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Abstract

This thesis treats different aspects of microlocal and time-frequency anal-
ysis, with particular emphasis on techniques involving multi-products of
Fourier integral operators and one-parameter group properties for pseudo-
differential operators.
In the first part, we study a class of hyperbolic Cauchy problems, associated
with linear operators and systems with polynomially bounded coefficients,
variable multiplicities and involutive characteristics, globally defined on Rd.
We prove well-posedness in Sobolev-Kato spaces, with loss of smoothness
and decay at infinity. We also obtain results about propagation of singulari-
ties, in terms of wave-front sets describing the evolution of both smoothness
and decay singularities of temperate distributions.
In the second part, we deduce lifting property for modulation spaces and
construct explicit isomorpisms between them. To prove such results, we
study one-parameter group properties for pseudo-differential operators with
symbols in some Gevrey-Hörmander classes. Furthermore, we focus on some
classes of pseudo-differential operators with symbols admitting anisotropic
exponential growth at infinity. We deduce algebraic and invariance prop-
erties of these classes. Moreover, we prove mapping properties for these
operators on Gelfand-Shilov spaces of type S and modulation spaces.
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Introduction

One of the fundamental goals of classical analysis is a thorough study of
functions near a point, that is, locally. It is also well known that the decay
properties of the Fourier transform of a distribution, that is, its represen-
tation in the frequency domain, are connected to its smoothness. Starting
from this observation, microlocal techniques were developed, in the second
half of the twentieth century, as part of the study of linear partial differential
equations, to obtain informations on the local behavior of the solutions. The
term microlocal implies localization not only close to a point x0 in the config-
uration space X, typically a (smooth) manifold, but also in a neighbourhood
of the covariable (or frequency variable) ξ0, that is, close to points px0, ξ0q of
the cotangent space (of an open subset) of X. Loosely speaking, microlocal
analysis is analysis near points and directions, that is, in the phase space,
based on Fourier, and other type of, transforms. Many basic ideas date
back to the original works by Hörmander [79], Kohn and Nirenberg [85],
and Maslov [91], in which they generalized existing notions from analysis to
investigate distributions and their singularities. A wide range of even more
comprehensive and careful treatments of this subjects are now available, in
particular, related to the concept of wave-front set of a distribution and to
various functional spaces.

This dissertation consists of two parts, each one focused on related, but
independent, topics and applications of the microlocal analysis techniques,
with Rd chosen as configuration space. The various objects of interests will
be anyway globally defined, that is, carrying informations, for instance, on
their “behaviour at infinity” (e.g., decay, regularity with respect to certain
functional or distributional spaces on the whole Rd, etc.).

Part I deals with a class of hyperbolic partial differential equations and
the corresponding families of Fourier integral operators giving their solu-
tions.

Part II is devoted to study classes of pseudo-differential operators on
the so-called modulation and Gelfand-Shilov functional and distributional
spaces.

To introduce the contents of Part I, we begin by recalling the definition
of Fourier integral operators on Rd. Namely, they are linear maps, initially
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defined on S , that, in their simplest form, can be written as

`

Opϕpaqf
˘

pxq “ p2πq´
d
2

ż

Rd
eiϕpx,ξqapx, ξq pfpξq dξ, f P S pRdq, (0.1)

where apx, ξq is the amplitude or symbol, ϕpx, ξq is the phase function, and
the Fourier transform pf of f is defined1 in (0.10). In the case of the elemen-
tary phase function ϕpx, ξq “ xx, ξy, the Fourier integral operator (0.1) are
(left-quantized) pseudo-differential operator.

A most widely used class of amplitudes is the one introduced by Hörman-
der in [81], the so called Sm%,δpR2dq “ Sm%,δ class, that consists of functions

a P C8pRd ˆ Rdq satisfying, for m P R, %, δ P r0, 1s, δ ď %,

|Bαξ B
β
ξ apx, ξq| ď Cαβp1` |ξ|q

m´%|α|`δ|β|, x, ξ P Rd,

for suitable Cαβ ą 0, α, β P Zd`. In the classical theory, the phase function
ϕ P C8pRd ˆ pRdz0qq is homogeneous of degree 1 in the frequency variable
ξ. Often it is also assumed to satisfy the non-degeneracy condition, that is,

the mixed Hessian matrix r B2ϕ
BxjBξk

s has non-vanishing determinant. This is

an important assumption when dealing with boundedness of the operators
(0.1) on L2 or Hs and other functional spaces.

The study of these operators, which are intimately connected to the
theory of linear partial differential operators, has a long history. In [81],
Hörmander credits the original local notion of Fourier integral operators to
Lax in the paper [87], where the objective was the study of the singularities
of hyperbolic differential equations (see also Maslov [91]). There is a huge
number of results and applications concerning regularity, boundedness and
compositions (of Fourier integral operators and pseudo-differential opera-
tors). We refer the reader to [42,43,51,76,77,81,86,107] and the references
quoted therein for a wider overview of the existing literature.

In particular, we will be concerned with the application of Fourier inte-
gral operators to the study of hyperbolic type equations. Also this related
literature is quite large, see again the sources quoted above and their list
of references. More precisely, for some T ą 0, we will consider the Cauchy
problem

#

Lupt, sq “ fptq pt, sq P r0, T s, s ď t

pDk
t qups, sq “ gk k “ 0, . . . ,m´ 1,

(0.2)

1Notice the presence of the normalization factor p2πq´
d
2 in the definition of pf .
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with f and gk, k “ 0, . . . ,m´ 1, chosen in suitable functional spaces,

L ” Lpt,Dt;x,Dxq “ Dm
t `

m
ÿ

j“1

Pjpt;x,DxqD
m´j
t

“ Dm
t `

m
ÿ

j“1

ÿ

|α|ďj

cjαpt;xqD
α
xD

m´j
t ,

(0.3)

m P N, and the differential operators Pjpt;x,Dxq, j “ 1, . . . ,m, given by

Pjpt;x,Dxq “
ÿ

|α|ďj

cjαpt;xqD
α
x ,

having polynomially bounded coefficients, namely,

|Bkt B
β
xcjαpt;xq| À xxy

j´|β|, β P Zd`, x P Rd, t P r0, T s. (0.4)

j “ 1, . . . ,m, α P Zd`, |α| ď j. Denoting by Lm “ σp pLq the principal
symbol of L, that is

rσp pLqspt, τ ;x, ξq “ τm `
m
ÿ

j“1

»

–

ÿ

|α|“j

rcjαpt;xqξ
α

fi

fl τm´j

where rcjα, the principal part of cj,α, satisfies (0.4), see Chapter 4 for the
precise definition. We assume L to be hyperbolic, that is

Lmpt, τ ;x, ξq “
m
ź

j“1

pτ ´ τjpt;x, ξqq ,

with real-valued, smooth characteristics roots τj , j “ 1, . . . ,m.

Such global problems on the whole of Rd have been considered by Cordes
(cf. [41]), mostly in the case of strictly hyperbolic operators, that is, when
the characteristic roots are all distinct and satisfy a “separation condition”
at infinity, see Chapter 4. While the classical setting recalled above is ap-
propriate for the study of the local behaviour of solutions to problems of the
type (0.2), it does not allow to obtain informations about their behaviour at
infinity. A better suited environment for this aim is provided by the so-called
SG symbols, introduced independently by Cordes and Parenti [95]. The cal-
culus on Rd has been extended to a class of non-compact manifolds (the
so-called SG-manifolds), including the manifolds with finitely many ends,
by Schrohe [106]. Namely, a symbol apx, ξq belongs to the SG symbol class
Sm,µpR2dq “ Sm,µ, m,µ P R, if a P C8pRd ˆ Rdq and

|Dα
xD

β
ξ apx, ξq| ď Cαβxxy

m´|α|xξyµ´|β|, x, ξ P Rd,
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for suitable constants Cαβ ą 0, α, β P Zd`. Operators L of the type (0.3),
where the operators Pj turn out to be defined by means of parameter-
dependent symbols of order pm´ j,m´ jq, j “ 1, . . . ,m, indeed appear as
local representations, on (unbounded) coordinate patches, of natural differ-
ential operators on manifolds with ends (see, e.g., the corresponding example
in [47]).

The systematic study of (0.2) through Fourier integral operators tech-
niques was performed in [43] in the case of operators L with constant multi-
plicities (see Definition 4.2), based on the calculus of the so-called SG Fourier
integral operators developed in [42]. Therein, the Fourier integral operators
(0.1) have symbol a P Sm,µ, while the phase function ϕ satisfies ϕ P S1,1

and

cxξy ď xϕ1xpx, ξqy ď Cxξy, cxxy ď xϕ1ξpx, ξqy ď Cxxy, x, ξ P Rd,

for suitable c, C ą 0. Notice that no homogeneity assumption on ϕ is
required.

Compared with [43], we will focus here on the more general situation of
involutive operators. That is, those hyperbolic operators L whose charac-
teristic roots fulfill the next main Assumption A.

Assumption A. Let the characteristic roots τj P C
8pr0, T s;S1,1pR2dqq, j “

1, . . . ,m, be an involutive family. Explicitly, they are real-valued, and, for
any j, k “ 1, . . . ,m, there exist real symbols bj,k and dj,k P C

8pr0, T s;S0,0pR2dqq

such that the Poisson bracket tτ ´ τj , τ ´ τku satisfy

tτ ´ τj , τ ´ τku “ Btτj ´ Btτk ` τ
1
j,ξ ¨ τ

1
k,x ´ τ

1
j,x ¨ τ

1
k,ξ

“ bj,kpτj ´ τkq ` dj,k

holds true on r0, T s ˆ Rd ˆ Rd.

Assumption A allows to prove the existence of a representation of the
fundamental solution of (0.2), involving finitely many SG Fourier integral
operators, related to the characteristic roots of L, analogously to the results
in [86,94,110] in the classical Hörmander symbols, local setting. Such well-
posedness result in the naturally associated scale of functional spaces, the
so-called Sobolev-Kato spaces Hr,%, r, % P R, further generalizes the quoted
results, both in the local as well as in the global setting. To achieve this
result, a careful analysis of algebraic properties of the involved operators
is needed. Namely, completing the work in [8], commutative properties
of multi-products of SG Fourier integral operators are proved under the
Assumption A for the symbols generating their phase functions, so extending
the similar results in [86,94,110] to the SG case. Moreover, a result for the
propagation of singularities for the Cauchy problem (0.2) is obtained, taking
advantage of the structure of its fundamental solution operator, in terms
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of the global wave-front sets studied in [46–48]. A future application will
concern the study of stochastic versions of the Cauchy problem (0.2) for a
SG-involutive operator, in the spirit of [10]. The results proved in Part I are
contained in the preprint [1].

To summarize the contents of Part II, we first recall some basic notions
of time-frequency analysis. A time-frequency representation transforms a
function f on Rd into a function on the time-frequency space Rd ˆRd. The
goal is to obtain a description of f , that is, local both in time and in fre-
quency. The standard time-frequency representations, such as the short-time
Fourier transform and its various modifications known as Wigner distribu-
tion, radar ambiguity function, Gabor transform, all encode time-frequency
information.

A main ingredient of time-frequency analysis are the so-called modu-
lation spaces. They were introduced in [55] by Feichtinger, to measure
the time-frequency concentration of a function or distribution on the time-
frequency space. Nowadays they have become popular among mathemati-
cians and engineers in view of their numerous applications in signal process-
ing [58, 59], pseudo-differential and Fourier integral operators [33, 34, 38, 98,
99,109,111,112,118,120,122,123,125,126] and quantum mechanics [39,65].
They are interesting also because, by appropriate choices of the elements
entering their definition, they coincide with many “standard” functional
spaces, like Lp, Hs

p , etc. Since many mapping properties are known for
pseudo-differential and Fourier integral operators acting on such spaces, it
is useful to establish homeomorphisms (lifts) between modulation spaces
and other functional spaces. In particular, if such homeomorphisms can be
expressed terms of pseudo-differential operators, the corresponding calculi
can then provide further mapping properties among the original modulation
spaces themselves.

More precisely, the topological vector spaces V1 and V2 are said to possess
lifting property if there exists a “convenient” homeomorphism (that is, a
lifting) between them. For example, for any weight ω on Rd, p P p0,8s and
s P R the mappings f ÞÑ ω¨f and f ÞÑ p1´∆qs{2f are homeomorphisms from
the (weighted) Lebesgue space Lp

pωq and the Sobolev space Hs
p , respectively,

into Lp “ H0
p , with inverses f ÞÑ ω´1 ¨f and f ÞÑ p1´∆q´s{2f , respectively.

(Cf. [80] and Part II, Chapter 5 for notations.) Hence, these spaces possess
lifting properties.

It is sometimes relatively simple to deduce lifting properties between
(quasi-)Banach spaces of functions and distributions, if the definition of their
norms only differs by a multiplicative weight on the involved distributions,
or on their Fourier transforms, which is the case in the above example. A
more complicated situation appear when there are some kind of interactions
between multiplication and differentiation in the definition of the involved
vector spaces. This is a typical situation for many functional spaces in
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microlocal and time-frequency analysis, since multiplications on the Fourier
transform side are linked to differentiations of the involved elements. An
interesting example where such interactions occur concerns the extended
family of Sobolev spaces, introduced by Bony and Chemin in [14] (see also
[89]). More precisely, let ω, ω0 be suitable weight functions and g a suitable
Riemannian metric, which are defined on the phase space W » T ˚Rd » R2d.
Bony and Chemin introduced in [14] the generalised Sobolev space Hpω, gq
which fits the Hörmander-Weyl calculus well, in the sense that Hp1, gq “ L2,
and if a belongs to the Hörmander class Spω0, gq, then the Weyl operator
Opwpaq with symbol a is continuous from Hpω0ω, gq to Hpω, gq (see Chapter
1 below for notation about the pseudo-differential operators and their Weyl
quantization Opwpaq). Moreover, they deduced group algebras, from which
it follows that to each such weight ω0, there exist symbols a and b such that

Opwpaq ˝Opwpbq “ Opwpbq ˝Opwpaq “ I, a P Spω0, gq, b P Sp1{ω0, gq, (0.5)

where I is the identity operator on S 1. In particular, by the continuity
properties of Opwpaq it follows that Hpω0ω, gq and Hpω, gq possess lifting
properties with the homeomorphism Opwpaq, and Opwpbq as its inverse.

The existence of a and b in (0.5) is a consequence of solution properties
of the evolution equation

pBtaqpt, ¨ q “ pb` log ϑq#apt, ¨ q, ap0, ¨ q “ a0 P Spω, gq, ϑ P Spϑ, gq, (0.6)

which involve the Weyl product # and a fixed element b P Sp1, gq. It is
proved that (0.6) has a unique solution apt, ¨ q which belongs to Spωϑt, gq
(cf. [14, Theorem 6.4] or [89, Theorem 2.6.15]). The existence of a and b in
(0.5) will follow by choosing ω “ a0 “ 1, t “ 1 and ϑ “ ω0.

An important class of operators in quantum mechanics and time-frequency
analysis concerns Toeplitz, or localisation operators. The main issue in
[72, 73] is to show that the Toeplitz operator Tppω0q lifts Mp,q

pω0ωq
into Mp,q

pωq

for suitable ω0. The assumptions on ω0 in [72] is that it should be polynomi-
ally moderate and satisfies ω0 P S

pω0q. In [73] such assumptions have been
relaxed (see the quoted paper for details), but here we work under further
different hypotheses.

One of the main results in Part II, which is similar to [72, Theorem 0.1],
can be stated as follows (see Chapter 5 below for the notation).

Theorem 0.1. Let s ě 1, ω, ω0 P P0
E,spR2dq, p, q P p0,8s and let φ P

SspRdq. Then the Toeplitz operator Tpφpω0q is an isomorphism from Mp,q
pωq

pR2dq onto Mp,q
pω{ω0q

pR2dq.

We notice that, in contrast to [72, 73], such lifting properties also hold
for modulation spaces which may fail to be Banach spaces, since p and q
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in Theorem 0.1 are allowed to be smaller than 1. Moreover, differently
from [73], we do not impose in Theorem 0.1 and in its related results that
ω0 should be radial in each phase shift (cf. e. g. [73, Theorem 4.3]). Our
lifting results then extend those proved in [72, 73]. They are contained in
the preprint [3].

Another important family of functional and distributional spaces are the
so-called Gelfand-Shilov spaces of type S . They have been introduced in
the book [64] by Gelfand and Shilov, as an alternative functional setting to
the Schwartz space S pRdq of smooth and rapidly decreasing functions, for
Fourier analysis and for the study of partial differential equations. Namely,
fixed s ą 0, σ ą 0, the space Sσs pRdq “ Sσs can be defined as the space of all
functions f P C8 satisfying an estimate of the form

sup
α,βPZd`

sup
xPRd

|xβBαfpxq|

h|α`β|α!σβ!s
ă 8 (0.7)

for some constant h ą 0, or the equivalent condition

sup
αPZd`

sup
xPRd

|er|x|
1
s
Bαfpxq|

h|α|α!σ
ă 8 (0.8)

for some constants h, r ą 0. For σ ą 1, Sσs represents a natural global
counterpart of the Gevrey class Gσ but, in addition, the condition (0.8)
encodes a precise description of the behavior at infinity of f . Together with
Sσs one can also consider the space Σσ

s , which has been defined in [97] by
requiring (0.7) (respectively (0.8)) to hold for every h ą 0 (respectively for
every h, r ą 0). The duals of Sσs and Σσ

s pRdq and further generalizations of
these spaces have been then introduced in the spirit of Komatsu theory of
ultradistributions, see [28,97].

After their appearance, Gelfand-Shilov spaces have been recognized as a
natural functional setting for pseudo-differential and Fourier integral opera-
tors, due to their nice behavior under Fourier transformation, and applied in
the study of several classes of partial differential equations, see e. g. [7,17–22].

According to the condition on the decay at infinity of the elements of
Sσs and Σσ

s , we can define on these spaces pseudo-differential operators with
symbols admitting an exponential growth at infinity. These operators are
commonly known as operators of infinite order and they have been studied
in [15] in the analytic class and in [26, 84, 131] in the Gevrey spaces where
the symbol has an exponential growth only with respect to ξ and applied
to the Cauchy problem for hyperbolic and Schrödinger equations in Gevrey
classes, see [26, 27, 32, 83]. Parallel results have been obtained in Gelfand-
Shilov spaces for symbols admitting exponential growth both in x and ξ,
see [17,18,21,22,25,100].

The above results concern the non-quasi-analytic isotropic case s “ σ ą
1. In [24], the authors consider the more general case s “ σ ą 0, which is
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interesting in particular in connection with Shubin-type pseudo-differential
operators, cf. [19, 23]. We further generalize the results of [24] to the case
when s ą 0 and σ ą 0 may be different from each other. Thus the symbols
we consider may have different rates of exponential growth and anisotropic
Gevrey-type regularity in x and ξ. More precisely, the symbols satisfy the
conditions

sup
α,βPZd`

sup
x,ξPRd

|e´rp|x|
1
s`|ξ|

1
σ qBαxB

β
ξ apx, ξq|

h|α`β|α!σβ!s
ă 8 (0.9)

for suitable restrictions on the constants h, r ą 0 (cf. (0.8)). We prove that
if h ą 0, and (0.9) holds true for every r ą 0, then the pseudo-differential
operator Oppaq is continuous on Sσs and on pSσs q1. If instead r ą 0, and (0.9)
holds true for every h ą 0, then we prove that Oppaq is continuous on Σσ

s

and on pΣσ
s q
1 (cf. Theorems 10.8 and 10.14). We also prove that pseudo-

differential operators with symbols satisfying such conditions form algebras
(cf. Theorems 10.17 and 10.18), and that our span of pseudo-differential
operators is invariant under the choice of representation (cf. Theorem 10.6).

An important ingredient in the analysis which is used to prove such prop-
erties concerns characterizations of the symbols above in terms of suitable
estimates of their short-time Fourier transforms. Such characterizations are
deduced in Chapter 9. All these results come from the preprint [2].

Finally, in Chapter 11, we consider pseudo-differential operators, where
the symbols are of infinite orders, possess suitable Gevrey regularities, and
are allowed to grow sub-exponentially together with all their derivatives.
Our purpose is to extend boundedness results, in [120], of the pseudo-
differential operators when acting on modulation spaces.

Similar investigations were performed in [126] in the case s “ σ (i. e. the
isotropic case). Therefore, the results in Chapter 11 are more general in the
sense of the anisotropicity of the considered symbol classes. Moreover, we
use different techniques compared to [126]. These results are collected in
the preprint [4].



Notation

Let Rd be the usual Euclidean space given by

Rd “ tpx1, x2, . . . , xdq : xj P Ru.

We denote points in Rd by x, y, ξ, η, etc. Let x “ px1, x2, . . . , xdq and
y “ py1, y2, . . . , ydq be any two points in Rd. The inner product xx, yy of x
and y is defined by

xx, yy “
d
ÿ

j“1

xjyj ,

and the norm |x| of x is defined by

|x| “

˜

d
ÿ

j“1

x2
j

¸

1
2

“ xx, xy
1
2 .

The so-called Japanese bracket of x is xxy “ p1` |x|2q1{2 when x P Rd.

On Rd, the simplest differential operators are
B

Bxj
“ Bj , j “ 1, 2, . . . , d.

As usual, the operator Dxj , given by Dxj “ ´i
B

Bxj
, where i2 “ ´1, is

sometimes more convenient, especially when dealing with formulae involving
Fourier transform.

In what follows we write fpθq À gpθq, θ P Ω Ď Rd, if there is a constant
c ą 0 such that |fpθq| ď c|gpθq| for all θ P Ω. Moreover, if fpθq À gpθq and
gpθq À fpθq for all θ P Ω, we write that f — g.

We will make use of multi-indices, which will keep the notation (rel-
atively) short. Given N “ Z` “ t0, 1, 2, . . . u, a multi-index is a vec-
tor α “ pα1, . . . , αdq P Zd`. For α P Zd`, we define the length of α as
|α| “ α1` ¨ ¨ ¨`αd and its factorial as α! “ α1! . . . αd!. Moreover, for x P Rd
and α P Zd` we define xα “ xα1

1 . . . xαdd , with the usual abuse of notation
x0
j ” 1.

If α, β P Zd`, we write β ď α if and only if

βj ď αj , for all j “ 1, . . . , d.
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The difference pα ´ βq is the multi-index pα1 ´ β1, α2 ´ β2, . . . , αd ´ βdq
whenever β ď α. We also set

ˆ

α

β

˙

“
α!

β!pα´ βq!

if β ď α and

ˆ

α

β

˙

“ 0 otherwise. It is easy to check that, for α ď β,

ˆ

α

β

˙

“

ˆ

α1

β1

˙

. . .

ˆ

αd
βd

˙

,

with the usual binomial coefficients on the right-hand side.
Any polynomial p : Rd Ñ C of degree m P Z` can then be written as

ppxq “
ÿ

|α|ďm

cαx
α, cα P C.

S pRdq is the (Fréchet) space of infinitely differentiable functions u “rapidly
decreasing at infinity”. Explicitly u P S pRdq if u P C8pRdq and

sup
x
|xαBβupxq| ă 8, α, β P Nd.

The space S 1pRdq is the space of tempered distributions, that is, of all
the continuous linear functionals from S pRdq to C.

For u P S pRdq, we denote by Fu or pu the Fourier transform of u, given
by

pupξq “ p2πq´
d
2

ż

Rd
e´ixx,ξyupxq dx ”

ż

Rd
e´ixx,ξyupxq d´x, (0.10)

where d´x “ p2πq´
d
2 dx.

We denote by I the identity operator, while Id denotes the dˆd identity
matrix.



Part I

Involutive weakly hyperbolic
Cauchy problems on Rd for
operators with polynomially

bounded coefficients





Chapter 1

Pseudo-differential and
Fourier integral operators of
SG type

Pseudo-differential operators generalize differential and singular integral op-
erators. Classes of operators globally defined on Rd where studied, e. g., by
Shubin [107], Helffer and Robert [76,77] and others. We here focus on the so-
called SG classes of symbols and operators. The investigation of SG pseudo-
differential operators goes back to the works of Parenti [95] and Cordes [41].
SG pseudo-differential operators are defined by mean of Symbols of Global
type. They are also called by Schulze [105] “pseudo-differential operators
with conical exit at infinity”. In the terminology introduced by Melrose [92],
they are also known as “scattering operators”. The calculus of Fourier in-
tegral operators originally developed by Coriasco in [42, 43] is based on the
class of SG symbols.

Standard references about these topics are, e. g., Duistermaat [51], Hörman-
der [81], Cordes [41], Grigis-Sjöstrand [66], Kumano-go [86], Shubin [107],
Treves [130] and Wong [132]. For an introduction to the main properties of
the theory of pseudo-differential operators with symbols in Sm1,0, see, e. g.,
Saint-Raymond [104] and Abels [5]. The present introductory chapter is
mainly based on [1,8,41,52,86,107], from which we took most of the mate-
rials.

Here we will recall some properties of SG pseudo-differential operators.

1.1 Calculus for symbols of SG type

First of all, we present some basic material about the SG calculus. We begin
with the definition of the symbol class which we are interested in.

Definition 1.1. The class Sm,µpR2dq of SG symbols of order m,µ P R,
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is given by all the functions a P C8pR2dq such that, for any multiindices
α, β P Zd`, there exist constants Cαβ ą 0 such that

|Dα
ξD

β
xapx, ξq| ď Cα,β xxy

m´|β|
xξyµ´|α| (1.1)

hold true, for all x, ξ P Rd. For a P Sm,µpR2dq , m,µ P R, we define the
semi-norms ~a~m,µl by

~a~m,µl “ max
|α`β|ďl

sup
x,ξPRd

xxy´m`|β|xξy´µ`|α||Dα
ξD

β
xapx, ξq|, (1.2)

where l P Z`.

The quantities (1.2) define a Fréchet topology on Sm,µ. Moreover, we
let

S8,8pR2dq “
ď

m,µPR
Sm,µpR2dq, S´8,´8pR2dq “

č

m,µPR
Sm,µpR2dq.

The functions a P Sm,µpR2dq can be pνˆ sq-matrix-valued. In such case,
the estimate (1.1) must be valid for each entry of the matrix. Very often, in
the sequel we will omit the base spaces Rd, R2d from the notation, and we
write Sm,µ, S , S 1, etc. The next technical lemma is useful when dealing
with compositions of SG operators.

Lemma 1.2. Let f P Sm,µpR2dq, m,µ P R, and g vector-valued in Rd
such that g P S0,1pR2dq and xgpx, ξqy — xξy. Then fpx, gpx, ξqq belongs to
Sm,µpR2dq.

The proof of Lemma 1.2 can be found in [44], and can of course be
extended to the other composition cases, namely, hpx, ξq vector valued in
Rd such that it belongs to S1,0pR2dq and xhpx, ξqy — xxy, implying that
fphpx, ξq, ξq belongs to Sm,µ.

We now recall definition and properties of the pseudo-differential opera-
tors apx,Dq “ Oppaq, a P Sm,µ.

Definition 1.3. Let a P S pR2dq, and t P R be fixed. Then, the pseudo-
differential operator Optpaq is the linear and continuous operator on S pRdq
defined by the formula

pOptpaquqpxq “ p2πq
´d

ĳ

R2d

eixx´y,ξyapp1´ tqx` ty, ξqupyq dydξ

(cf. Chapter XVIII in [80]). For general a P S 1pR2dq, the pseudo-differential
operator Optpaq is defined as the continuous operator from S pRdq to S 1pRdq
with distribution kernel

Kt,apx, yq “ p2πq
´ d

2 pF´1
2 aqpp1´ tqx` ty, x´ yq.
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Focusing on the case where a P Sm,µ, if t “ 0, then Optpaq is the so-
called Kohn-Nirenberg representation Oppaq “ apx,Dq, also known as the
left-quantization, represented as follows

pOppaquqpxq “ p2πq´
d
2

ż

Rd
eixx,ξyapx, ξqpupξq dξ, u P S , (1.3)

with pu is the Fourier transform of u P S , given by (0.10).
Moreover, if t “ 1{2, then Optpaq is the so-called Weyl quantization

Opwpaq “ awpx,Dq represented as

pOpwpaquqpxq “ p2πq´d
ĳ

R2d

eixx´y,ξya ppx` yq{2, ξqupyq dydξ, u P S .

Theorem 1.4. The operators in (1.3) form a graded algebra with respect to
composition, that is, for mj , µj P R, j “ 1, 2, we have

OppSm1,µ1pR2dqq ˝OppSm2,µ2pR2dqq Ď OppSm1`m2,µ1`µ2pR2dqq.

The symbol c P Sm1`m2,µ1`µ2 of the composed operator Oppaq ˝ Oppbq,
where a P Sm1,µ1, b P Sm2,µ2, admits the asymptotic expansion

cpx, ξq —
ÿ

α

i|α|

α!
Dα
ξ apx, ξqD

α
x bpx, ξq.

Remark 1.5. Theorem 1.4 implies that the symbol c equals a ¨ b modulo
Sm1`m2´1,µ1`µ2´1pR2dq.

The residual elements of the calculus are operators with symbols in the
space

S´8,´8pR2dq “
č

pm,µqPR2

Sm,µpR2dq “ S pR2dq,

that is, those having kernel in S pR2dq, continuously mapping S 1pRdq to
S pRdq.

Definition 1.6. An operator A “ Oppaq is called elliptic (or Sm,µ-elliptic)
if a P Sm,µpR2dq and there exists R ě 0 such that

Cxxymxξyµ ď |apx, ξq|, |x| ` |ξ| ě R, (1.4)

for some constant C ą 0.

Theorem 1.7. An elliptic SG operator A P OppSm,µpR2dqq admits a parametrix
P P OppS´m,´µq such that

PA “ I `K1, AP “ I `K2,

for suitable K1,K2 P OppS´8,´8q, where I denotes the identity operator.
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It is a well-known fact that SG-operators give rise to linear continuous
mappings from S to itself, extendable as linear continuous mappings from
S 1 to itself.

Proposition 1.8. OppSm,µpR2dqq act continuously between the so-called
Sobolev-Kato (or weighted Sobolev) space, that is from Hs,σ to Hs´m,σ´µ,
where Hr,%, r, % P R, is defined as

Hr,% “
 

u P S 1 : }u}r,% “ }x.y
r
xDy%u}L2 ă 8

(

.

Next we introduce parameter-dependent symbols, where the parameters
give rise to bounded families in Sm,µ.

Definition 1.9. Let Ω Ď RN , for N ě 1. We write f P Ck
`

Ω, Sm,µpR2dq
˘

,
with m, µ P R and k P Z` or k “ 8, if

(i) f “ fpω;x, ξq, ω P Ω, x, ξ P Rd.

(ii) For any ω P Ω, Bαωfpωq P S
m,µpR2dq, for all α P ZN` , |α| ď k.

(iii) tBαωfpωquωPΩ is bounded in Sm,µpR2dq, for all α P ZN` , |α| ď k.

Lemma 1.10. Let Ω Ď RN , for N ě 1, a P Ck
`

Ω, Sm,µpR2dq
˘

and h P
Ck

`

Ω, S0,0pR2dq b RN
˘

such that k P Z` or k “ 8. Assume also that
for any ω P Ω, x, ξ P Rd, the function hpω;x, ξq takes value in Ω. Then,
setting bpωq “ aphpωqq, that is, bpω;x, ξq “ aphpω;x, ξqq;x, ξq, we find b P
Ck

`

Ω, Sm,µpR2dq
˘

.

Proof. (i) The fact that b P Ck
´

Ωω, C
8pRdx ˆ Rrξq b RN

¯

is an immediate

consequence of hypotheses and definitions.

(ii) For any fixed ω P Ω, bpωq P Sm,µ. Indeed, by Faá di Bruno formula,
see [13], for

ř

|γj | ` |γ| “ |α| and
ř

|δj | ` |δ| “ |β|, we get

ˇ

ˇ

ˇ
BαxB

β
ξ bpω;x, ξq

ˇ

ˇ

ˇ
À

ÿ

ˇ

ˇ

ˇ

ˇ

ˇ

`

BγxB
δ
ξB
κ
ωa

˘

phpω;x, ξq;x, ξq
ź

j

B
γj
x B

δj
ξ hpω;x, ξq

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

xxym´|γ|xξyµ´δ

˜

ź

j

xxy´|γj |xξy´δj

¸

“ xxym´|α|xξyµ´β.

Notice that the same argument shows that pBαωaqphpω;x, ξq;x, ξq P Sm,µ

for any α P ZN` , |α| ď k and all ω P Ω.

(iii) By Faá di Bruno formula, for any α P ZN` , such that |α| ď k, pBαωbqpωq
is in the span of

H ”

#

pBκωaqphpωqq
ź

j

pB
κj
ω hqpωq

+

Ă Sm,µ

and is bounded, since that is true for all the elements of H.
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1.2 Multi-product of SG pseudo-differential oper-
ators

This section is devoted to the proof of the next Theorem 1.11, dealing with
the composition (or multi-product) of pM`1q SG pseudo-differential opera-
tors, where M ě 1. This extends the results of Theorem 1.4 to any arbitrary
number of factors.

Theorem 1.11. Let M ě 1, pj P S
mj ,µj pR2dq, mj , µj P R, j “ 1, . . . ,M`1.

Consider the multi-product

QM`1 “ P1 ¨ ¨ ¨PM`1 (1.5)

of the operators Pj “ Opppjq, j “ 1, . . . ,M ` 1, and denote by qM`1 P

Sm,µpR2dq, m “ m1 ` ¨ ¨ ¨ ` mM`1, µ “ µ1 ` ¨ ¨ ¨ ` µM`1, the symbol of
QM`1. Then, if each factor pj belongs to a bounded subset Uj Ă Smj ,µj pR2dq

for j “ 1, . . . ,M ` 1, it follows that qM`1 belongs to a bounded 1 subset
U Ă Sm,µpR2dq.

We split the proof of Theorem 1.11 into two steps. The first one consists
in obtaining an expression for qM`1 as an oscillatory integral. The second
one deals with the boundedness claim on qM`1 in Sm,µpR2dq, based on the
expression obtained in the first step.

Lemma 1.12. Under the hypotheses of Theorem 1.11, qM`1 can be written
as an oscillatory integral, namely,

qM`1px, ξq “

ĳ

RdMˆRdM

e´iψpy,ηq
M`1
ź

j“1

pjpx` yj´1, ξ ` ηjq d
´yd´η, (1.6)

where y0 “ ηM`1 “ 0 P Rd, y “ py1, . . . , yM q, η “ pη1, . . . , ηM q, y, η P RdM ,

ψpy, ηq “
M
ÿ

j“1

xyj , ηj ´ ηj`1y “

M
ÿ

j“1

xyj ´ yj´1, ηjy,

and

d´yd´η “ d´y1 . . . d
´yMd

´η1 . . . d
´ηM

” p2πq´
d
2 dy1 . . . p2πq

´ d
2 dyM p2πq

´ d
2 dη1 . . . p2πq

´ d
2 dηM .

Remark 1.13. We recall that the space of amplitudes of order τ P R on RN
for N P Z`, denoted by A τ pRN q, is defined as

A τ pRN q “
ta P C8pRN q : for any α P ZN` there exists Cα ą 0 : |Bαz apzq| ď Cαxzy

τ
u.

1With respect to the corresponding Fréchet topologies, loosely speaking qM`1 depends
continuously on pj , j “ 1, . . . ,M ` 1.
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Moreover, we write

|a|τk :“ max
|α|ďk

sup
zPRN

xzy´τ |Bαz apzq|, k P Z`,

for the associated sequence of (monotonically increasing) semi-norms, see
[104].

Proof of Lemma 1.12. We first show that formally (1.6) holds true, then we
check that the right-hand side can be regarded as an oscillatory integral, in
the sense described, e.g., in [104].

