, respectively (or by % and &',
respectively).

As a consequence of Remark it follows that for each a; € S/(R??
and A, Ay € M(d, R), there is a unique as € S,(R??) such that Opy, (a1) =
Opa,(az). The relation between a; and as is given by

Opa,(a1) = Opy,(a2) & as(x,§) = M= 42PeDeg, (2. ¢),
(5.45)

(cf. [80]). Note here that the right-hand side makes sense, since it is equiv-
alent to (&, ) = e(A=A)@Oq, (¢, ), and that the map a — X478 is
continuous on S, when A € M(d,R).

Let A e M(d,R) and a € S(R??) be fixed. Then a is called a rank-one
element with respect to A, if the corresponding pseudo-differential operator
is of rank-one, i. e.

Opyla)f = (f, f2) f1, f e Ss(RY), (5.46)

for some f1, fo € S,(R?). By straightforward computations it follows that
(5.46|) is fulfilled, if and only if a = (27r)gWﬁ f,» Where Wﬁ" 7, 1t the A-
Wigner distribution defined by the formula

Wi o (2,6) = F(filz + A) fale — (Ig — A)))(E), (5.47)

which takes the form

Wi g, (2,€) = (2m)7% fRd filz + Ay) fala — (I — A)y)e YO dy,

when f1, f2 € Ss(R?). Here I; € M(d,R) is the identity matrix. By combin-
ing these facts with (5.45)) it follows that
A i{(A1—A2)Dg,Dad1ir A
Wfl?f2 = Xl >Wf171f2’ (5.48)
for each f1,fo € SL(RY) and Aj, Ay € M(d,R). Since the Weyl case is

particularly important, we set Wﬁ 7, = Wi 5, when A = %Id, i.e. Wy 5, is
the usual (cross-)Wigner distribution of f; and fo.
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For future references we note the link

d
2

(CL, W;}f)LQ(RQd),
aeSI(R*) and f,geS,(RY) (5.49)

(Opa(a)fs 9)r2may = (2m)~

between pseudo-differential operators and Wigner distributions, which fol-
lows by straightforward computations (see also e. g. [124]).

Next we discuss the Weyl product, the twisted convolution and related
objects. Let s = 1/2 and let a,b € S.(R??). Then the Weyl product a#b
between a and b is the function or distribution which fulfills Op"”(a#b) =
Op"(a) o Op™(b), provided the right-hand side makes sense as a continuous
operator from Ss(R?) to S(R?). More generally, if A € M(d,R), then the
product # 4 is defined by the formula

Opa(a#ab) = Opy(a) o Opa(b), (5.50)

provided the right-hand side makes sense as a continuous operator from
Ss(RY) to St (R?), in which case a and b are called suitable or admissible.

The Weyl product can also, in a convenient way, be expressed in terms
of the symplectic Fourier transform and the twisted convolution. More pre-
cisely, let s > 1/2.

Definition 5.34. The symplectic Fourier transform for a € Sy(R??) is de-
fined by the formula

(Fra)(X) = n fRQd a(Y)eoXY) gy, (5.51)

where o is the symplectic form given by

U(X7Y) = <ya£> - <$777>7 X = (l‘,f) € RQd? Y = (yﬂ?) € RQd'

We note that .Z, = T o (F ® (F71)), when (Ta)(z,¢) = a(2¢,2z). In
particular, .%, is continuous on S;(R??), and extends uniquely to a homeo-
morphism on S’(R??), and to a unitary map on L?(R??), since similar facts
hold true for .#. Furthermore, .%2 is the identity operator.

Let s > 1/2 and a, b € Ss(R??).

Then the twisted convolution of a and b is defined by the formula

[Vls%

(a %, b)(X) = <2> ’ me a(X = Y)b(Y)eXXY) gy, (5.52)

s

The definition of *, extends in different ways. For example, it extends to a
continuous multiplication on LP(R??) when p € [1,2], and to a continuous
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map from S, (R*?) x S(R*?) to S[(R*?). If a,b € S;(R*"), then a#b makes
sense if and only if a *, b makes sense, and then

a#b = (21) " 2a %y (Fob). (5.53)
We also remark that for the twisted convolution we have
Fola x5 b) = (Foa) %5 b = a %y (Fub), (5.54)

where a(X) = a(—X) (cf. |113,/119,/121]). A combination of (5.53) and

gives
Zo(a#b) = (21) 2 (Fwa) %o (Fyb). (5.55)

We use the notation MZ(’U’Jq) instead of M 53’ for p,q € [1,00], if the sym-
plectic short-time Fourier transform is used in the definition of modulation
space norm. That is, if ¢ € Z(R?)\{0} and w € Z(R?*? ® R??), then

M}(Zq) (R2) consists of all a € .7#’(R??) such that

qa/p 1/q

lalys = ( f (f Voa(X,Y)w(X, V)] dX) dY) < +oo.
(w) R2d R2d
The symplectic definition of modulation spaces does not yield any new
spaces. In fact, setting w(X,Y) = wo(X,—2n,2y) for X € R?>? and Y =
(y,n) € R?? it follows from the definition that J\/[Z’Jq) = M&Z) with equiva-
lent norms.

Next we recall some notions on Hérmander symbol classes, S(w, g), pa-
rameterized by the Riemannian metric g and the weight function w on the
2d dimensional symplectic vector space W (see e. g. [14}/16,78,[81}88}/115]).

The Hormander class S(w, g) consists of all a € C*(W) such that

N

lalld, ~ = ];))S(ggv(\ali(X)/W(X)) <,

where
|a?(X) = sup|a®)(X;Y1,..., V3],

and a® denotes the k" differential of a at X.
Here the latter supremum is taken over all Y1, ..., Y}, € W such that gx (Y;) <
1,j=1,...,k and |aff(X) is interpreted as |a(X)|.

We need to add some conditions on w and g. The metric g is called
slowly varying if there are positive constants ¢ and C' such that

Clgx <gy <Cgx, when X, YeW (5.56)

satisfy gx (X —Y) < ¢, and w is called g-continuous when (5.56)) holds with
w(X) and w(Y') in place of gx and gy, respectively, provided gx (X —-Y) < c.
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For the Riemannian metric g on W, the dual metric ¢g° with respect to
the symplectic form o, and the Planck’s function hy are defined by

9% (Z)= sup o(Y,Z)? and he(X) = sup gx (V)2
gx (Y)<1 9% (Y)<1

Moreover, if g is slowly varying and w is g-continuous, then g is called o-
temperate if there are positive constants C' and N such that

0v(2) < Cox(Z)(1+gr(X ~Y)V,  X.Y.ZeW, (5.57)

and w is called (o, g)-temperate if it is g-continuous and (5.57) holds with
w(X) and w(Y) in place of gx(Z) and gy (Z), respectively.

Definition 5.35. Let
lalsy = Op“(a)l z(r2ay, a€ 7 (R?).

The set s%(R??) consists of all a € .7'(R?*?) such that Op“(a) is linear and
continuous on L?(R%), or equivalently, the set of all a € %' (R??) such that
|a|sw is finite.

Remark 5.36. By Remark[5.33 it follows that the map a — Op™(a) is an
isometric bijection from s¥(R??) to the set of linear continuous operators
on L?(R%).

Remark 5.37. We remark that the relations in this section hold true after
Ss, 8\ and s = L are replaced by X, ¥/, and s > % respectively, in each

2
place.

Next we recall some algebraic properties and characterisations of rﬁ“’) (R24)

and F(()ijs) (R2?), and begin with the following Proposition [5.38
The proof can be founded in [24].

Proposition 5.38. Let s > 1, w; € 3”%78(R2d), A;j € M(d,R) for j =

0,1,2, and let wo,(X,Y) = wo(X)e*Tm% when r > 0. Then the following

statements hold true:

(1) If a1, as € EL(R??) satisfy Opy,(a1) = Opy,(az), then a1 € FS"O)(RM)
if and only if as € FEWO)(RM).

(2) T uriws) ¢ plws),
(w ) _ 00,1 _ OO,l
(3) T = U Mty = U M
r>0 r=0
Proposition 5.39. Let s > 1, w; € Pg(R*), A; € M(d,R) for j =

1
0,1,2, and let wo,(X,Y) = wo(X)e™YI* when r > 0. Then the following
properties hold true:



Modulation spaces 105

(1) If a1, a9 € TL(R*) satisfy Op 4, (a1) = Opa,(a2), then ay € TSU,JSO)(RM)
if and only if as € I‘(wo)(R2d)

(2) F(wl (w2) c F(W1w2).

(3) T = (Y ML, ﬂMwm

r>0

In time-frequency analysis one often considers mapping properties for
pseudo-differential operators between modulation spaces or with symbols in
modulation spaces. Especially we need the following two results, where the
first one is a generalisation of [109, Theorem 2.1] by Tachizawa, and the
second one is a weighted version of [67, Theorem 14.5.2]. We refer to [126]
for the proof of the first two propositions and to [126] for the proof of the
third one.

Proposition 5.40. Assume that A € M(d,R), s > 1, w,wp € @%S(Rw),

a € I’gw)(]RQd), and that & is an invariant BF-space on R%? of Beurling
type. Then Opy(a) is continuous from M (wow, B) to M(wy, B), and also
continuous on Ss(R%) and on SL(R?).

Proposition 5.41. Assume that A € M(d,R), s > 1, w,wy € P (R*),

a € FE;:)S) (R24), and that % is an invariant BF-space on R*! of Roumieu
type. Then Op4(a) is continuous from M (wow,B) to M(wy, B), and also
continuous on L4(RY) and on ¥, (RY).

Proposition 5.42. Assume thatp,q € (0,00], r < min(p, ¢, 1), w € P (R*@
R24) and w,ws € Pr(R?) satisfy

CL)2(X — Y)

< XY X.Y e R* .

oo,

for some constant C. If a € M(w’) (R24), then Op¥(a) extends uniquely to a

continuous map from M(I’uﬁ)(Rd) to M(I)U;Z)(Rd).

Finally we need the following result concerning mapping properties of
modulation spaces under the Weyl product. The result is a special case of
Theorem in [30, Theorem 2.1] (see also [40, Theorem 0.3]).

Proposition 5.43. Assume that wj € Zg(R*?@R) for j = 0,1,2 satisfy
Wo(X,Y) < Cun(X —Y + Z, Z)wn(X + Z,Y — Z), (5.59)

for some constant C' > 0 independent of X,Y,Z € R??, and let r € (0,1].
Then the map (a,b) — a#b from ¥1(R??) x ¥1(R??) to ¥1(R??) extends

uniquely to a continuous mapping from M(()Z’:) (R24) XM(()Z’;) (R24) to M(()Z’g) (R24),
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5.9 The Wiener algebra property

As a further crucial tool in our study of the isomorphism property of Toeplitz
operators we need to combine these continuity results with convenient invert-
ibility properties. The so-called Wiener algebra property of certain symbol
classes asserts that the inversion of a pseudo-differential operator preserves
the symbol class and is often referred to as the spectral invariance of a
symbol class.

Proposition 5.44. Let A € M(d,R). Then, the following properties hold
true:

(1) If s > 1, a € Fé}g(RQd) and Op 4(a) is invertible on L*(R?), then
Op4(a)™t = Opy(b) for some be I‘&g (R24),

(2)Ifs =21, a € Fgl)(R%) and Op4(a) is invertible on L?*(R?), then
Opy(a)™! = Opy(b) for some be Fgl)(RQd).

(3) If s =1, vg € Q%S(RM) is submultiplicative, v(X,Y) = vo(Y), X,Y €

R, g e M(Cf)’l(]Rw) and Op 4(a) is invertible on L*(R?), then Op 4(a)~! =

Op4(b), for some b € Mﬁ;l(RQd).

Proof. The results follows essentially from [68, Corollary 5.5] or [69]. Sup-
poses > 1,a¢€ Fgl)(RQd), Op 4(a) is invertible on L?(R%), and let v,.(X,Y) =

1
e"I* when r > 0. Then a € M&?T’;(Rm) for some r > 0. By [68, Corollary

5.5], Op(M(OES (R21)) is a Wiener algebra, giving that Op(a)~! = Op(b) for
some b € M(Osy’;(R%) c Fgl)(RQd). This gives (2) in the case s > 1.

If instead s = 1, then by [61, Theorem 4.4] there is an ry > 0 such that
Op(a)~! = Op(b) for some b € MFS;(I))(RM) = Fgl)(Rw), and (2) follows for
general s > 1.

By similar arguments, (1) and (3) follow. O

Remark 5.45. Let A € M(d,R). Then it follows from Proposition (3)
that if s > 1, v € QZE,S(RM) is submultiplicative, v(X,Y) = vo(Y), X, Y €
R%, g€ M(OS)’I(RM) and Op 4(a) is invertible on L?(R?), then Op4(a)~! =

Op(b), for some b e M(Os)’l(RQd).

5.10 Toeplitz operators

Fix a symbol a € ¥1(R??) and a window ¢ € ¥1(R%). Then the Toeplitz
operator Tp,(a) is defined by the formula

(Tp¢(a)f1, fQ)LZ(Rd) = (CL V¢f1, V¢f2)L2(R2d) 5 (5.60)
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when f1, fo € X1(R%). Tpy(a) is well-defined and extends uniquely to a
continuous operator from ¥ (R%) to 1 (R9).

The definition of Toeplitz operators can be extended to more general
classes of windows and symbols by using appropriate estimates for the short-
time Fourier transforms in (|5.60)).

We state two possible ways of extending . The first result follows
from [36, Corollary 4.2] and its proof, and the second result is a special case
of [127, Theorem 3.1]. We also set

wot(X,Y) = 01 (2Y) o (X) for X,V € R%, (5.61)

Proposition 5.46. Let 0 <t <1, p,qe [1,0], and w,wp,v1,v0 € P(R??)
be such that vy and v1 are submultiplicative, wy is vg-moderate and w s
v1-moderate. Set

v="1vlvy and = wé/Q,

and let woy be as in (5.61)). Then the following statements hold true:

(1) The definition of (a,) — Tpy(a) from 31 (R?*%) x X1 (R?) to L(X1(R?),
Y (RY) extends uniquely to a continuous map from MG /UJO,t)(de) X

My (RY) to L(S(RY), ' (RY)).

(2) If ¢ € M(lv) (RY) and a € ME o t)(RQd), then Tpy(a) extends uniquely to

y ) d ) d
a continuous map from M(pﬁz)) (R%) to Mg;%) (RY).

Proposition 5.47. Let w,w,ws, v € Pg(R%*) be such that wy is v-moderate,
wo is v-moderate and w = wi/wy. Then the following statements hold true:

(1) The mapping (a,$) — Tpy(a) extends uniquely to a continuous map

from LY, (R2) x M7, (RY) to £(1(RY), X (RY)).

(2) If p € M(zv) (R%) and a € L?f/w) (R24), then Tpy(a) estends uniquely to a
continuous operator from M(le)(Rd) to M(QWQ)(]Rd).

We finish this chapter by recalling an important relations between Weyl
operators, Wigner distributions, and Toeplitz operators. Namely, the Weyl
symbol of a Toeplitz operator is the convolution between the Toeplitz symbol
and a Wigner distribution. Explicitly, if a € 31(R??) and ¢ € X1(R%), then

Tpy(a) = (27) 2 Op®(a * W) - (5.62)






Chapter 6

Confinement property for
Gelfand-Shilov type symbol
classes

In this chapter we introduce and discuss basic properties of confinements
for symbols in ) and in F((ﬁf). These considerations are related to the
discussions in [14,89], but are here adapted to symbols that possess Gevrey
regularity. In particular, this requires the deduction of various types of
delicate estimates on compositions of symbols that are confined in certain

ways.

6.1 Estimates of translated and localised Weyl prod-
ucts

In what follows we let ay = a(- —Y) whena € S] /2 (R??) and Y € R??, and in

analogous ways, by, ¢y, ¢y, ¥y etc. are defined when b, ¢, p, 1) € 81/2 (R24),
For admissible a and b we have

(a#b)y = ay#by, (6.1)

which follows by straightforward computations. We also recall that if ¢ €
Ss(R??), then there are functions ¢, 1) € Ss(R??) such that ¢ = ¢#¢. The
same is true if S; is replaced by X, or by .7 (cf. [29/128]). In particular, by
choosing ¢ such that (., p(X)dX =1, gives the following.

Proposition 6.1. Let s > 1. Then there are ¢,1) € Ss(R*?) such that

JRM Yy #oy dY = 1. (62)

For independent translations in Weyl products we have the following.
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Proposition 6.2. Let s > 3 and let ¢,1) € Sy(R*?). Then
(py#12)(X) =¥(X -V, X - Z) (6.3)

for some U € S,(R?? x R??). The same holds true with ¥4 or . in place of
Ss.

Proof. We only prove the result when ¢, 1) € S;(R??). The other cases follow
by similar arguments.

We have

(ﬁbY#@Z}Z)(X) _ 7T_d » ¢(X Yy — le)lz;( ) 2i0( Y1,Z)€2icf(X,Y1) le

=7 G((X —Y) = V)P(1)eH X ayy = U(X Y, X - 2),
R2d

where

U(X,Z) = w—df (X — Y1) (Y7)e2o(ZY) gy, .
RZd

We note that

v = (ﬁaﬂ o T)(¢®¢))
where (T®)(X,Z) = ®(X — Z,Z) when ® € S(R?! x R??), and F,2® is
the partial symplectic Fourier transform of ®(X, Z) with respect to the Z
variable. Since (¢,1) — ¢ ® 1) is continuous from Ss(R??) x S,;(R??) to

Ss(R% x R24), and T and .%, 2@ are continuous on Ss(R?¢ x R2?), it follows
that U e Sg(R?? x R24). O

Since ¥ in Proposition belongs to similar types of spaces as ¢ and
1, it follows that estimates of the form

IDYT(X, V)| < hlolatse(X15+Y15)/n

hold true. In particular, the following Corollary is an immediate con-
sequence of Proposition and some standard manipulations in Gelfand-
Shilov theory.

Corollary 6.3. Let s > % If ¢, € Ss(R*) (¢, € X4(R??)), then

1 1
DYDY DY (dy#42)(X)| < PP (alpiyl) e (XY IHXZZR - (6.4)

for some h > 0 (for every h > 0).
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Proof. By Proposition (6.3) holds true for some ¥ e S,(R?? x R??),
Thus

IDSDEDYU(X — Y, X — Z)| = ’Dgg (Dng\I/) (X —Y,X — Z)‘

<) <‘;> (Df Dy ) (X — v, X - 2)
o<

< pletsl Y ((;) (8 + By + o — oy (XY IE+X=21%),

<«

We have

2, <§> (B + (7 +a—o°

o<a
ST e

o<
a\ (B+0\°[(y+a—0\° o\’
< 1519 19
5605 () ()
o<
a\ (B+ON\° [(v+a—38\"[a\*
< 1811)®
<2 ()C5) (025°) (5) e
o<
< 2lelgslatBl (q18141)
Indeed, by using the fact that »; (§) = 2lel and that n! < 2"(n — k)!k!,
o<

which implies (n+k)! < 2"**n!k!. Thus (6.4) holds true with 2-2°h in place

The next result is a consequence of Theorem 4.12 in [24].

Proposition 6.4. Let s > % and ¥ € Pp(R?*®). Then, the map (¢,a) —
d#a is continuous from ¥4(R?4) x r{" (R2) to Sy(R?9).

The next lemma concerns uniform estimates of the Weyl product between
elements in sets

{a;(- +V,Y); YeR¥},  j=1,2 (6.5)
which are bounded in Ss(R??) or in ¥4(R%), j = 1,2.
Lemma 6.5. Let s > % Then, the following statements hold true:

(1) If the sets in (6.5) are bounded in Ss(R??), then there are constants C >
0 and h > 0 which are independent of Y1,Ys € R gnd o, aq, 9 € Zid
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such that
(DT a1) (-, Y1)#(D1?az)( -, ¥2))(X)]

1. _ 1 _ 1 _ 1
< CRlor+asl (g 10515 e~ (X -iE +X-¥al 4 -mal )
(6.6)

and
|DY (a1 (-, Yi)#az( -, Y2))(X)|
< ROl 5=t (X=Yi[3 X —Ya[5 +[Y1-Ya|5) (6.7)
hold true.

(2) If the sets in (6.5) are bounded in X5(R?*?), then for every h > 0, there
is a constant C' > 0 which is independent of Y1,Ys € R?*® and o, a1, 0 €

7% such that and (6.7)) hold.

Proof. We only prove (2). The assertion (1) follows by similar arguments.
LetY = Vi, Z = Yo, a(X,Y) = a1 (X+Y, V) and b(X, Z) = as(X+Z, Z).
Then

(a1(-,Y)#az(-, 2))(X)

- wdf a((X =Y) = Y1,Y)Z,(b(- — Z,2))(Y1)e¥* XM gy,
R2d

= ¢ f a((X —Y) = Y1,Y)Zs(b(+, 2))(Y1)e*" X =2Y) dy;

=0y (X Y, X — 2),
where
Dy 7(X1, Xp) = ¢ JRM a(X1 = Y1,Y)Zs(b( -, Z))(Y1)eXo X2V gy,
We observe that

DY D @y, z(X1, X2)

- fmdm?laxxl —Y1,Y)Z,(D}20)(-, Z) (V)" 21 dvy. - (6.8)

which implies that the Leibnitz rule

DS (ar (.Y )as(- Z2)(X) = 3 (j) (DI DYy ) (X — Y, X - Z)

= Z <3>7Td RQd(D?_'Va)(XrYl,Y)ﬁ}((DYb)(.7Z))(y1)€2w(xg,y1)dyl

y<a

(6.9)
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holds true. We also have
(I)Y,Z = (Tl oTho0 Tl)(a< : 7Y) ®b( K Z))a
where

(TLF) (X1, X2) = Fo(F (X1, -))(X2)
and

(ToF)(X1, X2) = F(X1 — X9, Xo),

for admissible F', and observe that both 17 and T5 are continuous mappings
on X,(R?? x R?9),
By the continuity of 77 and T5 on Y, it follows that

1 1 1
sup | DY DY ®y (X1, Xo)| < hlortezl(aqlagl) e n (M1 HIX5))
Y,ZcR24

which is the same as
[(Df a1 (-, Y)#(D?a2)( -, 2))(X)]

1 1 1
< hlobazl (g 1a,)seh (K=Y 5 +1X=21%)

for every h > 0, where the involved constants are independent of Y, Z € R?¢.
A combination of the latter estimate and the fact that

1 1 1 1 1 2d
I X-Y[s+|X—Z|s = [X=Y |- +|X~Z|s +|Y~Z|5, X,Y,ZeR*, (6.10)

shows that holds true for every h > 0.
By (6.6), (6.8), , observing that

o o AN o
’Y;Ot <PY> ’Y;a v v 7204 v
and the inequality (o + £)! < 21°+8la!18! we get
|DT(a1( -, Y)#az(-, Z))(X)]
@ o
< ¥ (M) - vix - 2)

<«

2
2

< plol Z ( )((a _,y)!,y!)sef%-(\X—Y\%+|X7Z|%)+\Y7Z|%)

(0]
y<a N7

< (2l (Z (a>> o= E(X—Y[F+ix =z )4y -2
y<a \7

1 1 1
_ (23+1h)|a|e_%'(|X_Y| s+ X—Z|5)+|]Y=2Z|5)

for every h > 0, and the result follows. O
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Remark 6.6. Let Q1 and Q2 be (countable or uncountable) index sets. By
similar arguments as in the previous proof, it follows that the conclusions of
Lemma[6-5 also holds true when considering more general bounded subsets

{agj(- +Y.Y); Y eR™ 0eQ;}, j=1,2
of Ss(R??) respective ¥4(R?), j = 1,2.

Lemma 6.7. Let s > 5, ¢, € 5,(R%), w, 9 € Zp(R*), ¢y = ¢(- —Y),
and vz = (- — Z). Then the following properties hold true:

(1) If a e TSV (R2) (@ e T4 (R2)), then

D3 DL (¢ya)(X)| < BB (a1gseX-Y1F/m mmwX),w({)) )
6.11

and

1
DS DY (dy#a)(X)] < W AY (1B XYM min(w(X), w(Y),
(6.12)
for some hy > 0 (for every hy > 0) and every hy > 0.
2) Ifay € T (R2) and ay € T (R24) (a; e T (R2) and ay € T (R24)),
0,s 0,s
then
DS DYDY (v ar)#(tbza2)) (X))
< h|10¢+5\h\2’7\(a!ﬁ!,y!)sefﬂXfYﬁ+\XfZ\%+|YfZ|%)/h1.

. i X)X
Xl,X;Iel{l?(,Y,Z} (w( U 2))’

for some hy > 0 (for every hy > 0) and every hy > 0.

Proof. We only consider the case when a; € F&JS) (R??) and as € 1“895) (R24),
The other cases follow by similar arguments. Let

U(X,Y) = ¢(X — Y)a(X).

By Leibniz rule we get

DS DEU(X, V)| < 2 (a) 1@ (X = V)a) (X))

1<a

1
< 2% sup (W4 (o + 5 = )ty e V1P u0))

TS
< (21+sh)|a+ﬁ\ (Oé!ﬁ!)se_lX_Y‘%/hw(X)

< (21+sh)|a+ﬁ| (a!ﬂ!)s€—|X—Y|%/(2h)w(Y)’
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for every h > 0 which is chosen small enough. Here we have used the fact
that, for some h > 0, possibly depending on X,Y,r and s,

W(X) £ w(¥)er XY < (y)elX-YIT/en)

since w is a moderate function. This gives (6.11)).
Next we prove (2). Let

_ Dy (¢yar)
 RBIBLsw(Y)

Then (1) and Remark [6.6 show that

DY
and by (-, 2) = DAL

bign(-,Y) = Whlt0(Z)

{bign(- +Y,Y); YeR¥ h>0, pez’*}
and
{bon(- +2,2); ZeR¥ h>0, yeZ?}
are bounded subsets of ¥4(R??). Hence, Remark shows that
1 1 1
DS (b1 g (- Y)#bay n( -, 2))(X)| 5 BlMlatrem (RYI X2+ =2/
for every h > 0, or equivalently, for any «, 8,7, X,Y and Z
| D% DY DY ((éva)#(tzb)) (X))
< h\awﬂ\(a!ﬁ!,y!)se—ax—n%+|X—Z\%+|Y—Z|%)/hw(y)ﬁ(z)_

The assertion now follows from the latter estimate and the fact that w and

¥ are moderate weights, giving that for some A > 0, possibly depend on
X,Y,Z,r and s,

W(Y) < w(X)e XY@ < 4 7)1X-YI5+1X-21%)/2h),
and similarly for . O

Lemmas and imply the following characterisation of r{ (R24),

Proposition 6.8. Let s > 1/2, w € P5(R?)), a € X[ (R?), ¢ € X4(R??)
have non-vanishing integrals, and let ¢y = ¢(- —Y). Then the following
conditions are equivalent:

(1) aeT¥ (aerf)).

(2) ¢ya is smooth and satisfies (6.11) for some hy > 0 (for every hy > 0)
and every hy > 0.
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(3) ¢y #a is smooth and satisfies (6.12)) for some hy > 0 (for every hy > 0)
and every ha > 0.

(4)
D% (éya)(X)| < Alate XY /M minu(X),w(Y))  (6.13)
for some hy > 0 (for every hy > 0);
(5)
DS ($y#a)(X)] < Alat?e XYM min(w(X),0(Y))  (6.14)

for some hy > 0 (for every hy > 0).

Proof. By Lemmas[6.5]and [6.7], (1) implies that (2) and (3) hold true, which
in turn imply (4) and (5).

If (4) holds true, then follows by integrating with respect
to Y. In the same way it follows that (5) leads to (5.20). Consequently, (4)
as well as (5) imply (1), and the result follows. O

6.2 A family of Banach spaces in L*([—R, R] x R%;
sy (R?))

Let Ip = [-R,R] and E° = EY = L®(Ig x R??; ¥ (R??)), with the symbol
subspace s% (R?) from Definition We shall consider suitable decreasing
family {E}’LL <t of Banach spaces. To this aim, for n € N, let

Gn ={(Y,Ty,...,T,) e R2+D .y T e R with [Tj| <1, j=1,...,n}.
We define B . = E%, ., n > 1, as the set of all a € E° such that

Ty,Dx)---{T},D £Y. Mow
la|™ = sup sup sup IKT1, Dx) <kk, 'i(>a( R o
1<k<n telg (Y,Ty,..., Tk )eG, h (k‘)

with the norm

lalzy, = laley, , =max(|a] go, |a| ™).

R,h,s
We also let E,(fs = E]O%CJLS be the set of all
ae ﬂ E%,}LS (6.15)
n=0
such that

lalg, . =sup lale,,.

=

is finite.
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Lemma 6.9. The space s¥(R??) is continuously embedded in .7'(R??).

Proof. Let B(Vi,V3) be the set of all linear and continuous operators from
the vector space Vi to the vector space V5. By Schwartz kernel theorem,
B(Z(R%),.#'(R%)) can be identified with a Schwartz kernel in .&/(R?9).
From now on we identify operators with their kernels.

Since .(R?) is continuously embedded in L?(R%) and L?(RY) is contin-
uously embedded in .#/(R%), it follows that any continuous linear operator
from L?(R?) to L?(R?) has a Schwartz kernel kernel in .#/(R??). The set
B(L?*(RY), L?(R%)) is a Banach space with norm equal to the operator norms.
Hence there is an injection from B(L?(R9), L?(R%)) to .7/(R??).

It is not so difficult to see that this injection is continuous. In fact, since
M is continuously embedded in L?, L? is continuously embedded in M* and
that B(M'(R%), M*(R%)) can be identified with M®(R??) (Feichtinger’s
kernel theorem) which is continuously embedded in .#/(R?%), it follows that
B(L*(RY), L?>(R%)) is continuously embedded in B(M'(RY), M*(R%)) =
M*(R??) which is continuously embedded in .’ (R??) (when operators are
identified with their kernels).

Now s% equals T o B(L*(R?), L?(R%)), where T is a composition of a
partial Fourier transform and a pullback of a non-degenerate linear map. It
follows that T is homoemorphisms on M®(R??).%’(R??). From these prop-
erties it now follows that the embeddings above give s¥ (R2?) is continuously
embedded in M®(R??) which is continuously embedded in .7’ (R??). O

Lemma 6.10. Letn >0, R > 0 and s > 0. Then E} _ and E;°, are Banach
spaces.

Proof. Let {a;}j>0 be a Cauchy sequence in Ej ., n > 1. By definition, this
sequence clearly has a limit a € E°, and for any k, {(T1, Dx)...{Ty, Dx)a;}; >
1 is a Cauchy sequence in s% (R??). So, for some X — by (t,Y,T1,..., T, X) €
s¥ (R%d) we have

li H<T17DX> ) '<Tk7DX>aj(t7Y7 ) — bk(ta Y, Ty, ..., Tk, )HS%
im sup
Jim I (kD)

=0,
where the supremum is taken over all
kze{l,...,n}, tEIR and (Y,Tl,...,Tk)EGk.

We need to prove that a € £} _, and a; — a in E} .
The conditions here above are equivalent to

lim (sup sup [a;(t,Y, ) —a(t,Y, -m) =0 (6.16)

J7® \ telp YeR2d
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and

1 ||<T17-D> : <T/€7D>a](ta}/a ) - bk‘(tvnyla s 7Tk
im sup

s sy
j—00 hk(k:!)s =0

(6.17)
where the supremum is taken over all
k:E{l,...,n}, tEIR and (KTl,...,Tk)EGk.

Since s%(R??) is continuously embedded in .#/(R2?), it follows from

(6.16) and (6.17) that

X — <T17DX> : <Tk7DX>a'](t7Y7X)
has the limit

X (g <T1,Dx>~ . -<Tk,DX>a(t,Y,X)
in .7/(R??), and the limit

X —bp(t,Y, Th,..., T, X)
in s (R2?), and thereby in .7/ (R??), as j tends to oo. Hence
bk’(t7Y7 Tlv s 7Tk7X) = <T17DX> : <Tk7DX>a(t7}/7X)

and it follows that E}' | is a Banach space for every h > 0, s > 0 and integer
n = 0. 7

If in addition {a;};>0 is a Cauchy sequence in E;°, then the limit a
above satisfy . Since a; stays bounded in Eo‘fs, it follows that a has
bounded E}‘fs norm, and therefore, E,OSS is complete and thereby a Banach
space. ]

The spaces E;‘LO can be related to F(l) and F(() S), as the following lemma
shows. The details are left for the reader.

Lemma 6.11. Let a € L®(Ig x R?% 5% (R??)). Then {a(t,Y, - )}ier, verzd
is a uniformly bounded family in Fgl)(RQd) (F(()ls) (R24) ), if and only if

lallgp, < 0
for some h > 0 (for every h > 0).