We will prove (1.6) by induction. First, we show that it holds true for
M “ 1. With u P S , in view of the general theory of SG pseudo-differential
operators, we find, formally,

pP1P2uqpxq “ rOppq2quspxq

“

ż

Rd
eixx,ηyp1px, ηq

ż

Rd
e´ixy,ηy

ż

Rd
eixy,ξyp2py, ξqpupξqd

´ξ d´yd´η

“

¡

RdˆRdˆRd

eipxx,ηy´xy,ηy`xy,ξyqp1px, ηqp2py, ξqpupξqd
´ξ d´yd´η

“

ż

Rd
eixx,ξy

»

—

–

ĳ

RdˆRd

eipxx,ηy´xy,ηy`xy,ξy´xx,ξyqp1px, ηqp2py, ξq d
´yd´η

fi

ffi

fl

pupξq d´ξ

ñ q2px, ξq “

ĳ

RdˆRd

eixx´y,η´ξyp1px, ηqp2py, ξq d
´yd´η

“

ĳ

RdˆRd

e´ixy1,η1yp1px, ξ ` η1qp2px` y1, ξq d
´y1d

´η1,

(1.7)

which is (1.6) with M “ 1. The final expression of q2 in (1.7) actually holds
true, in view of the general theory of oscillatory integrals, which allows to
exchange the order of integration and linear change of variables. In fact,
xy1, η1y is nondegenerate2.

It only remains to prove that ax,ξpy1, η1q “ p1px, ξ ` η1qp2px ` y1, ξq is
an amplitude of some order with respect to py1, η1q. By Peetre’s inequality

2The Hessian is indead the identity matrix. Alternatively, as observed in [104], the
identity

xy1, η1y “
1

4

`

|y1 ` η1|
2
´ |y1 ´ η1|

2
˘

(1.8)

explicitly shows its d positive and d negative eigenvalues.
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(see, e.g., Lemma 1.18 of [104]), with α, β P Zd`,

ˇ

ˇ

ˇ
Bαη1B

β
y1 rp1px, ξ ` η1qp2px` y1, ξqs

ˇ

ˇ

ˇ

ď Cαβxxy
m1xξ ` η1y

µ1´|α|xx` y1y
m2´|β|xξyµ2

ď Cαβxxy
m1xξ ` η1y

µ1xx` y1y
m2xξyµ2

ď Cαβxxy
m1`m2xξyµ1`µ2xy1y

|m2|xη1y
|µ1|

ď Cαβxxy
m
xξyµxy1, η1y

m̃`µ̃, (1.9)

where m “ m1 ` m2, µ “ µ1 ` µ2, m̃ “ |m1| ` |m2|, µ̃ “ |µ1| ` |µ2|,
xy1, η1y

2
“ 1`|y1|

2`|η1|
2. It follows that ax,ξpy1, η1q is, for any px, ξq P R2d,

an amplitude with respect to py1, η1q, of order pm̃` µ̃q. Hence, (1.7) is a well
defined oscillatory integral. From the general theory of oscillatory integrals,
see [104], denoting by rts “ maxtk P Z : k ď tu the integer part of t P R, we
have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

RdˆRd

e´ixy1,η1yax,ξpy1, η1q d
´y1d

´η1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C |ax,ξ|
m̃`µ̃
r2d`m̃`µ̃`1s ď C̃ xxym1`m2xξyµ1`µ2 ,

(1.10)

which implies, for α, β, γ, δ P Zd`, γ ď α, δ ď β, and Cαβγδ “

ˆ

α

γ

˙

¨

ˆ

β

δ

˙

,

|BαxB
β
ξ q2px, ξq| “

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γďα,δďβ

Cαβγδ

ĳ

RdˆRd

e´ixy1,η1ypBγxB
δ
ξp1qpx, ξ ` η1qpB

α´γ
x B

β´δ
ξ p2qpx` y1, ξq d

´y1d
´η1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cαβ
ÿ

γďα,δďβ

xxym1´|γ|`m2´|α´γ|xξyµ1´|δ|`µ2´|β´δ| ď rCαβxxy
m´|α|

xξyµ´|β|,

(1.11)

that is, q2 P S
m,µ, as stated, and the desired claim holds true for M “ 1.

Assume now that (1.6) holds true for M ě 1. Let u P S , and write

rQM`2uspxq“rOppqM`2quspxq

“rppP1P2 ¨ ¨ ¨PM`1qPM`2quspxq“rpQM`1PM`2quspxq,

with QM`1 “ OppqM`1q and qM`1 P S
m,µ given by (1.6) and (1.5), respec-

tively. Using (1.7), with qM`1 and pM`2 in place of p1 and p2, respectively,
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arguing as above we find

qM`2px, ξq

“

ĳ

RdˆRd

e´ixyM`1,ηM`1yqM`1px, ξ`ηM`1qpM`2px`yM`1, ξq d
´yM`1d

´ηM`1,

(1.12)

then, in view of (1.11), qM`2 P Spm1`¨¨¨`mM`1q`mM`2,pµ1`¨¨¨`µM`1q`µM`2 .
Moreover, with

$

&

%

ψpy, ηq “ xy1, η1y for M “ 1

ψpy, ηq “
M´1
ř

j“1
xyj , ηj ´ ηj`1y ` xyM , ηMy for M ě 2,

inserting (1.6) into (1.12), in view of the inductive hypothesis, it follows that

qM`2px, ξq “
ĳ

RdˆRd

e´ixyM`1,ηM`1yqM`1px, ξ ` ηM`1qpM`2px` yM`1, ξq d
´yM`1d

´ηM`1

“

ĳ

RdˆRd

e´ixyM`1,ηM`1ypM`2px` yM`1, ξqˆ

„
ĳ

RdMˆRdM

e´iψpy,ηq

˜

M
ź

j“1

pjpx` yj´1, ξ ` ηj ` ηM`1q

¸

pM`1px` yM , ξ ` ηM`1q d
´yd´η



d´yM`1d
´ηM`1.

After the change of variables ηj “ rηj ´ ηM`1, j “ 1, . . . ,M , and writ-
ing rηM`1 “ ηM`1, rηM`2 “ 0, ryj “ yj , j “ 1, . . . ,M ` 1, ry0 “ 0,
ry “ pry1, . . . , ryM`1q, rη “ prη1, . . . , rηM`1q, we get

qM`2px, ξq “

ĳ

RdpM`1qˆRdpM`1q

e´i
rψpry,rηq

M`2
ź

j“1

pjpx` ryj´1, ξ ` rηjq dryd
´
rη, (1.13)

where:

• if M “ 1,

rψpry, rηq “ xy1, η1y ` xy2, η2y “ xry1, rη1 ´ rη2y ` xry2, rη2y

“ xry1, rη1 ´ rη2y ` xry2, rη2 ´ rη3y “

M`1
ÿ

j“1

xryj , rηj ´ rηj`1y
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• if M ě 2,

rψpry, rηq “
M´1
ÿ

j“1

xyj , ηj ´ ηj`1y ` xyM , ηMy ` xyM`1, ηM`1y

“

M´1
ÿ

j“1

xryj , rηj ´ rηj`1y ` xryM , rηM ´ rηM`1y ` xryM`1, rηM`1y

“

M
ÿ

j“1

xryj , rηj ´ rηj`1y ` xryM`1, rηM`1 ´ rηM`2y “

M`1
ÿ

j“1

xryj , rηj ´ rηj`1y.

That is, (1.13) is (1.6) with M ` 1 in place of M , as desired.
From the general theory of oscillatory integrals, it follows that all the

computations in the induction step, namely, linear changes of variables and
exchange of integration order, are justified. In fact, the phase function ψ is

nondegenerate, and aM`1
x,ξ py, ηq “

M`1
ź

j“1

pjpx ` yj´1, ξ ` ηjq is an amplitude

of order |m1| ` ¨ ¨ ¨ ` |mM`1| ` |µ1| ` ¨ ¨ ¨ ` |µM`1| with respect to py, ηq, for
any M ě 1, px, ξq P R2d.

M “ 1 is already proved. For M ě 2, with arbitrary α1, . . . , αM ,
β1, . . . , βM P Zd`, setting αM`1 “ β0 “ 0 P Zd`, a similar arguments show
that

ˇ

ˇ

ˇ

ˇ

Bα1
η1 . . . B

αM
ηM
Bβ1y1 . . . B

βM
yM

M`1
ź

j“1

pjpx` yj´1, ξ ` ηjq

ˇ

ˇ

ˇ

ˇ

ď Cα1...αM
β1...βM

M`1
ź

j“1

ˇ

ˇ

ˇ
pB
βj´1
x B

αj
ξ pjqpx` yj´1, ξ ` ηjq

ˇ

ˇ

ˇ

ď rCα1...αM
β1...βM

M`1
ź

j“1

xx` yj´1y
mj´|βj´1|xξ ` ηjy

µj´|αj |

ď rCα1...αM
β1...βM

M`1
ź

j“1

xx` yj´1y
mjxξ ` ηjy

µj

ď
r

rCα1...αM
β1...βM

M`1
ź

j“1

xxymjxyj´1y
|mj |xξyµjxηjy

|µj |

ď

ˆ

r

rCα1...αM
β1...βM

xxymxξyµ
˙

xy, ηy rm`rµ,

(1.14)

where we used Peetre’s inequality, such that

m “ m1 ` ¨ ¨ ¨ `mM`1, µ “ µ1 ` ¨ ¨ ¨ ` µM`1,

rm “ |m1| ` ¨ ¨ ¨ ` |mM`1|, rµ “ |µ1| ` ¨ ¨ ¨ ` |µM`1|.
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It only remains to prove that ψpy, ηq is a nondegenerate phase function for
any M . By means of (1.8), we already proved it for M “ 1. For M ě 2,
we proceed in a similar way, rewriting ψ as a linear combination of squared
norms of suitable vectors, obtained through invertible linear maps applied
to y and η. Again, this shows that ψ has dM positive and dM negative
eigenvalues. Indeed, observe that, for M ě 2,

ψpy, ηq “
M
ÿ

j“1

xyj , ηj ´ ηj`1y “

M´1
ÿ

j“1

pxyj , ηj ´ ηj`1y ` xyM , ηMyq

“
1

4

M´1
ÿ

j“1

`

|yj ` ηj ´ ηj`1|
2 ´ |yj ´ ηj ` ηj`1|

2 ` |yM ` ηM |
2 ´ |yM ´ ηM |

2
˘

“
1

4

«

M
ÿ

j“1

p|yj ` ζj |
2 ´ |yj ´ ζj |

2q

ff

ζj“ηj´ηj`1,j“ ...,M´1,
ζM“ηM

The proof is complete.

Remark 1.14. Recalling the first inequality in (1.10), which holds true for
any amplitude in any dimension and any nondegenerate phase function, the
last part of the proof of Lemma 1.12 shows also that it is possible to prove
directly qM`1 P S

m,µpR2dq. In fact, it is enough to extend (1.11), as it is
possible, to a product of M ` 1 factors, and use (1.14).

Proof of Theorem 1.11. In view of Lemma 1.12, we can write the symbol
qM`1px, ξq of the multi-product QM`1 in the form (1.6). Taking into ac-
count Remark 1.14, the proof of Lemma 1.12 also shows that the semi-
norms of qM`1 in Sm,µpR2dq depend continuously on the semi-norms of pj
in Smj ,µj pR2dq, j “ 1, . . . ,M ` 1 (see, in particular, (1.9) and (1.11)). This
implies the claimed boundedness result.

1.3 Fourier integral operators of SG type

Here we give a short summary of the main properties of the class of Fourier
integral operators we will be dealing with. In particular, we recall their com-
positions with the SG pseudo-differential operators, and the compositions
between Type I and Type II operators.

The Fourier integral operators defined, for u P S pRdq, as

u ÞÑ pOpϕpaquqpxq “ p2πq
´ d

2

ż

Rd
eiϕpx,ξqapx, ξqpupξq dξ, (1.15)

and

u ÞÑ pOp˚ϕpbquqpxq “ p2πq
´d

ĳ

R2d

eipxx,ξy´ϕpy,ξqqbpy, ξqupyq dydξ, (1.16)
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with suitable choices of phase function ϕ and symbols a and b, are often
called Fourier operators of type I and II, respectively.

The operators Opϕpaq and Op˚ϕpaq are called SG Fourier integral op-
erators of type I and type II, respectively, when a P Sm,µ, and ϕ satisfies
the requirements of the next Definition 1.15. Note that a type II operator
satisfies Op˚ϕpaq “ Opϕpaq

˚, that is, it is the formal L2-adjoint of the type I
operator Opϕpaq.

Definition 1.15 (SG phase functions). A real-valued function ϕ P C8pR2dq

belongs to the class P of SG phase functions if it satisfies the following
conditions:

(1) ϕ P S1,1pR2dq.

(2) xϕ1xpx, ξqy — xξy as |px, ξq| Ñ 8.

(3) xϕ1ξpx, ξqy — xxy as |px, ξq| Ñ 8.

The SG Fourier integral operators of type I and type II, Opϕpaq and
Op˚ϕpbq, are defined as in (1.15) and (1.16), respectively, with ϕ P P and
a, b P Sm,µ. Notice that we do not assume any homogeneity hypothesis on
the phase function ϕ. The next Theorem 1.16 treats compositions between
SG pseudo-differential operators and SG Fourier integral operators. It was
originally proved in [42], see also [47,49,50].

Theorem 1.16. Let ϕ P P and assume p P St,τ pR2dq, a, b P Sm,µpR2dq.
Then,

Opppq ˝Opϕpaq “ Opϕpc1 ` r1q “ Opϕpc1q mod OppS´8,´8pR2dqq,

Opppq ˝Op˚ϕpbq “ Op˚ϕpc2 ` r2q “ Op˚ϕpc2q mod OppS´8,´8pR2dqq,

Opϕpaq ˝Opppq “ Opϕpc3 ` r3q “ Opϕpc3q mod OppS´8,´8pR2dqq,

Op˚ϕpbq ˝Opppq “ Op˚ϕpc4 ` r4q “ Op˚ϕpc4q mod OppS´8,´8pR2dqq,

for some cj P S
m`t,µ`τ pR2dq, rj P S

´8,´8pR2dq, j “ 1, . . . , 4.

In order to obtain the composition of SG Fourier integral operators of
type I and type II, some more hypotheses are needed, leading to the defini-
tion of the classes Pr and Prpτq of regular SG phase functions, cf. [86].

Definition 1.17 (Regular SG phase function). Let τ P r0, 1q and r ą 0.
A function ϕ P P belongs to the class Prpτq if it satisfies the following
conditions:

(1) | detpϕ2xξqpx, ξq| ě r, for any x, ξ P Rd.
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(2) The function Jpx, ξq :“ ϕpx, ξq ´ xx, ξy is such that

sup
x,ξPRd
|α`β|ď2

|Dα
ξD

β
xJpx, ξq|

xxy1´|β|xξy1´|α|
ď τ. (1.17)

If only condition (1) holds, we write ϕ P Pr.
Remark 1.18. Notice that if condition (1.17) holds true for any α, β P Zd`,
then Jpx, ξq{τ is bounded with constant 1 in S1,1pR2dq. Notice also that
condition (1) in Definition 1.17 is authomatically fulfilled when condition
(2) holds true for a sufficiently small τ P r0, 1q.

For ` P N, we also introduce the semi-norms

}J}2,` :“
ÿ

2ď|α`β|ď2``

sup
px,ξqPR2d

|Dα
ξD

β
xJpx, ξq|

xxy1´|β|xξy1´|α|
,

and

}J}` :“ sup
x,ξPRd
|α`β|ď1

|Dα
ξD

β
xJpx, ξq|

xxy1´|β|xξy1´|α|
` }J}2,`.

Notice that ϕ P Prpτq means that (1) of Definition 1.17 and }J}0 ď τ hold,
and then we define the following subclass of the class of regular SG phase
functions.

Definition 1.19. Let τ P r0, 1q, r ą 0, ` ě 0. A function ϕ belongs to the
class Prpτ, `q if ϕ P Prpτq and }J}` ď τ for the corresponding function J .

Theorem 1.20 below shows that the composition of SG Fourier integral
operators of type I and type II with the same regular SG phase functions is
a SG pseudo-differential operator cf. [43].

Theorem 1.20. Let ϕ P Pr and assume a P Sm,µpR2dq, b P St,τ pR2dq.
Then,

Opϕpaq ˝Op˚ϕpbq “ Oppc5 ` r5q “ Oppc5q mod OppS´8,´8pR2dqq,

Op˚ϕpbq ˝Opϕpaq “ Oppc6 ` r6q “ Oppc6q mod OppS´8,´8pR2dqq,

for some cj P S
m`t,µ`τ pR2dq, rj P S

´8,´8pR2dq, j “ 5, 6.

Furthermore, asymptotic formulate can be given for cj , j “ 1, . . . , 6, in
terms of ϕ, p, a and b, see [42]. Finally, when a P Sm,µ is elliptic and ϕ P Pr,
the corresponding SG Fourier integral operators admit a parametrix, that
is, there exist b1, b2 P S

´m,´µ such that

Opϕpaq ˝Op˚ϕpb1q “ Op˚ϕpb1q ˝Opϕpaq “ I mod OppS´8,´8q,

Op˚ϕpaq ˝Opϕpb2q “ Opϕpb2q ˝Op˚ϕpaq “ I mod OppS´8,´8q,

where I is the identity operator, see again [42,47,50].
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Theorem 1.21. Let ϕ P Pr and a P Sm,µpR2dq, m,µ P R. Then, for any
r, % P R, Opϕpaq and Op˚ϕpaq continuously map Hr,%pRdq to Hr´m,%´µpRdq.

1.4 Multi-products of SG phase functions and reg-
ular SG Fourier integral operators

Here we recall a few results from [8] concerning the multi-products of SG
phase function and Fourier integral operators of type I. Let us consider a
sequence tϕjujPN of regular SG phase functions ϕjpx, ξq P Prpτjq, j P N,
with

8
ÿ

j“1

τj “: τ0 ă 1{4. (1.18)

By Definition 1.17 and assumption (1.18), the sequence tJkpx, ξq{τkukě1

bounded in S1,1pR2dq and for every ` P N there exists a constant c` ą 0 such
that

}Jk}2,` ď c`τk and
8
ÿ

k“1

}Jk}2,` ď c`τ0. (1.19)

We set τM “
řM
j“1 τj . With a fixed integer M ě 1, we denote, for x ” x0

and ξ ” ξM`1,

pX,Ξq “ px0, x1, . . . , xM , ξ1, . . . , ξM , ξM`1q :“ px, T,Θ, ξq,

pT,Θq “ px1, . . . , xM , ξ1, . . . , ξM q,

and define the function of 2pM ` 1qd real variables

ψpX,Ξq :“
M
ÿ

j“1

pϕjpxj´1, ξjq ´ xxj , ξjyq ` ϕM`1pxM , ξM`1q.

For every fixed px, ξq P R2d, the critical points pY,Nq “ pY,Nqpx, ξq of the
function of 2Md variables rψpT,Θq “ ψpx, T,Θ, ξq are the solutions to the
system

#

ψ1ξj pX,Ξq “ ϕ1j,ξpxj´1, ξjq ´ xj “ 0 j “ 1, . . . ,M,

ψ1xj pX,Ξq “ ϕ1j`1,xpxj , ξj`1q ´ ξj “ 0 j “ 1, . . . ,M,
(1.20)

in the unknowns pT,Θq. That is pY,Nq “ pY1, . . . , YM , N1, . . . , NM qpx, ξq
satisfies, if M “ 1,

#

Y1px, ξq “ ϕ11,ξpx,N1px, ξqq

N1px, ξq “ ϕ12,xpY1px, ξq, ξq,
(1.21)
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or, if M ě 2,
$

’

’

’

’

&

’

’

’

’

%

Y1px, ξq “ ϕ11,ξpx,N1px, ξqq

Yjpx, ξq “ ϕ1j,ξpYj´1px, ξq, Njpx, ξqq, j “ 2, . . . ,M

Njpx, ξq “ ϕ1j`1,xpYjpx, ξq, Nj`1px, ξqq, j “ 1, . . . ,M ´ 1

NM px, ξq “ ϕ1M`1,xpYM px, ξq, ξq.

(1.22)

In the sequel we will only refer to the system (1.22), tacitly meaning (1.21)
when M “ 1.

Definition 1.22 (Multi-product of SG phase functions). If, for every fixed
px, ξq P R2d, the system (1.22) admits a unique solution pY,Nq “ pY,Nqpx, ξq,
we define

φpx, ξq “ pϕ1 7 ¨ ¨ ¨ 7 ϕM`1qpx, ξq :“ ψpx, Y px, ξq, Npx, ξq, ξq. (1.23)

The function φ is called multi-product of the SG phase functions ϕ1, . . . , ϕM`1.

The following properties of the multi-product of SG phase functions can
be found in [8].

Proposition 1.23. Under the assumptions (1.17) and (1.18), the system
(1.22) admits a unique solution pY,Nq, satisfying

tpYj ´ Yj´1q{τjujPN is bounded in S1,0pR2dq,

tpNj ´Nj`1q{τj`1ujPN is bounded in S0,1pR2dq.

Proposition 1.24. Under the assumptions (1.17) and (1.18), the multi-
product φpx, ξq in Definition 1.22 is well-defined for every M ě 1 and has
the following properties:

(1) There exists k ě 1 such that φpx, ξq “ pϕ1 7 ¨ ¨ ¨ 7 ϕM`1qpx, ξq P
Prpkτ̄M`1q and, setting

JM`1px, ξq :“ pϕ1 7 ¨ ¨ ¨ 7 ϕM`1qpx, ξq ´ xx, ξy,

the sequence tJM`1{τ̄M`1uMě1 is bounded in S1,1pR2dq.

(2) The following relations hold:
#

φ1xpx, ξq “ ϕ11,xpx,N1px, ξqq

φ1ξpx, ξq “ ϕ1M`1,ξpYM px, ξq, ξq,

where pY,Nq are the critical points (1.22).

(3) The associative law holds true:

ϕ1 7 pϕ2 7 ¨ ¨ ¨ 7 ϕM`1q “ pϕ1 7 ¨ ¨ ¨ 7 ϕM q 7 ϕM`1.
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(4) For any ` ě 0 there exist 0 ă τ˚ ă 1{4 and c˚ ě 1 such that, if
ϕj P Prpτj , `q for all j and τ0 ď τ˚, then φ P Prpc˚τ̄M`1, `q.

Passing to regular SG Fourier integral operators, one can prove the fol-
lowing algebra properties (cf. [8]).

Theorem 1.25. Let ϕj P Prpτjq, j “ 1, 2, . . . ,M , M ě 2, be such that
τ1 ` ¨ ¨ ¨ ` τM ď τ ď 1

4 for some sufficiently small τ ą 0, and set

Φ0px, ξq “ xx, ξy,

Φ1 “ ϕ1,

Φj “ ϕ17 ¨ ¨ ¨ 7ϕj , j “ 2, . . . ,M,

ΦM,j “ ϕj7ϕj`17 ¨ ¨ ¨ 7ϕM , j “ 1, . . . ,M ´ 1,

ΦM,M “ ϕM ,

ΦM,M`1px, ξq “ xx, ξy.

Assume also aj P S
mj ,µj pR2dq, and set Aj “ Opϕj pajq, j “ 1, . . . ,M . Then,

the following properties hold true:

(1) Given qj , qM,j P S
0,0pR2dq, j “ 1, . . . ,M , such that

Op˚Φj pqjq ˝OpΦj p1q “ I, Op˚ΦM,j p1q ˝OpΦM,j pqM,jq “ I,

set Q˚j “ Op˚Φj pqjq, QM,j “ OpΦM,j pqM,jq, and

Rj “ OpΦj´1
p1q˝Aj˝Q

˚
j , RM,j “ QM,j˝Aj˝Op˚ΦM,j`1

p1q, j “ 1, . . . ,M.

Then, Rj , RM,j P OppS0,0pR2dqq, j “ 1, . . . ,M , and

A “ A1˝¨ ¨ ¨˝AM “ R1˝¨ ¨ ¨˝RM˝OpΦM p1q “ Op˚ΦM,1p1q˝RM,1˝¨ ¨ ¨˝RM,M .

(2) There exists a P Sm,µpR2dq, m “ m1 ` ¨ ¨ ¨ `mM , µ “ µ1 ` ¨ ¨ ¨ ` µM
such that, setting φ “ ϕ17 ¨ ¨ ¨ 7ϕM ,

A “ A1 ˝ ¨ ¨ ¨ ˝AM “ Opφpaq.

(3) For any l P Z` there exist l1 P Z`, Cl ą 0 such that

~a~m,µl ď Cl

M
ź

j“1

~aj~
mj ,µj
l1 .
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1.5 Eikonal equations and Hamilton-Jacobi sys-
tems in SG classes

Given a real-valued symbol a P Cpr0, T s;Sε,1pR2dqq with ε P r0, 1s, consider
the so-called eikonal equation

"

Btϕpt, s;x, ξq “ apt;x, ϕ1xpt, s;x, ξqq, t P r0, T0s,
ϕps, s;x, ξq “ xx, ξy, s P r0, T0s,

(1.24)

with 0 ă T0 ď T .

Remark 1.26. Note that the eikonal equation (1.24) appears in the so-
called geometric optics approach to the solution of Lu “ f, up0q “ u0 for
the hyperbolic operator

L “ Dt ´ apt;x,Dxq on r0, T s,

where Dt “ ´iBt.

We now focus on the Hamilton-Jacobi system corresponding to the real-
valued Hamiltonian a P Cpr0, T s;S1,1pR2dqq, namely,

"

Btqpt, s; y, ηq “ ´a1ξ pt; qpt, s; y, ηq, ppt, s; y, ηqq ,

Btppt, s; y, ηq “ a1xpt; qpt, s; y, ηq, ppt, s; y, ηqq,
(1.25)

where t, s P r0, T s, T ą 0, and the Cauchy data

"

qps, s; y, ηq “ y,
pps, s; y, ηq “ η.

(1.26)

We recall how the solution of (1.25), (1.26) is related to solution of
(1.24) in the SG context. We mainly refer to known results from [41, Ch.
6] and [43].

Proposition 1.27. Let a P C
`

r0, T s;S1,1pR2dq
˘

be real-valued. Then, the
solutions qpt, s; y, ηq and ppt, s; y, ηq of the Hamilton-Jacobi system (1.25)
with the Cauchy data (1.26) satisfy

xqpt, s; y, ηqy — xyy, xppt, s; y, ηqy — xηy. (1.27)

Proposition 1.28. Under the same hypotheses of Proposition 1.27, the
maximal solution of the Hamilton-Jacobi system (1.25) with the Cauchy data
(1.26) is defined on the whole product of intervals r0, T s ˆ r0, T s.

Proposition 1.29. The solution pq, pq of the Hamilton-Jacobi system (1.25)
with a P C8pr0, T s;S1,1pR2dqq real-valued, and the Cauchy data (1.26), sat-
isfies
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(i) q belongs to C8pr0, T s2;S1,0pR2dqq.

(ii) p belongs to C8pr0, T s2;S0,1pR2dqq.

Lemma 1.30. The following statements hold true:

(i) Let a P Cpr0, T s;S1,1pR2dqq be real-valued. Then, the solution pq, pqpt, s;
y, ηq of the Hamilton-Jacobi system (1.25) with Cauchy data (1.26)
satisfies, for a sufficently small T0 P p0, T s and a fixed t such that
0 ď s, t ď T0, s ‰ t,

#

pqpt, s; y, ηq ´ yq{pt´ sq is bounded in S1,0pR2dq

pppt, s; y, ηq ´ ηq{pt´ sq is bounded in S0,1pR2dq
(1.28)

and
#

qpt, s; y, ηq, qpt, s; y, ηq ´ y P C1pIpT0q;S
1,0pR2dqq,

ppt, s; y, ηq, ppt, s; y, ηq ´ η P C1pIpT0q;S
0,1pR2dqq,

(1.29)

where, for T ą 0, IpT q “ tpt, sq : 0 ď t, s ď T u.

(ii) Furthermore, if, additionally, a belongs to C8pr0, T s;S1,1pR2dqq, then,
qpt, s; y, ηq ´ y P C8pIpT0q;S

1,0pR2dqq and ppt, s; y, ηq ´ η P C8pIpT0q;
S0,1pR2dqq.

The proof of Lemma 1.30 combines techniques and results similar to
those used in [41], [43] and [86]. For the sake of completeness we prove it.

Proof. From the Hamilton-Jacobi system (1.25) one can use the fact that

Btqpt, s; y, ηq “ ´a
1
ξpt; qpt, s; y, ηq, ppt, s; y, ηqq,

where apt;x, ξq belongs to S1,1pR2dq for all t P r0, T s. Then it follows that
there exists a constant C ą 0 such that

|a1ξpt; qpt, s; y, ηq, ppt, s; y, ηqq| ď Cxqpt, s; y, ηqy, for any t, s P IpT0q, y, η P Rd.

Using that together with the initial condition (1.26) we can write

qpt, s; y, ηq ´ y “

ż t

s
pBtqqpτ, s; y, ηq dτ,

then we get, for a suitable constant C ą 0,

|qpt, s; y, ηq ´ y| ď

ż t

s
xqpτ, s; y, ηqy dτ ď C|t´ s|xyy,

where we also use (1.27).
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Similarly, we prove that

|ppt, s; y, ηq ´ η| ď C̃|t´ s|xηy,

for some C̃ ą 0.
Now following [86], let us fix

pQ1, P1q “

ˆ

Bq

By
pt, s; y, ηq,

Bp

By
pt, s; y, ηq

˙

and

pQ2, P2q “

ˆ

Bq

Bη
pt, s; y, ηq,

Bp

Bη
pt, s; y, ηq

˙

,

that is we consider the case when |α ` β| “ 1. Then, we can write the
derivative of the matrix constructed by the columns pQ1, P1q and pQ2, P2q

as
d

dt

ˆ

Q1 Q2

P1 P2

˙

“

ˆ

´a2x,ξ ´a2ξ,ξ
a2x,x a2x,ξ

˙ˆ

Q1 Q2

P1 P2

˙

, (1.30)

with Cauchy data at t “ s

ˆ

Q1 Q2

P1 P2

˙

|t“s

“

ˆ

Id 0
0 Id

˙

, with Id the identity matrix of size d.

(1.31)
Then, integrating the left hand side of (1.30) between s and t, using its
Cauchy data (1.31), we get the following block matrix

˜

Bq
By pt, s; y, ηq ´ Id

Bq
Bη pt, s; y, ηq

Bp
By pt, s; y, ηq

Bp
Bη pt, s; y, ηq ´ Id

¸

.

Using the fact that

Bq

By
pt, s; y, ηq ´ Id “

B

By

ˆ
ż t

s
Btqpτ, s; y, ηq dτ

˙

,

by an induction argument on the derivatives, the results hold true.
By (1.25), Proposition 1.29 and (1.30), together with the Cauchy data

(1.31), one can get the next estimate

›

›

›

›

ż t

s

B

By
p´a1ξpτ, qpτ, s; y, ηq, ppτ, s; y, ηqqdτ

›

›

›

›

“

›

›

›

›

ż t

s

Bq

By
pτ, sq¨p´a2x,ξqpτ, qpτ, sq, ppτ, sqq`

Bp

By
pτ, sq¨p´a2ξ,ξqpτ, qpτ, sq, ppτ, sqq dτ

›

›

›

›

ď C1|t´ s|,
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with C1 ą 0. It follows
›

›

›

›

Bq

By
pt, s; y, ηq ´ Id

›

›

›

›

ď C1|t´ s|,

and

xyy´1
xηy

›

›

›

›

Bq

Bη
pt, s; y, ηq

›

›

›

›

ď C2|t´ s|.

Using the same argument as before and Proposition 1.27 we conclude that

›

›

›

›

Bq

Bη
pt, s; y, ηq

›

›

›

›

“

›

›

›

›

ż t

s

Bq

Bη
p´a2x,ξq `

Bp

Bη
p´a2ξ,ξq dτ

›

›

›

›

ď C̃2|t´ s|
´

xyyxηy´1
` xpyxqy´1

¯

ď C2|t´ s|xyyxηy
´1.

Same steps as before give as the following inequalities
›

›

›

›

Bp

Bη
pt, sq ´ Id

›

›

›

›

ď C1|t´ s|,

›

›

›

›

Bp

By
pt, sq

›

›

›

›

ď C2|t´ s|xyy
´1
xηy.

Thus, there exists a constant C3 ą 0 such that
›

›

›

›

Bq

By
´ Id

›

›

›

›

` xyy´1
xηy

›

›

›

›

Bq

Bη
pt, sq

›

›

›

›

ď C3|t´ s|,

xyyxηy´1

›

›

›

›

Bp

By
pt, sq

›

›

›

›

`

›

›

›

›

Bp

Bη
pt, sq ´ Id

›

›

›

›

ď C3|t´ s|.

So far, we proved that our statement is true for |α ` β| “ 1. Now,
assume that it holds true up to |α ` β| “ r with r ě 2. By induction, one

can conclude. In fact for |α`β| ě 2, we get Bβy Bαη q|t“s “ B
β
y B

α
η p|t“s “ 0, then

we have

Bβy B
α
η qpt, sq “

ż t

s
Bβy B

α
η

`

´a1ξpτ, qpτ, sq, ppτ, sq
˘

dτ,

where the derivatives Bβy Bαη

´

´a1ξpτ, qpτ, sq, ppτ, sqq
¯

in the span of terms of

the type

´

BσxB
γ
ξ

`

´a1ξ
˘

pτ, qpτ, sq, ppτ, sqq
¯

|σ|
ź

j“1

B
βj
y B

αj
η qpτ, sq

|γ|
ź

i“1

B
β1i
y B

α1i
η ppτ, sq, (1.32)

where |αj ` βj | ě 1, |α1j ` β
1
j | ě 1,

ř

αj `
ř

α1i “ α,
ř

βj `
ř

β1i “ β. The

tensors BσxB
γ
ξ

´

´a1ξ

¯

in (1.32) and vectors B
βj
y B

αj
η qpτ, sq, B

β1i
y B

α1i
η ppτ, sq are to

be contracted in arbitrary order, q with Bx, p with Bξ.
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Differentiating (1.32) with respect to y or η, such that to order of the
differentiation is equal to 1 and using our assumption for |α ` β| “ r ě 2,
we conclude the proof of (1.28), the argument is similar to the one used to

show the second part of (1.28), i.e. the boundedness of Bβy Bαη pp´ ηq{pt´ sq
for |α` β| ě 2.

Now, we prove (1.29). Indeed, for any pt, sq P IpT0q, if we write

Bsqpt, sq “ a1ξps, y, ηq ´

ż t

s
tBsqpτ, sqpa

2
x,ξq ` Bsppτ, sqpa

2
ξ,ξqudτ,

Bsppt, sq “ ´a
1
xps, y, ηq `

ż t

s
tBsqpτ, sqpa

2
x,xq ` Bsppτ, sqpa

2
x,ξqudτ,

(1.33)

from the Hamilton-Jacobi system (1.25) and (1.33), one can write Bβy Bαη
`

Bsq
pt, sq

˘

for |α` β| “ 1 as

Bβy B
α
η pBsqpt, sqq “ B

β
xB

α
ξ a
1
ξps, y, ηq `

ż t

s
Bβy B

α
η Bsqpτ, sqa

2
x,ξ ` BsqB

β
y B

α
η q
B

Bx
a2x,ξ

` Bsqpτ, sqB
β
y B

α
η ppτ, sq

B

Bξ
a2x,ξ ` B

β
y B

α
η Bsppτ, sqa

2
ξ,ξ

` BsB
β
y B

α
η qpτ, sq

B

Bx
a2ξ,ξ ` BspB

β
y B

α
η ppτ, sq

B

Bξ
a2ξ,ξ dτ.

Then, by Proposition 1.27 and Proposition 1.29, we can conclude
ˇ

ˇ

ˇ
Bβy B

α
η pBsqpt, sqq

ˇ

ˇ

ˇ
ď C1α,βxyy

1´|β|
xηy´|α| ` C2α,β |t´ s|xyy

1´|β|
xηy´|α|,

where C1α,βC2α,β ą 0. This implies that (1.29) holds true for |α ` β| “ 1,
then by iteration we conclude the proof for any order of α and β. Similar
proof holds for the proof of the second part of (1.29), and (ii) holds by
induction after the use of (i) and (1.29).

Now, we observe that there exists a constant T1 P p0, T0s such that
qpt, s; y, ηq is invertible with respect to y for any pt, sq P IpT1q and any
η P Rd. Indeed, this holds by continuity and the fact that

qps, s; y, ηq “ y ñ
Bq

By
ps, s; y, ηq “ Id.

We denote the inverse function by q, that is

y “ qpt, sq “ qpt, s;x, ηq ô x “ qpt, s; y, ηq,

which exists on IpT1q. Moreover, q P C8pIpT1q;S
1,0pR2dqq, cf. [41, 43].

Observe now that, in view of Lemma 1.30, } Bq
By ´ Id} Ñ 0 when t Ñ s,

uniformly on IpT1q. Then, one can deduce the following result, which is an
extension to the analogous ones that can be found e.g., in [41,86].
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Lemma 1.31. Assume that a P Cpr0, T s;S1,1pR2dqq is real-valued, and let
T1 P p0, T0s, ε1 P p0, 1s be constants such that on IpT1q we have

›

›

›

›

Bq

By
´ Id

›

›

›

›

ď 1´ ε1. (1.34)

Then, the mapping x “ qpt, s; y, ξq : Rdy Q y ÞÝÑ x P Rdx with pt, s, ξq
understood as parameter, has the inverse function y “ qpt, s;x, ξq satisfying

"

qpt, s;x, ξq ´ x belongs to C1pIpT1q;S
1,0pR2dqq,

tpqpt, s;x, ξq ´ xq{|t´ s|u is bounded in S1,0pR2dq, 0 ď s, t ď T1; s ‰ t.

(1.35)

Moreover, if, additionally, a P C8pr0, T s;S1,1pR2dqq, we also have qpt, s;x, ξq,
pqpt, s;x, ξq ´ xq P C8pIpT1q;S

1,0pR2dqq.

Proof. Setting F px, yq “ x ` y ´ qpt, s; y, ξq, it follows F px, ¨ q : Rd Q y ÞÝÑ
F px, yq P Rd is a contracting map for any x P Rd, by (1.34). Then, the
inverse y “ qpt, s;x, ξq in uniquely determined as the fixed point and it has
the same regularity as q. The boundedness of the inverse function claimed
in (1.35) is an immediate consequence of (1.28) and (1.29). All other claims
follow by similar arguments.

Proposition 1.32. Let a P Cpr0, T s;S1,1pR2dqq be real-valued, qpt, s; y, ηq,
ppt, s; y, ηq and qpt, s;x, ξq be the symbols constructed in the previous Lemmas
1.30 and 1.31. We define upt, s; y, ηq by

upt, s; y, ηq “ xy, ηy `

ż t

s

ˆ

apτ ; qpτ, s; y, ηq, ppτ, s; y, ηqq

´ xa1ξpτ ; qpτ, s; y, ηq, ppτ, s; y, ηqq, ppτ, s; y, ηqy

˙

dτ, (1.36)

and
ϕpt, s;x, ξq “ upt, s; qpt, s;x, ξq, ξq. (1.37)

Then, ϕpt, s;x, ξq is a solution of the eikonal equation (1.24) and satisfies

ϕ1ξpt, s;x, ξq “ qpt, s;x, ξq, (1.38)

ϕ1xpt, s;x, ξq “ ppt, s; qpt, s;x, ξq, ξq, (1.39)

Bsϕpt, s;x, ξq “ ´aps;ϕ
1
ξpt, s;x, ξq, ξq, (1.40)

xϕ1xpt, s;x, ξqy — xξy and xϕ1ξpt, s;x, ξqy — xxy. (1.41)

Moreover, for any l ě 0 there exists a constant cl ě 1 and Tl P p0, T1s such
that clTl ă 1, ϕpt, s;x, ξq belongs to Prpcl|t ´ s|, lq and tJpt, sq{|t ´ s|u is
bounded in S1,1pR2dq for 0 ď t, s ď Tl ď T1, t ‰ s, where Jpt, s;x, ξq “
ϕpt, s;x, ξq ´ xx, ξy.
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Proof. The function ϕ defined in (1.37) is the solution of (1.24) with its
Cauchy data. In fact using the definition of x and the Cauchy data of the
Hamilton-Jacobi system (1.26), we get

qps, s; y, ξq “ y ô qps, s;x, ξq “ x

which implies that ϕps, s;x, ξq “ xx, ξy is the desired Cauchy data for the
eikonal equation (1.24). Now, we have to check that ϕ satisfies,

Btϕpt, s;x, ξq “ apt;x, ϕ1xpt, s;x, ξqq. (1.42)

Following [43], let u be defined as in (1.36). Then, (1.37) is equivalent to

ϕpt, s; qpt, s; y, ξq, ξq “ upt, s; y, ξq. (1.43)

Let

ψpt, s; y, ξq “ u1ypt, s; y, ξq ´
Bq

By
pt, s; y, ξq ¨ ppt, s; y, ξq,

where the last part of the right hand side is a product between a matrix and
a vector. Hence

ψps, s; y, ξq “ ξ ´ Id ¨ ξ “ 0.

Recalling that ϕ solves (1.42) and pq, pq is solution of the Hamilton-Jacobi
system and (1.39) holds true. First, we observe that

Bu

Bt
pt, s; y, ξq “ pBtϕqpt, s; qpt, s; y, ξqq ` ϕ

1
xpt, s; qpt, s; y, ξqqBtqpt, s; y, ξq

“ Btϕpt, s; qpt, s; y, ξqq ` ppt, s; y, ξq ¨ p´a
1
ξqpt, qpt, s; y, ξq, ppt, s; y, ξqq.

Moreover,

BtΨ “ BypBtuq ´ Btp
Bq

By
¨ pq

“
B

By

`

apt, qpt, s; y, ξq, ppt, s; y, ξqq ´ xa1ξpt, qpt, s; y, ξq, ppt, s; y, ξqq, py
˘

´
B pBtqq

By
¨ p´

Bq

By
¨ Btp

“
Bq

By
¨ a1x ` a

1
ξ ¨
Bp

By
`

B

´

a1ξ

¯

By
¨ p´ a1ξ ¨

Bp

By
´

B

´

a1ξ

¯

By
¨ p´

Bq

By
¨ a1x

“ 0.

Therefore, we have ψpt, s; y, ξq “ 0 for all pt, s; y, ξq P IpT1q ˆ R2d, which
implies that

u1ypt, s; y, ξq “
Bq

By
pt, s; y, ξq ¨ ppt, s; y, ξq. (1.44)
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Moreover, by (1.43) we have

u1ypt, s; y, ξq “
Bq

By
pt, s; y, ξq ¨ ϕ1xpt, s; qpt, s; y, ξq, ξq, (1.45)

and by (1.44), (1.45) and the fact that q is invertible in IpT1q, it follows that

ppt, s; y, ξq “ ϕ1xpt, s; qpt, s; y, ξq, ξq. (1.46)

Differentiating (1.43) with respect to t, and inserting (1.25), (1.36) and
(1.46), it follows that ϕ indeed satisfies (1.24).

Equality (1.46) implies (1.39), then in order to prove (1.38) we use (1.36)
and modify the function ψ as follows:

ψpt, s; y, ξq “ u1ξpt, s; y, ξq ´
Bq

Bξ
pt, s; y, ξq ¨ ppt, s; y, ξq.

Obviously ψps, s; y, ξq “ y, and derivative with respect to t shows that ψ is
constant. Then

u1ξpt, s; y, ξq ´
Bq

Bξ
pt, s; y, ξq ¨ ppt, s; y, ξq “ y.

Moreover, by the equality (1.39) and the derivative of (1.43) with respect
to ξ, we get (1.38).

We can show that (1.40) holds true, after showing the independence of
Bsϕ from t. Indeed using (1.25) and (1.39), we get

Bt pBsϕqpt, s; qpt, sq, ξq

“ pBtBsϕq pt, s; qpt, sq, ξq ` x
`

Bsϕ
1
x

˘

pt, s; qpt, sq, ξq, Btqpt, sqy

“ pBtBsϕq pt, s; qpt, sq, ξq ´ x
`

Bsϕ
1
x

˘

pt, s; qpt, sq, ξq, a1ξpt; qpt, sq, ppt, sqqy

“ Bs

ˆ

Btϕpt, s; z, ξq ´ apt; z, ϕ
1
xpt, s; z, ξq

˙ˇ

ˇ

ˇ

ˇ

z“qpt,s;y,ξq

“ 0.

The last equality follows by (1.24). Moreover, (1.24), (1.38) and the in-
dependence of pBsϕq from the variable t, together with the observation
x “ qpt, s; y, ξq

ˇ

ˇ

t“s
“ y, imply

Bsϕpt, s;x, ξq “ pBsϕq ps, s; qps, sq, ξq “ pBsϕq ps, s; y, ξq

“ tBtrϕpt, t; y, ξqs ´ pBtϕq pt, t; y, ξqu
ˇ

ˇ

t“s

“
 

Btpxy, ξyq ´ aps; y, ϕ
1
xps, s; y, ξqq

(

“ ´aps; y, ξq “ ´aps;ϕ1ξpt, s;x, ξq, ξq,
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which concludes the proof of (1.40).
With the aim of determining the class of the function ϕ cited in (1.37),

the next lemma is an adapted version from Lemma 2.3 in [43].
Using Lemma 1.2 and recalling that a P Cpr0, T s;S1,1q is real-valued,

q P C8pIpT1q;S
1,0q, p P C8pIpT1q;S

0,1q, q P C8pIpT1q;S
1,0q, as defined

above, we conclude that ϕ belongs to C1pIpT1q;S
1,1q and it is a real-valued

function. Concerning the regularity condition, we have ϕ2x,ξ
ˇ

ˇ

t“s
“ Id. Then

by a continuity argument, one can possibly decreasing T1, obtain (1.47) for
all t, s P IpT1q, x, ξ P Rd

1{2 ď det
`

ϕ2x,ξ
˘

ď 3{2. (1.47)

In view of Proposition 1.27, (1.38) and (1.39); we get the equivalences
(1.41). Now, for 0 ď c0|t´ s| ă 1, we show the following:

sup
x,ξPRd
|α`β|ď2

ˇ

ˇ

ˇ
Dα
ξD

β
xJpt, s;x, ξq

ˇ

ˇ

ˇ

xxy1´|β|xξy1´|α|
ď c0|t´ s|. (1.48)

Here, as usual, we can restrict IpT1q to obtain c0|t´ s| ă 1, so that, by
(1.37) and (1.36), we get

Jpt, s;x, ξq “
ż t

s
apτ ;x, ppτ ; s; qpτ, sq, ξqq´xa1ξpτ ;x, ppτ, s; qpτ, sq, ξqq, ppτ, s; qpτ, sq, ξqy dτ.

(1.49)

Then, observing that

|Dα
ξD

β
xJpt, s;x, ξq|

“
ˇ

ˇ

ż t

s

¨

˚

˝

Dα
ξD

β
xa´

ÿ

α1`α2“α
β1`β2“β

α!

α1!α2!

β!

β1!β2!
xDα1

ξ Dβ1
x a

1
ξ, D

α2
ξ Dβ2

x py

˛

‹

‚

dτ
ˇ

ˇ,

and for |α`β| ď 2, Lemma 1.2 and Proposition 1.27 imply that the integrand
is a SG symbol of order p1, 1q. This implies the desired estimate (1.48).
Therefore, ϕpt, sq P Prpc0|t ´ s|q where c0 depends on the semi-norms of a.
Next we show that ϕpt, sq P Prpcl|t´ s|, lq. In fact, using (1.49) in addition
both a and xa1ξ, py are in S1,1, thus imply that for any l ě 0 there exists
a constant cl ě 1 and Tl P r0, T1s such that for |α ` β| ď 2 ` l, the next
estimate holds for pt, sq P IpTlq

ˇ

ˇ

ˇ
Dα
ξD

β
xJpt, s;x, ξq

ˇ

ˇ

ˇ

xxy1´|β|xξy1´|α|
ď cl|t´ s|.

The above estimate confirms also that Jpt, sq{|t´ s| bounded in S1,1.
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As a simple realization of a sequence of phase functions satisfying (1.17)
and (1.18), we recall the following example, see [8] and [86].

Example 1.33. Let ϕpt, s;x, ξq be the solution of the eikonal equation (1.24)
with ε “ 1. Choose the partition ∆M`1pT1q ” ∆T1 of the interval rs, ts,
0 ď s ď t ď T1, given by

s “ tM`1 ď tM ď ¨ ¨ ¨ ď t1 ď t0 “ t,

and define the sequence of phase functions

χjpx, ξq “

#

ϕptj´1, tj ;x, ξq 1 ď j ďM ` 1,

xx, ξy j ěM ` 2.

From Proposition 1.32 we know that χj P Prpτjq with τj “ c0ptj´1 ´ tjq for
1 ď j ďM ` 1 and with τj “ 0 for j ěM ` 2. Condition (1.18) is fulfilled
by the choice of a small enough positive constant T1, since

8
ÿ

j“1

τj “
M`1
ÿ

j“1

c0ptj´1 ´ tjq “ c0pt´ sq ď c0T1 ă
1

4

if T1 ă p4c0q
´1. Moreover, from Proposition 1.32, we know that }Jj}2,0 ď

c0|tj ´ tj´1| “ τj for all 1 ď j ď M ` 1 and Jj “ 0 for j ě M ` 2, so each
one of the Jj satisfies (1.17).

Corollary 1.34. Let a P Cpr0, T s;S1,1pR2dqq be real-valued, and let q, p
and q be the symbols constructed in Lemma 1.30 and Lemma 1.31, re-
spectively. Then, J P C1pIpT1q;S

1,1pR2dqq. Moreover, if, additionally,
a P C8pr0, T s;S1,1pR2dqq, we find J P C8pIpT1q;S

1,1pR2dqq.

1.6 Classical symbols of SG type

In the last chapter of Part I we will focus on the subclass of symbols and
operators which are SG-classical, that is, a P Sm,µcl pRdq Ă Sm,µpRdq. In this
section we summarize some of their main properties, using materials coming
from [11] (see, e. g., [52] for additional details and proofs).

Definition 1.35. i) A symbol apx, ξq belongs to the class SGm,µclpξqpR
dq if

there exist am´i,¨px, ξq P ĂH m´i
ξ pRdq, i “ 0, 1, . . . , homogeneous func-

tions of order m´ i with respect to the variable ξ, smooth with respect
to the variable x, such that, for a 0-excision function ω,

apx, ξq ´
N´1
ÿ

i“0

ωpξq am´i,¨px, ξq P S
m´N,µpRdq, N “ 1, 2, . . . ;
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ii) A symbol apx, ξq belongs to the class SGm,µclpxqpR
dq if there exist a¨,µ´k

px, ξq P ĂH µ´k
x pRdq, k “ 0, . . . , homogeneous functions of order µ´ k

with respect to the variable x, smooth with respect to the variable ξ,
such that, for a 0-excision function ω,

apx, ξq ´
N´1
ÿ

k“0

ωpxq a¨,µ´kpx, ξq P S
m,µ´N pRdq, N “ 1, 2, . . .

Definition 1.36. A symbol apx, ξq is SG-classical, and we write a P Sm,µclpx,ξq

pRdq “ Sm,µcl pRdq “ Sm,µcl , if

i) there exist am´j,¨px, ξq P ĂH m´j
ξ pRdq such that, for a 0-excision func-

tion ω, ωpξq am´j,¨px, ξq P S
m´j,µ
clpxq pR

dq and

apx, ξq ´
N´1
ÿ

j“0

ωpξq am´j,¨px, ξq P S
m´N,µpRdq, N “ 1, 2, . . . ;

ii) there exist a¨,µ´kpx, ξq P ĂH µ´k
x pRdq such that, for a 0-excision function

ω, ωpxq a¨,µ´kpx, ξq P S
m,µ´k
clpξq pRdq and

apx, ξq ´
N´1
ÿ

k“0

ωpxq a¨,µ´k P S
m,µ´N pRdq, N “ 1, 2, . . . .

We set Lm,µclpx,ξqpR
dq “ Lm,µcl pRdq “ OppSm,µcl pR2dqq.

The next two results are especially useful when dealing with SG-classical
symbols.

Theorem 1.37. Let ak P S
m´k,µ´k
cl pR2dq, k “ 0, 1, . . . , be a sequence of

SG-classical symbols and a —
ř8
k“0 ak its asymptotic sum in the general

SG-calculus. Then, a P Sm,µcl pR2dq.

Theorem 1.38. Let Bd “ tx P Rd : |x| ď 1u and let χ be a diffeomorphism
from the interior of Bd to Rd such that

χpxq “
x

|x|p1´ |x|q
for |x| ą 2{3.

Choosing a smooth function rxs on Rd such that 1´ rxs “ 0 for all x in the
interior of Bd and |x| ą 2{3 ñ rxs “ |x|, for any a P SGm,µcl pR2dq denote by
pDmaqpy, ηq, m “ pm,µq, the function

bpy, ηq “ p1´ rηsqm1p1´ rysqm2apχpyq, χpηqq.

Then, Dm extends to a homeomorphism from Sm,µcl pR2dq to C8pBd ˆ Bdq.
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Note that the definition of SG-classical symbol implies a condition of com-
patibility for the terms of the expansions with respect to x and ξ. In fact,
defining σm´jψ and σµ´ie on Sm,µclpξq and Sm,µclpxq, respectively, as

σm´jψ paqpx, ξq “ am´j,¨px, ξq, j “ 0, 1, . . . ,

σµ´ie paqpx, ξq “ a¨,µ´ipx, ξq, i “ 0, 1, . . . ,

it is possible to prove that for the homogeneous components am´j,µ´i “

σm´j,µ´iψe paq one finds

am´j,µ´i “ σm´jψ pσµ´ie paqq “ σµ´ie pσm´jψ paqq,

j “ 0, 1, . . . , i “ 0, 1, . . . .

Moreover, the algebra property of SG-operators and Theorem 1.37 imply
that the composition of two SG-classical operators is still classical. For A “
Oppaq P Lm,µcl the triple σpAq “ pσψpAq, σepAq, σψepAqq “ pam,¨ , a¨,µ , am,µq
is called the principal symbol of A. This definition keeps the usual mul-
tiplicative behaviour, that is, for any A P Lr,ρcl , B P Ls,σcl , r, ρ, s, σ P R,
σpABq “ σpAqσpBq, with componentwise product in the right-hand side.
We also set

σp pAq px, ξq “ σp paq px, ξq “

“ ampx, ξq “ ωpξqam,¨px, ξq ` ωpxqpa¨,µpx, ξq ´ ωpξqam,µpx, ξqq

for a 0-excision function ω. Theorem 1.39 below allows to express the ellip-
ticity of SG-classical operators in terms of their principal symbol.

Theorem 1.39. An operator A P Lm,µcl pR2dq is elliptic if and only if each
element of the triple σpAq is everywhere non-vanishing on its domain of
definition.

Remark 1.40. The composition results in the previous Section 1.3 have
classical counterparts. Namely, when all the involved starting elements are
SG-classical, the resulting objects (multi-products, amplitudes, etc.) are SG-
classical as well.





Chapter 2

Commutative law for
multi-products of SG phase
functions

In this chapter our aim is to prove, under suitable hypotheses, the commu-
tative law for multi-product of regular SG phase functions. Through this
result, we further expand the theory of SG Fourier integral operators. In
particular we will be able to apply it to obtain the solution of Cauchy prob-
lems for weakly hyperbolic linear differential operators, with polynomially
bounded coefficients, and involutive characteristics. Notice that roots of
constant multiplicities are always involutive, the converse is not true in gen-
eral see, e. g., [9, 41]. An example of operator with involutive roots having
variable multiplicities can be found, e. g., in [10,94].

More precisely, we focus on the 7-product of regular SG phase functions
obtained as solutions to eikonal equations. Namely, let rϕjpt, sqspx, ξq “
ϕjpt, s;x, ξq be the phase functions defined by the eikonal equations (1.24),
with ϕj in place of ϕ and aj in place of a, where aj P Cpr0, T s;S

1,1q, aj
real-valued, j P N. Moreover, let Iϕj pt, sq “ Iϕjpt,sq “ Opϕjpt,sqp1q be the SG
Fourier integral operator with phase function ϕjpt, sq and symbol identically
equal to 1.

Assume that tajujPN is bounded in Cpr0, T s;S1,1q. Then, by Proposition
1.32, there exists a constant c, independent of j, such that

ϕjpt, sq P Prpc|t´ s|q, j P N.

Definition 2.1. We make a choice of T1, once and for all, such that

cT1 ď τ0 (2.1)

for the constant τ0 defined in (1.18). Moreover, for convenience below, we
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define, for M P Z`,

tM`1 “ pt0, . . . , tM`1q P ∆pT1q,

tM`1,jpτq “ pt0, . . . , tj´1, τ, tj`1, . . . , tM`1q,
(2.2)

where ∆pT1q “ ∆M`1pT1q “ tpt0, . . . , tM`1q : 0 ď tM`1 ď tM ď ¨ ¨ ¨ ď t0 ď
T1u.

2.1 Parameter-dependent multi-products of regu-
lar SG phase functions

LetM ě 1 be a fixed integer and aj P Cpr0, T s;S
1,1q, j “ 1, . . . ,M`1. Then,

trivially, taju
M`1
j“1 is bounded in Cpr0, T s;S1,1q and we have the following

well-defined multi-product

φptM`1;x, ξq “ rϕ1pt0, t1q7ϕ2pt1, t2q7 . . . 7ϕM`1ptM , tM`1qspx, ξq, (2.3)

where we set t0 “ t, tM`1 “ s, for tM`1 P ∆pT1q from (2.2). Explic-
itly, φ is defined as in (1.23), by means of the critical points pY,Nq “
pY,NqptM`1;x, ξq, obtained, when M ě 2, as solutions of the system
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Y1ptM`1;x, ξq “ ϕ11,ξpt0, t1;x,N1ptM`1;x, ξqq

YjptM`1;x, ξq “ ϕ1j,ξptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqq,

pj “ 2, . . . ,Mq

NjptM`1;x, ξq “ ϕ1j`1,xptj , tj`1;YjptM`1;x, ξq, Nj`1ptM`1;x, ξqq,

pj “ 1, . . . ,M ´ 1q

NM ptM`1;x, ξq “ ϕ1M`1,xptM , tM`1;YM ptM`1;x, ξq, ξq,

(2.4)

namely,

φptM`1;x, ξq :“
M
ÿ

j“1

„

ϕjptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqq

´ xYjptM`1;x, ξq, NjptM`1;x, ξqy



` ϕM`1ptM , tM`1;YM ptM`1;x, ξq, ξq.

(2.5)

Next, we give some properties of the multi-product φ. The next Propositions
2.2 and 2.3, Corollary 2.4 and Proposition 2.5 are extension of analogous
results from [8] to the parameter-dependent case needed here.

Proposition 2.2. Let φ be the multiproduct (2.5), with real-valued aj P
Cpr0, T s;S1,1pR2dqq, j “ 1, . . . ,M ` 1. Then, the following properties hold
true.
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(i)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bt0φptM`1;x, ξq “ a1pt0;x, φ1xptM`1;x, ξqq

BtjφptM`1;x, ξq “ aj`1ptj ;YjptM`1;x, ξq, NjptM`1;x, ξqq

´ ajptj ;YjptM`1;x, ξq, NjptM`1;x, ξqq,
pj “ 1, . . . ,Mqq

BtM`1φptM`1;x, ξq “ ´aM`1ptM`1, φ
1
ξptM`1;x, ξq, ξq.

(2.6)

(ii) For any ϕj solution to the eikonal equation associated with the Hamil-
tonian aj, we have

"

ϕipt, sq7ϕjps, sq “ ϕipt, sq
ϕips, sq7ϕjpt, sq “ ϕjpt, sq,

for all i, j “ 1, . . . ,M ` 1.

Proof. The claim (i) comes from the fact that φ is defined by (2.5), that
ϕj is the solution of the eikonal equation (1.24) related to aj and satisfies
the properties of Proposition 1.32, and that pY,Nq satisfy (1.22). Moreover,
Example 3.3 of [8] shows that (ii) holds true.

Proposition 2.3. Let tajujPN be a family of parameter-dependent, real-
valued symbols, bounded in C8pr0, T s;S1,1pR2dqq, and pY,Nq be the solution
of (2.4). Then, for γk P Z`, k “ 0, 1 . . . ,M ` 1, the following properties
hold true.

(i)

#

tB
γ0
t0
. . . B

γM`1

tM`1
pYj ´ Yj´1qujPN is bounded in S1,0pR2dq,

tB
γ0
t0
. . . B

γM`1

tM`1
pNj ´Nj`1qujPN is bounded in S0,1pR2dq.

(2.7)

(ii) For JM`1ptM`1;x, ξq “ φptM`1;x, ξq ´ xx, ξy, we have

tB
γ0
t0
. . . B

γM`1

tM`1
JM`1u is bounded in S1,1pR2dq.

Proof. From the fact that yjptM`1;x, ξq “ Yj ´ Yj´1 “ J 1j,ξpYj´1, Njq,
ηjptM`1;x, ξq “ Nj ´ Nj`1 “ J 1j`1,xpYj , Nj`1q (cf. [8, Lemma 3.5]) and

that aj belongs to C8pr0, T s;S1,1q, for j ě 1, then Bγ0t B
γM`1
s Jjpt, s;x, ξq be-

longs to S1,1 as stated in Corollary 1.34. From this and Theorem 1.23, we
get (i) for |γ| “ γ0 ` ¨ ¨ ¨ ` γM`1 “ 0, and Proposition 1.24 implies (ii), for
|γ| “ 0. We now proceed by induction on γ.

Step |γ| “ 1. We need to check (i) for the first order derivatives with
respect to the tk variables where k “ 0, . . . ,M ` 1. Let us start with the
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t0 “ t derivatives. To this aim, we switch from the system (1.22) in the
unknown pY,Nq to the equivalent system (2.9) in the unknown pȲ , N̄q “
py1, . . . , yM , η1, . . . , ηM q P R2Md as follows. Define

$

’

’

’

’

&

’

’

’

’

%

z0 :“ 0

zj :“
řj
k“1 yk , j “ 1, . . . ,M

ζj :“
řM
k“j ηk , j “ 1, . . . ,M

ζM`1 :“ 0,

(2.8)

and consider the system
$

&

%

yk “ J 1k,ξpx` z
k´1, ξ ` ζkq, k “ 1, . . . ,M

ηk “ J 1k`1,xpx` z
k, ξ ` ζj`1q, k “ 1, . . . ,M.

(2.9)

Then, we have
$

’

’

’

&

’

’

’

%

Btyk “ BtJ
1
k,ξpx` z

k´1, ξ ` ζkq ` J2k,ξxpx` z
k´1, ξ ` ζkqBtz

k´1

` J2k,ξξpx` z
k´1, ξ ` ζkqBtζ

k,

Btηk “ BtJ
1
k`1,xpx` z

k, ξ ` ζk`1q ` J2k`1,xxpx` z
k, ξ ` ζk`1qBtz

k

` J2k`1,xξpx` z
k, ξ ` ζk`1qBtζ

k`1.

(2.10)

In view of (1.17) and Corollary 1.34, we obtain

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

ď τk ¨ xxy
´1
¨

!

xx` zk´1y ` }Btz
k´1} ` xx` zk´1yxξ ` ζky´1

}Btζ
k}

)

` τk`1 ¨ xξy
´1
¨

!

xξ ` ζk`1y ` xx` zky´1
xξ ` ζk`1y}Btz

k} ` }Btζ
k`1}

)

.

From [8, Theorem 3.6] we have

2

3
xxy ď xx` zk´1y ď

4

3
xxy and

2

3
xξy ď xξ ` ζky ď

4

3
xξy,

then we get

xxy´1
¨}Btyk}`xξy

´1
¨}Btηk} ď τk¨xxy

´1
¨

"

4

3
xxy ` }Btz

k´1} ` 2xxyxξy´1
}Btζ

k}

*

` τk`1 ¨ xξy
´1
¨

"

4

3
xξy ` 2xxy´1

xξy}Btz
k} ` }Btζ

k`1}

*

ď τk ¨

#

4

3
`

M
ÿ

k“1

xxy´1
}Btyk} ` 2xξy´1

M
ÿ

k“1

}Btηk}

+

` τk`1 ¨

#

4

3
` 2

M
ÿ

k“1

xxy´1
}Btyk} `

M
ÿ

k“1

xξy´1
}Btηk}

+

,
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where in the last inequality, we have used (2.8). Summing for k “ 1, . . . ,M ,
we get, for any x, ξ P Rd,

M
ÿ

k“1

´

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

¯

ď τ̄M

#

4

3
`

M
ÿ

k“1

xxy´1
}Btyk} ` 2xξy´1

M
ÿ

k“1

}Btηk}

+

` τ̄M`1

#

4

3
` 2

M
ÿ

k“1

xxy´1
}Btyk} `

M
ÿ

k“1

xξy´1
}Btηk}

+

ď 3τ̄M`1

#

1`
M
ÿ

k“1

´

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

¯

+

.

The last inequality implies that

M
ÿ

k“1

´

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

¯

ď
3τ0

1´ 3τ0
ă 3,

and this hold true due to (1.18). Substituting the above estimate in (2.10),
we obtain

}Btyk} ď }Jk}2,0

"

4

3
xxy ` }Btz

k´1} ` 2xxyxξy´1
}Btζ

k}

*

ď 2}Jk}2,0xxy

#

1`
M
ÿ

k“1

´

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

¯

+

ď c0}Jk}2,0xxy.

With similar computation, we obtain

}Btηk} ď }Jk`1}2,0

!

xξ ` ζk`1y ` xx` zky´1
xξ ` ζk`1y}Btz

k} ` }Btζ
k`1}

)

ď }Jk`1}2,0

"

4

3
xξy ` 2xxy´1

xξy}Btz
k} ` }Btζ

k`1}

*

ď 2}Jk`1}2,0xξy
!

1` xxy´1
}Btz

k} ` xξy´1
}Btζ

k`1}

)

ď 2}Jk`1}2,0xξy

#

1`
M
ÿ

k“1

´

xxy´1
¨ }Btyk} ` xξy

´1
¨ }Btηk}

¯

+

ď C0}Jk`1}2,0xξy.
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Similarly, for any x, ξ P Rd and , ν “ 1, . . . ,M ` 1, we have

}Btνykpx, ξq} ď Cν}Jk}2,0xxy, }Btνηkpx, ξq} ď Cν}Jk`1}2,0xξy.

This conclude the step |γ| “ 1.
Inductive step. We assume that our construction holds true for |γ| “

N , and prove the estimate for |γ| “ N ` 1. Using (1.17), we obtain

$

&

%

ˇ

ˇ

ˇ
B
γ0
t0
. . . B

γM`1

tM`1
yk

ˇ

ˇ

ˇ
ď cxxy,

ˇ

ˇ

ˇ
B
γ0
t0
. . . B

γM`1

tM`1
ηk

ˇ

ˇ

ˇ
ď cxξy,

(2.11)

for |γ| “ N and k “ 1, . . . ,M . We need (2.11) for the boundedness of yk and
ηk with respect to Bγ0t0 . . . B

γM`1

tM`1
where |γ| “ N ` 1. Thus we compute the

|γ| derivative of Btνyk where |γ| “ N , ν “ 0, . . . ,M ` 1 and k “ 1, . . . ,M .

B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku “ B

γ0
t0
. . . B

γM`1

tM`1

!

BtνJ
1
k,ξpx` z

k´1, ξ ` ζkq

`J2k,ξxpx` z
k´1, ξ ` ζkqBtνz

k´1 ` J2k,ξξpx` z
k´1, ξ ` ζkqBtνζ

k
)

. (2.12)

We use Faá di Bruno formula to obtain estimates on (2.12) i. e., obtaining
the γ derivatives of Btνyk with respect to tM`1. Hence, we get the following
formula for the derivative of Hk where Hk P tBtνJ

1
k,ξ, J

2
k,ξx, J

2
k,ξξu, with

respect to Bγ0t0 . . . B
γM`1

tM`1
, where |γ| “ N :

B
γk´1

tk´1
B
γk
tk
Hk ` B

s
xB
r
ξHk

s
ź

B
σ0
t0
. . . B

σM`1

tM`1
zk´1

r
ź

B
ρ0
t0
. . . B

ρM`1

tM`1
ζk.

Applying (2.11), we obtain

|B
γ0
t0
. . . B

γM`1

tM`1

´

BtνJ
1
k,ξpx` z

k´1ptM`1qq, ξ ` ζ
kptM`1qq

¯

| ď }Jk}2,0xxy

`
ÿ

σ1`¨¨¨`σr`ρ1`¨¨¨`ρq“γ
σi‰0; ρi‰0

Cq,r,γ}Jk}2,q`rxξy
´q
xxy1´r ¨ xξy . . . xξy

loooomoooon

q times

xxy . . . xxy
loooomoooon

r times

ď Cγ}Jk}2,|γ|xxy,

moreover

|B
γ0
t0
. . . B

γM`1

tM`1

´

J2k,ξxpx` z
k´1ptM`1q, ξ ` ζ

kptM`1qq

¯

| ď Cγ}Jk}2,|γ|,

and

|B
γ0
t0
. . . B

γM`1

tM`1

´

J2k,ξξpx` z
k´1ptM`1q, ξ ` ζ

kptM`1qq

¯

|

ď Cγ}Jk}2,|γ|xxyxξy
´1.
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Thus, substituting these last estimates in (2.12) and using (2.8), we get

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ď C 1γ}Jk}2,|γ|xxy

` }Jk}2,0

M
ÿ

k“1

´

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ` 2xxyxξy´1

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

.

(2.13)

By similar computation, we can show that

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku| ď C̃ 1γ}Jk`1}2,|γ|xξy ` }Jk`1}2,0xxy

´1
xξy¨

¨

M
ÿ

k“1

´

2|Bγ0t0 . . . B
γM`1

tM`1
tBtνyku| ` xxyxξy

´1
|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

. (2.14)

Summing up (2.13) and (2.14) for k “ 1, . . . ,M , we get

M
ÿ

ν“1

´

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ` xxyxξy

´1
|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

ď 3

˜

M
ÿ

k“1

}Jk`1}2,0

¸

¨

¨

M
ÿ

ν“1

´

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ` xxyxξy

´1
|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

` C̄γ

˜

M
ÿ

ν“1

}Jk}2,|γ| `
M
ÿ

k“1

}Jk`1}2,|γ|

¸

xxy

ď 3c0τ0

M
ÿ

ν“1

´

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ` xxyxξy

´1
|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

` 2c|γ|τ0xxy,

where c0 and c|γ| are the constants defined in (1.19). Using the fact that
c0 “ 1, we get

M
ÿ

ν“1

´

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ` xxyxξy

´1
|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku|

¯

ď C̄ 1γ
τ0

1´ 3τ0
xxy ă C̄ 1γxxy. (2.15)

The last inequality holds true thanks to the choice of τ0 in (1.18). Substi-
tuting (2.15) in (2.13) and (2.14) we finally obtain

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνyku| ď Cγ}Jk}2,|γ|xxy, (2.16)

|B
γ0
t0
. . . B

γM`1

tM`1
tBtνηku| ď Cγ}Jk`1}2,|γ|xξy. (2.17)
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The proof of (i) is complete since (2.16) and (2.17) are the desired estimates
for |γ| “ N ` 1.

(ii) follows from the boundedness of the Hamiltonian taju using (i) and
(2.6).

Corollary 2.4. Under the hypotheses of Proposition 2.3, we have, for some
T1 P p0, T s as in Proposition 1.32, and j “ 0, . . . ,M ` 1,

#

Yj belongs to C8
`

∆pT1q;S
1,0pR2dq

˘

,

Nj belongs to C8
`

∆pT1q;S
0,1pR2dq

˘

.

Proof. The proof follows by induction on j. For j “ 1, Y1ptM`1;x, ξq “
Y1ptM`1;x, ξq´x`x observing that x P S1,0 and for any α, β P Zd` we have

ˇ

ˇ

ˇ
BβxB

α
ξ Y1

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
BβxB

α
ξ pY1 ´ xq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
BβxB

α
ξ x

ˇ

ˇ

ˇ
ď Cαβxxy

1´|β|
xξy´|α|,

since, by Proposition 2.3, tYj ´ Yj´1u
M
j“1 is bounded in C8p∆pT1q;S

1,0q.
Now, assume that the statement holds true up to j “ M ´ 1. Then, YM P

S1,0, in view of to the fact that YM “ pYM ´ YM´1q ` YM´1, the inductive
hypothesis YM´1 P C

8p∆pT1q;S
1,0q and (2.7). The same argument implies

that Nj P C
8p∆pT1q;S

0,1q.