Later on we also need the following result of differential equations with
functions depending on a real variable with values in EOO The result follows
by standard consideration about ordinary dlfferentlal equations involving
functions taking values in Banach spaces.
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Lemma 6.12. Suppose s = 0, n = 0 be an integer, T > 0, and let K be an
operator from Ej _ to E} _ for every h > 0 such that

IKalgy, < Clalsy.,  aeEp, (6.18)
for some constant C' which only depend on h > 0. Then

de(t)
dt

= K(c(®),  c(0) € Ep,

has a unique solution t — c(t) from [=T,T| to E} . which satisfies

‘E,?ﬁseCTa

le(®) 155, < le(0)

where C' is the same as in (6.18). The same holds true with E;°, in place of
E} ¢ at each occurrence.






Chapter 7

A one-parameter group of
elliptic symbols in the classes

) (rd)

In the current chapter we show that, for suitable s and wg, there are elements
a € FS’JO) and b € Fgl/”(]) such that a#b = b#a = 1. This is essentially a
consequence of Theorem where it is proved that the evolution equation
has a unique solution a(t, - ) which belongs to FS"’”), thereby deduc-
ing needed semigroup properties for scales of pseudo-differential operators.
Similar facts hold for corresponding Beurling type spaces (cf. Theorem [7.9)).

Moreover, we will deduce an analog of for the Gevrey type symbol
classes introduced in Section As in [14], is obtained by proving

that the evolution equation

(0pa)(t, -) = (b +log®)#alt, - ), a(0,-)=apeT®@ e (7.1)

analogous to (0.6]), has a unique solution a(t, -) which belongs to Fﬁ“ﬁt) (and

similarly when the Fgw)—spaces are replaced by corresponding F((f;)—spaces).
First we have the following result on certain logarithms of weight func-

tions.

Proposition 7.1. Let w € Z5(R?*) n Fg‘;) (R24), 59 € (0,1], v e ZE(R%),
be such that w is v-moderate, ¥(X) =1+ logv(X) and let

w(X+Y)

c(X,Y) =log o)

Then,

(1) {c(-,Y)}yerea is a uniformly bounded family in T (R24), s > 1;
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(2) fora £ 0, {(0%c)(-,Y)}yerea is a uniformly bounded family in Fgl)(]RM),
s = 1.

For the proof of Proposition we need the following multidimensional
version of the well-known Faa di Bruno formula for the derivatives of com-
posed functions. It can be found, e.g., setting ¢ = p = 1, n = 2d, in
equations (2.3) and (2.4) in [75).

Lemma 7.2. Let f: R - R, g: R? - R. Then, forcmyan 4 a+0,

0% 8/3]
f Z f* k;l( z)) Z H g . (7.2)

1<k<|qf B+ +Bk a 1<j<k
Bi=*0,j=1,...k

We will also need the next factorial estimate, for expressions involving
decompositions of a € Zid, a =+ 0, into the sum of £ nontrivial multi-indeces
Bj, g = 1,...,k, as in , and corresponding products of (powers of)
factorials.

Lemma 7.3. Let sp € (0,1], a € ZQd, a £ 0. Then, for suitable Cy > 0,
depending only in d,

S5 N Tl amtscp (73

k
I<k<|a]  Prt+Br=a 1<k
Bj:*:()mj:l:vk

Lemma, follows from Lemma in the Appendix.

Proof of Proposition[7.1 In order to prove (1) we need to show that ¢(-,Y)
satisfies Fgﬁ) estimates, uniformly with respect to ¥ € R??, By (5.1)) and

(5-2) we get

c(X,Y) <log(Cv(X)) < 1+1logu(X) = J(X)
and
o(X,Y) = log((Cv(X))™!) 2 —(1 +logv(X)) = —9(X).

Hence, |¢(X,Y)] < 9(X), X € R*. Now, for a € Z2¢, a + 0, (5.20) with

a =w and (7.2)) give

CO™ s M

0%c(X,Y) =al A ERIIL

1<k<|al B+ +Bk a 1<j<k

Bj*0,j=1,...k
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and by (73).

1 X+Y hWﬁ [0
oxe(X, V) sl Y e Y, H
1<k<|qf k [w(X + Y)] B+ +,6’k o 1<j<k
Bj=*0,j=1,....k

<aflal 32N ] At s conlar,

k
1<k<lal = Bit+Br=a 1<j<k
5]2*:07]:177k

which gives the result. O

1
Proposition 7.4. Assume s > § and w(X) < e XI5 for some r > 0. Let
{a(,Y)}yepza be a uniformly bounded family in ¥4(R??) and {c(-, Z)} yepza
be a bounded family in r (R24). Then,

{a(-, Y)#c(-, Z)}y zegea and {c(-, Z)#a(-,Y )}y zeged
are bounded families in Ss(R??).

Proof. Let ¢ € 35 and a € Fgw). By Lemma it follows that

1
| DS (p#a)(X)| < CRIYatse XI5 (7.4)

for some h,r > 0. Then (7.4) holds true if and only if ¢#a belongs to Ss.
By the proof of (7.4)), the constants C, h and r can be chosen to depend

continuously on ¢ € ¥3(R??) and a € r{ (R24). Hence if Q1 is bounded in

%5(R24) and €y is bounded in T%) (R24), then it follows that {$#a}seq, aco,
is a bounded family in S,(R?%). O

The following result can be found e.g. in [113].
Lemma 7.5. Let a € .7'(R?*?). Then

lalsz <C > [0%a] (7.5)
la|<d+1
and
lalee <C >0 0%y (7.6)
lal<2d+1

for some constant C > 0 depending on the dimension d only.

Proposition 7.6. Let a € '(R*?), s > 1 and set bag(X) = 0*(XPa(X))

when o, B € Z%rd. Then the following conditions are equivalent:

(1) a e Ss(R?Y) (a e T4 (R?)).
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(2) For some h >0 (every h > 0) it holds
[baglle < Rl Pl(alplye, o, pez2

(8) For some h >0 (every h > 0) it holds
Basllsz < BB, a,Be 72

Proof. We only prove the result in the Roumieu case. The Beurling case
follows by similar arguments.

The equivalence between (1) and (2) follows from the definitions. The
proof of the equivalence of (2) and (3) follows by a straightforward applica-
tion of Lemma In fact, assume that (2) holds true. Then gives

Ibaglsy, <C D0 10baglre < D0 RN ((a 4 4)18Y)°
lv|<d+1 ly|<d+1

— plo+Bl(a1p1)s Z Bl (O‘Jrfyﬁy)>s < (2°h)le Bl (11)5.

[v[<d+1

In the last inequality we have used

S A 's< a'ﬂ') > < Cy - 9sllal+a+1) < ooslatsl
aly!
[v[<d+1

where the constants C1 and Cy only depend on d and h. Hence (3) holds
true, as claimed. The proof of the converse follows by similar argument,

employing ([7.6|) instead of ((7.5)). O
We also need the following characterisation of Fgl)(RQd).

Proposition 7.7. Let a € . (R??) and s > 0. Then the following condi-
tions are equivalent:

(1) ae TV (R2).
(2) There exists h > 0 such that

10%al| oo (m2ay < hlelals, ae 7%
(8) There exists h > 0 such that

|0%lsw < RIlat®, o ez (7.7)

(4) There exists h > 0 such that

I<T1, Dx) -+ - (T, Dxallsy, < h"™m!?, (7.8)

for any Ty, ..., Ty, € R?® such that |Tj| < 1,5 =1,...,m, m > 1.
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Proof. The equivalence between (1) and (2) is well known. The equivalence
of (2) and (3) is proved by similar arguments to the one employed in the proof
of Proposition using Lemma It remains to prove the equivalence
with (4). Assume that (3) holds true, and let

d

Ti = ) (traer + Teier),
=1

for the standard symplectic basis (5.33)) of R??. If we set eq; = €, thdl =
Tk, L€ {1,...,d}, and letting X; being the coordinates for X = (z,§) € R2d
with respect to this basis, then

2d P
Te,Dxda = th——r,
(T}, Dx)a l; k,laXl

so that the symbol (17, Dx)---{T,,, Dx)a is in the span of symbols of the

form
(H thk) <aX1,ll T aXm,zm a)
k=1

where the summation contains at most (2d)™ terms. Since |Tj| < 1, j =
1,...,m, we obtain, by the hypothesis (3) that

[T1, D) -+ (T, Dxdalsy < (2d)™ sup [0alsy
a|l=m

< sup Z hlet (o 4 )18
lof=m || <d+1

' S
— sup Allat® T APl <(0‘+’Y)>

14!
— (62502
|a|=m ly|<d+1 Y

< (2s+1h)m7n!s7

which gives (4).

If instead (4) holds, then choosing T1, ... 7|, in suitable ways, the left-
hand sides of and agree. The assertion (3) now follows from (4)
by using the inequality |o|! < dl*lal. O

The first main result of this chapter is the following analogy of [14, The-
orem 6.4] and [89, Theorem 2.6.15] in the framework of Gevrey regularity.
It deals with the existence of one-parameter groups of pseudo-differential
operators, obtained as solutions to suitable evolution equations.

Theorem 7.8. Let s > 1, w, 9 € 2% (R?*?) be such that w e r (R??) and

)

9 er? (R24), and let ag € r (R24), b e Fgl)(RQd). Then, there exists a
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unique smooth map (t, X) — a(t,X) € C such that a(t, -) € T ﬁt)(RQd) for
allte R, and

{(&ta)(t, ) = (b + log¥)#alt, - ) 79)
a(0, -) = ap.
If in addition w = ag = 1, then a(t, X) also satisfies
{(ataxt, ) = alt, )#(b + log?) (710)
a(0, ) = ao,

and
alty, )#alts, <) = alti+ta, -), a(t, -) e TR, ¢ty t, e R. (7.11)

Proof. Step 1(Two auxiliary equations): First suppose that a solution
a(t, X) of (7.9) exists. Then

a(t,X) = ap(X) +Lc(u,X)du

with
c(t, -) = (b+log¥)#aft, -) e T log D) (R2d),

in view of Propositions and This implies that the map ¢t — a(t, -)
is C! from [—R, R] into the symbol space

Fgw(ﬂ+ﬂ*1)R<logﬂ>) (de).
Choose sp < s, and ¢, € Sy, (R??) such that (6.2) holds true. Let
ca(t,Y, ) = w(Y) (YY) gy #alt, -). (7.12)

By Lemma (1) we have t +— c1(t,Y, -) is a C! map from [-R, R] into
Ss(R2%), for any Y € R??. Moreover,

der(t,Y, ) = w(¥) ) oy #f(Y, - )#alt, )

when

V(X)

SY, X) = b(X) +log 553

Then,

(Gec1)(t,Y, ) = w(Y) ™! ﬂ(Y)tf

o oy #f(Y, )#z#dz#alt, -)dZ
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giving that

(0tcl)(t, Y, - ) = o Kyz(t, . )#Cl(t, Z, - ) dz (7.13)
with
_ w(2)9(2)'
Kyz(t, -) = W@/#JC(K #bz. (7.14)

We also need to consider the similar situation where f(Y, -) is replaced by
f(Z, ), that is

ath(ta Y7 ’ ) = I?Y,Z(tv ’ )#02<ta Za : ) dZa 713/
]de
where
~ w(Z)9(2)" )
K )= ——t Z, .14
v,z(t, ) w(yw(y)tm#f( ;o )#Yz, (7.14)
and
2(0,Y, ) =¢(0,Y, ) = w(Y)_1¢y#a0. (7.15)

We consider the operators K and K when acting on E9 from Section
defined by

(Ka)(t,Y, X) = fRQd(Ky,Z(t, Netalt, Z, ))(X) dZ,

and

(Ka)(t, Y, X) = fde(f(y,Z(t, Vealt, Z, ))(X) dZ.

We claim that
IKalgp < C(n+1)alep —and IIIEGHE,ZS <C(n+1lalegp ~ (7.16)

for some constant C, which is independent of h, n and s.
In order to prove (7.16)), it is convenient to let Py be the family of all
subsets of {1,...,k}, k> 1. For each P € Py, a € s (R??), we set

Hi(a, P) a when P = (¥,
a,P) = ) .
(Tj,,Dx)---{Tj,Dx)a when P = {j; <--- <ji}, [ <k.
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We shall estimate

|11, Dx) -+ - (Tk, Dx)Ka)(t, Y, - )| su (r2a)
L

when a € Ep . Since

((T1, Dx) - -(Ty, Dx)Ka)(t,Y, X)
= (T1,Dx)-- <Tk7DX>f (Ky z(t, -)#a(t, Z, -))(X)dZ

= f (H(Ky z(t, -), Py#H(a(t, Z, -), P%))(X) dZ,
pep,, VR

we findl
|({(T1, Dx) - - -{Ty, Dx)Ka)(t, Y, )5
R (k)

) |H(Ky,z(t, -), P)|sy [H(a(t, Z, -), P) sz
R e REL((k — D))

k
)

1=0|P|=1

(
i |a\|Ek <k> f H (Kt ), Py,
= »

l Rt (s

A |H(Ky,z(t, - ), P)|s
b3 “CLHEﬁsZ Z <l> J}R% ht1ls i

" 1=0|P|=l

< (b + V)D(Yalgs , (717)

where

H(Ky z(t, -), P)|s
Dy(Y) = sup sup U |H (Ky.z (l’ ) Pl dZ>, (7.18)
1<k [P|=1 \JR2d ht 1l

Here the third inequality in follows from the fact that s > 1 and
la]|gp  increases with n.

We have to estimate Dy(Y) in and study the different quantities
on the right-hand side of . Since w and ¥ belong to 3”% s it follows
that for every r > 0, 7

w<Z§0<Z>)t :(Z) (ﬁ(Z))t < riv-2t (ery_m)t

e UHOIV=21% |y 7 e RM. (7.19)

'Recall that, by definition of P, 2ipm 1= (';)
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For the Weyl product in ([7.14)) we have

Py#f(Y, ) =o( — Y)#(b +log 19(1;))
- (w0l + 7)), + 0l = V) lor 55
= (¢#b(- + Y))Y + (¢#log W)Y-
By Propositions [7.1] and [7.4]
v(-+Y

{¢#b(~+Y)}Y€ and {gb#log (7.20)

)
I(Y) }YGRM

R2d
are uniformly bounded families in S;(R??). Note that

ax(Z,X) =vz(X) = A{a(Z,  + 2)}zerea = {¢} zer2a,

which is evidently a uniformly bounded family in S;(R??). Combining this
last observation with the computations on ¢y #f(Y, -) above, using the fact
that Leibniz rule applied also on the #—product, Lemmata and we
finally obtain

o , < plal s —ro(IX=Y |5 +|X—Z|5 +]Yy —2Z|3)
X,Y,Z e R* a ez,

for some h,rg > 0.

By Proposition (7.19), (7.21)) and the fact that ¢ is bounded, we get
for all P € Py, Y, Z € R??, and some 79, h > 0 that

1
|H(Ky.z(t, ), P)|sw < ChlltSe=m0 V=215 1 = | P,

where C' is independent of k. Hence Dy, in ([7.18]) satisfies

1
Dy(Y) < le eV =21E a4z — ¢,
R2d

for some constants C7 and Cy which are independent of Y € R24 b > 0 and

k = 0. Hence ([7.17)) gives

IKCa(t,Y, sy < Cllalg

and

H<T17 DX> e <Tk7 DX>lCa(t7 Y, - )
I ()

£ < Clk+ Dlal gy

as claimed, where C' is independent of Y € R??, k and h > 0.
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By a completely similar argument, an analogous result can be obtained
for IC. In fact, by similar arguments that lead to (7.20)) it follows that

I +Z
{b(- + Z)#} gegea  and {log ()#1/;}
19(2) ZeR2d
are bounded in Sy(R??), given that (7.21)) holds with f(Z, -) in place of
f(Y, ). This gives (7.16)).
We have proven that for any T" > 0, then

H’CHEQSHELL’S < O(TL + 1) and WCHE,T:,S—»EZ’S < C(n + 1)7 |t| <T,
(7.22)
where C is independent of n. As a consequence, since w(Y) !¢y #ag belongs
to E} ; for every n and with uniform bound of the norms with respect to n
it follows that the equations

de de o~
ke 22 Ren  a0) = eaf0) = (V) oyt (729

have unique solutions on [T, T| belonging to Ej’ , in view of Lemma
and that

lejlzg < lej@)gp e“" VT < e (0)]pp, e 0T, j=1,2, (7.24)

where the constant C' is the same as in ([7.22)) and is therefore independent
of n. This gives

H<T1,Dx>'"<Tn,DX>C'(t,K )HS% n
sup ( () : < [ (0)] e, eI

which is the same as

I<T1, Dx) - - {Tn, Dx)c;(t, Y, - )| s c c

sup ( hg(n!)s J =) < |\cj(0)]\E;fse T ho = he®T.
(7.25)
Here the supremum is taken over all T1,...,T},Y € R? such that |Tj| < 1,

and t € [-T,T]. By taking the supremum of the left-hand side of (|7.25))

over all n = 0 we get
leslzz | <lles(O)lez, ™. ho = he.