For any taju Ă C8pr0, T s;S1,1q, we consider the solution pqj , pjqpt, s; y, ηq
of the Hamilton-Jacobi system (1.25), with the Hamiltonian aj in place
of a. We define the trajectory pq̃j , p̃jqptj´1, σ; y, ηq, for py, ηq P Rd ˆ Rd,
tj´1 P ∆pT1q, σ P rtj , tj´1s, j P N, by

$

&

%

pq̃1, p̃1qpt0, σ; y, ηq “ pq1, p1qpσ, t0; y, ηq, t1 ď σ ď t0,
pq̃j , p̃jqptj´1, σ; y, ηq “ pqj , pjqpσ, tj´1; pq̃j´1, p̃j´1qptj´1; y, ηqq,

tj ď σ ď tj´1, j ě 2.

(2.18)

Proposition 2.5. Let pY,Nq “ pY,NqptM`1;x, ξq be the solution of (2.4)
under the hypotheses of Proposition 2.3. Then, we have

#

q1pt1, t0;x, φ1xptM`1;x, ξqq “ Y1ptM`1;x, ξq

p1pt1, t0;x, φ1xptM`1;x, ξqq “ N1ptM`1;x, ξq,
(2.19)

$

’

&

’

%

qjptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq “ YjptM`1;x, ξq,

pjptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq “ NjptM`1;x, ξq,
p2 ď j ďMq,

(2.20)

and, for any j ďM ,

pq̃j , p̃jqptj ;x, φ
1
xptM`1;x, ξqq “ pYj , NjqptM`1;x, ξq. (2.20j)
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Proof. Arguing as in [86, Chapter 10, Section 4], taking into account that
pq, pq is a solution to the Hamilton-Jacobi system (1.25), from the fact that
the equation x “ qpt, s; y, ξq has the unique solution y “ q̄pt, s;x, ξq, for
0 ď s ď t ď T , x, ξ P Rd, using (1.38) and (1.39), see Proposition 1.32, with
ϕj in place of ϕ, we get the following equalities for any j ě 1:

$

&

%

qjpt, s;ϕ
1
j,ξpt, s;x, ξq, ξq “ x

pjpt, s;ϕ
1
j,ξpt, s;x, ξq, ξq “ ϕ1j,xpt, s;x, ξq.

Thus, using the uniqueness of the solution to the Hamilton-Jacobi system
(1.25) for a “ aj , we get

$

&

%

qjps, t;x, ϕ
1
j,xpt, s;x, ξqq “ ϕ1j,ξpt, s;x, ξq,

pjps, t;x, ϕ
1
j,xpt, s;x, ξqq “ ξ.

(2.21j)

From Proposition 1.24, recalling (1.22), it follows

φ1xptM`1;x, ξq “ ϕ11,xpt0, t1;x,N1ptM`1;x, ξqq.

Using this with (1.20) and (2.21j) with j “ 1, we obtain
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

q1pt1, t0;x, φ1xptM`1;x, ξqq “ q1pt1, t0;x, ϕ11,xpt0, t1;x,N1ptM`1;x, ξqqq

“ ϕ11,ξpt0, t1;x,N1ptM`1;x, ξqq

“ Y1ptM`1;x, ξq

p1pt1, t0;x, φ1xptM`1;x, ξqq “ p1pt1, t0;x, ϕ11,xpt0, t1;x,N1ptM`1;x, ξqqq

“ N1ptM`1;x, ξq,

which is (2.19). In view of (2.4)

ϕ1j,xptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqq “ Nj´1ptM`1;x, ξq, j ě 2.

Using (2.21j), we find

qjptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq

“ qjptj , tj´1;Yj´1ptM`1;x, ξq, ϕ1j,xptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqqq

“ ϕ1j,ξptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqq “ YjptM`1;x, ξq,

and

pjptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq

“ pjptj , tj´1;Yj´1ptM`1;x, ξq, ϕ1j,xptj´1, tj ;Yj´1ptM`1;x, ξq, NjptM`1;x, ξqqq

“ NjptM`1;x, ξq,
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which give (2.20). The proof of (2.20j) is obtained by an inductive argument,
based on (2.20).

Notice that, from the Propositions 2.3 and 2.5, we obtain also the fol-
lowing result.

Proposition 2.6. Let tajujPN be a family of parameter-dependent, real-
valued symbols, bounded in C8pr0, T s;S1,1pR2dqq. Then we have, for the
trajectory pq̃j , p̃jq ptj´1, σ; y, ηq defined in (2.18),

$

&

%

tB
γ0
t0
. . . B

γj´1

tj´1
B
γj
σ q̃jujPN, tj´1P∆pT1q, σPrtj ,tj´1s

is bounded in S1,0pR2dq,

tB
γ0
t0
. . . B

γj´1

tj´1
B
γj
σ p̃jujPN, tj´1P∆pT1q, σPrtj ,tj´1s

is bounded in S0,1pR2dq,

where γk P Z` for 0 ď k ď j.

2.2 An auxiliary equation

Consider the following quasi-linear partial differential equation
$

&

%

Btj´1ΥptM`1q ´ LpΥptM`1q, tM`1q ¨Υ
1
xptM`1q ´HptM`1,jpΥptM`1qqq “ 0,

Υ|tj´1“tj “ tj`1

(2.22)

where, for s P R, tM`1,jpsq is defined in (2.2), ΥptM`1q “ ΥptM`1;x, ξq P
C8p∆pT1q;S

0,0q, and Lpτ, tM`1q “ Lpτ, tM`1;x, ξq is a vector-valued family
of symbols of order p1, 0q such that L P C8prtj`1, tj´1sˆ∆pT1q, S

1,0q, where
T1 is the same as in (2.1). For the sake of brevity, in (2.22) we have writ-
ten LpΥptM`1q, tM`1q in place of LpΥptM`1;x, ξq, tM`1;x, ξq and similarly,
HptM`1,jpΥptM`1qqq in place of HptM`1,jpΥptM`1;x, ξqq;x, ξq.

We also assume that

HptM`1,jpτqq “ HptM`1,jpτq;x, ξq P C
8p∆pT1q;S

0,0q,

is such that

HptM`1;x, ξq ą 0, HptM`1;x, ξq|tj“tj´1 ” 1,

for any tM`1 P ∆pT1q, px, ξq P R2d.
The following Lemma 2.7 (cf. [110]) is the key result to prove the main

Theorem 2.10. In fact, it gives the solution of the characteristics system

$

’

&

’

%

Btj´1RptM`1q “ ´LpKptM`1q, tM`1;RptM`1q, ξq

Btj´1KptM`1q “ HptM`1,jpKptM`1qq;RptM`1q, ξq

R|tj´1“tj “ y, K|tj´1“tj “ tj`1,

(2.23)
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which then easily provides the solution to the quasi-linear equation (2.22).
The latter, in turn, is useful to simplify the computations in the proof of
Theorem 2.10.

Lemma 2.7. There exists a constant T2 P p0, T1s, T1 from Definition 2.1,
such that (2.23) admits a unique solution pR,Kq “ pR,KqptM`1; y, ξq P
C8p∆pT2q; pS

1,0pR2dq bRdq ˆ S0,0pR2dqq, tj´1 P rtj , T2s, which satisfies, for
any tM`1 P ∆pT2q, py, ξq P R2d,

›

›

›

›

BR

By
ptM`1; y, ξq ´ I

›

›

›

›

ď Cptj´1 ´ tj`1q, (2.24)

for a suitable constant C ą 0 independent of M , and
#

tj`1 ď KptM`1; y, ξq ď tj´1

K|tj´1“tj “ tj`1.
(2.25)

Proof. First, we notice that, as a consequence of Lemma 1.10, the com-
positions in the right-hand side of (2.23) are well-defined. Moreover, they
produce symbols of order p1, 0q and p0, 0q, respectively, provided that pR,Kq
belongs to C8p∆pT2q;S

1,0ˆS0,0q and KptM`1q P rtj`1, tj´1s for any tM`1 P

∆pT2q.
We focus only on the variables ptj´1, tj , tj`1; y, ξq, since all the others

here play the role of (fixed) parameters, on which the solution clearly de-
pends smoothly. We then omit them in the next computations. We will also
write, to shorten some of the formulae, pR,Kqpsq “ pR,KqptM`1,j´1psq; y, ξq,
s P rtj , T2s, T2 P p0, T1s sufficiently small, to be determined below, tM`1 P

∆pT2q, py, ξq P R2d.
We rewrite (2.23) in integral form, namely

$

’

’

&

’

’

%

Rpsq “ y ´

ż s

tj

LpKpσq;σ, tj , tj`1;Rpσq, ξq dσ

Kpsq “ tj`1 `

ż s

tj

Hpσ,Kpσq, tj`1;Rpσq, ξq dσ,
(2.26)

s P rtj , T2s, tM`1 P ∆pT2q, py, ξq P R2d, and solve (2.26) by the custom-
ary Picard method of successive approximations. That is, we define the
sequences

$

’

’

&

’

’

%

Rl`1psq “ y ´

ż s

tj

LpKlpσq;σ, tj , tj`1;Rlpσq, ξq dσ

Kl`1psq “ tj`1 `

ż s

tj

Hpσ,Klpσq, tj`1;Rlpσq, ξq dσ,
(2.27)

for l “ 1, 2, . . . , s P rtj , T2s, tM`1 P ∆pT2q, py, ξq P R2d, with

R0psq “ y, K0psq “ s´ tj ` tj`1.
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We start by showing that tRlul and tKlul are bounded in C8p∆pT2q;S
1,0q

and C8p∆pT2q;S
0,0q, respectively. Also we aim at showing that (2.24) and

(2.25) hold true for Rl and Kl in place of R and K, respectively, for any
l P Z`, uniformly with respect to l, j,M . This follows by induction.

Namely, notice that all the stated properties are true for l “ 0. Indeed,
it is clear that R0 P C

8p∆pT2q;S
1,0q and K0 P C

8p∆pT2q;S
0,0q, with semi-

norms bounded by maxt1, 2T2u. (2.24) with R0 in place of R is trivial, while
(2.25) with K0 in place of K follows immediately, by inserting s “ tj´1 in
K0psq and recalling that tM`1 P ∆pT2q ñ tj´1 ´ tj ` tj`1 P rtj`1, tj´1s.

Assume now that (2.24) and (2.25) hold true for pR`,K`q for all the values
of the index ` up to l ě 0. We then find, by the same composition argument
mentioned above, Rl`1 P C

8p∆pT2q;S
1,0q and Kl`1 P C

8p∆pT2q;S
0,0q, with

semi-norms uniformly bounded with respect to l, since they depend only on
the semi-norms of L, H, Rl, Kl, and T2. It follows that (2.24) holds true
also for Rl`1 in place of R, since

›

›

›

›

BRl`1

By
ptM`1; y, ξq ´ I

›

›

›

›

“

›

›

›

›

›

ż tj´1

tj

B

By
rLpKlpσq;σ, tj , tj`1;Rlpσq, ξqs dσ

›

›

›

›

›

ď Cptj´1 ´ tjq ď Cptj´1 ´ tj`1q,

for a suitable constant C ą 0 independent of l. By the definition of Kl`1,
for l ě 0, clearly we get

Kl`1ptM`1; y, ξq|tj´1“tj “ tj`1.

It is also immediate that the hypotheses and the definition of Kl`1, l ě 0,
imply that Kl`1ptM`1; y, ξq is, for any fixed py, ξq P R2d,

0 ď tM`1 ď ¨ ¨ ¨ tj`1 ď tj´1 ď ¨ ¨ ¨ t0 ď T2 ď T1,

a monotonically decreasing function with respect to tj P rtj`1, tj´1s. (2.25)
with Kl`1 in place of K, l ě 0, follows by such property and the hypotheses
on H. Observing that, for any l ě 0, tM`1 P ∆pT2q, py, ξq P R2d, s P
rtj`1, tj´1s,

Kl`1ptM`1,j´1psq; y, ξq|tj“tj`1 “ s, Kl`1ptM`1,j´1psq; y, ξq|tj“s “ tj`1,
(2.28)

which, in particular, also shows

Kl`1ptM`1; y, ξq|tj“tj`1 “ tj´1, Kl`1ptM`1; y, ξq|tj“tj´1 “ tj`1. (2.29)

Notice that (2.29), together with the monotonicity property of Kl`1ptM`1;
y, ξq with respect to tj P rtj`1, tj´1s, l ě 0, tM`1 P ∆pT2q, py, ξq P R2d,
complete the proof of (2.25) with Kl`1 in place of K and the argument.
Then, it just remains to prove (2.28).
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We again proceed by induction. (2.28) is manifestly true for K0. Assume
then that it holds true for K` for all the values of the index ` up to l ě 0.
We find, in view of the hypotheses on H and the inductive hypothesis,

Kl`1ptM`1,j´1psq; y, ξq|tj“tj`1

“ tj`1 `

ż s

tj`1

Hpσ,KlptM`1,j´1pσq, tj`1, tj`1; y, ξq, Rlpσq, ξq dσ

“ tj`1 `

ż s

tj`1

Hpσ, σ, tj`1;Rlpσq, ξq dσ “ tj`1 `

ż s

tj`1

dσ “ s,

Kl`1ptM`1,j´1psq; y, ξq|tj“s

“ tj`1 `

ż s

s
Hpσ,KlptM`1,j´1pσq, s, tj`1; y, ξq, Rlpσq, ξq dσ “ tj`1,

which completes the proof of (2.28).
In order to show that tRlu and tKlu converge, we employ Taylor formula

with respect to the variable tj´1. For an arbitrary N P Z` we can write

Kl`1ptj´1q´Klptj´1q “
ÿ

kăN

´´

Bktj´1
Kl`1

¯

ptjq ´
´

Bktj´1
Kl

¯

ptjq
¯

ptj´1 ´ tjq
k

k!

`
1

N !

ż tj´1

tj

ptj´1 ´ σq
N
´´

B
N`1
tj´1

Kl`1

¯

pσq ´
´

B
N`1
tj´1

Kl

¯

pσq
¯

dσ (2.30)

and

Rl`1ptj´1q´Rlptj´1q “
ÿ

kăN

´´

Bktj´1
Rl`1

¯

ptjq ´
´

Bktj´1
Rl

¯

ptjq
¯

ptj´1 ´ tjq
k

k!

`
1

N !

ż tj´1

tj

ptj´1 ´ σq
N
´´

B
N`1
tj´1

Rl`1

¯

pσq ´
´

B
N`1
tj´1

Rl

¯

pσq
¯

dσ, (2.31)

respectively. The summations in the above equalities (2.30) and (2.31) are
actually identically vanishing. To prove this assertion, we proceed by in-
duction on N . Indeed, the claim trivially holds true for N “ 1, where we
immediately see

Kl`1ptjq ´Klptjq “ 0, and Rl`1ptjq ´Rlptjq “ 0,

in view of (2.27), which implies, for any l ě 0, Klptjq “ tj`1 and Rlptjq “ y.
Also, when N “ 2 we find

Btj´1Kl`1ptjq ´ Btj´1Klptjq “ Btj´1Rl`1ptjq ´ Btj´1Rlptjq “ 0,
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since, for any ` ě 0,

`

Btj´1K``1

˘

psq “ Hps,K`psq, tj`1;R`psq, ξq,

and

`

Btj´1R``1

˘

psq “ ´LpK`psq, s, tj , tj`1;R`psq, ξq.

Now, assume that the claim holds true at the step N`1, N ě 1. By Faá
di Bruno formula for the derivatives of composed functions, one can show
that

B
N`1
tj´1

Rl`1ptjq “ ´B
N
tj´1

rLpKlp¨q; ¨, tj , tj`1;Rlp¨q, ξqs ptjq

is in the span of

´
`

Bj1τ L
˘

˜

j1
ź

`“1

B
j1`
tj´1

Kl

¸

´

B
j2
tj´1

L
¯

ˆ

BαL

Bxα

˙

¨

˝

|α|
ź

i“1

pB
jαi
tj´1

Rlq
βi

˛

‚ptjq, (2.32)

where j1 ` j2 ` |α| “ N,
ř

βi “ |α|.
Similarly,

B
N`1
tj´1

Kl`1ptjq “ B
N
tj´1

rHp¨,Klp¨q, tj`1;Rlp¨q, ξqs ptjq

is in the span of

´

B
j1
tj´1

H
¯´

B
j2
tj
H
¯

˜

j2
ź

`“1

B
j2`
tj´1

Kl

¸

ˆ

BαH

Bxα

˙

¨

˝

|α|
ź

i“1

pB
jαi
tj´1

Rlq
βi

˛

‚ptjq, (2.33)

where j1 ` j2 ` |α| “ N,
ř

βi “ |α|. Using (2.32) and (2.33), and the fact
that the coefficients in the expressions of the derivatives under examination
are independent of l, we conclude that

B
N`1
tj´1

Kl`1ptjq ´ B
N`1
tj´1

Klptjq

“
ÿ

Hj1,j2,α

˜

β
ź

`“1

B
β`
tj´1

Kl

δ
ź

i“1

B
δi
tj´1

Rl ´

β
ź

`“1

B
β`
tj´1

Kl´1

δ
ź

i“1

B
δi
tj´1

Rl´1

¸

ptjq,

where

Hj1,j2,α “ Cj1,j2,α

´

B
j1
tj´1

H
¯´

B
j2
tj
H
¯

ˆ

BαH

Bxα

˙

ptjq,

and Cj1,j2,α is a suitable constant. The right-hand side of the above for-
mula is identically zero, in view of the recurrence assumption on both the
sequences, that is, for k ă N ` 1 we have

Bktj´1
Kl`1ptjq ´ B

k
tj´1

Klptjq “ 0, and Bktj´1
Rl`1ptjq ´ B

k
tj´1

Rlptjq “ 0.



Commutative law 45

Then, the expression can be rewritten as a linear combination of products in-

volving only such differences. The argument for
´

B
N`1
tj´1

Rl`1ptjq ´ B
N`1
tj´1

Rlptjq
¯

is completely similar. This proves the claim on the summations in (2.30)
and (2.31).

Now, using standard inequalities for the remainder, together with the
fact that tRlul is bounded in C8p∆pT2q;S

1,0q, while tKlul is bounded in
C8p∆pT2q;S

0,0q, from (2.30) and (2.31) we get, for any α, β P Z`,

sup
py,ξqPR2d

ˇ

ˇ

ˇ
Bαy B

β
ξ pKl`1 ´Klq ptM`1,j´1ptj´1q; y, ξqxyy

|α|
xξy|β|

ˇ

ˇ

ˇ

ď Cαβ
ptj´1 ´ tjq

N`1

pN ` 1q!
, (2.34)

with Cαβ independent of j and N . Similarly, we get

sup
py,ξqPR2d

ˇ

ˇ

ˇ
Bαy B

β
ξ pRl`1 ´Rlq ptM`1,j´1ptj´1q; y, ξqxyy

´1`|α|
xξy|β|

ˇ

ˇ

ˇ

ď rCαβ
ptj´1 ´ tjq

N`1

pN ` 1q!
, (2.35)

where rCαβ independent of j, N .

Writing l in place of N in the right-hand side of (2.34) and (2.35), it
easily follows that pRl,Klq converges, for l Ñ `8, to a unique fixed point
pR,Kq, which satisfies the stated symbol estimates. Since, as we showed
above, the properties (2.24) and (2.25) hold true for pRl,Klq in place of
pR,Kq, l ě 0, uniformly with respect to M, j, l, they also hold true for the
limit pR,Kq. The proof is complete.

The next Corollary 2.8 is a standard result in the theory of Cauchy
problems for quasi-linear partial differential equations of the form (2.22),
see, e. g., [53]. Its proof is based on the hypotheses on L and H, and the
properties of the solution of (2.23).

Corollary 2.8. Under the same hypotheses of Lemma 2.7, denoting by
R̄ptM`1;x, ξq the solution of the equation

RptM`1; y, ξq “ x, tM`1 P ∆pT2q, x, ξ P Rd,

the function

ΥptM`1;x, ξq “ KptM`1; R̄ptM`1;x, ξq, ξq

solves the Cauchy problem (2.22) for x, ξ P Rd, tM`1 P ∆pT2q, for a suffi-
ciently small T2 P p0, T1s.
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Remark 2.9. Notice that (2.24) implies that, for all y, ξ P Rd, tM`1 P

∆pT2q, T2 P p0, T1s suitably small, the Jacobian matrix
BR

By
ptM`1; y, ξq be-

longs to a suitably small open neighbourhood of the identity matrix, so it
is invertible, with norm in an interval of the form r1 ´ ε, 1 ` εs, for posi-
tive, arbitrarily small ε. A standard argument in the SG symbol theory (see,
e.g., [41, 42, 44]), shows that R̄ P C8p∆pT2q, S

1,0pR2dq b Rdq and that

xRptM`1; y, ξqy — xyy, xR̄ptM`1;x, ξqy — xxy,

with constants independent of tM`1 P ∆pT2q, ξ P Rd. This also implies
that Υ satisfies tj`1 ď ΥptM`1;x, ξq ď tj´1, tM`1 P ∆pT2q, x, ξ P Rd and
Υ P C8p∆pT2q;S

0,0pR2dqq.

2.3 Commutative law for multi-products of SG phase
functions given by solutions of eikonal equa-
tions

Let tajujPN be a bounded family of parameter-dependent, real-valued sym-
bols in C8pr0, T s;S1,1q and let tϕjujPN be the corresponding family of phase
functions in Prpc|t ´ s|q, obtained as solutions to the eikonal equations as-
sociated with aj , j P N. In the aforementioned multi-product (2.3), we
commute ϕj and ϕj`1, defining a new multi-product φj , namely

φjptM`1;x, ξq “ pϕ1pt0, t1q7ϕ2pt1, t2q7 . . . 7ϕj´1ptj´2, tj´1q7

7ϕj`1ptj´1, tjq7ϕjptj , tj`1q7

7ϕj`2ptj`1, tj`2q7 . . . 7ϕM`1ptM , tM`1qq px, ξq,
(2.36)

where tM`1 “ pt0, t1, . . . , . . . tM`1q P ∆pT1q.

Assumption I (Involutiveness of symbol families). Given the family of
parameter-dependent, real-valued symbols tajujPN Ă C8pr0, T s;S1,1pR2dqq,
there exist families of parameter-dependent, real-valued symbols tbj,kuj,kPN
and tdj,kuj,kPN, such that bj,k, dj,k P C

8pr0, T s;S0,0pR2dqq, j, k P N, and the
Poisson brackets

tτ ´ ajpt;x, ξq, τ ´ akpt;x, ξqu :“ Btajpt;x, ξq ´ Btakpt;x, ξq

` a1j,ξpt;x, ξq ¨ a
1
k,xpt;x, ξq ´ a

1
j,xpt;x, ξq ¨ a

1
k,ξpt;x, ξq

satisfy

tτ ´ ajpt;x, ξq, τ ´ akpt;x, ξqu “ bj,kpt;x, ξq ¨ paj ´ akqpt;x, ξq ` dj,kpt;x, ξq,

for all j, k P N, t P r0, T s, x, ξ P Rd.
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We can now state our first main theorem.

Theorem 2.10. Let tajujPN be a family of parameter-dependent, real-valued
symbols, bounded in C8

`

r0, T s;S1,1pR2dq
˘

, and let ϕj P Prpc|t´s|q, for some
c ą 0, be the phase functions obtained as solutions to (1.24) with aj in place
of a, j P N. Consider φptM`1q and φjptM`1q defined in (2.3) and (2.36),
respectively, for any M ě 2 and j ď M . Then, Assumption I implies that
there exists T 1 P p0, T2s, independent of M , such that we can find a symbol
family Zj P C

8p∆pT 1q;S0,0pR2dqq satisfying, for all tM`1 P ∆pT 1q, x, ξ P Rd,

tj`1 ď ZjptM`1;x, ξq ď tj´1,

Zj |tj“tj´1 “ tj`1, and Zj |tj“tj`1 “ tj´1.
(2.37)

Moreover, we have

φjptM`1;x, ξq

“ φptM`1,jpZjptM`1;x, ξqq;x, ξq`ΨjptM`1;x, ξq, tM`1 P ∆pT 1q, x, ξ P Rd

where Ψj P C
8p∆pT 1q;S0,0pR2dqq satisfies

Ψj ” 0 if dj,j`1 ” 0 in Assumption I.

Proof. We show that the argument originally given in [110] extends to the
SG setting, in view of Lemma 2.7 above. Let tpY1, . . . , YM , N1, . . . , NM quptM`1;
x, ξq be the solution of the critical point system

$

&

%

xj “ ϕ1j,ξptj´1, tj ;xj´1, ξjq

ξj “ ϕ1j`1,xptj , tj`1;xj , ξj`1q,

such that xj , ξj P Rd, x0 “ x, and ξM`1 “ ξ (cf. [8, 86]).

In view of (2.36), let
´

Ỹ1, . . . , ỸM , Ñ1, . . . , ÑM

¯

ptM`1;x, ξq be the solu-

tion to the critical points problem, for the phase functions in modified order,
namely,
$

’

’

’

&

’

’

’

%

xk “ ϕ1k,ξptk´1, tk;xk´1, ξkq if k P t1, . . . , j ´ 1, j ` 2, . . . ,Mu

xj “ ϕ1j`1,ξptj´1, tj ;xj , ξjq,

xj`1 “ ϕ1j,ξptj , tj`1;xj , ξj`1q,

$

’

’

’

&

’

’

’

%

ξk “ ϕ1k`1,xptk, tk`1;xk, ξk`1q if k P t1, . . . , j ´ 2, j ` 1, . . . ,Mu

ξj´1 “ ϕ1j`1,xptj´1, tj ;xj´1, ξjq,

ξj “ ϕ1j,xptj , tj`1;xj , ξj`1q,
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where x0 “ x and ξM`1 “ ξ. For convenience below, we also set

$

’

’

’

&

’

’

’

%

a0pt;x, ξq ” 0,

Y0 “ Ỹ0 “ x,

N0 “ φ1x, Ñ0 “ φ1j,x.

Let Ψj be defined as

ΨjptM`1;x, ξq “ φjptM`1;x, ξq ´ φptM`1,jpZjptM`1;x, ξqq;x, ξq. (2.38)

Here we look for a symbol Zj “ ZjptM`1;x, ξq satisfying (2.37) such that
Ψj P C

8p∆pT 1q;S0,0q, T 1 P p0, T2s. In view of Proposition 2.2 and (2.36),
we find

Btj´1ΨjptM`1;x, ξq

“ pBtj´1φjqptM`1;x, ξq ´ pBtj´1φqptM`1,jpZjptM`1;x, ξqq;x, ξq

´ pBtjφqptM`1,jpZjptM`1;x, ξqq;x, ξq ¨ Btj´1ZjptM`1;x, ξq

“ aj`1ptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq

´ aj´1ptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq

´ rajptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqstj“ZjptM`1;x,ξq

` raj´1ptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqstj“ZjptM`1;x,ξq

´ pBtjφqptM`1,jpZjptM`1;x, ξqq;x, ξq ¨ Btj´1ZjptM`1;x, ξq.
(2.39)

When j ě 2, we use the trajectory pq̃j´1, p̃j´1q ptj´2, σ; y, ηq defined in
(2.18). Then (cf. Proposition 2.5), we have, for σ “ tj´1, the equalities

$

&

%

pq̃j´1, p̃j´1qptj´1;x, φ1xptM`1;x, ξqq “ pYj´1, Nj´1qptM`1;x, ξq,

pq̃j´1, p̃j´1qptj´1;x, φ1j,xptM`1;x, ξqq “ pỸj´1, Ñj´1qptM`1;x, ξq.

Next, we set

#

α1pσ; z, ζq “ a2pσ; z, ζq,

αjpσ; tj´2; z, ζq “ paj`1 ´ aj´1q
`

σ; pq̃j´1, p̃j´1q ptj´2, σ; z, ζq
˘

, j ě 2.

(2.40)

In (2.40) the compositions are well-defined, in view of the properties of the
symbols pq̃j´1, p̃j´1q in Proposition 2.6, which imply that the conditions
of Lemma 1.10 are satisfied. Thus, αj P C

8p∆pT1q;S
1,1q, j “ 1, . . . ,M .
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Moreover, αj satisfies
$

’

’

’

&

’

’

’

%

αjptj´2, σ;x, φ1xptM`1;x, ξqq “
paj`1 ´ aj´1q pσ;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqq ,

αjptj´2, σ;x, φ1j,xptM`1;x, ξqq “

paj`1 ´ aj´1qpσ; Ỹj´1ptM`1;x, ξq, Ñj´1ptM`1;x, ξqq,

(2.41)

and when j “ 1 the variables ptj´2, σq reduce to σ.
Finally, let rTjpτqsptM`1;x, ξq “ Tjpτ, tM`1;x, ξq be defined as

Tjpτq “

ż 1

0
α1j,ξ

ˆ

tj´1;x, ρφ1j,xptM`1;x, ξq ` p1´ ρqφ1xptM`1,jpτq;x, ξq

˙

dρ.

Notice that, by Lemma 1.10 and the properties of the involved symbols,
we find Tj P C

8prtj`1, tj´1s ˆ ∆pT1q;S
1,0 b Rdq. Indeed, in view of the

fact that both φ and φj are regular SG phase functions, for all ρ P r0, 1s,
τ P rtj`1, tj´1s,

xρφ1j,xptM`1;x, ξq ` p1´ ρqφ1xptM`1,jpτq;x, ξqy — xξy,

uniformly with respect to all the involved parameters.
We now show that φj satisfies a certain partial differential equation,

whose form we will simplify using the results in Section 2.2. First of all, we
observe that

αjptj´1;x, φ1j,xptM`1;x, ξqq ´ αjptj´1;x, φ1xptM`1,jpτq;x, ξqq

“ xTjpτq,

ˆ

φ1j,xptM`1;x, ξq ´ φ1xptM`1,jpτq;x, ξq

˙

y.
(2.42)

From (2.38) it follows

Ψ1j,xptM`1;x, ξq “ φ1j,xptM`1;x, ξq´pBtjφqptM`1,jpZjq;x, ξq¨Z
1
j,xptM`1;x, ξq.

(2.43)
Now, we rewrite Btj´1Ψj from (2.39), using (2.41), (2.42) and (2.43):

Btj´1ΨjptM`1;x, ξq “ αj
`

tj´1;x, φ1j,xptM`1;x, ξq
˘

´ αj
`

tj´1;x, φ1xptM`1,jpZjptM`1;x, ξqq;x, ξq
˘

´ pBtjφqptM`1,jpZjptM`1;x, ξqq;x, ξq ¨ pBtj´1ZjqptM`1;x, ξq

´ rpaj ´ aj`1q ptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqstj“ZjptM`1;x,ξq

“ xTjpZjptM`1;x, ξqq,Ψ1j,xptM`1;x, ξqy´pBtjφqptM`1,jpZjptM`1;x, ξqq;x, ξq

¨

ˆ

Btj´1ZjptM`1;x, ξq ´ xTjpZjptM`1;x, ξqq, Z 1j,xptM`1;x, ξqqy

˙

´ rpaj ´ aj`1q ptj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqstj“ZjptM`1;x,ξq .

(2.44)
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Once more, we use the solution pqj , pjq pt, s; y, ηq of the Hamilton-Jacobi
system (1.25), with a replaced by aj , and define α̃j as

α̃jpσ, t; y, ηq “ paj ´ aj`1q pσ; pqj , pjq pσ, t; y, ηqq.

Then, after a differentiation with respect to σ, we have

Bσα̃jpσ, t; y, ηq “ Bσ ppaj ´ aj`1q pσ; pqj , pjq pσ, t; y, ηqq

“ pBtajq pσ; pqj , pjq pσ, t; y, ηqq ´ pBtaj`1qpσ; pqj , pjq pσ, t; y, ηqq

` xa1j,xpσ; pqj , pjq pσ, t; y, ηqq ´ a
1
j`1,xpσ; pqj , pjq pσ, t; y, ηqq, Btqjpσ, t; y, ηqy

` xa1j,ξpσ; pqj , pjq pσ, t; y, ηqq ´ a
1
j`1,ξpσ; pqj , pjq pσ, t; y, ηqq, Btpjpσ, t; y, ηqy,

and we use (1.25) to write

Bσα̃jpσ, t; y, ηq “ rBσpaj ´ aj`1qs pσ; pqj , pjq pσ, t; y, ηqq

` xa1j,ξpσ; pqj , pjq pσ, t; y, ηqq, a
1
j`1,xpσ; pqj , pjq pσ, t; y, ηqqy

´ xa1j,xpσ; pqj , pjq pσ, t; y, ηqq, a
1
j`1,ξpσ; pqj , pjq pσ, t; y, ηqqy

“ tτ ´ aj , τ ´ aj`1upσ; pqj , pjq pσ, t; y, ηqq.

Assumption I then implies

Bσα̃jpσ, t; y, ηq

“ bj,j`1pσ; pqj , pjq pσ, t; y, ηqq ¨ α̃jpσ, t; y, ηq ` dj,j`1pσ; pqj , pjq pσ, t; y, ηqq.
(2.45)

Solving (2.45) as a first order linear ordinary differential equation in σ with
unknown α̃jpσ, t; y, ηq, and writing bj in place of bj,j`1, dj in place of dj,j`1,
respectively, we see that

α̃jpσ, t; y, ηq “ exp

˜

ż σ

tj

bjpτ ; pqj , pjq pτ, t; y, ηqqdτ

¸

¨

«

α̃jptj , t; y, ηq `

`

ż σ

tj

dj pν; pqj , pjq pν, t; y, ηqq ¨ exp

ˆ

´

ż σ

ν
bj pς; pqj , pjq pς, t; y, ηqq dς

˙

dν

ff

.

Once again, notice that all the composition performed so far are well-defined,
and produce SG symbols, in view of Lemma 1.10, (1.27), and recalling that
h P S0,0 ñ expphq P S0,0 (see, e.g., [42, 44]).

As stated in Proposition 2.5, we can write α̃j in terms of the solution to
the critical points problem (1.20). Indeed, by (2.19), (2.20) we get

α̃jptj , tj´1; pqj , pjq ptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqq “

“ α̃jptj , tj´1;YjptM`1;x, ξq, NjptM`1;x, ξqq

“ paj ´ aj`1q ptj ;YjptM`1;x, ξq, NjptM`1;x, ξqq.
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Moreover, using Proposition 2.2, we obtain the equality

α̃jptj , tj´1; pqj , pjq ptj , tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqq “

“ ´BtjφptM`1;x, ξq. (2.46)

Define also

Gjptjq ” GjptM`1;x, ξq “

“ exp

«

ż tj´1

tj

bjpτ ; pqj , pjq pτ, tj´1;Yj´1ptM`1;x, ξq, Nj´1ptM`1;x, ξqqqdτ

ff

and

Fjptjq ” FjptM`1;x, ξq “

«

ż tj´1

tj

dj pν; pqj , pjq pν, tj´1; y, ηqq ¨

¨ exp

ˆ

´

ż tj´1

ν
bj pς; pqj , pjq pς, tj´1; y, ηqq dς

˙

dν



py,ηq“pYj´1,Nj´1qptM`1;x,ξq

,

where both Gj and Fj , as a consequence of Lemma 1.10 and the properties of
bj , dj , pqj , pjq and pYj´1, Nj´1q, are symbols belonging to C8p∆pT1q;S

0,0q.
Then, using the formulae (2.44) and (2.46) above, we find that Ψj must

fullfill

Btj´1Ψj “ xTjpZjq,Ψ
1
j,xy ´ FjpZjq

´ pBtjφqpZjq
`

Btj´1Zj ´ xTjpZjq, Z
1
j,xy ´GjpZjq

˘

, (2.47)

where we omitted everywhere the dependence on ptM`1;x, ξq, pBtjφqpZjq
stands for pBtjφqptM`1,jpZjptM`1;x, ξqq;x, ξq, and

$

&

%

FjpZjq “ FjptM`1,jpZjptM`1;x, ξqq;x, ξq,

GjpZjq “ GjptM`1,jpZjptM`1;x, ξqq;x, ξq.

Now, in order to simplify (2.47), we choose Zj as solution to the quasi-
linear Cauchy problem,

$

&

%

Btj´1Zj “ xTjpZjq, Z
1
j,xy `GjpZjq

Z|tj“tj´1
“ tj`1.

(2.48)

in order to simplify (2.47).
It is easy to see that (2.48) is a quasi-linear Cauhcy problem of the type

considered in Section 2.2. In view of Lemma 2.7, we can solve (2.48) through
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its characteristic system (2.23), with Tj in place of L and Gj in place of H,
choosing a sufficiently small parameter interval r0, T 1s, T 1 P p0, T2s. Indeed,
by Corollary 2.8 and Remark 2.9, defining

ZjptM`1;x, ξq “ KptM`1; R̄ptM`1;x, ξq, ξq, tM`1 P ∆pT 1q, x, ξ P Rd,

gives a solution of (2.48) with all the desired properties. That is, the symbol
ZjptM`1;x, ξq belongs to C8p∆pT 1q;S0,0q for any j ďM , it also satisfies

#

tj`1 ď ZjptM`1;x, ξq ď tj´1,

Zj |tj“tj´1 “ tj`1, Zj |tj“tj`1 “ tj´1,

and we have

φjptM`1;x, ξq “ φptM`1,jpZjptM`1;x, ξqq;x, ξq `ΨjptM`1;x, ξq.

Finally, due to the fact that Zj is a solution to (2.48), the equation (2.47)
is reduced to

Btj´1Ψj “ xTjpZjq,Ψ
1
j,xy ´ FjpZjq, (2.49)

with the initial condition

Ψj |tj´1“tj
“ 0. (2.50)

Notice that (2.50) holds true since we have Zj |tj“tj´1 “ tj`1, and (ii) in
Proposition 2.2, gives

ΨjptM`1,j´1ptjq;x, ξq “

φjptM`1,j´1ptjq;x, ξq ´ φpt0, . . . , tj´2, tj , Zj |tj“tj´1
, tj`1, . . . , tM`1;x, ξq

“

ˆ

ϕ1pt0, t1q7 . . . 7ϕj´1ptj´2, tjq7 tϕj`1ptj , tjq7ϕjptj , tj`1qu
looooooooooooooomooooooooooooooon

“ϕjptj ,tj`1q

7ϕj`2ptj`1, tj`2q7 . . . ϕM`1ptM , tM`1q

˙

px, ξq

´

ˆ

ϕ1pt0, t1q7 . . . 7ϕj´1ptj´2, tjq7 tϕjptj , tj`1q7ϕj`1ptj`1, tj`1qu
loooooooooooooooooomoooooooooooooooooon

“ϕjptj ,tj`1q

7ϕj`2ptj`1, tj`2q7 . . . 7ϕM`1ptM , tM`1q

˙

px, ξq “ 0.

Then, the method of characteristics, applied to the linear, non-homogeneous
partial differential equation (2.49), shows that we can write Ψj in the form

ΨjptM`1;x, ξq “

ż tj´1

tj

rFjptM`1,j´1pτq; θpτ ; θ̃pτ ;x, ξq, ξq, ξq dτ, (2.51)
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where

rFjptM`1;x, ξq “ ´FjptM`1,jpZjptM`1;x, ξqq;x, ξq, (2.52)

θpτ ; y, ξq “ θptM`1,jpτq; y, ξq, (2.53)

θ̃pτ ;x, ξq “ θ̃ptM`1,j´1pτq;x, ξq, (2.54)

for suitable vector-valued functions θ, θ̃. By arguments similar to those in
Subsection 2.2 (cf. [110]), both θ and θ̃ turn out to be elements of C8p∆pT 1q;
S1,0 b Rdq, satisfying

xθptM`1,jpτq; y, ξqy — xxy, xθ̃ptM`1,j´1pτq;x, ξqy — xxy,

with constants independent of tM`1 P ∆pT 1q, x, ξ P Rd. Such result, to-
gether with the properties of Zj and another application of Lemma 1.10,
allows to conclude that Ψj P C8p∆pT 1q;S0,0q, and it is identically zero
when dj ” 0, as claimed. The proof is complete.

Corollary 2.11. Under the same hypothesis of Theorem 2.10, there exists
a constant C independent of M such that

|BtjZj ` 1| ď Cpt0 ´ tM`1q. (2.55)

Proof. Set Z 1j “ BtjZjptM`1;x, ξq, then from the quasi-linear equation (2.48),
we can write Btj´1Z

1
j as

Btj´1Z
1
j “ xTjpZjq, Z

1
j,xy `

rGj ,

where

rGj ” rGjptM`1;x, ξq “ xBtj pTjpZjqq , Z
1
j,xy ` Btj pGjpZjqq . (2.56)

Moreover, we can write Zj ” ZjptM`1;x, ξq

Zj “ tj`1

`

ż tj´1

tj

”

xTjpZjptM`1,j´1pτq;x, ξq; tM`1,j´1pτq;x, ξq, Z
1
j,xptM`1,j´1pτq;x, ξqy

`Gjpt0, . . . , tj´2, τ, ZjptM`1,j´1pτq;x, ξq, . . . , tM`1;x, ξq
ı

dτ. (2.57)

Since Z 1j,xtj´1“tj
“ 0, after a differentiation with respect to tj of (2.57) we

get

Z 1jtj´1“tj
“ ´Gjpt0, . . . , tj´2, tj , tj`1, tj`1, . . . , tM`1;x, ξq (2.58)

“ ´ exp

ż tj

tj`1

bj dτ.
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As in the proof of the Theorem 2.10, we have the quasi-linear equation

Btj´1Z
1
j “ xTjpZjq, Z

1
j,xy `

rGj ,

with initial data

Z 1jtj´1“tj
“ ´ exp

ż tj

tj`1

bj dτ.

Hence, as in (2.51) we can write the solution Z 1j as

Z 1j “ Z 1jtj´1“tj
`

ż tj´1

tj

rGjpt0, . . . , tj´2, τ, tj . . . , tM`1; θjpτ ; θ̄jpτ ;x, ξq, ξq, ξq dτ,

(2.59)

where rGj , θj and θ̄j are as in (2.56), (2.53) and (2.54) respectively.
Then, (2.58) and (2.59) imply the desired estimate (2.55).



Chapter 3

Fundamental solutions for
involutive SG-hyperbolic
systems

In the present chapter we deal with the Cauchy problem

$

&

%

LUpt, sq “ F ptq, pt, sq P ∆T

Ups, sq “ G s P r0, T q,
(3.1)

on the simplex ∆T :“ tpt, sq| 0 ď s ď t ď T u, where

Lpt,Dt;x,Dxq “ Dt ` Λpt;x,Dxq `Rpt;x,Dxq, (3.2)

Λ is a (m ˆ m)-dimensional, diagonal operator matrix, whose entries λj
pt;x,Dxq, j “ 1, . . . ,m, are pseudo-differential operators with real-valued,
parameter-dependent symbols λjpt;x, ξq P C

8pr0, T s;S1,1q, R is a parameter-
dependent, (mˆm)-dimensional operator matrix of pseudo-differential op-
erators with symbols in C8pr0, T s;S0,0q, F P C8pr0, T s, Hr,% b Rmq, G P

Hr,% b Rm, r, % P R.

The system (3.2) is then of hyperbolic type, since the principal symbol
part diagpλjpt;x, ξqqj“1,...,m of the coefficient matrix is diagonal and real-
valued see [41, Chapter 6]. Then, its fundamental solution Ept, sq exists
(see [41]), and can be obtained as an infinte sum of matrices of Fourier in-
tegral operators (see [86,110] and Section 5 of [8] for the SG case). Here we
are going to show that if (3.1) is of involutive type, then its fundamental
solution Ept, sq can be reduced to a finite sum expression, modulo a smooth-
ing remainder, in the same spirit of [86, 110], by applying the results from
Chapter 2.

The fundamental solution of (3.1) is a family tEpt, sq|pt, sq P ∆T 1u of
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operators satisfying
$

&

%

LEpt, sq “ 0 pt, sq P ∆T 1 ,

Eps, sq “ I s P r0, T 1q,

for 0 ă T 1 ď T . For T 1 small enough, see Section 5 of [8], it is possible to
express tEpt, squ in the form

Ept, sq “ Iϕpt, sq `

ż t

s
Iϕpt, θq

8
ÿ

ν“1

Wνpθ, sq dθ,

where Iϕpt, sq is the operator matrix defined by

Iϕpt, sq “

¨

˚

˚

˝

Iϕ1pt, sq 0

. . .

0 Iϕmpt, sq

˛

‹

‹

‚

and Iϕj :“ Opϕj p1q, 1 ď j ď m. The phase functions ϕj “ ϕjpt, s;x, ξq, 1 ď
j ď m, defined on ∆T 1 ˆ R2d, are solutions to the eikonal equations (1.24)
with λj in place of a. The sequence of mˆm-matrices of SG Fourier integral
operators tWνpt, sq; pt, sq P ∆T 1uνPN is defined recursively as

Wν`1pt, s;x,Dxq “

ż t

s
W1pt, θ;x,DxqWνpθ, s;x,Dxq dθ,

starting with W1 defined as

LIϕpt, sq “ iW1pt, sq. (3.3)

We also set

wjpt, s;x, ξq “ σpWjpt, s;x,Dxqq, j “ 1, . . . , ν ` 1, (3.4)

the (matrix-valued) symbol of Wj .
The following result about existence and uniqueness of a solution Upt, sq

to the Cauchy problem (3.1) is a SG variant of the classical Duhamel formula,
see [8, 41,43].

Proposition 3.1. For F P C8pr0, T s;Hr,ρpRdq b Rmq and G P Hr,ρpRdq b
Rm, the solution Upt, sq of the Cauchy problem (3.1), under the SG-hyperbolicity
assumptions explained above, exists uniquely for pt, sq P ∆T 1, T

1 P p0, T s suit-

ably small, it belongs to the class
č

kPZ`

Ckp∆T 1 ;H
r´k,%´kpRdq b Rmq, and is

given by

Upt, sq “ Ept, sqG` i

ż t

s
Ept, θqF pθqdθ, pt, sq P ∆T 1 , s P r0, T

1q.
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Notice that, since the phase functions ϕj are solutions of eikonal equa-
tions (1.24) associated with the Hamiltonians ´λj , we have the relation

DtIϕj ` λjpt; ¨, DqIϕjpt,sq “ Opϕjpt,sqpb0,jpt, sqq, b0,jpt, sq P S
0,0pR2dq,

j “ 1, . . . ,m. Then,

W1pt, sq :“ ´i

¨

˚

˚

˝

¨

˚

˚

˝

B0,1pt, sq 0

. . .

0 B0,mpt, sq

˛

‹

‹

‚

`RptqIϕpt, sq

˛

‹

‹

‚

, (3.5)

with B0,jpt, sq “ Opϕjpt,sqpb0,jpt, sqq and b0,jpt, sq P S
0,0, j “ 1, . . . ,m, and

Rptq ” Rpt;x,Dxq given in (3.2).

By (3.5) and Theorem 1.16, one can rewrite equation (3.3) as

LIϕpt, sq “
m
ÿ

j“1

ĂWϕj pt, sq,

where, for 1 ď j ď m, ĂWϕj pt, sq are m ˆ m matrix with entries given by
Fourier integral operators with parameter-dependent phase function ϕj and
symbol in S0,0. Thus, if we set Mν “ r1,ms

ν
Ş

Nν for ν ě 2, the operator
matrix Wνpt, sq can be written in the form of iterated integrals, namely

ż t

s

ż t1

s
. . .

ż tν´2

s

ÿ

µPMν

W pµqpt, t1, . . . , tν´1, sq dtν´1 . . . dt1,

where

W pµqpt, t1, . . . , tν´1, sq “Wϕm1
pt, t1qWϕm2

pt1, t2q . . .Wϕmν ptν´1, sq

is the product of ν Fourier integral operators matrices with phase functions
ϕmj and symbols σpWϕmj

ptj´1, tjqq “ ´iσpĂWϕmj
ptj´1, tjqq P S

0,0. By (2)

in Theorem 1.25, W pµqpt, t1, . . . , tν´1, sq is a matrix of Fourier integral op-
erators with phase function φpµq “ ϕm17 . . . 7ϕmν and parameter-dependent
symbol ωpµqpt, t1, . . . , tν´1, sq of order p0, 0q. Consequently, we can write

Ept, sq “ Iϕpt, sq `

ż t

s
Iϕpt, σq

" m
ÿ

j“1

Wϕj pθ, sq

`

8
ÿ

ν“2

ÿ

µPMν

ż θ

s

ż t1

s
. . .

ż tν´2

s
W pµqpθ, t1, . . . , tν´1, sqdtν´1 . . . dt1

*

dθ.

(3.6)
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Theorem 3.2. Let (3.1) be an involutive SG-hyperbolic system, that is, As-
sumption I is fulfilled by the family tλju

m
j“1. Then the fundamental solution

(3.6) can be reduced, modulo smoothing terms, to

Ept, sq “Iϕpt, sq `
m
ÿ

j“1

W -
ϕj pt, sq (3.7)

`

m
ÿ

j“2

ÿ

µPM
-
j

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-qpt, t1, . . . , tj´1, sq dtj´1 . . . dt1,

where the symbol of W
-
ϕj pt, sq is

ż t

s
wjpθ, sq dθ, with wj in (3.4), the multi-

index µ “ pm1, . . . ,mjq P M
-
j :“ tµ “ pm1, . . . ,mjq P Mj : m1 ă ¨ ¨ ¨ ă

mju, and W pµ-qpt, t1, . . . , tj´1, sq is a mˆm dimensional matrix of Fourier

integral operators with phase function φpµ
-q “ ϕm17 . . . 7ϕmj and matrix-

valued, parameter-dependent symbol ωpµ
-qpt, t1, . . . , tj´1, sq P S

0,0pR2dq.

For the proof of Theorem 3.2 we need some preparation. Given µ PMν ,
let µpjq “ pm1, . . . ,mj´1,mj`1,mj , . . . ,mνq be the permutation where we
exchange the order of mj and mj`1, for 1 ď j ď ν ´ 1.

The following proposition is a reformulation of Theorem 2.10 for the
sharp products of the phase functions ϕj , j “ 1, . . . ,m, appearing in the
expression of Ept, sq.

Proposition 3.3. Let tλkpt;x, ξqu
m
k“1 Ă C8pr0, T s;S1,1pR2dqq satisfy As-

sumption I, and let µ P Mν with ν ě 2. Denote, respectively, by φpµq

and φpµpjqq the sharp products in (2.3) and (2.36) with M “ ν ´ 1. Then,
for a sufficiently small constant T 1, independent of ν, there exist symbols

Z
pµq
j ptν ;x, ξq and Ψ

pµq
j ptν ;x, ξq in Cp∆T 1 ;S

0,0pR2dqq, tν P ∆T 1, such that,
for any 1 ď j ď ν ´ 1,

tj`1 ď Z
pµq
j ptν ;x, ξq ď tj´1, pt0 “ t, tν “ sq, (3.8)

Z
pµq
j |tj“tj´1 “ tj`1, Z

pµq
j |tj“tj`1 “ tj´1, (3.9)

φpµpjqqptν ;x, ξq “ φpµq ptν,jpZjptν ;x, ξqq;x, ξq `Ψ
pµq
j ptν ;x, ξq (3.10)

where tν,jpτq is defined in (2.2) and

|BtjZ
pµq
j ptν ;x, ξq ` 1| ď Cpt´ sq, (3.11)

for a suitable C ą 0 independent of ν.

In the next result we treat the invertibility of the symbols Z
pµq
j , µ PMν ,

j “ 1, . . . , ν ´ 1, and the properties of its inverse.
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Proposition 3.4. Under the hypothesis of Proposition 3.3, assume further-
more that T 1 satisfies CT 1 ď 1

2 , where C is the constant in (3.11), and, for
µ PMν , 1 ď j ď ν ´ 1, define

ζ “ Z
pµq
j ptν,jpθq;x, ξq. (3.12)

Then, ζ is invertible with inverse θ “ Θ
pµq
j ptν,jpζq;x, ξq, Θ

pµq
j belongs to

C8p∆T 1 ;S
0,0pR2dqq and satisfies tj`1 ď Θ

pµq
j ď tj´1.

Proof. Set

Ω “

"

Θptν,jpζq;x, ξq P C
´

∆T ˆ R2d
¯

: tj`1 ď Θptν,jpζq;x, ξq ď tj´1,

Θ|ζ“tj´1
“ tj`1, Θ|ζ“tj`1

“ tj´1, ´2 ď BζΘptν,jpζq;x, ξq ď 0

*

,

and consider the map

T : Ω Q Θ ÞÝÑ T pΘq “ H

defined by

H ” Hptν,jpζq;x, ξq “ ´ζ`Z
pµq
j ptν,jpΘptν,jpζq;x, ξqq;x, ξq`Θptν,jpζq;x, ξq,

where t0 “ t and tm “ s.
Since tj`1 ď Θptν,jpζq;x, ξq ď tj´1 for Θ P Ω, the mapping T is well

defined. Indeed, from (3.9), (3.11) and CT 1 ď 1{2 we get

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

H|ζ“tj´1
“ ´tj´1 ` Z

pµq
j

´

tν,jpΘ|ζ“tj´1
; ¨, ¨¨q

¯

`Θ|ζ“tj´1

“ ´tj´1 ` Z
pµq
j ptν,jptj`1; ¨, ¨¨qq ` tj`1

“ tj`1,

H|ζ“tj`1
“ ´tj`1 ` Z

pµq
j

´

tν,jpΘ|ζ“tj`1
; ¨, ¨¨q

¯

`Θ|ζ“tj`1

“ ´tj`1 ` Z
pµq
j ptν,jptj´1; ¨, ¨¨qq ` tj´1

“ tj´1,

|pBζHqptν,jpζq;x, ξq ` 1| “

ˇ

ˇ

ˇ

ˇ

”

BtjZ
pµq
j ptν,jpΘptν,jpζq;x, ξqq;x, ξq ` 1

ı

¨BζΘptν,jpζq;x, ξq

ˇ

ˇ

ˇ

ˇ

ď 2CT 1 ď 1,

(3.13)

the last inequality in (3.13) implies ´2 ď pBζHqptν,jpζq;x, ξq ď 0, so

tj`1 “ H|ζ“tj´1
ď H ď H|ζ“tj`1

“ tj´1
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holds true and we proved T : Ω ÝÑ Ω.

Now, let tΘNu
8
N“0 be the sequence in Ω defined by

#

Θ0 “ tj´1 ´ ζ ` tj`1

ΘN`1 “ T pΘN q.

From (3.11) and the fact that CT 1 ď 1{2, we get for some positive constant
c independent of N

|ΘN`1 ´ΘN | ď c2´N .

Therefore, T admits a unique fixed point Θ “ Θ
pµq
j P Ω, providing the inverse

function of (3.12). The property Θ
pµq
j ptν,jpζq;x, ξq P C8p∆T 1 ;S

0,0pR2dqq

follows by Lemma 1.10 and a standard invertibility argument in the SG
classes (see, e.g., [42, 44]).

The next Proposition 3.5 can be proved by an induction argument, using
Faá di Bruno formula.

Proposition 3.5. Let pptν ;x, ξq P C8p∆T ;S0,0pR2dqq, tΘku
8
k“1 and tgku

8
k“1

be subsets of C8p∆T ;S0,0pR2dqq. For a fixed sequence tjku
8
k“1 where 1 ď

jk ď ν ´ 1, consider the sequence tpku
8
k“1, defined inductively by

pkptν ;x, ξq :“ pk´1 ptν,jk pΘkptν ;x, ξqq ;x, ξq ¨ gkptν ;x, ξq,

for p0 “ p, t0 “ t and tν “ s. Then, for any l there exists Cl, independent
of k and ν, such that

}pk}
p0q
l ď Ckl }p}

p0q
l ,

where

}p}
p0q
l “ max

0ďl1ďl
max
|γ|“l1

~B
γ
tν
p~0,0

l´l1 .

Proof of Theorem 3.2. We split the proof into four steps.

• Step I:

LetW pµqpt, t1, . . . , tν´1, sq be a Fourier integral operator with the phase
function φpµq for µ “ pm1, . . . ,mνq, and symbol ωpµqpt, t1, . . . , tν´1, sq
in C8p∆T 1 ;S

0,0q. Assume that µ satisfies

tm1, . . . ,mνu “ tm̃1, . . . , m̃ku, for k ď m, (3.14)

for µk “ pm̃1, . . . , m̃kq P M
-
k. Then, we can define a Fourier in-

tegral operator ĂW pµkq depending only on the k ` 1 time variables
pt, t1, . . . , tk´1, sq, with symbol rωpµkqpt, t1, . . . , tk´1, sq P C

8p∆T 1 ; S
0,0q,

such that the following equality holds true
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W ”

ż t

s

ż t1

s
. . .

ż tν´2

s
W pµqpt, t1, . . . , tν´1, sq dt1 . . . dtν´1 (3.15)

“

ż t

s

ż t1

s
. . .

ż tk´2

s

ĂW pµkqpt, t1, . . . , tk´1, sq dt1 . . . dtk´1.

Moreover, from the fact that the symbol ωpµqpt, t1, . . . , tν´1, sq belongs
to S0,0 and depends smoothly on all the parameters, we can show that,
for any γ P Zk`1

` and any integer `, there exists some constant Cγ,`,
independent of ν, such that

~B
γ
tk
rωpµkqptkq~

0,0
` ď Cγ,`

ν{pν ´ kq! pν “ m` 1, . . . q. (3.16)

If we admit (3.15) and (3.16), then the proof of Theorem 3.2 is com-
pleted. Indeed, (3.7) follows from (3.6) and (3.15), and by (3.16) we
find that

ωpµ
-qpt, t1, . . . , tk´1, sq

”

8
ÿ

ν“k`1

ÿ

rωpµkqpt, t1, . . . , tk´1, sq P C
8p∆T 1 ;S

0,0q

where the second summation extends to all µk satisfying (3.14). In
the next steps we will prove (3.15) and (3.16).

• Step II:

Let µpkq “ pm1, . . . ,mk´1,mk`1,mk,mk`2, . . . ,mνq and set

wpµpkqqptν ;x, ξq “ wpµq
´

tν,kpZ
pµq
k ptνq;x, ξq;x, ξ

¯

¨
BZ

pµq
k

Btk
ptν ;x, ξq.

(3.17)

Let W pµpkqqptνq be a Fourier integral operator with phase function
φpµpkqqptνq and symbol wpµpkqqptνq. Notice that

W “

ż t

s
dt1 . . .

ż tk´2

s
dtk´1

ż tk´1

s
dtk`1

ż tk`1

s
dtk`2

. . .

ż tν´2

s
dtν´1

ż tk´1

tk`1

W pµq dtk.

By (3.10) and (3.17) we get

ż tk´1

tk`1

W pµq dtk “

ż tk´1

tk`1

W pµpkqq dtk.
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Therefore, we have

W “

ż t

s
. . .

ż tν´2

s
W pµpkqqpt, t1, . . . , tν´1, sq dt1 . . . dtν´1. (3.18)

• Step III:

For a fixed N ě 3m, we divide µ “ pm1, . . . ,mνq into pm1, . . . ,mN q,
pmN`1, . . . ,m2N q, . . . , pmNrν´1{Ns`1, . . . ,mνq and transpose the ele-
ments of the starting vector pmκN`1, . . . ,mpκ`1qN q to obtain the vector
pm0

κN`1, . . . ,m
0
pκ`1qN q satisfying

m0
κN`1 ď ¨ ¨ ¨ ď m0

pκ`1qN ,

where κ “ 0, . . . , rpν ´ 1q{N s and pκ` 1qN “ ν if κ “ rpν ´ 1q{N s.

Set µ0 “ pm0
1, . . . ,m

0
νq. The number of transpositions

ppmk,mk`1q Ñ pmk`1,mkqq to change µ into µ0

is not larger than CN,mprpν ´ 1q{N s ` 1q, where CN,m denotes the
largest number of transpositions which is necessary in changing any
N -repeated-permutation of elements of t1, . . . ,mu into the N -repeated
permutation with elements arranged in ascending order of magnitude.
By repeated transpositions of the type pmk,mk`1q Ñ pmk`1,mkq we
get the equality (3.18) with W pµpkqq replaced by W pµ0q. The symbol
wpµ

0qptνq of W pµ0q is defined by the product of at most CN,mprpν ´
1q{N s`1q factors of type BtZk, the composition of wpµq with elements
of tZku, and products of (derivatives of) p0, 0q-order factors of type

exp
”

iΨ
pµιq
k

ı

. Consequently, by Proposition 3.5 we can conclude

}wpµqpt, t1, . . . , tν´1, sq}
p0q
` ď C

pν´1q
0,` ˆ hCN,mprpν´1q{Ns`1q, (3.19)

where h “ max
1ďkďm

max
1ďjďm

max
sďtjďt

ˇ

ˇBtjZkpt, t1, . . . , tj , . . . , tν´1, sq
ˇ

ˇ .

• Step IV:

From the definition of µ0 and Proposition 2.2 it follows that the phase
function φpµ

0qpt, t1, . . . , tν´1, sq is independent of at least rpν{2qs ele-
ments of the set ttju

ν´1
j“1 . Hence, for a fixed ι such that pν ´ 1q{3 ď

ι ď pν ´ 1q{2, we have

φpµ
0qpt, t1, . . . , tν´1, sq “ φpµιqpt, tν1 , . . . , tνι´1 , sq,

for some µι “ pmν1 , . . . ,mνιq. Then, we obtain

V “

ż t

s

ż t̃1

s
. . .

ż t̃ι´2

s
W pµιqpt, t̃1, . . . , t̃ι´1, sq dt̃1 . . . t̃ι´1,

pt̃j “ tνj , j “ 1, . . . , ι´ 1q,
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where the symbol wpµιqpt, t̃1, . . . , t̃ι´1, sq of W pµιqpt, t̃1, . . . , t̃ι´1, sq is
determined by the integral of wpµ

0qpt, t1, . . . , tν´1, sq with respect to

ttju
ν´1
j“1 z

 

t̃j
(ι´1

j“1
. From the integral representation and (3.19), we have

xwpµιqpt, t̃1, . . . , t̃ι´1, sqy
p0q
`

ď
pt´ t̃1q

ν1´1

pν1 ´ 1q!
ˆ
pt̃1 ´ t̃2q

ν2´ν1´1

pν2 ´ ν1 ´ 1q!
ˆ¨ ¨ ¨ˆ

pt̃ν´1 ´ sq
ν´1´νι´1

pν ´ 1´ νι´1q!
ˆxwpµ

0qy
p0q
`

ď
pt´ sqν´ι

pν ´ ιq!
ˆ Cν0,` ˆ h

CN,mppν´1q{2q,

p0 ď s ď t̃ι´1,ď ¨ ¨ ¨ ď t̃1 ď tq.

Here, we used rpν ´ 1q{N s ` 1 ď pν ´ 1q{2. Applying the previous
procedure to the Fourier integral operator W pµιq in place of W pµq, we
get the equality

V “

ż t

s
. . .

ż tρ´2

s
W pµρqpt, t1, . . . , tρ´1, sq dt1 . . . dtρ´1

for some W pµρq, ι{3 ď ρ ď ι{2, whose symbol satisfies

xwpµρqpt, t1, . . . , tρ´1, sqy
p0q
`

ď
pt´ sqν´ι

pν ´ ιq!
ˆ
pt´ sqι´ρ

pι´ ρq!
ˆ Cν0,` ˆ h

CN,mppν´1q{2`pι´1q{2q. (3.20)

By repeated applications of this process, we finally obtain (3.15).

Since ρ ď ι{2 ď ν{p1{2q2, the number of needed transpositions is at
most CN,mˆpν´1q. This fact and (3.20) lead us to (3.16) with γ “ 0,
since, from the Stirling formula, it follows that

pν ´ µ1q!pµ1 ´ µ2q! . . . pµd ´ kq! ě Ck´ν0 ˆ pν ´ kq!,

for some constant C0 ą 0 if 3µj ě µj´1 ě 2µj pj “ 1, . . . , d, µ0 “ νq.

Considering Bγτνw
pµqpt, t1, . . . , tν´1, sq in place of wpµqpt, t1, . . . , tν´1, sq,

noting that the number of transpositions is at most multiplied by ν,
we get (3.16) with γ ‰ 0.

The proof is complete.

Remark 3.6. Theorem 3.2 extends to the case of a N ˆ N system such
that Λ is diagonal and its symbol entries λj, j “ 1, . . . , N , coincide with the
(repeated) elements of a family of real-valued, parameter-dependent symbols
tτju

m
j“1 satisfying Assumption I. In such situation, it is enough to work
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initially “block by block” of coinciding elements, and then perform the re-
duction of (3.6) to (3.7). Indeed, product of factors associated with different
time variables can be commuted as above. Then, we obtain a multi-product
in such a way that the phases ϕj are nearby with different time variables.
Thereafter, we use the associative properties of the multi-products mentioned
in Proposition 2.2.



Chapter 4

SG-Hyperbolic Cauchy
problems with involutive
characteristics

Here we apply the results from the previous chapter to the study of Cauchy
problems associated with linear hyperbolic involutive differential operators
of SG type. After obtaining the fundamental solution, we study the prop-
agation of singularities in the case of SG-classical coefficients. We recall a
few basic definitions, see [41–44,49] for more details.

Definition 4.1. Let m P N, T ą 0, and L be a differential operator of order
m, that is

L ” Lpt,Dt;x,Dxq “ Dm
t `

m
ÿ

j“1

Pjpt;x,DxqD
m´j
t

“ Dm
t `

m
ÿ

j“1

ÿ

|α|ďj

cjαpt;xqD
α
xD

m´j
t .

The symbol σpPjq of the pseudo-differential operator Pjpt;x,Dxq is given by

pjpt;x, ξq “
ÿ

|α|ďj

cjαpt;xqξ
α,

such that pj P C
8pr0, T s;Sj,jpR2dqq, that is

|Bkt B
β
xcjαpt;xq| À xxy

j´|β|, β P Zd`, j “ 1, . . . ,m, α P Zd`, |α| ď j. (4.1)

We denote by

- σ pLq its symbol, that is

rσ pLqspt, τ ;x, ξq “ τm `
m
ÿ

j“1

pjpt;x, ξqτ
m´j ;
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- Lm “ σp pLmq its principal symbol, that is

rσp pLqspt, τ ;x, ξq “ τm `
m
ÿ

j“1

qjpt;x, ξqτ
m´j

where qjpt;x, ξq “
ÿ

|α|“j

rcjαpt;xqξ
α belongs to C8pr0, T s;Sj,jpR2dqq, rcj,α

satisfies (4.1) for |α| “ j, j “ 1, . . . ,m, and is such that

rσ pLq ´ σp pLqspt, τ ;x, ξq “
m
ÿ

j“1

rjpt;x, ξqτ
m´j ,

where rj P C
8pr0, T s;Sj´1,j´1pR2dqq.

Definition 4.2. An operator L of the type introduced in Definition 4.1 is
called hyperbolic if

Lmpt, τ ;x, ξq “
m
ź

j“1

pτ ´ τjpt;x, ξqq , (4.2)

with real-valued, smooth roots τj, j “ 1, . . . ,m. The roots τj are usually
called bicharacteristics. More precisely, L is called:

(1) Strictly SG-hyperbolic, if Lm satisfies (4.2) with real-valued, distinct
and separated roots τj, j “ 1, . . . ,m, in the sense that there exists a
constant C ą 0 such that

|τjpt;x, ξq ´ τkpt;x, ξq| ě Cxxyxξy, @j ‰ k, pt;x, ξq P r0, T s ˆ R2d.

(2) (Weakly) SG-hyperbolic with (roots of) constant multiplicities, if Lm
satisfies (4.2) and the real-valued, characteristic roots can be divided into
µ groups (1 ď µ ď m) of distinct and separated roots, in the sense that,
possibly after a reordering of the τj, j “ 1, . . . ,m, there exist l1, . . . lµ P N
with l1 ` . . .` lµ “ m and µ sets

G1 “ tτ1 “ ¨ ¨ ¨ “ τl1u, G2 “ tτl1`1 “ ¨ ¨ ¨ “ τl1`l2u,

. . . Gµ “ tτm´lµ`1 “ ¨ ¨ ¨ “ τmu,

satisfying, for a constant C ą 0,

τj P Gp, τk P Gq, p ‰ q, 1 ď p, q ď µ

ñ |τjpt, x, ξq ´ τkpt, x, ξq| ě Cxxyxξy, (4.3)

for all pt, x, ξq P r0, T s ˆ R2d; notice that, in the case µ “ 1, we have
only one group of m coinciding roots, that is, Lm admits a single real
root of multiplicity m, while for µ “ m we recover the strictly hyperbolic
case; the number l “ maxj“1,...,µ lj is the maximum multiplicity of the
roots of Lm.
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(3) (Weakly) SG-hyperbolic with involutive roots (or SG-involutive), if Lm
satisfies (4.2) with real-valued characteristic roots such that the family
tτju

m
j“1 satisfies Assumption I.

The proof of the next observation can be find cf. e.g., [9, 41]

4.1 Fundamental solution for SG-involutive oper-
ators of order m P N

We will focus here on SG-involutive operators, see the references quoted
above for the known results about SG-hyperbolic operators with constant
multiplicities. In particular, we deal with the case when there is no splitting
of characteristic roots τj , τk, j, k “ 1, . . . ,m, k “ j, into groups Gk, k “
1, . . . , µ ď m satisfying (4.3). It is possible to translate the Cauchy problem

#

Lupt, sq “ fptq pt, sq P ∆T

Dk
t ups, sq “ gk k “ 0, . . . ,m´ 1, s P r0, T q

(4.4)

for a SG-involutive operator L in the sense of Definition 4.2, into a Cauchy
problem for an involutive system (3.1) with suitable initial conditions, under
an appropriate factorization condition, see below.

We write Θj “ Oppτjq, and also set, for convenience below, Γj “ Dt ´

Θj , j “ 1, . . . ,m. Moreover, with Mk from Chapter 3, and their sorted

counterparts M
-
k, 1 ď k ď m, we introduce the notation

M0 “ tHu, M “

m´1
ď

k“0

Mk, M - “
m
ď

k“1

M
-
k.

For α PMk, 0 ď k ď m, we define dimpαq “ k and

ΓH “ I, Γα “ Γα1 . . .Γαk ,

α “ pα1, . . . , αkq PMk, and tαu “ tα1, . . . , αku for k ě 1.

The proof of the following Lemma 4.3 can be found in [44]. Analogous
results are used in [86] and [94].

Lemma 4.3. When tλju is an involutive system, for all α PMm we have

Γα “ Γ1 . . .Γm `
ÿ

βPM

Oppqαβ ptqqΓβ, (4.5)

where qαβ P C
8pr0, T s;S0,0pR2dqq.
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A systemization and well-posedness (with loss of decay and regularity)
theorem can be stated for the Cauchy problem (4.4) under a suitable con-
dition for the operator L. This result is due, in its original local form, to
Morimoto [94] and it has been extended to the SG case in [43], where the
proof of the next result, based on Lemma 4.3, can be found.

Proposition 4.4. Assume the SG-hyperbolic operator L to be of the form

L “ Γ1 ¨ ¨ ¨Γm `
ÿ

αPM -

OpppαptqqΓα mod OppC8pr0, T s;S´8,´8pR2dqqq,

(4.6)
with pα P C

8pr0, T s;S0,0pR2dqq. Moreover, assume that the family of its
characteristic roots tτju

m
j“1 sastisfies Assumption I. Then, the Cauchy prob-

lem (4.4) for L is equivalent to a Cauchy problem for a suitable first order
system (3.1) with diagonal principal part, of the form

#

pDt `KptqqUpt, sq “ F ptq, pt, sq P ∆T ,

Ups, sq “ G, s P r0, T q,
(4.7)

where U , F and G are N -dimensional vector-valued, K a (NˆN)-dimensional
matrix, with N given by (4.8). U is defined in (4.9), (4.10), and (4.11).
Namely,

N “

m´1
ÿ

j“0

m!

pm´ jq!
, (4.8)

U “ t
`

uH ” u, up1q, . . . , upmq, up1,2q, up2,1q, . . . , uα, . . .
˘

, (4.9)

with α PM , and

- for α PMk, 0 ď k ď m´ 2 and j “ maxt1, . . . ,muztαu, we set

Γjuα “ uαj (4.10)

with αj “ pj, α1, . . . , αkq PMk`1;

- for α PMm´1 and j R tαu, we set

Γjuα “ f ´
ÿ

βPM -

Opppβptqquβ `
ÿ

βPM

Oppq
αj
β ptqquβ, (4.11)

with αj “ pj, α1, . . . , αkq PMm and the symbols pβ, qαβ from (4.5) and
(4.6).