By Lemma it follows that c;(t,Y, -) € I’gl)(RQd), uniformly in Y and
for bounded t.

In order to prove the uniqueness of the solution a of , first we assume
the existence and by what we have proven above i.e. that ¢i(¢,Y, -) in
satisfies which implies the uniqueness of the solution of , since

alt, ) = JRM by sy salt, ) dY — fde WV )IY by ster (1Y, -) dY.
(7.26)
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Indeed, if we assume that there exist two solutions ¢; and ¢; in ([7.12)) satisfy

(7.23), then since ([7.23) has a unique solution, it follows that ¢; = ¢;.
Therefore, if we assume that there exist two solutions a and a; defined by
c1 and ¢; respectively. Then, in view of the construction of the solution in

(7.26)), it follows that a = ay.

To prove the existence of a solution of (7.9), we consider the solution

co(t,Y, -) of (7.13)" with the initial data ((7.15]), and we let
alt ) = [ w0 iy pealt,Y. ) Y. (7.27)
R2d

By Propositions that is the convolution between a weight and a Gelfand-
Shilov function, and the family {¢y#c2(t,Y, - )}yeped belongs to S and

a(t, ) belongs to rgw” ), Moreover,
da(ta )
dt

- JRM w(Y)O(Y) log O(Y )y #ea(t,Y, -)dY

JRM fde“Y Yy # Ky z(t, - #ea(t, Z, ) dY dZ
:J w(Z2)H(Z) Nog I Z)pz#ca(t, Z, - ) dZ

JRM jﬂw ) py#oy #f(Z,  V#z#ca(t, Z, ) dY dZ

- | @020+ g dpizpantt. 2. ) iz
R
= (b+ log ¥)#alt, -),
with the initial data

a(0, -) = Jde w(Y )by #(w(Y) oy #ag) dY = ao,

which provide a solution of ([7.9).
In order to prove the last part we consider the unique solution a(t, - ) of
(7.9) with the initial data a(0, - ) = 1. If w = 1, then for u € R the mappings

t—a(t+u,-) and t— a(t, -)#a(u, )
are both solutions of ([7.9) with value a(u, -) at t = 0, and
a(t +u, ) =alt, - )#alu, -), (7.28)

by the uniqueness property for the solution of ( .
Using (7 we have for all t € R, a(t, - )#a(—t,-) = 1. Taking the

derivative we get

d
0= @(a(tv ’ )#a<_t7 ’ ))

= (b+logd)#a(t, -)#a(=t, ) —alt, - )#(b + log V)#a(—t, - ).
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That is, (b+ log?) = a(t, - )#(b + log ¥)#a(—t, - ), implying the commuta-
tion for the sharp product of a(¢, -) with (b + logd), and the result fol-
lows. O

By similar argument as for the previous result we get the following.
Theorem 7.9. Let s > 1, w,9 € Pg ((R?*?) be such that w € r (R24) and

9er? (R21), and let ag € F(()‘:Js) (R?1), b e F(()Q(RQd). Then, there ezists a

unique smooth map (t, X) — a(t,X) € C such that a(t, -) € T w)(RZd) for

allt € R, and a(t, -) satisfies (7.9).
Moreover, if w = ag =1, then a(t,X) also satisfies (7.10) and

_ (0") (p2d
a(tl, ~)#a(t2, ) = a(tl + o, '), a(t, ) (S FO,s (R ), t,t1,t0 € R.



Chapter 8

Lifting of pseudo-differential
operators on modulation
spaces and mapping
properties for Toeplitz
operators

In the this chapter we use the framework in [72] in combination with
to extend the lifting properties in [72] in such ways that the involved weights
are allowed to belong to ;@% s or in P, instead of the smaller set &7 which
is the assumption in [72]. 7

8.1 Lifting of pseudo-differential operators on mod-
ulation spaces

In this section we apply the group properties in Theorems and to de-
duce lifting properties of pseudo-differential operators on modulation spaces.
Thereafter we combine these results with the Wiener property of certain
pseudo-differential operators with symbols in suitable modulation spaces to
get lifting properties for Toeplitz operators with weights as their symbols.

Theorem 8.1. Let s > 1, pe (0,00]%¢, Ae M(d,R), w e @%’S(Rw), and
let B be an invariant BF-space on R??, or 2 = L%(Rm) for some phase
split basis E of R?*. Then the following statements hold true:

(1) There exist a € r (R??) and b e (/) (R24) such that

Opa(a) o Opy(b) = Op4(b) 0 Opy(a) = Idg (gay - (8.1)
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Furthermore, Op 4(a) is an isomorphism from M (wo, #) onto M (wo/w, A),
for every wy € 2% (R*),

(2) Letag € r (R24) be such that Op 4(ag) is an isomorphism from M(le)(]Rd)
to M(le/w)(]Rd) for some wy € @%7S(R2d). Then Op 4(ap) is an iso-
morphism from M (wa, B) to M (w2/w,B), for every wy € (@%75(1[%%).
Furthermore, the inverse of Op4(ag) is equal to Op 4(by) for some by €

Fgl/"-’) (RQd) .

Theorem 8.2. Let s > 1, p € (0,00]?¢, A e M(d,R), w e P s(R*), and
let 2 be an invariant BF-space on R*?, or B = L%(]RM) for some phase
split basis E of R2*. Then the following properties hold true:

1) There exist a € F(w) R24) and b e F(l/w) R24) such that
0,s 0,s

Opy4(a) o Opy(b) = Opy(b) 0 Opy(a) = Idyy (gay - (8.2)

Furthermore, Op 4(a) is an isomorphism from M (wgy, B) onto M (wo/w,
B), for every wy € Pg 5(R*).

(2) Letay € F&JS) (R2%) be such that Op 4(ag) is an isomorphism from M(le)(Rd)
to M(Zwl/w)(Rd) for some w1 € Pp (R??). Then Opy(ao) is an iso-
morphism from M (wa, B) to M(wz/w,B), for every wy € Pp (R?D).
Furthermore, the inverse of Op4(ao) is equal to Op4(by) for some by €

1
T (R2).
We only prove Theorem [8:2] Theorem [8.1] follows by similar arguments.

Proof of Theorem[8.9. The existence of a € T ((;JS) (R??) and b € F(%w) (R24)
such that (8.2) holds is guaranteed by the second part of Theorem
By [126, Theorems 2.5 and 2.8] it follows that

Opa(a) : M(wo, B) —M(wo/w, B) (8.3)
and
Op4(b) : M(wo/w, B) — M (wy, PB) (8.4)

are continuous. By (8.2) and the fact that M (wy, %) and M (wy/w, AB) are
contained in X/,(R?9), it follows that (8.3 and (8.4) are homeomorphisms,
and (1) follows.

(2) It suffices to prove the result in the Weyl case, A = %I , in view of

Proposition By (1), we may find

(w1) by € F(l/wl)

ar€ly7, 0 (w1/w) by € F(Cfs/wl)

;o ag€lg 0

satisfying the following properties:
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e Op“(a;) and Op™(b;) are inverses to each others on X/, (R9) for j = 1,2;

e Tor arbitrary wy € Zp o(R??), the mappings

Op®(ar) : Mg,y = Mg, /)

Op"(b1) + M) = Mpuy): 55)
Op“(az) : M(2wz) - M(szw/m)’ |
Op®(b2) = ME,,) = MZ,,0, )

are isomorphisms.

In particular, Op"(a;) is an isomorphism from M(le) to L2, and Op™ (by)
is an isomorphism from L? to M (le).

Now set ¢ = ag#ap#b;. Then by [24, Proposition 5.38], the symbol ¢
satisfies

¢ = agagpby € D) 4Tl < 1fl).

Furthermore, Op"(c) is a composition of three isomorphisms and conse-
quently Op%(c) is boundedly invertible on L2

By Proposition [5.44 (2), Op“(c)~! = Op“(cy) for some ¢; € F(Olg. Hence,
by (1) it follows that Op"(c) and Op®(c;1) are isomorphisms on M (w2, A),
for each wy € Zp s(R??). Since Op”(c) and Op“(cy) are bounded on every
M (w, %), the factorization of the identity Op“(c) Op“(c1) = Id is well-
defined on every M(w,%). Consequently, Op"(c) is an isomorphism on
M(w, RB).

Using the inverses of as and b1, we now find that

Op*(ag) = Op®(b2) © Op®(¢) o Op®(a1)

is a composition of isomorphisms from the domain space M (wq, %) onto the
image space M (wa/w, A) (factoring through some intermediate spaces) for
every wy € 2 <(R*) and every invariant BF-space %. This proves the
isomorphism assertions for Op* (ayp).

Finally, the inverse of Op®“(ap) is given by

Op®”(b1) o Op*(c1) o Op*(ag).

which is a Weyl operator with symbol in F(()zw), and the result follows. [

Remark 8.3. If g is the constant euclidean metric on the phase space R??,
then S(wo,g) equals S0 (R2), which is defined by (5.21). We notice that
also for such simple choices of g, given in the introduction, leads to
lifting properties that are not trivial. In fact, let w and wy be polynomially
moderate weight on the phase space, and let B be a suitable translation
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invariant BF-space. Then it is observed in [72] that the continuity results for
pseudo-differential operators on modulation spaces in [116,|118] imply that
Op®“(a) in is continuous and bijective from M (wow, B) to M(w, RB)
with continuous inverse Op"™(b). In particular, by choosing % to be the
mized norm space LP4(R??) of Lebesgue type, then M(w, ) is equal to the
classical modulation space M@g. Consequently, Op"(a) above lifts M&ZM)
into M(pu’g.
Remark 8.4. The SG-class in Partm the Shubin classes in [107, Definition
23.1] and other well-known families of symbol classes are given by S(w, g) for

suitable choices of strongly feasible metrics g and (o, g)-temperate weights w.

8.2 Mapping properties for Toeplitz operators on
modulation spaces

In this section we study the isomorphism properties of Toeplitz operators
between modulation spaces as in [72]. We first state results for Toeplitz op-
erators that are well-defined in the sense of and Propositions and
Then we state and prove more general results for Toeplitz operators
that are defined only in the framework of pseudo-differential calculus.

We start with the following result about Toeplitz operators with smooth
symbols.

Theorem 8.5. Let s > 1 w,wp,v € (@%VS(RM) be such that wy € rﬁ”O)(RM)
and that wo is v-moderate, and let B be an invariant BF-space on R?® or
B = L%(]RM) for some phase split basis E of R*. If ¢ € M(lv) (RY), then
Tpy(wo) is an isomorphism from M(w, %) to M(w/wo, #).

In the next result we relax our restrictions on the weights but impose
more restrictions on 4.

Theorem 8.6. Let s > 1, 0 < t < 1, p,q € [1,0], and w,wp, vy, v1 €
QZE,S(RQd) be such that wy is vo-moderate and w is vi-moderate. Set v =
vivg, ¥ = wtl)/Q and let wo be the same as in (5.61). If ¢ € M(lv)(Rd) and
wo € M?(l;/wo,t)(RM)’ then Tpy(wo) is an isomorphism from M&’Z)(Rd) to
s
Misja) (RE)-
Before the proofs we have the following consequence of Theorem
which is the Gevrey version of |72, Corollary 4.3], as well as the original

goal of our investigations.
Corollary 8.7. Let s > 1, w,wp,v1,v0 € Pgs(R?*?) and that wy is vo-
moderate and w is v1-moderate. Set v = vivg and ¥ = wé/Q. Ifpe M(lv) (R9),
then Tpy(wo) is an isomorphism from Mg;i) (RY) to M&%) (RY) simultane-
ously for all p,q € [1,0].
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Proof. Let wy € P (R¥) n F((fsl)(RZd) be such that C! < wy/wy < C,
for some constant C. Hence, wy/wy € L* € M™. By Theorem 2.2 in [11§],
it follows that w = wy - (w/w1) belongs to M&Q)(RZC[), when ws(z,&,n,y) =
1/wo(x,€). The result now follows by setting ¢ = 1 and gop = 1 in Theorem
3.6l O

Theorems [8.5 and [8.6] are special cases of the following results.

Theorem . Lets>=1, w,v,vg € 9%7S(R2d) be such that wy € F(;“O)(RM)
and that wo is v-moderate, and let B be an invariant BF-space on R*® or
B = LY (R??) for phase split basis E of R*. If ¢ € M(2v) (RY), then Tpy(wo)
is an isomorphism from M (w, B) to M (w/wo, AB).

Theorem . Let s > 1,0 <t <1, pq,q € [1,0] and w,wy, vy, v1 €
@E,s(RQd) be such that wy is vg-moderate and w is vi-moderate. Set rg =
2q0/(2q0 — 1), v = vivg, ¥ = wé/Q and let wos be the same as in (5.61)).
If ¢ € M(’;f) (RY) and wy € M((x;’/’fm), then Tpy(wo) is an isomorphism from
P4 (Td P,q d ’
M(ﬂw)(R ) to M(w/ﬁ)(R ).
We postpone the proofs of these theorems after performing some prepa-
rations and deducing some results of independent interests.

Lemma 8.8. Let s > 1, w,v € P (R*?) be such that ¥ = w'/? is v-
moderate. Assume that ¢ € M(2U). Then Tpy(w) is an isomorphism from

M(Qﬂ) (R9) onto M(zl/ﬁ) (R9).

Proof. Recall from Remark that for ¢ € M(Zv) (R9)\{0} the expression

|V f - ¥ L2 defines an equivalent norm on M, (219). Thus the occurring STFTs
with respect to ¢ are well-defined.

Since Tpy(w) is bounded from M(Qﬁ) to M(21/19) by Proposition the
estimate

| Tpg(w)fllar

20y S 1l (5.6)

()
holds true for all f e M (219). Next, we observe that

(Tpy(W)f, 9)r2may = (WVa f, Veg) p2meay =: (f, Q)fo, (8.7)
for f,ge M (219) (R%) and ¢ € M, (Qv) (R?). The duality of modulation spaces [116,
Proposition 1.2] now yields the following identity:
1£larg,, = sup 1(£,9)az, |
HgHM(%) 1

= sup |[(Tpy(w)f,9)r2| = | Trg(w) Sz (8.8)

lgll 2 =1 1/9)
M(ﬁ)
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In view of it follows that | f|| M2, and | Tpy(w)f| M2, are equivalent
norms on M (219).

In particular, Tpy(w) is one-to-one from M(zﬂ) to M(21 19) with closed
range. Since Tpy(w) is self-adjoint with respect to L?, it follows by du-
ality that Tpy(w) has dense range in M, (21 19" Consequently, Tp,(w) is onto
M(21 /9)" By Banach’s theorem, it follows that Tp,(w) is an isomorphism
from M(Qﬁ) to M(Zl/ﬁ). O

We need a further generalization of Proposition to more general
classes of symbols and windows. Set

'UQ(QY)I/Q’Ul(QY)
WO(X + Y)l/Qw()(X — Y)I/Q.

w1 (X,Y) = (8.9)
Proposition 8.9. Let s > 1,0 <t <1, p,q,q € [1,0], and w,wy, vy, v1 €
L@E,S(Rm) be such that vy and vi are submultiplicative, wqy is vg-moderate
and w s vi-moderate. Set
t 1/2

ro = 2qo/(290 — 1), v=wvivg and U =wy",
and let wo ¢ and wy be as in (5.61) and . Then the following statements
hold true:

(1) The definition of (a, ) — Tpy(a) from Ys(R%) x 24 (RY) to L(Xs(RY), XL (RD))
extends uniquely to a continuous map from M?‘i’/'zgo t)(RQd) X M(TS) (R9) to
L(Z5(R7), Z,(RY)).

(2) If ¢ € M{S)(Rd) and a € M?;}?O,t)(R2d)’ then Tpy(a) = Op“(ao) for
1

some agy € Ma’l)(de), and Tpy(a) extends uniquely to a continuous

map from M(pl;w) (RY) to Mg:;%) (R9).

For the proof we need the following result, which follows from [117,
Proposition 2.1] and its proof.

Lemma 8.10. Assume that s > 1, qo,ro9 € [1,00] satisfy 7o = 2q0/(2q0 —
1). Also assume that v € @Eﬁ(RZd) is submultiplicative, and that k, kg €
P (R @R satisfy

ko(X14+X2,Y) < Ch(X1,Y)o(Y +Xo)u(Y —Xo) X1, X5, Y e R¥, (8.10)

for some constant C > 0. Then the map (a,$) — Tpy(a) from ¥4 (R2) x
Ys(RY) to L(Zs(RY), ¥L(RY)) extends uniquely to a continuous mapping from

J\/[C()Z’)qo (R?%) x M(TS) (RY) to L(Zs(RY), XL(R?)). Furthermore, if ¢ € M(Tl?) (RY)
and a € Ma’)qo (R??), then Tpy(a) = Op™(b) for some be M((),';’Ol),
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Proof of Proposition[8.9. We show that the conditions on the involved pa-
rameters and weight functions satisfy the conditions of Lemma [8.10}
First we observe that

’Uj(ZY) < CUj(Y+X2)Uj(Y—X2), j=0,1

for some constant C' which is independent of X5,Y € R??, because vy and
v are submultiplicative. Refering back to this gives

UQ(2Y)1/21)1(2Y)
WO(Xl + Xo + Y)1/2w0(X1 + X9 — Y)1/2

vo(2Y) 201 (2Y )uo (X2 + V)20 ( Xy — V)12

wl(Xl + Xg, Y) =

<Oy

wo(X1)
= Clvl(2Y)1_t U0(2Y)1/21)1 (2Y)tU()<X2 4 Y)I/ZU()(XQ . Y)1/2
wo(X1)
01 (Xa + Yoy (Xo — Y)oo(Xa + Y)ug(Xa — Y)

< Cou1(2Y)

wo(X1)
Hence

v1(2Y) " (Xe + YV)u(Xe — V)
wo(X1) '

wl(Xl + XQ,Y) <C (8.11)

By letting k9 = wy and k = 1/wg, it follows that (8.11) agrees with (8.10).
The result now follows from Lemma [8.10i O

Theorem is an immediate consequence of Theorem Lemma
and the following proposition.
Proposition 8.11. Assume that s > 1, wy € L@%’S(Rw) be such that
wo € P&“O)(R%), that v € g@%, L(R24) s submultiplicative, and that wé/ 2
moderate. If ¢ € M(2U (RY), then Tpg(wo) = Op™(b) for some b e I’gwo)(RQd).

18 V-

)

Proof. By Propositions [5.38 and |5.39, we have wy € M?‘ii}o )(RQd) for
R

1
some 79 = 0, where wo - (X,Y) = wo(X)e ™VI* . Furthermore, by letting
1
v(Y) = e"lY1* and vy = v, with w; in we have

1 1
erol2Y]s U(QY)l/z erolYls
=

X, Y)z '
wi(X,Y) 2 wo(XJrY)l/Qwo(X*Y)lm ~ wp(X)

Proposition @ implies that existence of some b e Mﬁ}io )(]R2d> < iwo)
70

(R24), O
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The following generalization of Theorem[0.1]is an immediate consequence
of Theorem [8.T], Lemma [8:8|and Proposition [8.11] since it follows by straight-
forward computations that S € M (21;) when v satisfies the hypothesis in

Proposition [B:11}
Theorem . Lets =1, w,wg € @%7S(R2d), p e (0,00]%?, Z be an invari-
ant BF-space on R*? or B = L%(RQd) for some phase split basis E of R*¢,

and let ¢ € Ss(R?). Then the Toeplitz operator Tpy(wo) is an isomorphism
from M(w,B) onto M (w/wy, B).

For the proof of Theorem we need the following Gevrey version
of |72, Proposition 2.11].

Lemma 8.12. Let s > 1, wg,vp,v1 € 9%75(R2d) be such that wy 1s vg-

moderate. Set ¥ = wéﬂ, and

v(2Y) 20, (2Y)
X +Y)W(X -Y)

wa(X,Y) = 9(X — YV)I(X + V)1 (2),

wl(X,Y) =

va(X,Y) = v (2Y). (8.12)
Then
(/o) #Mall)#pgl/ﬁ) c M‘(f;) (8.13)
Fgl/ﬂ)#M‘(’Z;I)#Fgl/ﬂ) c M‘(’SJ;) (8.14)

The same holds true with Zg s and I‘&gﬁ) in place of @%’5 and T
respectively, at each occurrence.
Proof. We shall mainly follow the proof of [72, Proposition 2.11]. Since

1

M = U, =0 MG with 9,(X,Y) = 9(X)e'VI* (Proposition [5.38(3)), it
suffices to argue with the symbol class M((%’rl) for some sufficiently large r
instead of Fgl/ 19).

For suitable r we show that

w3 X, Y)Swni(X =Y +2,2)9,.(X+2)Y - 2) (8.15)

nR2Y) < (X -Y+Z, D) ws(X +2,Y —Z), (8.16)
where 2Y )X +Y
(X, V) = vl(wo()x(— 7 )

Proposition |5.43|applied to shows that Ma’ll)#Fgl/ ) Ma’;), and

(8.16) implies that rgl/ﬁ)#M‘(j’;) < M2}, and (813) holds.
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1/2

Since ¥ is v’ "-moderate and vy € 9”% s> we have

1
DX =Y <0o(22)29(X=Y+22)"" and 9(X+Y) < 9(X+2Z)eV 210

for suitable » > 0. Using the fact that vy is an even function and that
1
v1(2Y) = v1(2Y — 27 +2Z) < v1(22)e?olY =Z1* for every rg > 0, these give

v0(22)Y201 (22)9(X + Z)erlV 210

wi(X,Y) 5 WX -Y +22)9(X —Y)

=w(X-Y+Z,2)0,.(X+2Y - 2),
for some r > 0. We also have

IX —Y)n(2Y)I(X —Y) _ 9(X —Y)u(2Y) 201 (2Y)O(X +Y —2Y)

v (2Y) = IX —Y)? ~ IX —Y)?
_ (X = Y)uo(2Y) 20 (2Y)9(X +Y)vo(2Y)"/?
~ I(X —Y)2

_O(X — Y 1 2)e g (2Y - 2)Y 20, (2(Y — Z)9(X +Y)
~ WX —-Y +22)2

=0 (X —Y +Z 2 ws(X+2Z,Y — 2).

The inclusion (8.14)) is proved similarly. Let
w(X,)Y) =3 X -Y)nu2Y)=HX -Y +Z - 2)v(2Y — Z2) +22)
be the intermediate weight. Then, the inequality
1 1
wi(X,Y) SO(X =Y + Z)e" I 0 (2(Y — Z))erol2ls
1
SHX =Y + 2)e" 20 2(Y = 2))
=0, (X-Y+Z,2)n(X+2)Y—-2)

implies that Fgl/ 19)#3\/[(()2’21) c M?szxl)'

Similarly we obtain
1
wa(X,Y) <X = Y)u1(22)9(X + Z)e'#Y s

=w (X -Y+Z,2)0,.(X+2Y - 2),

0,1, (1/9) 0,1

and thus M(w4)#FS c M(w2).
The case &g s and Fé}s/ﬂ) in place of @%,8 and I‘gl/ v) respectively, at
each occurrence, is treated in similar ways. O
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Proof of Theorem . First we note that the Toeplitz operator Tp¢(wo) is
an isomorphism from M (219) to M (21 /9) in view of Lemma With w; defined

in , Proposition implies that there exist b € M(()Z’l) and ¢ € S’ (R??)
such that

Tpy(wo) = Op™(b) and  Tpy(wo) ™" = Op®(c).

Let
w2 (X,Y) =9(X - Y)IX +Y)v1(2Y) and w3(X,Y) = m-
(8.17)

We shall prove that c € M?Z’QI) (R24),

By Theorem there are a € F&{ﬁ) (R2%) and ag € F(()i) (R24) such that
the map

Op®(a) : L2(RY) — M2, (RY)
is an isomorphism with inverse Op*(ag). By Propositions and
Op®(a) is also bijective from M (21 /9) (R%) to L?*(R?). Furthermore, by Theo-
rem it follows that a € M(()%’:) when r > 0, where
1
9,.(X,Y) = 9(X)eYI* .
Let by = a#b#a. From Lemma [8.12] we know that

bo € M(,) (R*),  where v3(X,Y) = v1(2Y) (8.18)

is submultiplicative and depends on Y only. Since Op™(b) is bijective from
M(Qﬁ) to M(Ql/ﬁ) by Lemma (2), Op™(bp) is bijective and continuous on
L.

Since vg is submultiplicative and in g (R??), M&l) is a Wiener algebra
by Proposition Therefore, the Weyl symbol ¢y of the inverse to the
bijective operator Op*(by) on L? belongs to MC(?);) (R24).

Since

Op"“(cp) = Op“(bg) ™" = Op*(a) ™ Op* (b))~ Op®(a)~,

we find
Op“(c) = Op”(b) ! = Op“(a) Op*(co) Op“(a),

or equivalently,

¢ = af#tco#a, where ac€ F[()%S/ﬁ) and cg € M(()z’;) ) (8.19)
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The definitions of the weights are chosen such that Lemma[8.12|implies that

cE M(()Z’Ql), and the assertion on ¢ follows. By Proposition |5.42} the mappings

Op®(b) : M&%) — M{O’Jq/ﬁ) and Op“(c) : M&%) — M&%) (8.20)

are continuous. We have
w(X =Y +Z, 2w (X +2,Y —Z)

B v0(22)Y201(22)
"(wX—Y+2mwX—Y)

) C(O(X =Y +22)9(X + V) (2(Y — 2)))

v0(22)201(22)v1(2(Y — Z))9(X +Y)
(X -Y)

2 :w3(XaY)'

Therefore Proposition |5.43| shows that b#c € M(()ngl)' Since Op"(b) is an

isomorphism from M (219) to M (21 /9) with inverse Op"(c), it follows that b#c =

1 and that the constant symbol 1 belongs to M(()Z’Bl). By similar arguments
it follows that c#b = 1. Therefore the identity operator Id = Op™(b) o

Op“(c) on M(pu’}%) factors through M&%), and thus Op”(b) = Tpy(wo) is

an isomorphism from M &?9) to M (i’}q/ 9) with inverse Op"(c). This gives the
result. O

8.3 Specific bijective pseudo-differential operators
on modulation spaces

In this section we construct explicit isomorphisms between modulation spaces
with different weights. Applying the results of the previous sections, these
may be either in the form of pseudo-differential operators or of Toeplitz
operators.

Proposition 8.13. Let s > 1, wg € ,@%’S(Rw), and let # be an invariant
BF-space on R%*¢ or 2 = L%(Rm) for some phase split basis E of R?®. Let

Dy (z,8) = Co—OleP+22le?) ) (A1, \o) € Ri-
Then the following statements hold true:
(1) wo = @y belongs to @%78(R2d) N F((;Jf) for all X e R% and

LUQ*(I))\XWQ.
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(2) If A1 - A2 < 1, then there exists v € R2 and a Gauss function ¢ on R?
such that Op"(wo * ®)) = Tpy(wo * ®,) is bijective from M(w,B) to
M (w/wo, B) for all w e Pp o(R??).

(3) If A\1 - A2 < 1 and in addition wg € rﬁ“O)(RM), then Op®(wp * @) =
Tpy(wo) is bijective from M (w, B) to M (w/wo, &) for allw € P o(R).

The argument is similar to the proof of |72, Proposition 5.1].

Proof. The assertion (1) is a straightforward consequence of the definitions.

(2) Choose p; > Aj such that py - g = 1. Then ®, = cW (¢, ¢) with
o(x) = e_’“‘x'Q/Q, and there is another Gaussian ®, such that &\ = ®,+®,.
Using , this factorization implies that the Weyl operator with symbol
wp * ®) is the Toeplitz operator

Op" (wo * ®3) = Op™(wp * Dy * W (6, 8)) = e(2m) Tpy(wo * B,).

By (1) wo*®, € 2% (R??) mI‘(()wlo )(RZd) is equivalent to wy. Hence Theo-
rem [8.5] shows that Op¥ (wo D)) is bijective from M (w, %) to M (w/wo, A),
and (2) follows.

The assertion (3) follows from (2) in the case A\; - Ag < 1. If A; - Ay =1,
then @) = cW (¢, ¢) for ¢(z) = e~Me*/2 and thus

Op"(wo * @) = Tpy (wo)

is bijective from M (w, %) to M (w/wy, A), since wy € ‘@%,s (R24) AT 0 (R24),
O



Chapter 9

Characterizations of symbols
via the short-time Fourier
transform

The aim of the current chapter is to characterize the symbol class from the
previous chapter in term of estimates of their short-time Fourier transform.
In what follows we let k be defined as

1 when r < 1,
k(r) = (9.1)
or—1 when r > 1.

In the sequel we shall frequently use the inequality
1 _ 1 1
@ +yls <m(s7(2]7 +yl7),  s>0, w,yeR,
which follows by straightforward computations.

Proposition 9.1. Let s,0 > 0 be such that s+ o0 =1 and (s,0) # (%, %),
¢ € LI(RN\0, r > 0 and let f be a Gelfand-Shilov distribution on R?. Then

the following statements hold true:
(1) If f e C*(R?) and satisfies
109 f ()| < Wl ertel® (9.2)
for every h > 0 (for some h > 0), then
Vi (2, €)]  ente™" el -hil? 93)

for every h > 0 (for some new h > 0).
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(2) If o
Vol (z,€)] < ertelt =hel” (9-4)
for every h > 0 (for some h > 0), then f € C®(R?) and satisfies
0 f(2)] < hlelareens™Dral*
for every h > 0 (for some new h > 0).

Proof. We only prove the assertion when (9.2) or (9.4) are true for every
h > 0. The other cases follow by straightforward modifications.
Assume that (9.2)) holds. Then, for every € R the function

y— Fo(y) = fy +2)o(y)
belongs to ¥7(R%), and
|0y Fu(y)| < h‘“'a!"e’“‘(sfl)”f’f\% e—r’o\yI%7

for every h,rg > 0. In particular, for a = 0, in view of Proposition [5.2] we
have

_ 1 1 ~ _ 1 1
|Fy(y)] < ef(s™rlels g=rolyls 419 |EL(8)] < (s 1)T|:r\sefro\§|07 (9.5)

for every ro > 0. Since |V, f(z,§)| = |}?’x(§)|, the estimate (9.3) follows from
the second inequality in (9.5)), and (1) follows.
Next we prove (2). By the inversion formula we get

f(z) = @r) o2 f f Vof (s oz — y)eo dydn.  (9.6)
R2d

Here we notice that
(@, y,1) = Vof (y,m)p(x — y)e“@m
is smooth and

(y,m) = 1V f (y, )  p(x — y)e ™

is an integrable function for every x, o and 3, giving that f in is
smooth. By differentiation and the fact that ¢ € X7 we get

o f@)l = (Z)iﬂ' f f 0V f(y,m)(2° ) (w — )™ dydn
R2d

<) (g) ﬂlnﬁe?y';eh'”g(@“%)(@“—y)ldydn

R2d

a a— o “hinlE rlyls —hyle—y|*
< Z <ﬁ>h|2 Alla - p)! meﬁe hinl7 grlyls g=hale—yl* gy gy
R2d
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for every hi,hs > 0. Using Stirling’s approximation we get

e | < n (el (9.7)
we get
0% f ()]
1 1 1
DY (a> (CHCEN He—é“lnoerms e~Ple=sl* gy
B<a B 5
R

1 1
< (4hy)late fRd el o=hile=sl¥ g (9 g)

Since |y\% < /i(sfl)(m% + |y — x]%) and hy can be chosen arbitrarily
large, it follows from the last estimate that

0% f(2)] < (4h2)|a\a!oern(s—1)‘w|%’
for every hy > 0. This gives the result. -

By similar arguments we get also the following result.

Proposition . Let sj,05 > 0 be such that sj + 0; > 1 and (s;,05) #
(3,3), 7 =1,2, ¢ € SIZ(RUTR)\0, v > 0 and let f be a Gelfand-Shilov
distribution on R"+492 - Then the following statements hold true:

(1) If f € C°(RN1+92) and satisfies
11
1021092 f (w1, 22)| < hlorFe2lay 171 qglo2er el ™ Fleal2) (9-2)’

xT

for every h > 0 (resp. for some h > 0), then

1 1 1 1
Vi f(z1,29,&1,8)| < (s )|z T sy rlea| 52 —h(|61] 71 +]€2]72) ©.3)

for every h > 0 (resp. for some new h > 0).