Remark 4.5. We call the SG-hyperbolic operators L satisfying the factor-
ization condition (4.6) “operators of Levi type”.
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Remark 4.6. Since, for α PMk, k ě 1, we have

Γα “ Dk
t `

k´1
ÿ

j“0

OppΥj
αpsqqD

j
t , Υj

α P C
8pr0, T s;Sk´j,k´jpR2dqq,

the initial conditions G for U can be expressed as

$

’

&

’

%

GHps, sq “ g0,

Gαps, sq “ gdimpαq `

dimpαq´1
ÿ

j“0

OppΥj
αpsqqgj , α PM,dimpαq ą 0.

(4.12)
Notice that, in view of the continuity properties of the SG pseudo-differential
operators and of the orders of the Υi

α, (4.12) implies

Gα P H
m´1´dimpαq,µ´1´dimpαqpRdq, α PM. (4.13)

The next Theorem 4.7 is our third main result, namely, a well-posedness
result, with decay and regularity loss, for SG-involutive operators of the
form (4.7). It is a consequence of Proposition 4.4 in combination with the
main results of Chapter 3.

Theorem 4.7. Let the operator L in (4.4) be SG-involutive, of the form
considered in Proposition 4.4. Let f P C8pr0, T s;Hr,%pRdqq and the ini-
tial data gk P Hr`m´1´k,%`m´1´kpRdq, k “ 0, . . . ,m ´ 1. Then, for a
suitable T 1 P p0, T s, the Cauchy problem (4.4) admits a unique solution

upt, sq belonging to
č

kPZ`

Ckp∆T 1 ;H
r´k,%´kpRdqq, given, modulo elements in

C8p∆T 1 ; S pRdqq, by

upt, sq “
ÿ

αPM

Wαpt, sqGα `
ÿ

αPMm´1

ż t

s
Wαpt, σqfpσq dσ, pt, sq P ∆T 1 , s P r0, T

1q,

(4.14)
for suitable parameter-dependent families of (iterated integrals of) regular
SG Fourier integral operators Wαpt, sq, α P M , pt, sq P ∆T 1, with phase
functions and matrix-valued symbols determined through the characteristic
roots of L.

Proof. By the procedure explained in Proposition 4.4 and Remark 4.6, we
can switch from the Cauchy problem (4.4) to an equivalent Cauchy problem
(3.1), with u ” UH. The uniqueness of the solution is then a consequence
of known results about symmetric SG-hyperbolic systems, see [41], of which
(3.1) is a special case.

The fundamental solution of (4.7) is given by the analog of (3.7) for
(3.1), in view of Theorem 3.2 and Remark 3.6. It is a matrix-valued,
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parameter-dependent operator family Ept, sq “ pEµµ1qµ,µ1PM pt, sq, whose ele-
ments Eµµ1pt, sq, µ, µ

1 PM , are, modulo elements with kernels in C8p∆T 1 ; S q,
linear combination of parameter-dependent families of (iterated integrals of)
regular SG Fourier operators, with phase functions of the type

φpµ
-q “ ϕm1 , µ- “ pm1q PM

-
1,

φpµ
-q “ ϕm17 . . . 7ϕmj , µ- “ pm1, . . . ,mjq PM

-
j , j ě 2,

ϕk solution of the eikonal equation associated with the characteristic root
τk of L, k “ 1, . . . ,m, and parameter-dependent, matrix-valued symbols of
the type

ωpµ
-qpt, θ1, . . . , θj´1, sq P S

0,0, µ PM
-
j ,

j “ 1, . . . ,m. Then, the component UH ” u of the solution U of (4.7) has
the form (4.14), with Wα “ E∅α, taking into account (4.11) and (4.12).

We observe that the k-th order t-derivatives of the operators Wα, α PM ,
map continuously Hr,% to Hr´k,%´k, k P Z`, in view of Theorem 1.21 and
of the fact that, of course,

BtrOp
φpµ

-qpt,sq
pwpµ

-qpt, sqqs

“ Op
φpµ

-qpt,sq
pipBtφ

pµ-qqpt, sq ¨ wpµ
-qpt, sq ` Btw

pµ-qpt, sqq,

obtaining a symbol of orders 1-unit higher in both components at any t-
derivative step. This fact, together with the hypothesis on f , implies that
the second sum in (4.14) belongs to

č

kPZ`

Ckp∆T 1 ;H
r´k,%´kpRdqq.

The same is true for the elements of the first sum. In fact, recalling the
embedding among the Sobolev-Kato spaces and (4.13), since α PM ñ 0 ď
dimpαq ď m´ 1, we find

Wαpt, sqGα P
č

kPZ`

Ckp∆T 1 ;H
r`m´1´dimpαq´k,%`m´1´dimpαq´kq

ãÑ
č

kPZ`

Ckp∆T 1 ;H
r´k,%´kq, α PM,

and this concludes the proof.

4.2 Propagation of singularities for classical SG-
involutive operators

Theorem 4.7, together with the propagation results proved in [47], implies
our fourth main result, Theorem 4.20 below, about the global wave-front set
of the solution of the Cauchy problem (4.4), in the case of a classical SG-
involutive operator L of Levi type. We first recall the necessary definitions,
adapting some materials appeared in [46–48].
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Definition 4.8. Let B be a topological vector space of distributions on Rd
such that

S pRdq Ď B Ď S 1pRdq

with continuous embeddings. Then B is called SG-admissible when Optpaq
maps B continuously into itself, for every a P S0,0pR2dq. If B and C are
SG-admissible, then the pair pB, Cq is called SG-ordered (with respect to
pm,µq P R2), when the mappings

Optpaq : B Ñ C and Optpbq : C Ñ B

are continuous for every a P Sm,µpR2dq and b P S´m,´µpR2dq.

Remark 4.9. S pRdq, Hr,%pRdq, r, % P R, and S 1pRdq are SG-admissible.
pS pRdq,S pRdqq, pHr,%pRdq, Hr´m,%´µpRdqq, r, % P R, pS 1pRdq,S 1pRdqq are
SG-ordered (with respect to any pm,µq P R2). The same holds true for
(suitable couples of) modulation spaces, see [46].

Definition 4.10. Let ϕ P Pr be a regular phase function, B, B1, B2, C, C1,
C2, be SG-admissible and Ω Ď Rd be open. Then the pair pB, Cq is called
weakly-I SG-ordered (with respect to pm,µ, ϕ,Ωq), when the mapping

Opϕpaq : B Ñ C

is continuous for every a P Sm,µpR2dq with support such that the projection
on the ξ-axis does not intersect RdzΩ. Similarly, the pair pB, Cq is called
weakly-II SG-ordered (with respect to pm,µ, ϕ,Ωq), when the mapping

Op˚ϕpbq : C Ñ B

is continuous for every b P Sm,µqpR2dq with support such that the projection
on the x-axis does not intersect RdzΩ. Furthermore, pB1, C1,B2, C2q are
called SG-ordered (with respect to m1, µ1,m2, µ2, ϕ, and Ω), when pB1, C1q

is a weakly-I SG-ordered pair with respect to pm1, µ1, ϕ,Ωq, and pB2, C2q is
a weakly-II SG-ordered pair with respect to pm2, µ2, ϕ,Ωq.

Remark 4.11. pS pRdq,S pRdqq, pHr,%pRdq, Hr´m,%´µpRdqq, where r, % P
R, pS 1pRdq,S 1pRdqq are weakly-I and weakly-II SG-ordered pairs (with re-
spect to any pm,µq P R2, ϕ P Pr, and Ω “ H). The situation is more
delicate in the case of modulation spaces, even just on Sobolev-Kato spaces
modeled on LppRdq, p P r1,8q, p “ 2, see [46] and the references quoted
therein.

Now we recall the definition given in [46] of global wave-front sets for
temperate distributions with respect to Banach or Fréchet spaces and state
some of their properties. First of all, we recall the definitions of set of
characteristic points that we use in this setting.
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We need to deal with the situations where (1.4) holds only in certain
(conic-shaped) subset of Rd ˆ Rd. Here we let Ωm, m “ 1, 2, 3, be the sets

Ω1 “ Rd ˆ pRdz0q, Ω2 “ pRdz0q ˆ Rd,

Ω3 “ pRdz0q ˆ pRdz0q.
(4.15)

Definition 4.12. Let Ωk, k “ 1, 2, 3 be as in (4.15), and let a P Sm,µpR2dq.

(1) a is called locally or type-1 invertible with respect to m,µ at the point
px0, ξ0q P Ω1, if there exist a neighbourhood X of x0, an open conical
neighbourhood Γ of ξ0 and a positive constant R such that (1.4) holds
for x P X, ξ P Γ and |ξ| ě R.

(2) a is called Fourier-locally or type-2 invertible with respect to m,µ at
the point px0, ξ0q P Ω2, if there exist an open conical neighbourhood Γ of
x0, a neighbourhood X of ξ0 and a positive constant R such that (1.4)
holds for x P Γ, |x| ě R and ξ P X.

(3) a is called oscillating or type-3 invertible with respect to m,µ at the
point px0, ξ0q P Ω3, if there exist open conical neighbourhoods Γ1 of x0

and Γ2 of ξ0, and a positive constant R such that (1.4) holds for x P Γ1,
|x| ě R, ξ P Γ2 and |ξ| ě R.

If k P t1, 2, 3u and a is not type-k invertible with respect to m,µ at
px0, ξ0q P Ωk, then px0, ξ0q is called type-k characteristic for a with respect
to m,µ. The set of type-k characteristic points for a with respect to m,µ is
denoted by Charkm,µpaq.

The (global) set of characteristic points (the characteristic set), for a
symbol a P Sm,µpR2dq with respect to m,µ is defined as

Charpaq “ Charm,µpaq “ Char1
m,µpaq

ď

Char2
m,µpaq

ď

Char3
m,µpaq.

In the next Definition 4.13 we introduce different classes of cutoff func-
tions (see also Definition 1.9 in [45]).

Definition 4.13. Let X Ď Rd be open, Γ Ď Rdz0 be an open cone, x0 P X
and let ξ0 P Γ.

(1) A smooth function ϕ on Rd is called a cutoff (function) with respect to x0

and X, if 0 ď ϕ ď 1, ϕ P C80 pXq and ϕ “ 1 in an open neighbourhood
of x0. The set of cutoffs with respect to x0 and X is denoted by Cx0pXq
or Cx0.

(2) A smooth function ψ on Rd is called a directional cutoff (function) with
respect to ξ0 and Γ, if there is a constant R ą 0 and open conical
neighbourhood Γ1 Ď Γ of ξ0 such that the following is true:
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• 0 ď ψ ď 1 and suppψ Ď Γ;

• ψptξq “ ψpξq when t ě 1 and |ξ| ě R;

• ψpξq “ 1 when ξ P Γ1 and |ξ| ě R.

The set of directional cutoffs with respect to ξ0 and Γ is denoted by
C dir
ξ0
pΓq or C dir

ξ0
.

Remark 4.14. Let X Ď Rd be open and Γ,Γ1,Γ2 Ď Rdz0 be open cones.
Then the following is true.

(1) if x0 P X, ξ0 P Γ, ϕ P Cx0pXq and ψ P C dir
ξ0
pΓq, then c1 “ ϕbψ belongs

to S0,0pR2dq, and is type-1 invertible at px0, ξ0q;

(2) if x0 P Γ, ξ0 P X, ψ P C dir
x0 pΓq and ϕ P Cξ0pXq, then c2 “ ϕb ψ belongs

to S0,0pR2dq, and is type-2 invertible at px0, ξ0q;

(3) if x0 P Γ1, ξ0 P Γ2, ψ1 P C dir
x0 pΓ1q and ψ2 P C dir

ξ0
pΓ2q, then c3 “ ψ1 b ψ2

belongs to S0,0pR2dq, and is type-3 invertible at px0, ξ0q.

The next Proposition 4.15 shows that Optpaq for t P R satisfies conve-
nient invertibility properties of the form

OptpaqOptpbq “ Optpcq `Optphq, (4.16)

outside the set of characteristic points for a symbol a. Here Optpbq, Optpcq
and Optphq have the roles of “local inverse”, “local identity” and smoothing
operators respectively. From these statements it also follows that our set of
characteristic points in Definition 4.12 are related to those in [48,80].

Proposition 4.15. Let k P t1, 2, 3u, m,µ P R, and let a P Sm,µpR2dq.
Also let Ωk be as in (4.15), px0, ξ0q P Ωk, when k is equal to 1, 2 and 3,
respectively. Then the following conditions are equivalent, k “ 1, 2, 3:

(1) px0, ξ0q R Charkm,µpaq;

(2) there is an element c P S0,0 which is type-k invertible at px0, ξ0q, and an
element b P S´m,´µ such that ab “ c;

(3) (4.16) holds for some c P S0,0 which is type-k invertible at px0, ξ0q, and
some elements h P S´1,´1 and b P S´m,´µ;

(4) (4.16) holds for some ck P S
0,0 in Remark 4.14 which is type-k invertible

at px0, ξ0q, and some elements h and b P S´m,´µ, where h P S when
k P t1, 3u and h P S´8,0 when k “ 2.

Furthermore, if t “ 0, then the supports of b and h can be chosen to be
contained in X ˆRd when k “ 1, in ΓˆRd when k “ 2, and in Γ1ˆRd
when k “ 3.
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We can now introduce the complements of the wave-front sets. More
precisely, let Ωk, k P t1, 2, 3u, be given by (4.15), B be a Banach or Fréchet
space such that S pRdq Ď B Ď S 1pRdq, and let f P S 1pRdq. Then the point
px0, ξ0q P Ωk is called type-k regular for f with respect to B, if

Oppckqf P B, (4.17)

for some ck in Remark 4.14, k “ 1, 2, 3. The set of all type-k regular points
for f with respect to B, is denoted by Θk

Bpfq.

Definition 4.16. Let k P t1, 2, 3u, Ωk be as in (4.15), and let B be a Banach
or Fréchet space such that S pRdq Ď B Ă S 1pRdq.

(1) The type-k wave-front set of f P S 1pRdq with respect to B is the com-
plement of Θk

Bpfq in Ωk, and is denoted by WFkBpfq;

(2) The global wave-front set WFBpfq Ď pRd ˆ Rdqz0 is the set

WFBpfq ” WF1
Bpfq

ď

WF2
Bpfq

ď

WF3
Bpfq.

The sets WF1
Bpfq, WF2

Bpfq and WF3
Bpfq in Definition 4.16, are also called

the local, Fourier-local and oscillating wave-front set of f with respect to B.

Remark 4.17. In the special case when B “ Hr,%pRdq, r, % P R, we write
WFkr,%pfq, k “ 1, 2, 3. In this situation, WFr,%pfq ” WF1

r,%pfq
Ť

WF2
r,%pfq

Ť

WF3
r,%pfq coincides with the scattering wave front set of f P S 1pRdq in-

troduced by Melrose [92]. In the case when B “ S pRdq, WFBpfq coincides
with the S -wave-front set considered in [48].

Remark 4.18. Let Ωm, m “ 1, 2, 3 be the same as in (4.15).

1. If Ω Ď Ω1, and px0, ξ0q P Ω ðñ px0, σξ0q P Ω for σ ě 1, then Ω is
called 1-conical;

2. If Ω Ď Ω2, and px0, ξ0q P Ω ðñ psx0, ξ0q P Ω for s ě 1, then Ω is
called 2-conical;

3. If Ω Ď Ω3, and px0, ξ0q P Ω ðñ psx0, σξ0q P Ω for s, σ ě 1, then Ω
is called 3-conical.

By (4.17) and the paragraph before Definition 4.16, it follows that if m “

1, 2, 3, then Θm
B pfq is m-conical. The same holds for WFmB pfq, m “ 1, 2, 3,

by Definition 4.16, noticing that, for any x0 P Rrzt0u, any open cone Γ Q x0,
and any s ą 0, C dir

x0 pΓq “ C dir
sx0pΓq. For any R ą 0 and m P t1, 2, 3u, we set

Ω1,R ” t px, ξq P Ω1 ; |ξ| ě R u, Ω2,R ” t px, ξq P Ω2 ; |x| ě R u,

Ω3,R ” t px, ξq P Ω3 ; |x|, |ξ| ě R u

Evidently, ΩR
m is m-conical for every m P t1, 2, 3u.
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From now on we assume that B in Definition 4.16 is SG-admissible, and
recall that Sobolev-Kato spaces and, more generally, modulation spaces, and
S pRdq are SG-admissible, see [46,47].

The next result describes the relation between “regularity with respect
to B ” of temperate distributions and global wave-front sets, cf. [46].

Proposition 4.19. Let B be SG-admissible, and let f P S 1pRdq. Then

f P B ðñ WFBpfq “ H.

The next Theorem 4.20 extends the analogous result in [47] to the more
general case of a classical, SG-hyperbolic involutive operator L of Levi type,
and the one in [110] to the global wave-front sets introduced above. It is a
consequence of Theorem 4.7 and of Theorem 5.14 in [47].

Theorem 4.20. Let L in (4.4) be a classical, SG-hyperbolic, involutive
operator of Levi type, that is, of the type considered in Proposition 4.4 with
SG-classical coefficients, of the form (4.6). Let g` P B`, ` “ 0, . . . ,m ´ 1,
with the m-tuple of SG-admissible spaces pB0, . . . ,Bm´1q. Also assume that
the SG-admissible space C is such that pBk, Cq, k “ 0, . . . ,m´1, are weakly-I
SG-ordered pairs with respect to

k ´ j, k ´ j, k “ 0, . . . ,m´ 1, j “ 0, . . . , k, φpαq, α PM, and H.

Then, for the solution upt, sq of the Cauchy problem (4.4) with f ” 0, pt, sq P
∆T 1, s P r0, T

1q, we find

WFkCpupt, sqq Ď
m
ď

j“1

ď

αPM
-
j

ď

tjP∆pT
1q

t0“t,tj“s

m´1
ď

`“0

pΦαptjqqpWFkB`pg`qq
conk , k “ 1, 2, 3,

where V conk for V Ď Ωk, is the smallest k-conical subset of Ωk which in-
cludes V , k P t1, 2, 3u and Φαptjq is the canonical transformation of T ‹Rd
into itself generated by the parameter-dependent SG-classical phase func-

tions φpαqptjq P Pr, α P M -
j, tj P ∆pT 1q, t0 “ t, tj “ s, j “ 1, . . . ,m,

appearing in (4.14).

Proof. The result for j “ 1, α P M
-
1, t0 “ t, t1 “ s, and upt, sq “

ř

αPM1
Wαpt, sqGα is essentially the one proved in [47, Theorem 5.14].

For j ě 2,

upt, sq “
m
ÿ

j“2

ÿ

αPM
-
j

ż t

s

ż t1

s
. . .

ż tj´2

s
Wα

pµ-qpt, t1, . . . , tj´1, sqGα dtj´1 . . . dt1,
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where W
pµ-q
α ” W

pµ-q
α pt, t1, . . . , tj´1, sq given by an analog of (3.7) for (3.1),

in view of Theorem 3.2 and Remark 3.6. Let

py0, η0q P Ωkz

m
ď

j“2

ď

αPM
-
j

ď

tjP∆pT
1q

t0“t,tj“s

m´1
ď

`“0

pWFkB`pg`qq
conk , k “ 1, 2, 3.

This is equivalent to the fact that

py0, η0q P

m
č

j“2

č

αPM
-
j

č

tjP∆pT
1q

t0“t,tj“s

m´1
č

`“0

´

ΩkzpWFkB`pg`qq
conk

¯

ô

py0, η0q P

m
č

j“2

č

αPM
-
j

č

tjP∆pT
1q

t0“t,tj“s

m´1
č

`“0

´

Θk
B`pg`qq

conk
¯

.

Let px0, ξ0q satisfy

py0, η0q “ Φ´1
α ptj ;x0, ξ0q ðñ px0, ξ0q “ Φαptj ; y0, η0q.

Let ck P S0,0 be a symbol as in (4.17) and Remark 4.14 such that

Oppckqu P B` for ` “ 0, . . . ,m ´ 1. Let Ck “ Oppckq, and let V
pµ-q
α ”

V
pµ-q
α pt, t1, . . . , tj´1, sq be the parametrix of W

pµ-q
α . Then for some qk,α we

have

Qk,α “

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-q
α ˝ Ck ˝ V

pµ-q
α dtj´1 . . . dt1,

or equivalently,

ż t

s

ż t1

s
. . .

ż tj´2

s
Qk,α ˝W

pµ-q
α dtj´1 . . . dt1

“

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-q
α ˝ Ck dtj´1 . . . dt1 mod OppS´8,´8q.

In view of [47, Theorem 3.18] and the fact that Φαptjq is a canonical
transformation of T ‹Rd into itself, we have qk,α “ ck ˝ Φ´1

α mod S´1,´1,
which implies that qk,α P S

0,0. Since

ż t

s

ż t1

s
. . .

ż tj´2

s
Qk,αpW

pµ-q
α Gαq dtj´1 . . . dt1

”

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-q
α pCkGαq dtj´1 . . . dt1
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where W
pµ-q
α pCkGαq belongs to C8p∆pT 1q; Cq by the hypothesis on pB`, Cq,

for ` “ 0, . . . ,m´ 1, then

px0, ξ0q P Θk
C

¨

˚

˝

m
ÿ

j“2

ÿ

αPM
-
j

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-q
α Gα dtj´1 . . . dt1

˛

‹

‚

conk

.

This means that

m
č

j“2

č

αPM
-
j

č

tjP∆pT
1q

t0“t,tj“s

m´1
č

`“0

ΦαpΘ
k
B`pg`qq

conk

Ď Θk
C

¨

˚

˝

m
ÿ

j“2

ÿ

αPM
-
j

ż t

s

ż t1

s
. . .

ż tj´2

s
W pµ-q
α Gα dtj´1 . . . dt1

˛

‹

‚

conk

. (4.18)

Complementing (4.18) with respect to Ωk, we get the desired result.

Remark 4.21. 1. The canonical transform generated by an arbitrary
regular phase function ϕ P Pr is defined by the relations

px, ξq “ Φϕpy, ηq ðñ

$

&

%

y “ ϕ1ξpx, ηq “ ϕ1ηpx, ηq,

ξ “ ϕ1xpx, ηq.

2. Assume that the hypotheses of Theorem 4.20 hold true. Then WFkCpupt, sqq,
pt, sq P ∆T 1, k “ 1, 2, 3, consists of unions of arcs of bicharacteristics,
generated by the phase functions appearing in (4.14) and emanating
from points belonging to WFmBkpgkq, k “ 0, . . . ,m´ 1, cf. [48,94,110].

Corollary 4.22. The hypotheses on the spaces Bk, k “ 0, . . . ,m´ 1, C, are
authomatically fulfilled for Bk “ Hr`m´1´k,%`m´1´kpRdq, C “ Hr,%pRdq,
r, % P R, k “ 0, . . . ,m ´ 1. That is, the results in Theorem 4.20 and 2 in
Remark 4.21 above hold true for the WFkr,%pupt, sqq wave-front sets, r, % P R,
k “ 1, 2, 3.
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Microlocal analysis on
modulation spaces





Chapter 5

Modulation spaces,
Gelfand-Shilov spaces and
pseudo-differential calculus

Time-frequency analysis is an interdisciplinary area of research, with branches
in pure and applied mathematics, physics and signal theory. It has one
root in the work by Wigner and Weyl on the mathematical foundations of
quantum mechanics from the 1930s. Exclusively, the theory of the short-
time Fourier transform and modulation spaces of scalar-valued functions and
tempered distributions is a very well developed theory of representation of
tempered distributions in the time-frequency (phase) space.

The standard reference about this topic is the well known book by K.
H. Gröchenig [67].

In this chapter we recall some basic facts on modulation spaces, Gelfand-
Shilov spaces of functions and distributions and pseudo-differential operators
with symbols on Gelfand-Shilov classes (cf. [54–58,60,62,67,71,80,81,89,99,
108,112,114,116–119]).

5.1 Classes of weight functions

Weights are used to quantify growth and decay conditions. For instance,
if ωpxq “ p1 ` |x|qm, m P R and }f}L8ω “ supxPRd |fpxq|ωpxq ă 8, then
|fpxq| ď Cp1 ` |x|q´m. If m ą 0, then this condition describes the poly-
nomial decay of f of order m, whereas if m ă 0, then f grows at most
like a polynomial of degree m. Combining this intuition with Lp-spaces,
one obtains the weighted Lp-spaces which are defined by the norm }f}Lpm “
}f ω}p “

ş

Rd |fptq|
pωpxqp dt.

A weight on Rd is a positive function ω P L8locpRdq such that 1{ω P

L8locpRdq. If ω and v are weights on Rd, then ω is called moderate or v-
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moderate, if

ωpx` yq ď Cωpxqvpyq, x, y P Rd, (5.1)

for some constant C ě 1. The set of all moderate weights on Rd is denoted
by PEpRdq. We notice that if the weight v is even and (5.1) is fulfilled with
ω “ v and C “ 1, and that vpxq ě c for some c P p0, 1s, then v1pxq “ c´1vpxq
satisfies the same properties, as well as v1pxq ě 1.

The weight v on Rd is called submultiplicative, if it is even, bounded from
below by 1 and (5.1) holds for ω “ v and C “ 1. From now on, v always
denotes a submultiplicative weight if nothing else is stated. In particular,
if (5.1) holds and v is submultiplicative, then it follows by straightforward
computations that

C´1ωpxq

vpyq
ď ωpx` yq ď Cωpxqvpyq,

vpx` yq ď vpxqvpyq and vpxq “ vp´xq ě 1, x, y P Rd.
(5.2)

Submultiplicative weights occur in time-frequency analysis in the investi-
gation of twisted convolution, in the definition of “good windows” and spaces
of test functions, and in the construction of algebras of pseudo-differential
operators.

If ω is a moderate weight on Rd, then by [120] and above, there is a
submultiplicative weight v on Rd such that (5.1) and (5.2) hold true (see
also [67,114,116]). Moreover if v is submultiplicative on Rd, then

1 ď vpxq À er|x| (5.3)

for some constant r ą 0 (cf. [70]). In particular, if ω is moderate, then

ωpx` yq À ωpxqer|y| and e´r|x| ď ωpxq À er|x|, x, y P Rd (5.4)

for some r ą 0. Next we introduce suitable subclasses of PE , which are
adapted to the Gelfand-Shilov spaces that we consider in the sequel.

Definition 5.1. Let s ą 0. The set PE,spRdq (P0
E,spRdq) consists of all

ω P PEpRdq such that

ωpx` yq À ωpxqer|y|
1
s , x, y P Rd, (5.5)

holds true for some (every) r ą 0.

By (5.4) it follows that P0
E,s1

“ PE,s2 “ PE when s1 ă 1 and s2 ď 1.

For convenience we set P0
EpRdq “ P0

E,1pRdq. For the analysis performed
in the last two chapters of this part we need more general classes of weight
functions.
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In similar ways as above, if s, σ ą 0, then Ps,σpR2dq (P0
s,σpR2dq) consists

of all submultiplicative weight functions ω on R2d such that

ωpx` y, ξ ` ηq À ωpx, ξqerp|y|
1
s`|η|

1
σ q, x, y, ξ, η P Rd, (5.6)

for some r ą 0 (for every r ą 0). In particular, if ω P Ps,σpR2dq (P0
s,σpR2dq),

then

e´rp|x|
1
s`|ξ|

1
σ q À ωpx, ξq À erp|x|

1
s`|ξ|

1
σ q (5.7)

for some r ą 0 (for every r ą 0). For more facts about weights, see [70].

5.2 Gelfand-Shilov spaces

Let h, s, s0, σ, σ0 P R`, and let Sσs,hpRdq be the set of all f P C8pRdq such
that

}f}Sσs,h ” sup
|xβBαfpxq|

h|α`β|α!σβ!s

is finite. Here the supremum is taken over all α, β P Zd and x P Rd.
Obviously Sσs,hpRdq is a Banach space which increases as h, s and σ

increase, and is contained in S pRdq, the set of Schwartz functions on Rd. If
in addition s` σ ą 1 and s0 ` σ0 ě 1

Sσs,hpRdq and
ď

hą0

Sσ0s0,hpR
dq

are dense in S pRdq. Hence, the dual pSσs,hq1pRdq of Sσs,hpRdq is a Banach

space which contains S 1pRdq.
The spaces Sσs pRdq and Σσ

s pRdq are the inductive and projective limits,
respectively, of Sσs,hpRdq with respect to h. The space Sσs pRdq (Σσ

s pRdq) is
called the Gelfand-Shilov space of Roumieu type (of Beurling type, respec-
tively) of order ps, σq. This implies that

Sσs pRdq “
ď

hą0

Sσs,hpRdq and Σσ
s pRdq “

č

hą0

Sσs,hpRdq, (5.8)

and that the topology for Sσs pRdq is the strongest possible one such that
each inclusion map from Sσs,hpRdq to Sσs pRdq is continuous.

The Gelfand-Shilov distribution spaces pSσs q1pRdq and pΣσ
s q
1pRdq are the

projective and inductive limit respectively of pSσs,hq1pRdq. Hence

pSσs q1pRdq “
č

hą0

pSσs,hq1pRdq and pΣσ
s q
1pRdq “

ď

hą0

pSσs,hq1pRdq. (5.8)1

We have that pSσs q1pRdq and pΣσ
s q
1pRdq are the topological duals of Sσs pRdq

and Σσ
s pRdq, respectively (see [97]).
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We also set SspRdq “ Sss pRdq and ΣspRdq “ Σs
spRdq, and similarly for

their distribution spaces.
The classes Sσs pRdq and related generalizations were widely studied, and

used in the applications to partial differential equations, see for example
[12,31,37,74,93,99]. We recall the following characterisations of Sσs pRdq.

Proposition 5.2. Let s, σ ą 0, p P r1,8s and let f P S pRdq. Then the
following conditions are equivalent:

(1) f P Sσs pRdq (f P Σσ
s pRdq) .

(2) For some (every) h ą 0 it holds

}xαf}Lp À h|α|α!s and }ξβ pf}Lp À h|β|β!σ, α, β P Zd`.

(3) For some (every) h ą 0 it holds

}xαf}Lp À h|α|α!s and }Bβf}Lp À h|β|β!σ, α, β P Zd`.

(4) For some (every) h ą 0 it holds

}xαBβfpxq}Lp À h|α`β|α!s β!σ, α, β P Zd`.

(5) For some (every) h, r ą 0 it holds

}er| ¨ |
1
s
Bαf}Lp À h|α|pα!qσ α P Zd`.

(6) For some (every) r ą 0 it holds

}f ¨ er| ¨ |
1
s
}Lp ă 8 and } pf ¨ er| ¨ |

1
σ
}Lp ă 8.

Remark 5.3. Any of the conditions (2)–(6) in Proposition 5.2 induce the
same topology for Sσs pRdq and Σσ

s pRdq.

Remark 5.4. Let s, σ ą 0. Then, Σσ
s pRdq is a Fréchet space with semi-

norms } ¨ }Sσs,h, h ą 0. Moreover, Sσs pRdq ‰ t0u if and only if s ` σ ě 1,

and Σσ
s pRdq ‰ t0u if and only if s` σ ě 1 and ps, σq ‰ p1

2 ,
1
2q. If ε ą 0 and

s` σ ě 1, then

Σσ
s pRdq Ď Sσs pRdq Ď Σσ`ε

s`ε pRdq Ď S pRdq

Ď S 1pRdq Ď pΣσ`ε
s`ε q

1pRdq Ď pSσs q1pRdq.

If in addition ps, σq ‰ p1
2 ,

1
2q, then

pSσs q1pRdq Ď pΣσ
s q
1pRdq.
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The Gelfand-Shilov spaces are invariant and possess convenient map-
ping properties under several basic transformations. For example they are
invariant under translations, dilations, and under (partial) Fourier transfor-
mations.

The Fourier transform F on S pRdq extends uniquely to homeomor-
phisms on S 1pRdq, S 1spRdq and Σ1spRdq, and restricts to homeomorphisms
on SspRdq and ΣspRdq, and to a unitary operator on L2pRdq.

Some considerations later on involve a broader family of Gelfand-Shilov
spaces. These spaces will be used in Chapters 9, 10 and 11. More precisely,
for sj , σj P R`, j “ 1, 2, the Gelfand-Shilov spaces Sσ1,σ2s1,s2 pRd1`d2q and
Σσ1,σ2
s1,s2 pRd1`d2q consist of all functions F P C8pRd1`d2q such that

|xα1
1 xα2

2 B
β1
x1B

β2
x2F px1, x2q| À h|α1`α2`β1`β2|α1!s1α2!s2β1!σ1β2!σ2 (5.9)

for some h ą 0, respectively for every h ą 0. The topologies, and the duals

pSσ1,σ2s1,s2 q
1pRd1`d2q and pΣσ1,σ2

s1,s2 q
1pRd1`d2q

of

Sσ1,σ2s1,s2 pR
d1`d2q and Σσ1,σ2

s1,s2 pR
d1`d2q,

respectively, and their topologies are defined in analogous ways as for the
spaces Sσs pRdq and Σσ

s pRdq above.
The following proposition explains mapping properties of partial Fourier

transforms on Gelfand-Shilov spaces, and follows by similar arguments as in
analogous situations in [64]. The proof is therefore omitted. Here, F1F and
F2F are the partial Fourier transforms of F px1, x2q with respect to x1 P Rd1
and x2 P Rd2 , respectively.

Proposition 5.5. Let sj , σj ą 0, j “ 1, 2. Then, the following holds true:

(1) The mappings F1 and F2 on S pRd1`d2q restrict to homeomorphisms

F1 : Sσ1,σ2s1,s2 pR
d1`d2q Ñ Ss1,σ2σ1,s2 pR

d1`d2q

and

F2 : Sσ1,σ2s1,s2 pR
d1`d2q Ñ Sσ1,s2s1,σ2 pR

d1`d2q.

(2) The mappings F1 and F2 on S pRd1`d2q are uniquely extendable to
homeomorphisms

F1 : pSσ1,σ2s1,s2 q
1pRd1`d2q Ñ pSs1,σ2σ1,s2 q

1pRd1`d2q

and

F2 : pSσ1,σ2s1,s2 q
1pRd1`d2q Ñ pSσ1,s2s1,σ2 q

1pRd1`d2q.
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The same holds true if the Sσ1,σ2s1,s2 pRd1`d2q-spaces and their duals are
replaced by the corresponding Σσ1,σ2

s1,s2 pRd1`d2q-spaces and their duals.

The proof of the next result can be found in [28].

Proposition 5.6. Let sj , σj ą 0, j “ 1, 2. Then the following conditions
are equivalent.

(1) F P Sσ1,σ2s1,s2 pRd1`d2q (F P Σσ1,σ2
s1,s2 pRd1`d2q).

(2) For some r ą 0 (for every r ą 0) it holds

|F px1, x2q| À e´rp|x1|
1
s1 `|x2|

1
s2 q and | pF pξ1, ξ2q| À e´rp|ξ1|

1
σ1 `|ξ2|

1
σ2 q.

We notice that if sj ` σj ă 1 for some j “ 1, 2, then Sσ1,σ2s1,s2 pRd1`d2q and
Σσ1,σ2
s1,s2 pRd1`d2q are equal to the trivial space t0u. Likewise, if sj “ σj “

1
2

for some j “ 1, 2, then Σσ1,σ2
s1,s2 pRd1`d2q “ t0u.

5.3 The short-time Fourier transform and Gelfand-
Shilov spaces

The short-time Fourier transform measures the time-variant frequency con-
tent of a distribution f using a well-localized and smooth window φ P

L2pRdq centered at the origin of Rd. In order to move it to some point
z “ px; ξq P R2d one uses time-frequency shifts πpzq, i.e. applying first the
translation operator Txφpyq “ φpy ´ xq and then the modulation operator
Mξφpyq “ eiyξφpyq, thus πpzq “MξTx.

Definition 5.7. Let φ P S pRdq be fixed. For every f P S 1pRdq, the short-
time Fourier transform Vφf is the distribution on R2d defined by the formula

pVφfqpx, ξq “ F pf φp ¨ ´ xqqpξq “ pf, φp ¨ ´ xqeix ¨ ,ξyq. (5.10)

We observe that for regular distributions and suitable intangibility con-
ditions, the short-time Fourier transform can be expressed as

pVφfqpx, ξq “ p2πq
´ d

2

ż

Rd
fpyqφpy ´ xqe´iyξ dy “ xf, πpzqφy (5.11)

It provides a description of f in which time and frequency play a symmetric
role. In general, the bracket x ¨ , ¨ y extends the inner product on L2pRdq to
any dual pairing between a distribution space and its space of test functions,
for instance φ P S pRdq and f P S 1pRdq, but time-frequency analysis often
needs larger distribution spaces.

Next we recall some mapping properties of Gelfand-Shilov spaces under
short-time Fourier transforms.
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The short-time Fourier transform is unitary L2pRdq Ñ L2pR2dq provided
}φ}L2 “ 1, a topological isomorphism S pRdq Ñ S pR2dq, and extends to a
topological isomorphism S 1pRdq Ñ S 1pR2dq. The adjoint operator is given
by

V ˚ϕ g “ p2πq
´ d

2

ĳ

R2d

gpx, ξqMξTxϕdxdξ, (5.12)

where V ˚ϕ g in general is interpreted as the functional

xV ˚ϕ g, γy “ p2πq
´ d

2

ĳ

R2d

gpx, ξqxMξTxϕ, γy dxdξ, γ P S pRdq. (5.13)

The next result can be found in [67].

Proposition 5.8. Suppose that φ, ϕ P L2pRdq, such that xϕ, φy ‰ 0. Then,
for all f P L2pRdq

f “
1

xϕ, φy
V ˚ϕ Vφf.

We recall that if T pf, φq ” Vφf when f, φ P S1{2pRdq, then T is uniquely
extendable to sequentially continuous mappings

T :S 1spRdq ˆ SspRdq Ñ S 1spR2dq
č

C8pR2dq,

T :S 1spRdq ˆ S 1spRdq Ñ S 1spR2dq,

and similarly when Ss and S 1s are replaced by Σs and Σ1s, respectively, or
by S and S 1, respectively (cf. [35, 120]). We also note that Vφf takes the
form

Vφfpx, ξq “ p2πq
´ d

2

ż

Rd
fpyqφpy ´ xqe´ixy,ξy dy (5.10)1

when f P Lp
pωqpR

dq for some ω P PEpRdq, φ P Σ1pRdq and p ě 1. Here

Lp
pωqpR

dq, when p P p0,8s and ω P PEpRdq, is the set of all f P LplocpR
dq

such that }f}Lp
pωq
” }f ¨ ω}Lp is finite.

The following characterizations of the Sσ1,σ2s1,s2 pRd1`d2q, Σσ1,σ2
s1,s2 pRd1`d2q and

their duals follow by similar arguments as in the proofs of Propositions 2.1
and 2.2 in [123] .

Proposition 5.9. Let sj , σj ą 0 be such that sj ` σj ě 1, j “ 1, 2. Also let
φ P Sσ1,σ2s1,s2 pRd1`d2qz0. Then the following properties hold true:

(1) f P Sσ1,σ2s1,s2 pRd1`d2q, if and only if

|Vφfpx1, x2, ξ1, ξ2q| À e´rp|x1|
1
s1 `|x2|

1
s2 `|ξ1|

1
σ1 `|ξ2|

1
σ2 q (5.14)

holds true for some r ą 0.
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(2) If in addition φ P Σσ1,σ2
s1,s2 pRd1`d2qz0, then f P Σσ1,σ2

s1,s2 pRd1`d2q if and only
if

|Vφfpx1, x2, ξ1, ξ2q| À e´rp|x1|
1
s1 `|x2|

1
s2 `|ξ1|

1
σ1 `|ξ2|

1
σ2 q (5.15)

holds true for every r ą 0.

A proof of Proposition 5.9 can be found in e. g. [74] (cf. [74, Theorem
2.7]). The corresponding result for Gelfand-Shilov distributions is the fol-
lowing improvement of [120, Theorem 2.5]. See also [123].

Proposition 5.10. Let sj , σj ą 0 be such that sj ` σj ě 1, j “ 1, 2. Also
let φ P Sσ1,σ2s1,s2 pRd1`d2qz0 and let f P pSσ1,σ2s1,s2 q

1
pRd1`d2q. Then the following

properties hold true:

(1) f P pSσ1,σ2s1,s2 q
1pRd1`d2q, if and only if

|Vφfpx1, x2, ξ1, ξ2q| À erp|x1|
1
s1 `|x2|

1
s2 `|ξ1|

1
σ1 `|ξ2|

1
σ2 q (5.16)

holds for every r ą 0.

(2) If in addition φ P Σσ1,σ2
s1,s2 pRd1`d2qz0, then f P pΣσ1,σ2

s1,s2 q
1pRd1`d2q, if and

only if

|Vφfpx1, x2, ξ1, ξ2q| À erp|x1|
1
s1 `|x2|

1
s2 `|ξ1|

1
σ1 `|ξ2|

1
σ2 q (5.17)

holds for some r ą 0.

Remark 5.11. We notice that any short-time Fourier transform of a Gelfand-
Shilov distribution with window function as Gelfand-Shilov function or even
a Schwartz function makes sense as a Gelfand-Shilov distribution.

In fact, let

T1 : pSσs q1pRdq ˆ pSσs q1pRdq Ñ pSσs q1pR2dq,

and

T2 : pSσs q1pR2dq Ñ pSσs q1pR2dq

be the continuous mappings

T1pf, φq “ f b φ, f, φ P pSσs q1pRdq,

and

pT2F qpx, yq “ F py, y ´ xq, F P pSσs q1pR2dq.
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Also let pF2F qpx, ¨ q be the partial Fourier transform of F px, yq with respect
to y P Rd, which is continuous from pSσs q1pR2dq to pSσ,ss,σq1pR2dq. Then

Vφf “ pF2 ˝ T2 ˝ T1q pf, φq. (5.18)

By defining Vφf as the right-hand side of (5.18) when f, φ P pSσs q1pRdq, it
follows that the map

pf, φq ÞÑ Vφf (5.19)

is continuous from pSσs q1pRdq ˆ pSσs q1pRdq to pSσ,ss,σq1pR2dq.
In the same way (5.19) extends uniquely to a continuous map from

pΣσ
s q
1pRdq ˆ pΣσ

s q
1pRdq to pΣσ,s

s,σq
1pR2dq.

5.4 Function classes with Gelfand-Shilov regular-
ity

The next result shows that for any ω P PEpRdq one can find an equivalent
weight ω0 which satisfies suitable Gevrey regularity.

Proposition 5.12. Let ω P PEpRdq and s ą 0. Then there is an ω0 P

PEpRdq X C8pRdq such that the following properties hold true:

(1) ω0 — ω.

(2) |Bαω0pxq| À h|α|α!sω0pxq — h|α|α!sωpxq for every h ą 0.

Proof. We may assume that s ă 1, such that s ‰ 1{2. It suffices to prove
that (2) hold true for some h ą 0. Let φ0 P Σs

1´spRdqzt0u, and let φ “ |φ0|
2.

Then φ P Σs
1´spRdq, giving that

|Bαφpxq| À h|α|e´r|x|
1

1´s
α!s,

for every h ą 0 and r ą 0. From now on we fix the value of r to the one
given in (5.4). Now let ω0 “ ω ˚ φ.

We have

|Bαω0pxq| “

ˇ

ˇ

ˇ

ˇ

ż

Rd
ωpyqpBαφqpx´ yq dy

ˇ

ˇ

ˇ

ˇ

À h|α|α!s
ż

Rd
ωpyqe´r|x´y|

1
1´s

dy

À h|α|α!s
ż

Rd
ωpx` py ´ xqqe´r|x´y|

1
1´s

dy

À h|α|α!sωpxq

ż

Rd
e´

r
2
|x´y|

1
1´s

dy — h|α|α!sωpxq,
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where the last inequality follows from (5.4) and the fact that, for any x, y P

Rd, er|x´y|e´r|x´y|
1

1´s
ď e´r|x´y|

1
1´s

. This gives the first part of (2).
The equivalences in (1) follows in the same way as in [120]. More pre-

cisely, by (5.4) we have

ω0pxq “

ż

Rd
ωpyqφpx´ yq dy “

ż

Rd
ωpx` py ´ xqqφpx´ yq dy

À ωpxq

ż

Rd
er|x´y|φpx´ yq dy — ωpxq.

In the same way, (5.4) gives

ω0pxq “

ż

Rd
ωpyqφpx´ yq dy “

ż

Rd
ωpx` py ´ xqqφpx´ yq dy

Á ωpxq

ż

Rd
e´r|x´y|φpx´ yq dy — ωpxq,

and (1) as well as the second part of (2) follow.

The cases where s “ 1
2 or s ě 1 follow by using different φ0 P Σ

10
6
1
2

and

φ0 P Σ
1
2
s respectively, using the fact that the estimate on φ0 holds for every

r ą 0.

A weight ω0 which satisfies Proposition 5.12 (2) is called elliptic or s-
elliptic.

Proposition 5.13. Let ω P PEpR2dq and s, σ ą 0. Then there exists a
weight ω0 P PEpR2dq X C8pR2dq such that the following is true:

(1) ω0 — ω.

(2) For every h ą 0,

|BαxB
β
ξ ω0px, ξq| À h|α`β|α!σβ!sω0px, ξq — h|α`β|α!σβ!sωpx, ξq.

Proposition 5.13 is equivalent Proposition 5.12. In fact, by Proposition
5.12, we have that Proposition 5.13 holds with s “ σ. Hence, Proposition
5.13 implies Proposition 5.12. On the other hand, let s0 “ minps, σq. Then
Proposition 5.12 implies that there is a weight function ω0 — ω satisfying

|BαxB
β
ξ ω0px, ξq| À h|α`β|pα!β!qs0ω0px, ξq

À h|α`β|α!σβ!sω0px, ξq,

giving Proposition 5.13.
An important class of Gevrey type symbols is the following.
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Definition 5.14. Let s ě 0 and ω P PEpRdq. The class Γ
pωq
s pRdq (Γ

pωq
0,s pRdq)

consists of all f P C8pRdq such that

|Dαfpxq| À h|α|α!sωpxq, x P Rd, (5.20)

for some h ą 0 (for every h ą 0).

Evidently, by Proposition 5.12 it follows that if s ă 1, the family of
symbol classes in Definition 5.14 is not decreased when the assumption ω P
PEpR2dq is replaced by the more restrictive assumption ω P PE,spR2dq or
by ω P P0

E,spR2dq.
By similar arguments as in the proof of Proposition 5.12 we get the

following analog of Proposition 2.3.16 in [88].

Proposition 5.15. Let s ą 1{2, ω P PEpR2dq, and φ P ΣspR2dq. Then

ω ˚ φ belongs to Γ
pωq
0,s .

The following definition is motivated by Lemma 2.6.13 in [88].

Definition 5.16. Let s ě 1, ω P PEpRdq and ϑ0 “ 1 ` | logω|. Then a is
called comparable to ω with respect to s ě 1 if

(1) }a´ logω}L8 ă 8.

(2) a P Γ
pϑ0q
s pRdq and Bαa P Γ

p1q
s pRdq, when |α| “ 1.

Proposition 5.17. Let ω, v P PEpRdq be such that v is submultiplicative
and ω is v-moderate. Also let

v1pxq ” 1` | log vpxq| and ω1pxq ” 1` | logωpxq|.

Then v1 is submultiplicative and ω1 is v1-moderate, satisfying (5.1) with
1` logC ě 1 in place of C ě 1.

Proof. If ωpx` yq ě 1, then the second inequality in (5.2) gives

ω1px` yq “ 1` logωpx` yq

ď 1` logC ` logωpxq ` log vpyq

ď p1` logCqp1` | logωpxq|q p1` log vpyqq

ď p1` logCqω1pxq v1pyq.

If instead ωpx` yq ď 1, then the first inequality in (5.2) gives

ω1px` yq “ 1´ logωpx` yq

ď 1` logC ´ logωpxq ` log vpyq

ď p1` logCqp1` | logωpxq|q p1` log vpyqq

ď p1` logCqω1pxq v1pyq,

which implies that ω1 is v1-moderate with the stated constants.
By choosing ω “ v and C “ 1, we deduce the submultiplicativity for v1,

and the result follows.
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Lemma 5.18. Let s ě 1, ω P PEpRdq and ϑ0 “ 1 ` | logω|. Then the
following properties hold true:

(1) There exists an elliptic weight ω0 P PEpRdq X Γ
pωq
s pRdq such that

ω — ω0, logω0 P Γpϑ0qs pRdq and 1` | logω0| P PEpRdq X Γpϑ0qs pRdq.

(2) There exists an element c which is comparable to ω0 with respect to s.

Proof. The assertion (1) follows by letting ω0 be the same as in Proposition
5.12. Indeed, the needed estimate is trivially true when no derivatives are
applied on log ω0. If instead some derivatives have been applied, then one
ends up with certain numbers of fractions of the form Bαω0{ω0, which are
multiplied and summarized to each others. Using the estimates in Propo-
sition 5.12 and Fáa di Bruno’s formula then gives the needed estimates.
Where (2) follows by letting a “ logω0 and using the ellipticity of ω0.

Remark 5.19. For a weight function ω0, Spω0qpR2dq denotes the set of all
smooth a which satisfies

|Bαa| ď Cαω0, for some Cα ą 0. (5.21)

It is clear that Γ
pω0q

0,s pR2dq Ď Γ
pω0q
s pR2dq Ď Spω0qpR2dq. In the sequel, for the

weights ω1, ω2 and ω3 involved in the definition of Γ
pω1q

0,s pR2dq, Γ
pω2q
s pR2dq

and Spω3qpR2dq we always assume that they belong to PE,spR2dq, P0
E,spR2dq

and PpR2dq 1, respectively. Explicitly, they should satisfy

ω1pX ` Y q À ω1pXqe
r1|Y |

1
s , ω2pX ` Y q À ω2pXqe

r2|Y |
1
s , (5.22)

and ω3pX ` Y q À ω3pXqp1` |Y |q
N , (5.23)

for some r1 ą 0 and N ą 0, and every r2 ą 0.

5.5 Anisotropic symbol classes

Next we introduce function spaces related to symbol classes of the pseudo-
differential operators we will consider in the sequel. These functions obey
various conditions of the form

|BαxB
β
ξ apx, ξq| À h|α`β|α!σβ!sωpx, ξq, (5.24)

on the phase space R2d. For this reason we consider norms of the form

}a}
Γσ,s;h
pωq

” sup
α,βPZd`

˜

sup
x,ξPRd

˜

|BαxB
β
ξ apx, ξq|

h|α`β|α!σβ!sωpx, ξq

¸¸

, (5.25)

indexed by h ą 0.

1PpR2d
q denotes the set of polynomially moderate weights on R2d satisfying (5.23)
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Definition 5.20. Let s, σ and h be positive constants, let ω be a weight on
R2d, and let

ωrpx, ξq ” erp|x|
1
s`|ξ|

1
σ q.

(1) The set Γσ,s;h
pωq pR

2dq consists of all a P C8pR2dq such that }a}
Γσ,s;h
pωq

in

(5.25) is finite. The set Γσ,s;h0 pR2dq consists of all a P C8pR2dq such
that }a}

Γσ,s;h
pωrq

is finite for every r ą 0, and the topology is the projective

limit topology of Γσ,s;h
pωrq

pR2dq with respect to r ą 0.

(2) The sets Γσ,s
pωqpR

2dq and Γσ,s;0
pωq pR

2dq are given by

Γσ,s
pωqpR

2dq ”
ď

hą0

Γσ,s;h
pωq pR

2dq and Γσ,s;0
pωq pR

2dq ”
č

hą0

Γσ,s;h
pωq pR

2dq,

and their topologies are the inductive and the projective topologies of
Γσ,s;h
pωq pR

2dq respectively, with respect to h ą 0.

Furthermore we have the following classes.

Definition 5.21. For sj , σj ą 0, j “ 1, 2, and h, r ą 0 and f P C8pRd1`d2q,
let

}f}ph,rq ” sup

˜

|Bα1
x1 B

α2
x2 fpx1, x2q|

h|α1`α2|α1!σ1α2!σ2erp|x1|
1
s1 `|x2|

1
s2 q

¸

, (5.26)

where the supremum is taken over all α1 P Zd1` , α2 P Zd2` , x1 P Rd1 and
x2 P Rd2.

(1) Γσ1,σ2s1,s2 pRd1`d2q consists of all f P C8pRd1`d2q such that }f}ph,rq is finite
for some h, r ą 0.

(2) Γσ1,σ2s1,s2;0pRd1`d2q consists of all f P C8pRd1`d2q such that for some h ą 0,
}f}ph,rq is finite for every r ą 0.

(3) Γσ1,σ2;0
s1,s2 pRd1`d2q consists of all f P C8pRd1`d2q such that for some r ą 0,
}f}ph,rq is finite for every h ą 0.

(4) Γσ1,σ2;0
s1,s2;0 pRd1`d2q consists of all f P C8pRd1`d2q such that }f}ph,rq is finite

for every h, r ą 0.

In order to define suitable topologies of the spaces in Definition 5.21, let
pΓσ1,σ2s1,s2 qph,rqpRd1`d2q be the set of f P C8pRd1`d2q such that }f}ph,rq is finite.
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Then pΓσ1,σ2s1,s2 qph,rqpRd1`d2q is a Banach space, the sets in Definition 5.21 are
given by

Γσ1,σ2s1,s2 pR
d1`d2q “

ď

h,rą0

pΓσ1,σ2s1,s2 qph,rqpR
d1`d2q,

Γσ1,σ2s1,s2;0pR
d1`d2q “

ď

hą0

˜

č

rą0

pΓσ1,σ2s1,s2 qph,rqpR
d1`d2q

¸

,

Γσ1,σ2;0
s1,s2 pRd1`d2q “

ď

rą0

˜

č

hą0

pΓσ1,σ2s1,s2 qph,rqpR
d1`d2q

¸

and

Γσ1,σ2;0
s1,s2;0 pR

d1`d2q “
č

h,rą0

pΓσ1,σ2s1,s2 qph,rqpR
d1`d2q,

and we equip these spaces by suitable mixed inductive and projective limit
topologies of pΓσ1,σ2s1,s2 qph,rqpRd1`d2q.

5.6 Modulation spaces

Modulation spaces measure the decay of the Short-time Fourier transform
on the time-frequency (phase space) plane. These spaces were introduced by
Feichtinger in the 80’s [55], for weight of sub-exponential growth at infinity,
sometime called weights of infinite order.

Before giving the definition of modulation spaces we recall the definition
of quasi-Banach spaces. A functional f ÞÑ }f}B on a (complex) vector space
B is called a quasi-norm of order r P p0, 1s, or an r-norm, if }f}B ě 0 for
all f P B with equality only for f “ 0,

}f ` g}B ď 2
1
r
´1p}f}B ` }g}Bq f, g P B, (5.27)

and

}c ¨ f}B “ |c| ¨ }f}B f P B, c P C. (5.28)

By Aoki and Rolewić in [6, 101] it follows that there is an equivalent quasi-
norm to the previous one which additionally satisfies

}f ` g}rB ď }f}
r
B ` }g}

r
B f, g P B. (5.29)

From now on we suppose that the quasi-norm of B has been chosen such
that both (5.27) and (5.29) hold true.

The space B above is called a quasi-Banach space or an r-Banach space,
if the topology is defined by } ¨ }B, and that B is complete under this
topology.
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Definition 5.22. Let φ P Σ1pRdqz0, p, q P p0,8s and ω P PEpR2dq be fixed.
Then the modulation space Mp,q

pωqpR
dq consists of all f P Σ11pRdq such that

}f}Mp,q
pωq
”

´

ż

Rd

´

ż

Rd
|Vφfpx, ξqωpx, ξq|

p dx
¯q{p

dξ
¯1{q

ă 8 (5.30)

(with the obvious modifications when p “ 8 and/or q “ 8). Evidently,
}f}Mp,q

pωq
is given by

}f}Mp,q
pωq
” }Hf,ω,p}Lq , Hf,ω,ppξq “ }Vφfp ¨ , ξqωp ¨ , ξq}Lp (5.31)

We set Mp
pωq “ Mp,p

pωq, and if ω “ 1, then we set Mp,q “ Mp,q
pωq and Mp “

Mp
pωq.

The modulation spaces thus quantifies the asymptotic decay of f P

S 1pRdq in the time and frequency variables.
The following proposition is a consequence of well-known facts in [55,63,

67,122]. Here and in what follows, we let p1 denote the conjugate exponent
of p, i. e.

p1 “

$

’

’

’

&

’

’

’

%

8 when p P p0, 1s

p

p´ 1
when p P p1,8q

1 when p “ 8 .

Proposition 5.23. Let p, q, pj , qj , r P p0,8s be such that r ď minp1, p, qq,
j “ 1, 2, let ω, ω1, ω2, v P PEpR2dq be such that ω is v-moderate, φ P

M r
pvqpR

dqz0, and let f P Σ11pRdq. Then the following properties hold true:

(1) f PMp,q
pωqpR

dq if and only if (5.30) holds, i. e. Mp,q
pωqpR

dq is independent of

the choice of φ. Moreover, Mp,q
pωq is an r-Banach space under the r-norm

in (5.30), and different choices of φ give rise to equivalent r-norms. If
in addition p, q ě 1, then Mp,q

pωqpR
dq is a Banach space.

(2) If p1 ď p2, q1 ď q2 and ω2 À ω1, then

Σ1pRdq ĎMp1,q1
pω1q

pRdq ĎMp2,q2
pω2q

pRdq Ď Σ11pRdq.

Remark 5.24. For modulation spaces of the form Mp,q
pωq with fixed p, q P

r1,8s the norm equivalence in Proposition 5.23(1) can be extended to a
larger class of windows. In fact, assume that ω, v P PEpR2dq with ω being
v-moderate and

1 ď r ď minpp, p1, q, q1q .

Let φ P M r
pvqpR

dqzt0u. Then, a Gelfand-Shilov distribution f P Σ11pRdq
belongs to Mp,q

pωqpR
dq, if and only if Vφf P L

p,q
pωqpR

2dq. Furthermore, different

choices of φ PM r
pvqpR

dqzt0u in }Vφf}Lp,q
pωq

give rise to equivalent norms. (Cf.

Theorem 2.6 in [121].)
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In essential parts of our analyses in Sections 8.1 and 8.2 it is convenient
to use symplectic formulations of modulation spaces with functions and dis-
tributions defined on the phase spaces R2d. They are defined in the same
way as the modulation spaces above, except that the short-time Fourier
transforms in (5.10) are replaced by symplectic analogies in the definition
of modulation space norms.

In fact, let σ be the standard symplectic form on R2d, i. e. it should
satisfy

σpX,Y q “ xy, ξy ´ xx, ηy, X “ px, ξq P R2d, Y “ py, ηq P R2d. (5.32)

(Here observe the difference between the notation σ for the symplectic form
in (5.32), and the positive number σ used as parameter for the Gelfand-
Shilov spaces, e. g. in Sections 5.2 and 5.4.) If

te1, . . . , ed, ε1, . . . , εdu (5.33)

is the standard basis of R2d, then

σpej , ekq “ 0, σpej , εkq “ ´δj,k, and σpεj , εkq “ 0 (5.34)

when j, k P t1, . . . , du. More generally, a basis (5.33) of R2d which satisfies
(5.34) is called a symplectic basis of R2d to the symplectic form σ. Evidently,
the standard basis of R2d is a symplectic basis, and is sometimes called the
standard symplectic basis of R2d.

Let φ P Σ1pR2dqz0. Then the symplectic Fourier transform and symplec-
tic short-time Fourier transform of a P L1pR2dq are defined by the formulae

pFσaqpXq “ π´d
ż

R2d

apZqe2iσpX,Zq dZ (5.35)

and

pVφaqpX,Y q “ π´d
ż

R2d

apZqφpZ ´ Y qe2iσpX,Zq dZ. (5.36)

By straight-forward computations, using Fourier’s inversion formula, it fol-
lows that Fσ “ T ˝ pF b pF´1qq, when pTaqpx, ξq “ apξ, xq, F 2

σ and

pVφaqpX,Y q “ 2dpVφaqpx, ξ,´2η, 2yq, X “ px, ξq P R2d, Y “ py, ηq P R2d.
(5.37)

In particular, all continuity and extension properties valid for the usual
Fourier transform and short-time Fourier transform carry over to their sym-
plectic relatives. For example, Fσ is continuous on SspR2dq, and extends
uniquely to a homeomorphism on S 1spR2dq, and to a unitary map on L2pR2dq,
since similar facts hold for F .
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For any p, q P p0,8s, ω P PEpR2d ˆ R2dq and a P Σ11pR2dq, let }a}Mp,q
pωq

be defined by (5.31) after Vφf is replaced by Vφa. Then the symplectic
modulation space M

p,q
pωqpR

2dq consists of all a P Σ11pR2dq such that }a}Mp,q
pωq

is

finite.
By (5.37) it follows that

M
p,q
pωqpR

2dq “Mp,q
pω0q
pR2dq when ωpx, ξ, y, ηq “ ω0px, ξ,´2η, 2yq.

Hence, the symplectic modulation spaces are merely other ways to formulate
the modulation spaces considered in the first part of the subsection.

5.7 A broader family of modulation spaces

In Chapter 6 we consider mapping properties for pseudo-differential opera-
tors when acting on a broad class of modulation spaces which are defined by
imposing (quasi-)norm conditions on the involved short-time Fourier trans-
forms of the forms given in the following definition. (Cf. [54–58,60,62].)

Definition 5.25. Let B Ď LrlocpRdq be a quasi-Banach space of order r P
p0, 1s, or an r-norm, and let v P PEpRdq. Then B is called a translation
invariant Quasi-Banach Function space on Rd, or invariant QBF space on
Rd, if the following conditions are fulfilled:

(1) If x P Rd and f P B, then fp ¨ ´ xq P B, and

}fp ¨ ´ xq}B À vpxq}f}B. (5.38)

(2) If f, g P LrlocpRdq satisfy g P B and |f | ď |g|, then f P B and

}f}B À }g}B.

Note that a quasi-Banach space is a complete quasi-normed vector space.

Definition 5.26. Assume that B is a translation invariant QBF-space on
R2d, ω P PEpR2dq, and that φ P Σ1pRdqz0. Then, the modulation space
Mpω,Bq consists of all f P Σ11pRdq such that

}f}Mpω,Bq ” }Vφf ω}B

is finite.

If v belongs to PE,spRdq (P0
E,spRdq), then B in Definition 5.25 is called

an invariant BF-space of Roumieu type (Beurling type) of order s.
It follows from (2) in Definition 5.25 that if f P B and h P L8, then

f ¨ h P B, and
}f ¨ h}B À }f}B}h}L8 . (5.39)
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If r “ 1, then B in Definition 5.25 is a Banach space. The space B in
Definition 5.25 is called an invariant BF-space (with respect to v) if r “ 1,
and Minkowski’s inequality holds true, i. e. f ˚ ϕ P B when f P B and
ϕ P Σ1pRdq, and

}f ˚ ϕ}B À }f}B}ϕ}L1
pvq
, f P B, ϕ P Σ1pRdq. (5.40)

Example 5.27. Assume that p, q P r1,8s, and let Lp,q1 pR2dq be the set of
all f P L1

locpR2dq such that

}f}Lp,q1
”

´

ż

Rd

´

ż

Rd
|fpx, ξq|p dx

¯q{p
dξ
¯1{q

if finite. Also, let Lp,q2 pR2dq be the set of all f P L1
locpR2dq such that

}f}Lp,q2
”

´

ż

Rd

´

ż

Rd
|fpx, ξq|q dξ

¯p{q
dx

¯1{p

is finite. Then, it follows that Lp,q1 and Lp,q2 are translation invariant BF-
spaces with respect to v “ 1.

We observe that Mp,q
pωqpR

dq “ Mpω,Bq when B is equal to Lp,q1 pR2dq

from Example 5.27. It follows that many properties which are valid for the
classical modulation spaces also hold for the spaces of the formMpω,Bq. For
example we have the following proposition, which shows that the definition
of Mpω,Bq is independent of the choice of φ when B is a Banach space.
The completeness assertions follows from [96], and the other parts follow by
similar arguments as in the proof of Proposition 11.3.2 in [67], (see also [96]
for topological aspects of Mpω,Bq).

Proposition 5.28. Let B be an invariant BF-space with respect to v0 P

PEpR2dq.Also let ω, v P PEpR2dq be such that ω is v-moderate, Mpω,Bq is
the same as in Definition 5.26, and let φ P M1

pv0vq
pRdqz0 and f P Σ11pRdq.

Then Mpω,Bq is a Banach space, and f P Mpω,Bq if and only if Vφf ω P
B. Moreover different choices of φ gives rise to equivalent norms in Mpω,Bq.

We refer to [54–58, 60, 62, 63, 67, 102, 122] for more facts about modu-
lation spaces. For translation invariant BF-spaces we make the following
observation.

Proposition 5.29. Assume that v P PEpRdq, and that B is an invariant
BF-space with respect to v such that (5.40) holds true. Then, the convolution
mapping pϕ, fq ÞÑ ϕ ˚ f from C80 pRdq ˆ B to B extends uniquely to a
continuous mapping from L1

pvqpR
dqˆB to B, and (5.40) holds true for any

f P B and ϕ P L1
pvqpR

dq.
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The result is a straightforward consequence of (5.40) and the fact that
Σ1 is dense in L1

pvq.
The quasi-Banach space B above is, usually, a mixed quasi-normed

Lebesgue space, given as follows. Let E be the ordered basis te1, . . . , edu of
Rd. Then the ordered basis E1 “ te11, . . . , e

1
du (the dual basis of E) satisfies

xej , e
1
ky “ 2πδjk for every j, k “ 1, . . . , d.

The corresponding parallelepiped, lattice, dual parallelepiped and dual lat-
tice are given by

κpEq “ tx1e1 ` ¨ ¨ ¨ ` xded ; px1, . . . , xdq P Rd, 0 ď xk ď 1, k “ 1, . . . , d u,

ΛE “ t j1e1 ` ¨ ¨ ¨ ` jded ; pj1, . . . , jdq P Zd u,

κpE1q “ t ξ1e
1
1 ` ¨ ¨ ¨ ` ξde

1
d ; pξ1, . . . , ξdq P Rd, 0 ď ξk ď 1, k “ 1, . . . , d u,

and

Λ1E “ ΛE1 “ t ι1e
1
1 ` ¨ ¨ ¨ ` ιde

1
d ; pι1, . . . , ιdq P Zd u,

respectively. Note here that the Fourier analysis with respect to general
biorthogonal bases has recently been developed in [103].

We observe that there is a matrix TE such that e1, . . . , ed and e11, . . . , e
1
d

are the images of the standard basis under TE and TE1 “ 2πpT´1
E qt, respec-

tively.
In the sequel we let

max q “ maxpq1, . . . , qdq and min q “ minpq1, . . . , qdq

when q “ pq1, . . . , qdq P p0,8s
d.

Definition 5.30. Let E be an ordered basis of Rd, p “ pp1, . . . , pdq P p0,8s
d

and r “ minp1,pq. If f P LrlocpRdq, then }f}Lp
E

is defined by

}f}Lp
E
” }gd´1}Lpd pRq

where gkpzkq, zk P Rd´k, k “ 0, . . . , d´ 1, are inductively defined as

g0px1, . . . , xdq ” |fpx1e1 ` ¨ ¨ ¨ ` xdedq|,

and

gkpzkq ” }gk´1p ¨ , zkq}Lpk pRq, k “ 1, . . . , d´ 1.

The space Lp
EpR

dq consists of all f P LrlocpRdq such that }f}Lp
E

is finite, and

is called E-split Lebesgue space (with respect to p).
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For the next definition we recall that σpX,Y q denotes the standard sym-
plectic form on the phase space (cf. (5.32)).

Definition 5.31. Let E “ te1, . . . , e2du be an ordered basis of R2d and let
E0 “ te1, . . . , edu. Then E0 is called a phase split of E, if

σpej , ekq “ 0, σpej , ed`kq “ ´2πδj,k, and σped`j , ed`kq “ 0

when j, k P t1, . . . , du.

If (5.33) is the standard basis of R2d and ed`j “ 2πεj for j P t1, . . . , du,
then (5.34) shows that te1, . . . , edu is a phase split of te1, . . . , e2du.

The following definition takes care of our most common QBF-spaces.

Definition 5.32. The space B is called a normal QBF-space (on R2d) if it is
either an invariant BF-space on R2d or B “ Lp

EpR
2dq for some p P p0,8s2d

and phase split basis E of R2d.

5.8 Pseudo-differential operators with symbols on
the Gelfand-Shilov classes

We use the notation Mpd,Ωq for the set of d ˆ d-matrices with entries in
the set Ω. Let s ě 1{2, a P SspR2dq, and A P Mpd,Rq be fixed. Then, the
pseudo-differential operator OpApaq is the linear and continuous operator
on SspRdq given by

pOpApaqfqpxq “ p2πq
´d

ĳ

R2d

apx´Apx´ yq, ξq fpyq eixx´y,ξy dydξ (5.41)

when f P SspRdq. For general a P S 1spR2dq, the pseudo-differential operator
OpApaq is defined as the continuous operator from SspRdq to S 1spRdq with
distribution kernel given by

Ka,Apx, yq “ p2πq
´ d

2 pF´1
2 aqpx´Apx´ yq, x´ yq. (5.42)

Here F2F is the partial Fourier transform of F px, yq P S 1spR2dq with respect
to the y variable. This definition makes sense, since the mappings

F2 and F px, yq ÞÑ F px´Apx´ yq, y ´ xq (5.43)

are homeomorphisms on S 1spR2dq. In particular, the map a ÞÑ Ka,A is a
homeomorphism on S 1spR2dq.

Remark 5.33. For any K P S 1spRd2`d1q, let TK be the linear and continuous
mapping from SspRd1q to S 1spRd2q, defined by the formula

pTKf, gqL2pRd2 q “ pK, g b fqL2pRd2`d1 q. (5.44)
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It is well-known (see e. g., [29, 90]), that the Schwartz kernel theorem also
holds in the context of Gelfand-Shilov spaces.

In fact, let LpV1, V2q be the set of linear continuous mappings from the
topological vector space V1 to the topological vector space V2. Moreover, if
Vj are quasi-Banach spaces, then } ¨ }LpV1,V2q denotes the quasi-norm in
LpV1, V2q. We also set LpV q “ LpV, V q.

If A P Mpd,Rq, then the mappings K ÞÑ TK and a ÞÑ OpApaq are
homeomorphisms from S 1spR2dq to LpSspRdq,S 1spRdqq. Similar facts hold true
if Ss and S 1s are replaced by Σs and Σ1s, respectively (or by S and S 1,
respectively).

As a consequence of Remark 5.33 it follows that for each a1 P S 1spR2dq

and A1, A2 P Mpd,Rq, there is a unique a2 P S 1spR2dq such that OpA1
pa1q “

OpA2
pa2q. The relation between a1 and a2 is given by

OpA1
pa1q “ OpA2

pa2q ô a2px, ξq “ eixpA1´A2qDξ,Dxya1px, ξq,
(5.45)

(cf. [80]). Note here that the right-hand side makes sense, since it is equiv-
alent to pa2pξ, xq “ eipA1´A2qxx,ξy

pa1pξ, xq, and that the map a ÞÑ eixAx,ξya is
continuous on S 1s when A P Mpd,Rq.

Let A P Mpd,Rq and a P S 1spR2dq be fixed. Then a is called a rank-one
element with respect to A, if the corresponding pseudo-differential operator
is of rank-one, i. e.