(2) If
1 1 1 1
Vi f(z1,72,&,6)| < er(fza] 1 |22 *2)—h(|61] 71 +£2 72) (0-4)
for every h > 0 (resp. for some h > 0), then f € C’OO(Rdﬁd?) and
satisfies

1 1
-1 -1
a1 AQ al+a o o2 k(s rlz1]®1 +K(s r|xa| 52
|0p 052 f(x1, m2)| S ploa 2'041! Laglo2eh(sn )il (537 )rlz| ,

for every h > 0 (resp. for some new h > 0).



148 Characterizations of symbols classes

As a consequence of the previous result we get the following.

Proposition 9.2. Let sj,0; > 0 be such that s; + 0; = 1 and (s;,0;) #
(3,3), 7 =1,2, ¢ € STLZ(RETEN0 and let f be a Gelfand-Shilov distribu-
tion on RO+ Then the following properties hold true:

(1) There exist h,r > 0 such that (9.4)" holds true, if and only if [ €
I‘gll’g(Rle’d?).

ere exists r > 0 such that (9. olds true for every h > 0, if an

2) Th ) 0 h that (9.4)" hold h >0, 1 d
only if f € 1“?11;;’;?0(]1%@”2).

(3) (©.4) holds for every h,r > 0, if and only if f € 7720 (Rd1+d2),

51,82;0

By similar arguments that led to Proposition we also get the follow-
ing.

Proposition 9.3. Let sj,0; > 0 be such that s; +0; =21, j = 1,2, ¢ €
ST (RA+A2\0 and let f be a Gelfand-Shilov distribution on R4+92. Then
there exists h > 0 such that (9.4)" holds true for every r > 0, if and only if
f c F017020(Rd1+d2)'

51,823

We also have the following version of Proposition [0.1], involving certain
types of moderate weights.

Proposition 9.4. Let s,0 > 0 be such that s + 0 > 1, ¢ € S7;5(R*))\0
(¢ € LIH(R2N\0), r > 0, w € QQ,U(RM) (w e Ps,(R¥)) and let a be
a Gelfand-Shilov distribution on R??. Then the following statements hold
true:
(1) If a € C*(R?*?) and satisfies

020/ a(w, €)| < hHFlal” Bliw(a, €), (9.9)

for some h > 0 (for every h > 0), then

11
Voa(x, &, m.9)| < w(x, e (17010, (9.10)
for some r > 0 (for every r > 0).

(2) If (9.10) holds true for every r > 0 (for some r > 0), then a € C*(R??)
and holds true for some h > 0 (for every h > 0).

Proof. We shall use similar arguments as in the proof of Proposition[9.1} Let
X = (2,6) e R, Y = (y,7) e R*, Z = (2,¢) € R and let ¢ € £73(R2)\0.
Suppose that w € & ,(R??) and that holds for all A > 0. If

Fx(Y) = W,
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then, the fact that w(X) < w(Y + X)e”o(‘yﬁ*‘"'%) gives that
{Y > Fx(Y); X e R}
is a bounded set in X75. Hence
1908 F (4,m)| < hlo+B8l 19 1se=r(lvl = +nl7).
for every h,r > 0. In particular,

Fx(y,m) < el +hnlo)

11
and  [(FFx)((2)| s e )
for every r > 0. Since

‘V(ﬁa(xag?nvy” = |(<¥FX)(77»?/)W(X)L

149

(9.11)

it follows that (9.10) holds true for all » > 0. This gives (1) in the case when
we P »(R?) and ¢ € £7,5(R?¥)\0. In the same way, (1) follows in the case

when w € 20 (R*%) and ¢ € 875 (R?4)\0.

Next we prove (2) in the case when w € &, and ¢ € £75. Therefore,
suppose (9.10)) holds for all » > 0. Then a is smooth in view of Proposition

. By differentiation, , the fact that, Z = (z,(),
W(Z) < w(X)erole=2 7 +e=1?)
for some ry > 0, and the fact that ¢ € 75 we get

090l a(x,€)]

< 2 (3) (§> f 7y Visalz, G y) (02776, 0)(X — Z)|dY dZ

TS«

4d
5<p R

< 5 (2)(§)rr e -0,

so
d<p
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where

U Z) |y e rrrolle—213 4l +ie=C17 +1nl7) gy gz

R4d

J iyt I3 4107 41003 gy gz
R4d
1 1 1 1
< Bl 15, (X) H o= 5=+l <7 +n1%) gy az
R4d
= B9 5150 (X))

for every h,r > 0. Here the last inequality follows from (9.7)). It follows that
holds true for every h > 0, by using the estimates above and similar

computations as in .

The remaining case follows by similar arguments. O

The following result is a straightforward consequence of Proposition [9.4]
and the definitions.

Proposition 9.5. Let R > 0, ¢ € (0,0], s,0 > 0 be such that s + 0 > 1
and (s,0) # (3,3), d € EZ,?(RM)\O € Zs,(R*), and let
11
wR(xaélevy) = w(xjg)e—R(\y|s+\17|0).
Then,
L7 (R*) = | {ae (S35 (R*); |wg' Voalrea < o0},
R>0

TESORY) = (V{ae (225) (R*); |wg'Vialoa < o0},
R>0

(9.12)



Chapter 10

Invariance, continuity and
algebraic properties for

pseudo-differential operators
with Gelfand-Shilov symbols

In this chapter we deduce invariance, continuity and composition properties
for pseudo-differential operators with symbols in the classes considered in
the previous Chapters [5] and [0 In the first part we show that for any such
class S, the set Opy4(S) of pseudo-differential operators is independent of
the matrix A. Thereafter we deduce that such operators are continuous on
Gelfand-Shilov spaces and their duals. In the last part we deduce that these
operator classes are closed under compositions.

10.1 Invariance properties

An essential part of the study of invariance properties concerns the operator
¢AD¢.D2) when acting on the symbol classes introduced in chapter .

Theorem 10.1. Let s, sy, 82,0,01,09 > 0 be such that
s+o=1, si+o1=1, so+o092=1, s9<s1 and o1 < 03,
and let A € M(d,R). Then the following statements hold true:

(1) eAPe:De) op (R restricts to a homeomorphism on S&s2 (R??), and

extends uniquely to a homeomorphism on (Sei»2) (R?).

(2) If in addition (s1,01) # (%,%) and (s2,09) # (%7%)’ then <ADeDa)
restricts to a homeomorphism on Y3152 (R??), and extends uniquely to

a homeomorphism on (X7152) (R24).
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(3) eXADg,Dz) g ¢ homeomorphism on FZ:;;O(RM).
(4) If in addition (s,c) # (%7
F‘;”g;o(RQd) and on FU,S;O(R

s,0;0

), then ¢“ADe:D2) s g homeomorphism on
d).

The assertion (1) in the previous theorem is proved in [24] and is es-
sentially a special case of Theorem 32 in [129], whereas (2) can be found

in [24,25]. Thus we only need to prove (3) and (4) in the previous theorem,
which are extensions of [24, Theorem 4.6 (3)].

1
2
2

Proof. Let ¢ € S35(R?*¥) and ¢4 = eX4PeDP2)gy Then ¢4 € ST (R?), in
view of (1), and

|(Vpp (e¥4PeL2a)) (@, €, m,y)| = |(Vya)(z — Ay, & — A*n,m,y)| - (10.1)

by straightforward computations, where A* denotes the transpose of A.
Then a € 77 (R??) is equivalent to the property for some h > 0,

5,030
|V¢a($,§77lay)| < er(m‘%+|£‘%)_h(|ﬂ|%+|y\%),

holds true for every r > 0, in view of Proposition By and (1)
it follows, by straightforward computation, that the latter condition is in-
variant under the mapping e4PP=> and (3) follows from these invariance
properties. By similar arguments, taking ¢ € %7 (R??) and using (2) instead
of (1), we deduce (4). O

Corollary 10.2. Let s,0 > 0 be such that s+ 0 > 1 and 0 < s. Then
eXADeD2) s g homeomorphism on S7(R?*?), X7(R?1), (S7)(R?*?) and on
(22)'(R*).

We also have the following extension of (4) in |24, Theorem 4.1].

Theorem 10.3. Let w € P ,(R??), 5,0 > 0 be such that s + o > 1. Then

a e T (R) if and only if AP Pa € TT50(R?).

We need some preparation for the proof and start with the following
proposition.
Proposition 10.4. Let s,0 > 0 be such that s + o > 1 and (s,0) # (%, %),
¢ € X35 (R2)\0, w e P ,(R??) and let a be a Gelfand-Shilov distribution
on R%4. Then, the following conditions are equivalent:

(1) ae ras;o(RM).
(2) For every a, 5 € Zi, h >0, R>0 and z,y,&,n in R? it holds

‘aga? (ez‘(<r,7]>+<y7§>v¢a($, &n, y))‘ < h\a-i-ﬂla!aﬁ!sw(x’ f)e_R(M%Hnl%),
(10.2)
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(3) For a =B =0, (10.2) holds for every h >0, R > 0 and z,vy,&,n € RY.
Proof. Obviously, (2) implies (3). Assume now that (1) holds true. Let

Fo(x,&,y,m) = a(z +y,§ +n)o(y,n).

By straightforward application of Leibniz rule in combination with (5.6|) we
obtain

11
|3ﬁa§Fa(x,€7y,n)| < ROl a1 8150z, €)= RUyI= +nl7)
for every h > 0 and R > 0. Hence, if

000 Fulx,&,y,m)
 hlatBlale plsw(x, €)’

Ga,h,m,é(ya 77)

then using Leibniz formula and the properties of a and ¢ it follows that
11

02856’%;1@75(1/, n) is bounded by h|15+p|5!"plse*T(|y| *+7) for every h, hi, r >

0, 0,p€ Zi and z,¢ € R?. Thus {Gaohaes x,& € R4} is a bounded set in

E‘;;; (RZd) for every fixed h > 0. Let %5 F, be the partial Fourier transform of

F,(x,&,y,n) with respect to the (y,n)-variable. Then, in view of Proposition

b.2] we get
10207 (FaFa)(3,€, ¢, 2)| < hlotFlal? Blow(x, €)e~ IR HIC7),

for every h > 0 and R > 0. This is the same as (2).
It remains to prove that (3) implies (1), but this follows by similar ar-
guments as in the proof of Proposition [9.1 O

Proposition 10.5. Let R > 0, q € [1,0], s,0 > 0 be such that s + 0 > 1
and (s,0) # (3, 3), ¢ € XI(R?*H\0, w e P, ,(R??), and let

1 1
wr(x,&,m,y) = w(z, &)e Blvls+ml=),

Then

rO®) = (V{ae (575 (RY); |wi' Vaalpoo <0} (10.3)
R>0

Proof. Let ¢g € 275 (R2\0, a € (275)(R?%), and set
Foo(X,Y) = |(Vgoa)(@,§,m,9)|, Fa(X,Y) = [(Vsa)(z,&,m,9)]
and  G(z,§,n,y) = [(Vodo)(z,£,n,9)l,

where X = (z,§) and Y = (y,n). Proposition and the proof of (2) in
Proposition m give that V¢ € 27,5 (R*?), then we have

11 1
0< Gz, & m,y) < e Blel=Flde+mle+ =) for every R>0.  (10.4)
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By [67, Lemma 11.3.3], we have F, < Fp, * G. We obtain

(w}_{1 ' Fa)(X7 Y)

1 1
< w(X) " Lellyls+l7) H Foo(X — X1,Y —Y1)G(X1, Y1) dX,dY;
R4d

ff cFo o) (X — X1,Y = Y1) (Qcr,e - G)(X1,Y1) dX1dY;

R4d

< H(%Rl cFoa)(X — X1,Y —Y1)G1(X1, Y1) dX1dY;  (10.5)

R44d

1 1 1 1
where wep . (X1,Y1) = eclils(s)laa]s +r(@)la]a +yils +Iml7) thus G satisfying
(10.4) for some ¢ > 0 independent of R. By applying the L®-norm on the
last inequality we get

|wz" Fall oo (raay

< sup JJ (sup(w.p - Fo.o) (Y — Y1))G1(X1, Y1) dX1dY;
Y
< sup (lw - Foa) (- = (0,Y)z=0) |Gl prw = |wigg - Foall e

We only consider the case ¢ < o0 when proving the opposite inequality.
The case g = oo follows by similar arguments. By ((10.5) we have

i Fullea < | (sup HC YY) .

where H = Kj * Gy and K; = ijR Foa,j > 1. Let Y1 = (y1,m) be new
variables of integration. Then Minkowski’s 1nequahty gives

sup H(X,Y)
X

1 1
< JJ (Sup Ko(-,Y — yl))e—cfi(\y—ylls+\17—m|ff)G1(X17 Y1) dX,dY;

R4d

< | Kall e JJ R(ly—y1| = +ln—m|7 )Gl(Xl,Yl)Xmle-

R4d
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By combining these estimates we get

Hw}_{l : Fa”%w@

1 1
< ‘K2(]JJOOJ (erCR(nyS+77ﬂl”)Gl(XhYl)Xmle dy
R2d
ad

= | K2 .

That is,

lwz' - Fal oo < lwpep - Foall=,

and the result follows. O

Proof of Theorem[10.3 The case s = o = 3 follows from [24, Theorem

4.1]. We may therefore assume that (s,0) # (3,3). Let ¢ € £75(R??) and

pa = AP g Then ¢4 € 75 (R?*?), in view of (2) in Theorem
Also let

wa (@€, y) = wlz — Ay,& — Aq)e” Rl 1l2),
By straightforward applications of Parseval’s formula, we get
|(Vou (44PP2a)) (2,6, m, )| = |(Voa) (z — Ay, € = A*n,m, )|
(cf. Proposition 1.7 in [116] and its proof). This gives
g Voalira = i o Vou (4P P7a) 1o,
Hence Proposition [I0.5] gives

ae F((ZS;O(RM) & |lwypVealre < oo for every R >0

= HwAT}RVd,A(ei<AD§’Dm>a)HLoo <o for every R> 0

= Hwo_’}%vm (eXAPeD)g)| 1o < o0 for every R > 0

i{ADg, Dy

= ael

SR,

()

and the result follows in this case. Here the third equivalence follows from
the fact that

Wo,Rte S WHR S Wo,R—c»

for some ¢ > 0.
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We note that if A, B € M(d,R) and a,b € (S¢5) (R?)) or a,b e (X35) (R??),
then the first part of the previous proof shows that

Opa(a) = Opg(b) <« APeDo)y — (KBDeDayy, (10.6)
The following result follows from Theorems and

Theorem 10.6. Let s, s1, S2,0,01,09 > 0 be such that
sto=1, s1+o1=21, sg+o9=1, s3<s and o1 < o9,

A,B € M(d,R), w e P ,(R*), and let a and b be Gelfand-Shilov distri-
butions such that Opy(a) = Opg(b). Then the following statements hold
true:

(1) a € St72(R?) (resp. a € (S9152)'(R?1)) if and only if b € Sols2 (R??)
(resp. b e (ST12) (R2)).

(2) ac SRR (resp. a € (S R)) if and only if b e S5 (R)
(resp. be (X3152) (R?)).

(3) a € T7: (R??) if and only if b € FZ”(‘;O(R%). If in addition (s,o) #

s,0;0

(3,1), then a e TZSO(R?) if and only if b € T3 (R*), and a €
FZ;%(RM) if and only if b e FZig(RM)

(4) ac€ FUS O(RM) if and only if b e F‘(’C;S);O(de).

The following corollary is a consequence of Theorem [10.6]
Corollary 10.7. Let 5,0 > 0 such that s + 0 > 1 w € P ,(R? 4, Ay, Ay €

M(d,R), and that a1, as € (£35) (R??) are such that Op 4, (a1) = Op, (a2).
Then

a1 €I, S')O(R?d) < ael(] S)O(RQd)

and similarly for F‘(TS)(]RM) in place of FU > O(R2d)

10.2 Continuity for pseudo-differential operators
with symbols of infinite order on Gelfand-
Shilov spaces of functions and distributions

Next we deduce continuity for pseudo—differential operators with symbols in
the classes given in Deﬁnltlons 0 and [5.21] We begin with the case when
the symbols belong to I'?’ (de)

300



Invariance, continuity and composition for 1pdo 157

Theorem 10.8. Let A € M(d,R), s,0 > 0 be such that s+ o =1, and let
aeT?% (R2?). Then Op4(a) is continuous on ST(R?) and on (S7)'(RY).

s,0;0

For the proof we need the following result.

Lemma 10.9. Let s,0 > 0 be such that s+o =1, hy = 1, Q1 be a bounded
set in 82y, (RY), and let

hy = 2%Y5hy  and hs = 245tToh.

Then

aflx) d

is a bounded set in S, (RY), and

Dg?
Q3 = {x — 2 /(@)
(23+s+ah1>|v+5|7!s5!a

Jem, yoezt )
is a bounded set in S, (R9).

Proof. Since € is a bounded set in S;’;hl(Rd), there is a constant C' > 0
such that

2*DP ()| < ChlATPlarsgle o pezd, (10.7)

for every f € Q1. We shall prove that (10.7) is true for all f € Qy for a new
choice of C > 0, and hs in place of hy.

Let f € Q9. Then

z7 fo(x)

f(ZL’) - (21+Sh1)h|’y!5
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for some fp € Q1 and vy € Zi, and

. DR (a7 fo) (2)
‘x D’Bf(l‘” = ol+sp \I~1s
( 1)y
a+y—0 HB—0
< ¥ ( > Bk : 0" fo ()|
Mol (v - 70) (21 +shy)Piyts
—2
<y < )( ) o M 0y = 50) (8 = 0)”
s @ h)Ph
< hfPlage Y (5> <7>2(1+s)m ((a Sl '%)!’VO’> ((5 - ’V?Mo!)
o<, Yo Yo aly! 5!
< h|1a+ﬂ|0é!85!a Z <5> (7)2—(1+s)7 (((X +(7 _70')!70!> (Oé +’7>
vosy,s \10/ \70 a+9)! v
gh‘fﬂj'a!sﬂl" Z olBlolylg—(1+s)ylgsla+]
0<7,8
< 2slelalflp* Pl ge S,
Y0<B
Since
S 1<,
Yo<pB
we get

2 DP £ ()| < C2slel2BIplet Bl s gio < opletFlars g

for some constant C' which is independent of f, and the assertion on €2
follows. The same type of arguments shows that

D6
{memeem,aezi} (10.8)

is a bounded set in 872, (R?), and the boundedness of Q3 in SC s (R%)
follows by combining the boundedness of (29 and the boundedness of ( -
in 87, (RY). O

Lemma 10.10. Let s, 7 > 0, and set

o0 t]
=2 (jh)2

J=0

and mg,(x) = my(r(x)®) t=0, zeR

Then,
1
O 125~ 5)725<m>s < mgq (@ )<06(2s+e)rﬁ<m>%’ (10.9)
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for every e > 0, and
(0%

1
L < pllgserlals 10.10
m577(56 0 ( )

for some positive constant v which depends on d, s and T only.

The estimate (10.9) follows from [82], and (10.10)) also follows from com-
putations given in e.g. [24,[82]. For the sake of completeness we present a

proof of ((10.10)).

Proof. We have

T
<
3 9o ; \T
ms,q—(l‘) ]1:[1 ag( J)a
where
1
gr(t) =tFe 0"t >0,

for some rg > 0 depending only on d, s and 7. Let
go,k(t) = Cke_rot, t = O,

where
Cy = sup(t*Fe=0t).

t=0

Then, g (t) < go,k(t%), and the result follows if we prove Cy < h§k!®.
By straightforward computations, it follows that the maximum of ¢t*¥e =70t
is attained at t = sk/rg, giving that

sk s
Ck‘ = <8> (kk)s < hlgklsv hO = <S> )
roe To

where the last inequality follows from Stirling’s formula. This gives the
result. O

Proof of Theorem[10.8 By Theorem [10.]] it suffices to consider the case
A = 0, that is for the operator

~

Opo(a) (@) = (20)# | aw OF(€)e ds.

Observe that

1 v 7 Jgiad) _ iz
Z(j!)Qs(l_A5)e S = "\

msvT (:Z:) j=0
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Let now hy > 0 and f € ©, where {2 is a bounded subset of S7;, (R9). For
fixed o, B € Zi we get

(2m)%2° DS (Opy(a) f) ()

_ oa p Y DB £l £)eim)
<3 () [ eptatn.fiereee ae

(87

B mi(z) 2 (f)gﬁﬂn(l‘)a (10.11)

<8

~

rpa(T) =) (J.T,;QS fRd(l — Ag)’ (5‘*1)5*7@(;5,5) (5)) KT e

=0

By Lemma and the fact that, (25)! < 475!2, it follows that for some
h >0,

Q- {5 _, (1= A/ (© Dla(z.(0))

1320, B,y eZ]
h|5+7\+jj!257!06!0€ﬂx|% 7 *

is bounded in S¢(R?) for every r > 0. This implies that, for some positive
constants h and rg, we get

(1= A (€' DZa(e, ) FlE)] 5 W1 jroyte groerlel” —rlel”,
for every r > 0. Hence,
i
i

, 1 1
— RIBIFT j12s 10 (8 — )10 r el f e TolelT g¢

0
‘gT,ﬁ,'y(m” < ]z_;) R

00]
< il g erlals S (rh) = A 1o erlel®

§=0
for every r > 0, provided 7 is chosen such that 7h < 1.

By inserting this into (10.11)) and using Lemma [10.10| we get, for some
h > 0 and some rg > 0, that

[ D2(Opo(a) ) ()] < hllatse—roll* >, (5) |97,6(2)]

<8

< h|a+ﬁ|2|/B|a!55!067(7"0*r)|x‘% Z 1] < @2n)letflarspre,
v<p
provided that r above is chosen to be smaller than ryg. Then, the continuity
of Op4(a) on S7(R?) follows. The continuity of Op4(a) on (S7)'(RY) now
follows from the previous continuity and duality. O
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Next we shall discuss corresponding continuity in the Beurling case. The
main idea is to deduce such properties by suitable estimates on short-time
Fourier transforms of involved functions and distributions. First we have the
following relation between the short-time Fourier transforms of the symbols
and kernels of a pseudo-differential operator.

Lemma 10.11. Let A € M(d,R), s,0 > 0 be such that s+ o0 > 1, a €
(895) (R*) (a e (X35) (R*)), ¢ € ST5(R*) (¢ € BT5(R*)), and let

Koa(w,y) = (2m) (5 'a)(z — Al —y),2 — y)
and
d
b(a,y) = Kgala,y) = (2m) 72 (F5 ')« — Az —y),z —y)
be the kernels of Op4(a) and Op 4(¢), respectively. Then

(VwKa,A)(% Y, 57 77)

= (2m) el A EN (Vya) (v — A(z —y), —n+ A*(E+n),E+n,y— ).
(10.12)

The essential parts of ((10.12)) is presented in the proof of [121, Proposi-
tion 2.5]. In order to be self-contained we here present a short proof.

Proof. Let
Ta(z,y) =z — A(z —y)

and

Q = Q(:valayvfaélvn) = <1’ - yvgl - TA*(_na£)> - <$17£ + 77>

By formal computations, using Fourier’s inversion formula we get
b

(VwKa,A)(x? Y, 57 77)

= (2m) 3 ff Ko a(zy,y)0(z1 — 2,41 — y)e @O0 qgy dyy

— (2m) H(ac )91 — Ta(wy), &1 — Tar (-1, €)' Qw1086 g de

— (2m) A = AN (V) (Ta (2, y), Tax (=1, €), € + 1,y — ),

where all integrals should be interpreted as suitable Fourier transforms. This
gives the result. O

Before continuing the discussion about the continuity of pseudo-differential
operators, we observe that the previous lemma in combination with Propo-
sitions and give the following.
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Proposition 10.12. Let A€ M(d,R), s,0 > 0 be such that s+ o =1 and
(s,0) # (3,1), ¢ € SI(R?*)\0, a be a Gelfand-Shilov distribution on R*?
and let K, a be the kernel of Op(a). Then, the following conditions are
equivalent:

(1) a € TTE(R2) (resp. a e T8 (R2)).
(2) For some r >0,
VKo a(z,y, €m)] < 2= AG)I3 +in=A*E4n)] ) ~h(&+n|o +z—y|?)

holds for some h > 0 (for every h > 0).
By similar arguments we also get the following.

Proposition 10.13. Let A € M(d,R), s,0 > 0 be such that s + o > 1,
¢ € ST(R?D)\0, a be a Gelfand-Shilov distribution on R?*? and let K, 4 be
the kernel of Op4(a). Then the following conditions are equivalent:

(1) aeT7% (R2) (resp. a € 1750 (R2)).

5,030 5,030

(2) For some h >0 (for every h > 0),
VoK a(2,y, €, )| < "= A@I T+ = A* €] @)=h(&+n|# +o—yl5)

holds for every r > 0.

Theorem 10.14. Let A € M(d,R), s,0 > 0 be such that s + o > 1 and

(s,0) # (3, 1), and let a € TZFO(R?). Then Opy(a) is continuous on
YI(RY), and is uniquely extendable to a continuous map on (X7) (R?).

Proof. By Theorem [10.I] we may assume that A = 0. Let

9(x) = Opg(a)f(z) = (Kapo(@, *), ) = (haa, ),

where hq, = Kao(z, -), and let ¢; € YI(RY) be such that |¢;|2 = 1,
j =1,2. By Moyal’s identity (cf. [67]) we get

g(z) = (ha,m?)L?(]Rd) = (Vg, hao, V¢1T>L2(R2d)'

Applying the short-time Fourier transform on g and using Fubini’s theorem
on distributions we get

Vgg(‘raf) = <J($,§, -),F>,

where

F(y7 77) = Vaf(yv _n)’ J(l‘? ga Y, 77) = V¢Ka70($, Y, 57 77)
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and ¢ = g2 ® ¢1.

Now suppose that r > 0 is arbitrarily chosen. By Proposition [9.2] we get,
for some ¢ € (0,1) which depends on s and o only, that for some ro > 0 and
with r; = (r 4+ 79)/c, that

11 1 1
|J (2, &, y,m)| < erollzl=+mlo)e=ri(ly=al=+|¢+n|)
1 1 1 1
< e~ ((eri=ro)lz|s terifg]@) gralyls +(rutro)ln|
11 11
< (25 +[E7) gra(lyls +nl=)
~ )
where o only depends on r and rg. Since f € %7(R%) we have

1 1
|F(2,8)] < |flls7, e (2 el> 417,

where h > 0 only depends on 72, and thereby depends only r and ry. This
implies

‘V¢29($7§)‘ = ’<J($,§, >7F>|

1 1 1 1 1 1
< \!f\|s;h (Jf er2(1yls +1nl7) o= (L+r2)(lyl 5 +lnl @) dydn) ozl +el?)

11
- Hf“Sg;hefr(\zl SHE) (10.13)

which shows that g € X7(R?) in view of [123, Proposition 2.1]. Since the
topology of ¥7(R%) is given by the semi-norms
r(ials +1e1)|

g— sup |Vy,g(z,&)e
x,£€Rd

it follows from (10.13)) that Op(a) is continuous on %7 (R9).
By duality it follows that Op(a) is uniquely extendable to a continuous
map on (X7)(R9). O

The following result follows by similar arguments as in the previous
proof.

Theorem 10.15. Let A € M(d,R), s,0 > 0 be such that s + o > 1 and
(s,0) # (3,3), and let a € T75(R?Y). Then, Op4(a) is continuous from
Y7(RY) to ST(RY), and from (S7)(RY) to (£7)'(RY).

10.3 Compositions of pseudo-differential operators

Next we deduce algebraic properties of pseudo-differential operators consid-
ered in Theorems[10.8 [10.14]and[10.15] We recall that for pseudo-differential
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operators with symbols, for instance, in Héormander classes, we have

Opg(a1#oaz) = Opy(a1) o Opy(az),

where )
a1#0a2(l" 6) = (el<D§’Dy>(a1 (337 f)ag (yv 77)) ‘(y n)=(z f)

More generally, if A € M(d,R) and aj# ga2 is defined by
a1# A0 = ¢ADe: D) ((e_i<AD5’D””>a1)#O (e_i<AD5’D“”>a2)> , (10.14)

for a1 and ag belonging to certain Hormander symbol classes, then it follows
from the analysis in [81] that

Opa(a1#4a2) = Opy(a1) o Op4(az) (10.15)

for suitable a1 and as.

We recall that the map a — K, 4 is a homeomorphism from Sg; (R??)
to S?(R??) and from Y75 (R??) to X7(R?). It is also immediate to observe
that the map

(K1, K6y) v (<x,y> o (Ko K)ay) = | Kaa,2)Ka(z,y) dz)

Rd

is sequentially continuous from S7(R2%) x S7(R??) to S7(R??), and from
Y7 (R2?) x 27 (R?) to ¥7(R??). Here we have identified operators with their
kernels. For compositions with three operator kernels we have

(K10 Kyo K3)(x,y) = (K2, Tk, 15 (2,9, - ))

(10.16)
with Tk, ky (2,9, 21, 22) = Ki(x, 21)K3(22,9)

when K; € L?(R??), j = 1,2,3. Notice that

(K1, Ko, K3) = ((2,y) = (K2, Tk, k5 (7,9, +)))

is sequentially continuous from S7(R??) x (S7)'(R??) x ST (R??) to ST (R%),
and from X7(R??) x (£7)"(R??) x 27(R??) to X7 (R??). The following result
follows from these continuity properties and ((10.15)).

Proposition 10.16. Let A€ M(d,R), and let s,0 > 0 be such that s+ o >
1. Then the following properties hold true:

(1) The map (a1,a2) — ai1#as is continuous from Soy(R?*4) x Sg5(R??)
to S5 (R?).

(2) The map (a1,a2) — ai1#az is continuous from Xg5(R??) x ¥75(R2%)
to 75 (R?).
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(3) The map (ay, az,a3) — ar#aaz# saz from 8¢5 (R*) x 875 (R*) x 8377 (R*?)
to Sz’(f(RM) extends uniquely to a sequentially continuous and associa-
tive map from Sey(R??) x (895)'(R%4) x 8775 (R??) to S5 (R2%).

(4) The map (a1,a2,a3) — a1# qa2# a3 from 235 (R23) x 175 (R24) x X775 (R?)
to Z;’;(Rm) extends uniquely to a sequentially continuous and associa-
tive map from L75(R?1) x (X35) (R??) x £75(R?4) to ©75(R?4).

We have the following corresponding algebra result for F;’?O and related

symbol classes.

Theorem 10.17. Let A e M(d,R), and let s,0 > 0 be such that s+ o > 1.
Then the following statements hold true:

(1) The map (1) in Proposition extends uniquely to a continuous map
from T35 0(R*) x T77.(R*) to T77.((R*), and from FZ:;Z%(RQd) X
1—‘0'75§0 (R2d) to FU’S;O (R2d).

5,030 s,0;0

(2) If in addition (s,0) # (3,3), the map (2) in Proposition et-
tends uniquely to a continuous map from ngg;o(RM) x D759 (R2) to
T75%(R2), and from D75 (R2) x T80 (R2) or from TT5° (R24) x 75 (R24)
to I'75 (R24).

Proof. We prove only the first assertion in (2). The other statements follow
by similar arguments.

By Theorem [10.6] it suffices to consider the case when A = 0. Let
gf)l,qf)g,qf)g € Eg(Rd)\O, such that ||¢2HL2 =1, a; € I‘g;ﬁ;o(de), 7 =12 and
let K be the kernel of Opy(ai) o Opy(az). By Proposition we need to
prove that for some r > 0,

1001 1 1
Vorgo K (2,9, € )| < er el =nlietnle el (10.17)

for every h > 0.
Therefore, let h > 0 be arbitrarily chosen but fixed, and let K; be the
kernel of Opy(a;), j = 1,2,

Fl(xay)§7n) = V¢1®¢2K1($7ya€7n)a
F2(xa 975777) = V%®¢3K2($7y7 —5777)
and

G(z,y,&m) = Voees K (2, 9,6, 1)
Then,

G(%, y)f?ﬁ) = Jf Fl(l" Z?&a C)F2(Z7yu C>77) dZd<7 (1018)

R2d
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by Moyal’s identity (cf. proof of Theorem |10.14)). Since a; € T’ 759 (R24) we
have for some ry > 0 that

|Fi(z,y,&m)| < ro(lels +[n|7)—r(ig-+n| 7 +]z—y|3)

and
(o, 9, €,1m)| < erollal® +nlo)=r(le=nl= +le—y|%)
for every r > 0. By combining this with ((10.18) we get, for some r¢ > 0,

|G($’ Y, 5, 77)| s Jf 6307‘07?“1 (m,y,zuﬁvn,o-ﬁ-d]mml («T7y127€7771<) dZdC, (1019)

R2d

where r1 = 2c¢r + crg,
1 1 1 1
(pTo,T(xayvzaévnaC) = 7/‘0(|':E|S + |C’g) - ’I“(|C - 77|" + |y - Z|S)7
1 1 1 1
wTO,T(xvyvzﬂ€7777<) = 7“0(’2‘5 + ’77"’) - T(’f + C|U + |x - 2‘5)7
and ¢ > 1 is chosen such that
1 1 1 1 1 1 d
lz+yls <c(lz]s +yls) and [ +nle <c([E]e +[nl-), =y,§neR™
Then,
1 1 1 1
Pro (T, Y, 2,61, Q) < erol|z]s + |nfe) — (11 —cro)(IC —nle + [y — 2[+)
1 1 1 1
< cro(lz|s + nfe) = 2er(|C —nls + |y — 2[5)
and
1 1 1 1
1117'0,7’1 (Ilf,y,Z,g,’l’],C) < CT0(|:I"|S + |77|U) - 2CT(|£ + C|a + ‘.TL' - Z|S)
This gives
907"0,7"1 (3671%275777:() + 1[)7“0,7“1 (xvya Z>§;77,C)
1 1 1 1 1 1
< 2cro(lz|s +[nle) = 2er(|€+ ¢l +[C—nle + |z — 2|5 + ]y —2[5).
Since
1 1 1 1
—2er([§ +Clo +|C—nle + |z — 2[5 + |y —2[5)
1 1 1 1 1 1
< —r(l€+nle +lz—yls) —er(|§+ o +[C—nle + |z — 2[5 + |y —2[5)

1 1 1 1
< —r([§+nl7 + |z —yl=) —er(l§ + (7 + o = 2[5),
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we get, by combining these estimates with (10.19)), that

G,y 6m)| < U ¢2ero([al ¥ +1nl%)=r(lg+n|? +lo—y ¥ =er(&+<I7 +a=213) g g
RQd

1 1 1 1
— 2ero(fe]S +1n|7)—r(lE+n| 7 +la—y| )

Since g > 0 is fixed and r > 0 can be chosen arbitrarily, the result follows.
O

Theorem 10.18. Let Ae M(d,R), s,0 > 0 be such that s +o =1, and let
wj € ,@570(]1%2‘[), j=1,2. Then the following statements true:

(1) The map (a1, az) — a1# a2 from $25(R?1) x 75 (R21) to ¥.35(R?) s
uniquely extendable to a continuous map from F&T?(RM) X F?j;?(RQd)
to T750 (R2d).

(wiwz)

(2) If in addition w; € @27U(R2d), j = 1,2, then the map (a1, a2) — a1# a2
from S35 (R?1) x 877 (R24) to Sg5(R?) is uniquely extendable to a con-
tinuous map from F‘(Tj)(RQd) X F?S)(de) to F‘(TEWQ)(RM).

For the proof we need the following lemma.

Lemma 10.19. Let w be a weight on R, wy(z,&) = w(x,x,&,€) when
z, £ eRY, 5,0 >0 be such that s + o = 1. Then, the trace map which takes

R 5 (2,y,&,n) — F(z,y,£,n)

to

R* 5 (2,&) = F(x,,£,€)

is linear and continuous from F?j) (R4 into F?L;Z)(RM). The same holds
true with I‘z’j;o and FE‘U’JS(’);)O in place of F?‘j) and F‘(’U’fo), respectively, at each

occurrence.

Lemma follows by similar arguments as in the proof of Lemma
10.9} using the Leibniz type rule

020 (F(,2,6,€) = D) ). ( >< > 00T F) (w, x, €, €).
y<a §<B

Proof of Theorem [10.18. We may assume that A = 0 by Theorem We
only prove (2), since the assertion (1) follows by similar arguments.
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Let
Foyas (71,202,681, &) = ar(z1, &1)az (w2, &)

and

w(x, 2,81, &) = wi(x1, §1)wa (w2, &2).

By the definitions, it follows that the map T which takes (a1, a2) into Fg, 4,
is continuous from F‘(TU’Ji)(RQd) X F‘(TL:Z)(RQCI) to F‘(T:) (R4).
Theorem implies that the map 75 which takes F'(x1,x9,£1,£2) to

eXPeiDea) P (11 19, €1, &) is continuous on FUU’JS) (R%). Hence, if T3 is the
trace operator which takes F'(x1,x2,£&1,&2) into Fy(x,§) = F(x,z,&,§), the

Lemma, [10.19| shows that T = T3 o Ty o T} is continuous from FZ‘U’JSI)(RM) X
b 2 U’S 2d
F‘(’wz)(R ) to I‘(WWQ)(]R ).

By |81, Theorem 18.1.8] we have T'(ai,as) = ai#paz when aj,as €
Y05 (R2). If instead a; € F?;)S_)(de), j = 1,2, then we take T'(a,az) as the

J
definition of a;#gas. By the continuity of T" it follows that (a1, as) — a1#qa2
is continuous from T'7% (R??) x I'7° (R??) to T7*  (R?9).
(w1) (w2) (w1w2)
Since I‘a‘j)(RM) c F;’;;O(Rw), we get Opg(ai1#gaz) = Opg(ar) o Opy(az)

and that a;#gag is uniquely defined as an element in F;’i;O(RQd), in view of

Theorem [10.17] Hence a1#gas is uniquely defined in T'7° | (R2%), since all
0

(wiw2)
these symbol classes are subspaces of C®(R??). This gives the result. O




Chapter 11

Pseudo-differential operators
with symbols of infinite
order on modulation spaces

o,s;0
(WO) )7

given in Definition when acting on a general class of modulation spaces.
In Theorem |11.1| continuity is proved where the symbols belong to FZ;Z) and

In this chapter we discuss continuity for operators in Op(FZ;Z)) and Op(T

,s;0
(wo) *
This gives an analogy to [120, Theorem 3.2], within the frameworks of op-
erator theory and Gelfand-Shilov classes.

The main result of the current chapter is the next Theorem

Theorem 11.1. Let A € M(d,R), s,0 > 1, w,wy € 3”270(}1%%), a €

F‘(TU’JSO)(RM), and that & is an invariant BF-space on R??. Then Op 4(a)

is continuous from M (wow, B) to M(w, RB).

in Theorem [11.5| continuity is proved where the symbols belong to I

We need some preparations for the proof, and start with the following
remark.

Remark 11.2. Let 5,0 > 0 be such that s + o = 1. If a € (X75)'(R??),
then there is a unique b € (X35) (R*) such that Op(a)* = Op(b), where
b(z, &) = ePeLog(x €) in view of [80, Theorem 18.1.7]. Furthermore, by
the latter equality and [24, Theorem 4.1] it follows that

ae TN (RM) < bel()(R™).

Lemma 11.3. Suppose s,0 > 1, w € Pg(RD) and that f € C*(R4+db)
satisfies

1

0% f (z,y)| < hlYlal7e 2 w(y), a € 20T, (11.1)
for some h > 0 and r > 0. Then there are fy € C*(R¥ %) and ¢ € S (RY)
such that holds true with fo in place of f for some for some h > 0
and r >0, and f(x,y) = fo(z,y)(x).
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Proof. By Proposition there is a submultiplicative weight vo € &g s (R9)
NC®(R?) such that

et
vo(w) = ezl?l® (11.2)

and
|0%0(2)| S h¥atvg(z),  aezd (11.3)

for some h,r > 0. Since s,o > 1, a straightforward application of Faa di
Bruno’s formula, for the composed function 1 (z) = g(vo(z)), where g(t) =

t? on 11‘3’ gi“es
~ . v ( )7 + .

vo(x)

for some h > 0. It follows from (11.2)) and ( -’ that if ) = 1/vg, then ¢ €
S?(R%). Furthermore, if fo(:x,y) f (a: y)vo(z), then through an application
of Leibnitz formula we get

(6% —
el X (%)l el

Tso

<h\a|+|ao| 2 ( ) (Vag!)? —r\x|%w(y)(a_,y>!av0(x>

<a
< (zh)\alﬂaol(a!aox)ﬂe*’"lml%vo(a:)w(y)
< (2m)1 10l alagt)7e 51 (),

for some h > 0, which gives the desired estimate on fy, since it is clear that

f(x,y) = f(](l‘,y)iﬂ(.%') u

Lemma 11.4. Let s,0 > 1, w € QS,U(RM), v] € 9%75(}1@) and vy €
P4 »(RY) be such that v and vy are submultiplicative, and w € I‘((’—ws) (R24)
is v1 ® ve-moderate. Also, let a € F‘(TU’JS)(RM), f e S7(RY), ¢ € RI(RY),
¢2 = ¢ui. If

a(z + 2,6+ )
w(z,&)v1(2)v2(C) (11.4)

Q(x7 57 Z? C) =
and

H(z, ¢, y) ﬂ 2,&,2,0)pa(2)v2(C) V75 dzdc (11.5)
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then
Vo(Op(a)f)(x,€) = 2m)~(f,e H(w, €, - )w(x,€). (11.6)
Furthermore the following statements hold true:
(1) H € C*(R3?) and satisfies
|0y H (2, &,y)| < h‘oala!"e_m'”_y‘%, (11.7)
for every a € Z< and some ho, o > 0.
(2) There are functions Hy € C*(R3?) and ¢g € ST(R?) such that

H(l'agay) =H0(af:,£,y)¢0(y—:z‘), (118)

and such that (11.7)) holds true for some hy,ro > 0, with Hy in place of
H.

Lemma follows by similar arguments as in [126]. In order to be self
contained, we give bellow a (different) proof.

Proof. By straightforward computations we get
Vs (Op(a) f)(w,€) = (2m)~(f, e O Hi(,€, - ))w(z, €), (11.9)

where
Hy(x,€,y) = (2m)%e 9 (0p(a)*(¢(- — 2) ")) (y) /w(z, )

_ J J “(('Z’é))¢(z — 2)e v dade

W

= [| 262 2.0~ nle — w)unlc — e daac.

If z — 2 and { — £ are taken as new variables of integrations, it follows that
the right-hand side is the same as . Hence holds true. This
gives the first part of the lemma.

The smoothness of H is a consequence of the uniqueness of the adjoint
(cf. Remark and [126, Lemma 2.7]).

To show that holds, let

q)()(x7£7 2, C) = (I)(IL',E, 2, C)¢2(z)a

where @ is defined as in ((11.4]), and let ¥ = #3®(, where .Z39 is the partial
Fourier transform of ®(x,&, z, () with respect to the z variable. Then it
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follows, from the assumptions and (11.3))) and Proposition that for
some 7 > (

‘6?@0(%’,5, 2, C)‘ =

% ()7 (i) =70

<«

63_’\a(:c +2,&+ C)‘

<X () 2 0 oo

« M L) plel(q — pyee il
v1(2)

1
< (O‘) 3 (} Blel (o — )17 (y — Ao ATl
V<a

< hlelgr 3 (‘;‘) 3 (’;) ((a _a?)W!)U <(7 _fy?)wye‘“';

<a
1
< (an)llatrer=E N 3

y<o A<y
Since Y] 1< 2N we get
Ay
1 1
10900 (z, €, 2,¢)| < C(16h) ¥ at7emol=1* < Chllaroerolls  (11.10)

for some C, hg,79 > 0. Then z — ®g(z,£,2,¢) is an element in S7(RY).

Moreover, {®o(z,£,2,()} ,cpa is a bounded set in F‘(’S (R% x R24). Indeed, for

a fixed zg € R%, an application of Leibnitz formula, Faa di Bruno’s formula,

Proposition and (11.3)), gives

1
020000 @0 (w,€,20,0)| < Y. (;) (Bﬁl) (l)ailafl (w(z,g))
% (;s’Yl

1 a—ay AB—B1 77 .
7 (02@) 03O M alw 20,6 4+ )] -

<S(2) ()i

o2 alw + 20,6+ €)|

: <w<x,a>v11<20>v2<c>>

3 ()06

(= an)laa)” (8 = B1)!81)° (v —y)!m!)’
< (4h)le+BHlg)7 (8141 (11.11)
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where the summations above are taken over all a1 < o, 81 < 8 and 1 < 7.

In view of Proposition and (11.10)) we have
1
|02‘\I/($, é‘, n, €)| < hl)a‘a!se—row c ,

for some hg,rg > 0. Hence

38 (W (2, ,C, Ova(Q))] < Al atseoldI7,

for some hg,rg > 0.
By letting Ho(x,&, ) be the inverse partial Fourier transform of ¥(z, ¢,
¢, ¢)va(¢) with respect to the ¢ variable, it follows that

1
|05 Ha(2,€, )| < hg'lat7e ol (11.12)

for some hg, 79 > 0. The assertion (1) now follows from the latter estimate
and the fact that H(z,&,y) = Ha(z, &,y — ).

In order to prove (2) we notice that shows that y — Ha(z,&,y)
is an element in S7(RY) with values in T'7;(R??), in view of and the
construction of Ha. It follows by Lemmathat there exist Hz € C®(R3%)
and ¢ € S7(R?) such that holds for some hg, rg > 0 with H3 in place
of Hs, and

HQ(£7 5, y) = H3(x7 57 y)¢0(_y)
This is the same as (2), and the result follows. O

Proof of Theorem [11.1]. Tt is not restrictive to assume that A = 0, in view
of the invariance properties given by Chapter Let G = Op(a)f. In view
of Lemma [I1.4l we have

VsG(x,6) = (2m) 2. F((f - do(- — ) Ho(z, &, ) (€)w(x,€)
= 2m) Vo f) (. ) * (F(Ho(a,€, -)))(Ew(a, ).

Since w and wq belong to e@gg(RQd), then, for every 79 > 0 and z, £, 1 € R?,

we have

W([L‘, 5)(*)0(337 f) < W(I, 7])(,;)0(1" 77)6%0|5*77|% .

Such inequality and (2) in Lemma [11.4] give
VoG (z, &)wo(x, )| < <\(V¢of)($> Dw(z, - Jwolz, - *6_2'“1’) (©)-
In view of Definition we get, for some v e 2I(R%),

G at(o0) S (Voo ) -0~ wol + Go @ el 17 |

1
< (Vi f) - w - wollle ™™ 10l = | f | a9

The proof is complete. O
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By similar arguments as in the proof of Theorem and Lemma
we can prove the next two results.
Theorem 11.5. Let A € M(d,R), 5,0 > 1, w,wp € Z5,(R*?), a € F((fjo;;)
(R24). Assume also that % is an invariant BF-space on R?*?. Then, Op 4(a)
is continuous from M (wow, B) to M(w,RB).

Lemma 11.6. Let s,0 > 1, w € &, ,(R??), v € Z,(RY) and ve € Z,(RY)
be such that v and ve are submultiplicative, and w € I’?jo(Rm) is v1 ® vg-

moderate. Also, let a € FU;S);O(RM), frd € ZIRY), ¢po = ¢y, and let @

and H be as in Lemma|11.4. Then (11.6) and the following statements hold
true:

(1) H e C*(R3?) and satisfies (11.7)) for every ho,ro > 0.

(2) There are functions Hy € C*(R3?) and ¢y € Bs(RY) such that (11.8)
holds true, and such that (11.7)) holds true for every hg,ro > 0, with Hy
in place of H.



Appendix A

Proof of Lemma (7.3

Lemma A.l. Let a = (a1,...,04) € ZL. Then the number of elements in
the set
Qa={(Br,. . Be) € Z s B+ + B =) (A1)
s equal to
ﬁ (aj + k:)
PRI

For the proof we recall the formula
k .
1
S = (), (A2)
=0\ J
which follows by a standard induction argument.

Proof. Let N be the number of elements in the set (A.l]), which is the

searched number, and let IN; be the number of elements of the set

By straightforward computations it follows that N = Ny --- Ny, and it suf-
fices to prove the result in the case d = 1, and then a = («y).
In order to prove the result for d =1, let v € Z,

Si(y) =1,

and define inductively
v
Sivi(v) =D, 8i(B),  i=12....
£=0

By straightforward computations it follows that N = N; = Si(ay). We
claim

sjm_(”j_j), i—192,.... (A.3)
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In fact, (A.3)) is clearly true for j = 1. Assume that (A.3) holds for
j =n, and consider S, 11(y). Then, (A.2)) gives

_ ny: (ﬁ+n> B ('y—i—n—i-l) B (’y+n+1>
o) I3 0% n+1
which gives (A.3)) when j = n+ 1. This proves (A.3), and the result follows.
O

Lemma A.2. Let a € Z2\0, so € (0,1], and let Q. be the same as in
(A.1). Then

|a|

$1 5 gtz

k=1 ﬂeﬂkya

Proof. By Lemma[A.T] observing that § € Qo = (! > 1 and, of course
k21l = % < 1. Recalling that sg — 1 < 0 we get

SH(s )< S (s )-S5 (1Y)

k=1 BEQ.a k=1 \ BeQ% o k=1 \j=1

S

d
<lal[]2% = |of -4l < 6l
j=1

O]
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