OpApaqf “ pf, f2qf1, f P SspRdq, (5.46)

for some f1, f2 P S 1spRdq. By straightforward computations it follows that

(5.46) is fulfilled, if and only if a “ p2πq
d
2WA

f1,f2
, where WA

f1,f2
it the A-

Wigner distribution defined by the formula

WA
f1,f2px, ξq ” F pf1px`A ¨ qf2px´ pId ´Aq ¨ qqpξq, (5.47)

which takes the form

WA
f1,f2px, ξq “ p2πq

´ d
2

ż

Rd
f1px`Ayqf2px´ pId ´Aqyqe

´ixy,ξy dy,

when f1, f2 P SspRdq. Here Id P Mpd,Rq is the identity matrix. By combin-
ing these facts with (5.45) it follows that

WA2
f1,f2

“ eixpA1´A2qDξ,DxyWA1
f1,f2

, (5.48)

for each f1, f2 P S 1spRdq and A1, A2 P Mpd,Rq. Since the Weyl case is
particularly important, we set WA

f1,f2
“Wf1,f2 when A “ 1

2Id, i. e. Wf1,f2 is
the usual (cross-)Wigner distribution of f1 and f2.



102 Modulation spaces

For future references we note the link

pOpApaqf, gqL2pRdq “ p2πq
´ d

2 pa,WA
g,f qL2pR2dq,

a P S 1spR2dq and f, g P SspRdq (5.49)

between pseudo-differential operators and Wigner distributions, which fol-
lows by straightforward computations (see also e. g. [124]).

Next we discuss the Weyl product, the twisted convolution and related
objects. Let s ě 1{2 and let a, b P S 1spR2dq. Then the Weyl product a#b
between a and b is the function or distribution which fulfills Opwpa#bq “
Opwpaq ˝Opwpbq, provided the right-hand side makes sense as a continuous
operator from SspRdq to S 1spRdq. More generally, if A P Mpd,Rq, then the
product #A is defined by the formula

OpApa#Abq “ OpApaq ˝OpApbq, (5.50)

provided the right-hand side makes sense as a continuous operator from
SspRdq to S 1spRdq, in which case a and b are called suitable or admissible.

The Weyl product can also, in a convenient way, be expressed in terms
of the symplectic Fourier transform and the twisted convolution. More pre-
cisely, let s ě 1{2.

Definition 5.34. The symplectic Fourier transform for a P SspR2dq is de-
fined by the formula

pFσaqpXq “ π´d
ż

R2d

apY qe2iσpX,Y q dY, (5.51)

where σ is the symplectic form given by

σpX,Y q “ xy, ξy ´ xx, ηy, X “ px, ξq P R2d, Y “ py, ηq P R2d.

We note that Fσ “ T ˝ pF b pF´1qq, when pTaqpx, ξq “ ap2ξ, 2xq. In
particular, Fσ is continuous on SspR2dq, and extends uniquely to a homeo-
morphism on S 1spR2dq, and to a unitary map on L2pR2dq, since similar facts
hold true for F . Furthermore, F 2

σ is the identity operator.

Let s ě 1{2 and a, b P SspR2dq.

Then the twisted convolution of a and b is defined by the formula

pa ˚σ bqpXq “

ˆ

2

π

˙
d
2
ż

R2d

apX ´ Y qbpY qe2iσpX,Y q dY. (5.52)

The definition of ˚σ extends in different ways. For example, it extends to a
continuous multiplication on LppR2dq when p P r1, 2s, and to a continuous



Modulation spaces 103

map from S 1spR2dq ˆ SspR2dq to S 1spR2dq. If a, b P S 1spR2dq, then a#b makes
sense if and only if a ˚σ pb makes sense, and then

a#b “ p2πq´
d
2 a ˚σ pFσbq. (5.53)

We also remark that for the twisted convolution we have

Fσpa ˚σ bq “ pFσaq ˚σ b “ ǎ ˚σ pFσbq, (5.54)

where ǎpXq “ ap´Xq (cf. [113, 119, 121]). A combination of (5.53) and
(5.54) gives

Fσpa#bq “ p2πq´
d
2 pFσaq ˚σ pFσbq. (5.55)

We use the notation M
p,q
pωq instead of Mp,q

pωq, for p, q P r1,8s, if the sym-

plectic short-time Fourier transform is used in the definition of modulation
space norm. That is, if ϕ P S pR2dqzt0u and ω P PpR2d ‘ R2dq, then
M
p,q
pωqpR

2dq consists of all a P S 1pR2dq such that

}a}Mp,q
pωq
”

´

ż

R2d

´

ż

R2d

|VϕapX,Y qωpX,Y q|p dX
¯q{p

dY
¯1{q

ă `8 .

The symplectic definition of modulation spaces does not yield any new
spaces. In fact, setting ωpX,Y q “ ω0pX,´2η, 2yq for X P R2d and Y “

py, ηq P R2d, it follows from the definition that M
p,q
pωq “ Mp,q

pω0q
with equiva-

lent norms.
Next we recall some notions on Hörmander symbol classes, Spω, gq, pa-

rameterized by the Riemannian metric g and the weight function ω on the
2d dimensional symplectic vector space W (see e. g. [14,16,78,81,88,115]).

The Hörmander class Spω, gq consists of all a P C8pW q such that

}a}gω,N ”
N
ÿ

k“0

sup
XPW

p|a|gkpXq{ωpXqq ă 8,

where

|a|gkpXq “ sup |apkqpX;Y1, . . . , Ykq|,

and apkq denotes the kth differential of a at X.
Here the latter supremum is taken over all Y1, . . . , Yk PW such that gXpYjq ď
1, j “ 1, . . . , k, and |a|g0pXq is interpreted as |apXq|.

We need to add some conditions on ω and g. The metric g is called
slowly varying if there are positive constants c and C such that

C´1gX ď gY ď CgX , when X,Y PW (5.56)

satisfy gXpX ´ Y q ď c, and ω is called g-continuous when (5.56) holds with
ωpXq and ωpY q in place of gX and gY , respectively, provided gXpX´Y q ď c.
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For the Riemannian metric g on W , the dual metric gσ with respect to
the symplectic form σ, and the Planck’s function hg are defined by

gσXpZq ” sup
gXpY qď1

σpY, Zq2 and hgpXq ” sup
gσXpY qď1

gXpY q
1{2.

Moreover, if g is slowly varying and ω is g-continuous, then g is called σ-
temperate if there are positive constants C and N such that

gY pZq ď CgXpZqp1` gY pX ´ Y qq
N , X, Y, Z PW, (5.57)

and ω is called pσ, gq-temperate if it is g-continuous and (5.57) holds with
ωpXq and ωpY q in place of gXpZq and gY pZq, respectively.

Definition 5.35. Let

}a}sw8 ” }Opwpaq}LpL2pRdq, a P S 1pR2dq.

The set sw8pR2dq consists of all a P S 1pR2dq such that Opwpaq is linear and
continuous on L2pRdq, or equivalently, the set of all a P S 1pR2dq such that
}a}sw8 is finite.

Remark 5.36. By Remark 5.33 it follows that the map a ÞÑ Opwpaq is an
isometric bijection from sw8pR2dq to the set of linear continuous operators
on L2pRdq.

Remark 5.37. We remark that the relations in this section hold true after
Ss, S 1s and s ě 1

2 are replaced by Σs, Σ1s and s ą 1
2 respectively, in each

place.

Next we recall some algebraic properties and characterisations of Γ
pωq
s pR2dq

and Γ
pωq
0,s pR2dq, and begin with the following Proposition 5.38.

The proof can be founded in [24].

Proposition 5.38. Let s ě 1, ωj P P0
E,spR2dq, Aj P Mpd,Rq for j “

0, 1, 2, and let ω0,rpX,Y q “ ω0pXqe
´r|Y |

1
s when r ą 0. Then the following

statements hold true:

(1) If a1, a2 P Σ1spR2dq satisfy OpA1
pa1q “ OpA2

pa2q, then a1 P Γ
pω0q
s pR2dq

if and only if a2 P Γ
pω0q
s pR2dq.

(2) Γ
pω1q
s #Γ

pω2q
s Ď Γ

pω1ω2q
s .

(3) Γpω0q
s “

ď

rą0

M8,1
p1{ω0,rq

“
ď

rě0

M
8,1
p1{ω0,rq

.

Proposition 5.39. Let s ě 1, ωj P PE,spR2dq, Aj P Mpd,Rq for j “

0, 1, 2, and let ω0,rpX,Y q “ ω0pXqe
´r|Y |

1
s when r ą 0. Then the following

properties hold true:
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(1) If a1, a2 P Σ1spR2dq satisfy OpA1
pa1q “ OpA2

pa2q, then a1 P Γ
pω0q

0,s pR2dq

if and only if a2 P Γ
pω0q

0,s pR2dq.

(2) Γ
pω1q

0,s #Γ
pω2q

0,s Ď Γ
pω1ω2q

0,s .

(3) Γ
pω0q

0,s “
č

rą0

M8,1
p1{ω0,rq

“
č

rě0

M
8,1
p1{ω0,rq

.

In time-frequency analysis one often considers mapping properties for
pseudo-differential operators between modulation spaces or with symbols in
modulation spaces. Especially we need the following two results, where the
first one is a generalisation of [109, Theorem 2.1] by Tachizawa, and the
second one is a weighted version of [67, Theorem 14.5.2]. We refer to [126]
for the proof of the first two propositions and to [126] for the proof of the
third one.

Proposition 5.40. Assume that A P Mpd,Rq, s ě 1, ω, ω0 P P0
E,spR2dq,

a P Γ
pωq
s pR2dq, and that B is an invariant BF-space on R2d of Beurling

type. Then OpApaq is continuous from Mpω0ω,Bq to Mpω0,Bq, and also
continuous on SspRdq and on S 1spRdq.

Proposition 5.41. Assume that A P Mpd,Rq, s ě 1, ω, ω0 P PE,spR2dq,

a P Γ
pωq
0,s pR2dq, and that B is an invariant BF-space on R2d of Roumieu

type. Then OpApaq is continuous from Mpω0ω,Bq to Mpω0,Bq, and also
continuous on ΣspRdq and on Σ1spRdq.

Proposition 5.42. Assume that p, q P p0,8s, r ď minpp, q, 1q, ω P PEpR2d‘

R2dq and ω1, ω2 P PEpR2dq satisfy

ω2pX ´ Y q

ω1pX ` Y q
ď CωpX,Y q, X, Y P R2d, (5.58)

for some constant C. If a PM
8,r
pωq pR

2dq, then Opwpaq extends uniquely to a

continuous map from Mp,q
pω1q
pRdq to Mp,q

pω2q
pRdq.

Finally we need the following result concerning mapping properties of
modulation spaces under the Weyl product. The result is a special case of
Theorem in [30, Theorem 2.1] (see also [40, Theorem 0.3]).

Proposition 5.43. Assume that ωj P PEpR2d‘R2dq for j “ 0, 1, 2 satisfy

ω0pX,Y q ď Cω1pX ´ Y ` Z,Zqω2pX ` Z, Y ´ Zq, (5.59)

for some constant C ą 0 independent of X,Y, Z P R2d, and let r P p0, 1s.
Then the map pa, bq ÞÑ a#b from Σ1pR2dq ˆ Σ1pR2dq to Σ1pR2dq extends
uniquely to a continuous mapping from M

8,r
pω1q
pR2dqˆM

8,r
pω2q
pR2dq to M

8,r
pω0q
pR2dq.
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5.9 The Wiener algebra property

As a further crucial tool in our study of the isomorphism property of Toeplitz
operators we need to combine these continuity results with convenient invert-
ibility properties. The so-called Wiener algebra property of certain symbol
classes asserts that the inversion of a pseudo-differential operator preserves
the symbol class and is often referred to as the spectral invariance of a
symbol class.

Proposition 5.44. Let A P Mpd,Rq. Then, the following properties hold
true:

(1) If s ą 1, a P Γ
p1q
0,spR2dq and OpApaq is invertible on L2pRdq, then

OpApaq
´1 “ OpApbq for some b P Γ

p1q
0,spR2dq.

(2) If s ě 1, a P Γ
p1q
s pR2dq and OpApaq is invertible on L2pRdq, then

OpApaq
´1 “ OpApbq for some b P Γ

p1q
s pR2dq.

(3) If s ě 1, v0 P P0
E,spR2dq is submultiplicative, vpX,Y q ” v0pY q, X,Y P

R2d, a PM8,1
pvq pR

2dq and OpApaq is invertible on L2pRdq, then OpApaq
´1 “

OpApbq, for some b PM8,1
pvq pR

2dq.

Proof. The results follows essentially from [68, Corollary 5.5] or [69]. Sup-

pose s ą 1, a P Γ
p1q
s pR2dq, OpApaq is invertible on L2pRdq, and let vrpX,Y q “

er|Y |
1
s when r ě 0. Then a P M8,1

pvrq
pR2dq for some r ą 0. By [68, Corollary

5.5], OppM8,1
pvrq
pR2dqq is a Wiener algebra, giving that Oppaq´1 “ Oppbq for

some b PM8,1
pvrq
pR2dq Ď Γ

p1q
s pR2dq. This gives (2) in the case s ą 1.

If instead s “ 1, then by [61, Theorem 4.4] there is an r0 ą 0 such that

Oppaq´1 “ Oppbq for some b P M8,1
pvr0 q

pR2dq Ď Γ
p1q
1 pR2dq, and (2) follows for

general s ě 1.
By similar arguments, (1) and (3) follow.

Remark 5.45. Let A P Mpd,Rq. Then it follows from Proposition 5.44 (3)
that if s ą 1, v0 P PE,spR2dq is submultiplicative, vpX,Y q ” v0pY q, X,Y P

R2d, a P M8,1
pvq pR

2dq and OpApaq is invertible on L2pRdq, then OpApaq
´1 “

OpApbq, for some b PM8,1
pvq pR

2dq.

5.10 Toeplitz operators

Fix a symbol a P Σ1pR2dq and a window φ P Σ1pRdq. Then the Toeplitz
operator Tpφpaq is defined by the formula

pTpφpaqf1, f2qL2pRdq “ pa Vφf1, Vφf2qL2pR2dq , (5.60)
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when f1, f2 P Σ1pRdq. Tpφpaq is well-defined and extends uniquely to a

continuous operator from Σ11pRdq to Σ1pRdq.
The definition of Toeplitz operators can be extended to more general

classes of windows and symbols by using appropriate estimates for the short-
time Fourier transforms in (5.60).

We state two possible ways of extending (5.60). The first result follows
from [36, Corollary 4.2] and its proof, and the second result is a special case
of [127, Theorem 3.1]. We also set

ω0,tpX,Y q “ v1p2Y q
t´1ω0pXq for X,Y P R2d . (5.61)

Proposition 5.46. Let 0 ď t ď 1, p, q P r1,8s, and ω, ω0, v1, v0 P PEpR2dq

be such that v0 and v1 are submultiplicative, ω0 is v0-moderate and ω is
v1-moderate. Set

v “ vt1v0 and ϑ “ ω
1{2
0 ,

and let ω0,t be as in (5.61). Then the following statements hold true:

(1) The definition of pa, φq ÞÑ Tpφpaq from Σ1pR2dq ˆΣ1pRdq to LpΣ1pRdq,
Σ11pRdqq extends uniquely to a continuous map from M8

p1{ω0,tq
pR2dq ˆ

M1
pvqpR

dq to LpS pRdq,S 1pRdqq.

(2) If φ PM1
pvqpR

dq and a PM8
p1{ω0,tq

pR2dq, then Tpφpaq extends uniquely to

a continuous map from Mp,q
pϑωqpR

dq to Mp,q
pω{ϑqpR

dq.

Proposition 5.47. Let ω, ω1, ω2, v P PEpR2dq be such that ω1 is v-moderate,
ω2 is v-moderate and ω “ ω1{ω2. Then the following statements hold true:

(1) The mapping pa, φq ÞÑ Tpφpaq extends uniquely to a continuous map

from L8
pωqpR

2dq ˆM2
pvqpR

dq to LpΣ1pRdq,Σ11pRdqq.

(2) If φ PM2
pvqpR

dq and a P L8
p1{ωqpR

2dq, then Tpφpaq extends uniquely to a

continuous operator from M2
pω1q
pRdq to M2

pω2q
pRdq.

We finish this chapter by recalling an important relations between Weyl
operators, Wigner distributions, and Toeplitz operators. Namely, the Weyl
symbol of a Toeplitz operator is the convolution between the Toeplitz symbol
and a Wigner distribution. Explicitly, if a P Σ1pR2dq and φ P Σ1pRdq, then

Tpφpaq “ p2πq
´ d

2 Opwpa ˚Wφ,φq . (5.62)





Chapter 6

Confinement property for
Gelfand-Shilov type symbol
classes

In this chapter we introduce and discuss basic properties of confinements

for symbols in Γ
pω0q
s and in Γ

pω0q

0,s . These considerations are related to the
discussions in [14,89], but are here adapted to symbols that possess Gevrey
regularity. In particular, this requires the deduction of various types of
delicate estimates on compositions of symbols that are confined in certain
ways.

6.1 Estimates of translated and localised Weyl prod-
ucts

In what follows we let aY “ ap ¨ ´Y q when a P S 11{2pR
2dq and Y P R2d, and in

analogous ways, bY , φY , ϕY , ψY etc. are defined when b, φ, ϕ, ψ P S 11{2pR
2dq.

For admissible a and b we have

pa#bqY “ aY #bY , (6.1)

which follows by straightforward computations. We also recall that if ϕ P
SspR2dq, then there are functions φ, ψ P SspR2dq such that ϕ “ φ#ψ. The
same is true if Ss is replaced by Σs or by S (cf. [29,128]). In particular, by
choosing ϕ such that

ş

R2d ϕpXq dX “ 1, (6.1) gives the following.

Proposition 6.1. Let s ě 1
2 . Then there are φ, ψ P SspR2dq such that

ż

R2d

ψY #φY dY “ 1. (6.2)

For independent translations in Weyl products we have the following.
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Proposition 6.2. Let s ě 1
2 and let φ, ψ P SspR2dq. Then

pφY #ψZqpXq “ ΨpX ´ Y,X ´ Zq (6.3)

for some Ψ P SspR2d ˆR2dq. The same holds true with Σs or S in place of
Ss.

Proof. We only prove the result when φ, ψ P SspR2dq. The other cases follow
by similar arguments.

We have

pφY #ψZqpXq “ π´d
ż

R2d

φpX ´ Y ´ Y1q pψpY1qe
2iσpY1,Zqe2iσpX,Y1q dY1

“ π´d
ż

R2d

φppX ´ Y q ´ Y1q pψpY1qe
2iσpX´Z,Y1q dY1 “ ΨpX ´ Y,X ´ Zq,

where

ΨpX,Zq “ π´d
ż

R2d

φpX ´ Y1q pψpY1qe
2iσpZ,Y1q dY1.

We note that

Ψ “ pFσ,2 ˝ T qpφb pψq,

where pTΦqpX,Zq “ ΦpX ´ Z,Zq when Φ P SspR2d ˆ R2dq, and Fσ,2Φ is
the partial symplectic Fourier transform of ΦpX,Zq with respect to the Z
variable. Since pφ, ψq ÞÑ φ b pψ is continuous from SspR2dq ˆ SspR2dq to
SspR2dˆR2dq, and T and Fσ,2Φ are continuous on SspR2dˆR2dq, it follows
that Ψ P SspR2d ˆ R2dq.

Since Ψ in Proposition 6.2 belongs to similar types of spaces as φ and
ψ, it follows that estimates of the form

|DαΨpX,Y q| À h|α|α!se´p|X|
1
s`|Y |

1
s q{h

hold true. In particular, the following Corollary 6.3 is an immediate con-
sequence of Proposition 6.2 and some standard manipulations in Gelfand-
Shilov theory.

Corollary 6.3. Let s ě 1
2 . If φ, ψ P SspR2dq (φ, ψ P ΣspR2dq), then

|Dα
XD

β
YD

γ
ZpφY #ψZqpXq| À h|α`β`γ|pα!β!γ!qse´p|X´Y |

1
s`|X´Z|

1
s q{h (6.4)

for some h ą 0 (for every h ą 0).
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Proof. By Proposition 6.2, (6.3) holds true for some Ψ P SspR2d ˆ R2dq.
Thus

|Dα
XD

β
YD

γ
ZΨpX ´ Y,X ´ Zq| “

ˇ

ˇ

ˇ
Dα
X

´

Dβ
1D

γ
2 Ψ

¯

pX ´ Y,X ´ Zq
ˇ

ˇ

ˇ

ď
ÿ

δďα

ˆ

α

δ

˙

ˇ

ˇ

ˇ

´

Dβ`δ
1 Dγ`α´δ

2 Ψ
¯

pX ´ Y,X ´ Zq
ˇ

ˇ

ˇ

ď h|α`β`γ|
ÿ

δďα

ˆ

α

δ

˙

ppβ ` δq!pγ ` α´ δq!qs e
´r

´

|X´Y |
1
s`|X´Z|

1
s

¯

.

We have

ÿ

δďα

ˆ

α

δ

˙

ppβ ` δq!pγ ` α´ δq!qs

ď
ÿ

δďα

ˆ

α

δ

˙ˆ

β ` δ

δ

˙sˆγ ` α´ δ

α´ δ

˙s

pβ!δ!qspγ!pα´ δq!qs

ď
ÿ

δďα

ˆ

α

δ

˙ˆ

β ` δ

δ

˙sˆγ ` α´ δ

α´ δ

˙s

β!sγ!s
ˆ

α

δ

˙´s

α!s

ď
ÿ

δďα

ˆ

α

δ

˙ˆ

β ` δ

δ

˙sˆγ ` α´ δ

α´ δ

˙sˆα

δ

˙´s

pα!β!γ!qs

ď 2|α|2s|α`β`γ| pα!β!γ!qs .

Indeed, by using the fact that
ř

δďα

`

α
δ

˘

“ 2|α| and that n! ď 2npn ´ kq!k!,

which implies pn`kq! ď 2n`kn!k!. Thus (6.4) holds true with 2 ¨2sh in place
of h.

The next result is a consequence of Theorem 4.12 in [24].

Proposition 6.4. Let s ě 1
2 and ϑ P PEpR2dq. Then, the map pφ, aq ÞÑ

φ#a is continuous from ΣspR2dq ˆ Γ
pϑq
s pR2dq to SspR2dq.

The next lemma concerns uniform estimates of the Weyl product between
elements in sets

t ajp ¨ ` Y, Y q ; Y P R2d u, j “ 1, 2 (6.5)

which are bounded in SspR2dq or in ΣspR2dq, j “ 1, 2.

Lemma 6.5. Let s ě 1
2 . Then, the following statements hold true:

(1) If the sets in (6.5) are bounded in SspR2dq, then there are constants C ą
0 and h ą 0 which are independent of Y1, Y2 P R2d and α, α1, α2 P Z2d

`
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such that

|ppDα1
1 a1qp ¨ , Y1q#pD

α2
1 a2qp ¨ , Y2qqpXq|

ď Ch|α1`α2|pα1!α2!qse´
1
h
¨p|X´Y1|

1
s`|X´Y2|

1
s`|Y1´Y2|

1
s q

(6.6)

and

|Dα
1 pa1p ¨ , Y1q#a2p ¨ , Y2qqpXq|

ď Ch|α|α!se´
1
h
¨p|X´Y1|

1
s`|X´Y2|

1
s`|Y1´Y2|

1
s q (6.7)

hold true.

(2) If the sets in (6.5) are bounded in ΣspR2dq, then for every h ą 0, there
is a constant C ą 0 which is independent of Y1, Y2 P R2d and α, α1, α2 P

Z2d
` such that (6.6) and (6.7) hold.

Proof. We only prove (2). The assertion (1) follows by similar arguments.
Let Y “ Y1, Z “ Y2, apX,Y q “ a1pX`Y, Y q and bpX,Zq “ a2pX`Z,Zq.

Then

pa1p ¨ , Y q#a2p ¨ , ZqqpXq

“ π´d
ż

R2d

appX ´ Y q ´ Y1, Y qFσpbp ¨ ´ Z,ZqqpY1qe
2iσpX,Y1q dY1

“ π´d
ż

R2d

appX ´ Y q ´ Y1, Y qFσpbp ¨ , ZqqpY1qe
2iσpX´Z,Y1q dY1

“ ΦY,ZpX ´ Y,X ´ Zq,

where

ΦY,ZpX1, X2q “ π´d
ż

R2d

apX1 ´ Y1, Y qFσpbp ¨ , ZqqpY1qe
2iσpX2,Y1q dY1.

We observe that

Dα1
X1
Dα2
X2

ΦY,ZpX1, X2q

“ π´d
ż

R2d

pDα1
1 aqpX1 ´ Y1, Y qFσppD

α2
1 bqp ¨ , ZqqpY1qe

2iσpX2,Y1q dY1. (6.8)

which implies that the Leibnitz rule

Dα
1 pa1p ¨ , Y q#a2p ¨ , ZqqpXq “

ÿ

γďα

ˆ

α

γ

˙

pDα´γ
1 Dγ

2 ΦY,ZqpX ´ Y,X ´ Zq

“
ÿ

γďα

ˆ

α

γ

˙

π´d
ż

R2d

pDα´γ
1 aqpX1´Y1, Y qFσppD

γ
1bqp ¨ , ZqqpY1qe

2iσpX2,Y1q dY1

(6.9)
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holds true. We also have

ΦY,Z “ pT1 ˝ T2 ˝ T1qpap ¨ , Y q b bp ¨ , Zqq,

where

pT1F qpX1, X2q “ FσpF pX1, ¨ qqpX2q

and

pT2F qpX1, X2q “ F pX1 ´X2, X2q,

for admissible F , and observe that both T1 and T2 are continuous mappings
on ΣspR2d ˆ R2dq.

By the continuity of T1 and T2 on Σs, it follows that

sup
Y,ZPR2d

|Dα1
X1
Dα2
X2

ΦY,ZpX1, X2q| À h|α1`α2|pα1!α2!qse´
1
h
¨p|X1|

1
s`|X2|

1
s q,

which is the same as

|pDα1
1 a1p ¨ , Y qq#pD

α2
1 a2qp ¨ , ZqqpXq|

À h|α1`α2|pα1!α2!qse´
1
h
¨p|X´Y |

1
s`|X´Z|

1
s q

for every h ą 0, where the involved constants are independent of Y,Z P R2d.
A combination of the latter estimate and the fact that

|X´Y |
1
s`|X´Z|

1
s — |X´Y |

1
s`|X´Z|

1
s`|Y ´Z|

1
s , X, Y, Z P R2d, (6.10)

shows that (6.6) holds true for every h ą 0.
By (6.6), (6.8), (6.10), observing that

ÿ

γďα

ˆ

α

γ

˙

ppα´ γq!γ!qs “
ÿ

γďα

ˆ

α

γ

˙

¨

ˆ

α

γ

˙´s

¨ α!s ď
ÿ

γďα

2|α|s
ˆ

α

γ

˙

ď 2|α|ps`1q,

and the inequality pα` βq! ď 2|α`β|α!β! we get

|Dα
1 pa1p ¨ , Y q#a2p ¨ , ZqqpXq|

ď
ÿ

γďα

ˆ

α

γ

˙

|pDα´γ
1 Dγ

2 ΦY,ZqpX ´ Y,X ´ Zq|

À h|α|
ÿ

γďα

ˆ

α

γ

˙

ppα´ γq!γ!qse´
1
h
¨p|X´Y |

1
s`|X´Z|

1
s q`|Y´Z|

1
s q

ď p2shq|α|

˜

ÿ

γďα

ˆ

α

γ

˙

¸

e´
1
h
¨p|X´Y |

1
s`|X´Z|

1
s q`|Y´Z|

1
s q

“ p2s`1hq|α|e´
1
h
¨p|X´Y |

1
s`|X´Z|

1
s q`|Y´Z|

1
s q

for every h ą 0, and the result follows.
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Remark 6.6. Let Ω1 and Ω2 be (countable or uncountable) index sets. By
similar arguments as in the previous proof, it follows that the conclusions of
Lemma 6.5 also holds true when considering more general bounded subsets

t aθ,jp ¨ ` Y, Y q ; Y P R2d, θ P Ωj u, j “ 1, 2

of SspR2dq respective ΣspR2dq, j “ 1, 2.

Lemma 6.7. Let s ě 1
2 , φ, ψ P ΣspR2dq, ω, ϑ P PEpR2dq, φY “ φp ¨ ´ Y q,

and ψZ “ ψp ¨ ´ Zq. Then the following properties hold true:

(1) If a P Γ
pωq
s pR2dq (a P Γ

pωq
0,s pR2dq), then

|Dα
XD

β
Y pφY aqpXq| À h

|α|
1 h

|β|
2 pα!β!qse´|X´Y |

1
s {h1 minpωpXq, ωpY qq

(6.11)

and

|Dα
XD

β
Y pφY #aqpXq| À h

|α|
1 h

|β|
2 pα!β!qse´|X´Y |

1
s {h1 minpωpXq, ωpY qq,

(6.12)

for some h1 ą 0 (for every h1 ą 0) and every h2 ą 0.

(2) If a1 P Γ
pωq
s pR2dq and a2 P Γ

pϑq
s pR2dq (a1 P Γ

pωq
0,s pR2dq and a2 P Γ

pϑq
0,s pR2dq),

then

|Dα
XD

β
YD

γ
ZppφY a1q#pψZa2qqpXq|

À h
|α`β|
1 h

|γ|
2 pα!β!γ!qse´p|X´Y |

1
s`|X´Z|

1
s`|Y´Z|

1
s q{h1 ¨

¨ min
X1,X2PtX,Y,Zu

`

ωpX1qϑpX2q
˘

,

for some h1 ą 0 (for every h1 ą 0) and every h2 ą 0.

Proof. We only consider the case when a1 P Γ
pωq
0,s pR2dq and a2 P Γ

pϑq
0,s pR2dq.

The other cases follow by similar arguments. Let

ΨpX,Y q “ φpX ´ Y qapXq.

By Leibniz rule we get

|Dα
XD

β
Y ΨpX,Y q| ď

ÿ

γďα

ˆ

α

γ

˙

|φpα`β´γqpX ´ Y qapγqpXq|

À 2|α| sup
γďα

ˆ

h|α`β|ppα` β ´ γq!γ!qse´|X´Y |
1
s {hωpXq

˙

ď p21`shq|α`β|pα!β!qse´|X´Y |
1
s {hωpXq

À p21`shq|α`β|pα!β!qse´|X´Y |
1
s {p2hqωpY q,
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for every h ą 0 which is chosen small enough. Here we have used the fact
that, for some h ą 0, possibly depending on X,Y, r and s,

ωpXq À ωpY qer|X´Y | À ωpY qe|X´Y |
1
s {p2hq,

since ω is a moderate function. This gives (6.11).
Next we prove (2). Let

b1,β,hp ¨ , Y q “
Dβ
Y pφY a1q

h|β|β!sωpY q
and b2,γ,hp ¨ , Zq “

Dγ
ZpψZa2q

h|γ|γ!sϑpZq

Then (1) and Remark 6.6 show that

t b1,β,hp ¨ ` Y, Y q ; Y P R2d, h ą 0, β P Z2d
` u

and

t b2,γ,hp ¨ ` Z,Zq ; Z P R2d, h ą 0, γ P Z2d
` u

are bounded subsets of ΣspR2dq. Hence, Remark 6.6 shows that

|Dα
Xpb1,β,hp ¨ , Y q#b2,γ,hp ¨ , ZqqpXq| À h|α|α!se´p|X´Y |

1
s`|X´Z|

1
s`|Y´Z|

1
s q{h

for every h ą 0, or equivalently, for any α, β, γ,X, Y and Z

|Dα
XD

β
YD

γ
ZppφY aq#pψZbqqpXq|

À h|α`β`γ|pα!β!γ!qse´p|X´Y |
1
s`|X´Z|

1
s`|Y´Z|

1
s q{hωpY qϑpZq.

The assertion now follows from the latter estimate and the fact that ω and
ϑ are moderate weights, giving that for some h ą 0, possibly depend on
X,Y, Z, r and s,

ωpY q À ωpXqe|X´Y |
1
s {p2hq À ωpZqep|X´Y |

1
s`|X´Z|

1
s q{p2hq,

and similarly for ϑ.

Lemmas 6.5 and 6.7 imply the following characterisation of Γ
pωq
s pR2dq.

Proposition 6.8. Let s ą 1{2, ω P PEpR2dq, a P Σ11pR2dq, φ P ΣspR2dq

have non-vanishing integrals, and let φY “ φp ¨ ´ Y q. Then the following
conditions are equivalent:

(1) a P Γ
pωq
s (a P Γ

pωq
0,s ).

(2) φY a is smooth and satisfies (6.11) for some h1 ą 0 (for every h1 ą 0)
and every h2 ą 0.
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(3) φY #a is smooth and satisfies (6.12) for some h1 ą 0 (for every h1 ą 0)
and every h2 ą 0.

(4)

|Dα
XpφY aqpXq| À h

|α|
1 α!se´|X´Y |

1
s {h1 minpωpXq, ωpY qq (6.13)

for some h1 ą 0 (for every h1 ą 0);

(5)

|Dα
XpφY #aqpXq| À h

|α|
1 α!se´|X´Y |

1
s {h1 minpωpXq, ωpY qq (6.14)

for some h1 ą 0 (for every h1 ą 0).

Proof. By Lemmas 6.5 and 6.7, (1) implies that (2) and (3) hold true, which
in turn imply (4) and (5).

If (4) holds true, then (5.20) follows by integrating (6.13) with respect
to Y . In the same way it follows that (5) leads to (5.20). Consequently, (4)
as well as (5) imply (1), and the result follows.

6.2 A family of Banach spaces in L8pr´R,Rs ˆR2d;
sw8pR2dqq

Let IR “ r´R,Rs and E0 “ E0
h,s “ L8pIRˆR2d; sw8pR2dqq, with the symbol

subspace sw8pR2dq from Definition 5.35. We shall consider suitable decreasing
family tEnh,su

8
n“0 of Banach spaces. To this aim, for n P N, let

Gn “ tpY, T1, . . . , Tnq P R2dpn`1q : Y, Tj P R2d with |Tj | ď 1, j “ 1, . . . , nu.

We define Enh,s “ EnR,h,s, n ě 1, as the set of all a P E0 such that

}a}pnq “ sup
1ďkďn

sup
tPIR

sup
pY,T1,...,TkqPGk

}xT1, DXy ¨ ¨ ¨ xTk, DXyapt, Y, ¨ q}sw8
hkpk!qs

ă 8,

with the norm

}a}Enh,s “ }a}E
n
R,h,s

” maxp}a}E0 , }a}pnqq.

We also let E8h,s “ E8R,h,s be the set of all

a P
č

ně0

EnR,h,s (6.15)

such that
}a}E8R,h,s ” sup

ně0
}a}EnR,h,s

is finite.
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Lemma 6.9. The space sw8pR2dq is continuously embedded in S 1pR2dq.

Proof. Let BpV1, V2q be the set of all linear and continuous operators from
the vector space V1 to the vector space V2. By Schwartz kernel theorem,
BpS pRdq,S 1pRdqq can be identified with a Schwartz kernel in S 1pR2dq.
From now on we identify operators with their kernels.

Since S pRdq is continuously embedded in L2pRdq and L2pRdq is contin-
uously embedded in S 1pRdq, it follows that any continuous linear operator
from L2pRdq to L2pRdq has a Schwartz kernel kernel in S 1pR2dq. The set
BpL2pRdq, L2pRdqq is a Banach space with norm equal to the operator norms.
Hence there is an injection from BpL2pRdq, L2pRdqq to S 1pR2dq.

It is not so difficult to see that this injection is continuous. In fact, since
M1 is continuously embedded in L2, L2 is continuously embedded inM8 and
that BpM1pRdq,M8pRdqq can be identified with M8pR2dq (Feichtinger’s
kernel theorem) which is continuously embedded in S 1pR2dq, it follows that
BpL2pRdq, L2pRdqq is continuously embedded in BpM1pRdq,M8pRdqq “
M8pR2dq which is continuously embedded in S 1pR2dq (when operators are
identified with their kernels).

Now sw8 equals T ˝ BpL2pRdq, L2pRdqq, where T is a composition of a
partial Fourier transform and a pullback of a non-degenerate linear map. It
follows that T is homoemorphisms on M8pR2dqS 1pR2dq. From these prop-
erties it now follows that the embeddings above give sw8pR2dq is continuously
embedded in M8pR2dq which is continuously embedded in S 1pR2dq.

Lemma 6.10. Let n ě 0, R ą 0 and s ą 0. Then Enh,s and E8h,s are Banach
spaces.

Proof. Let tajujě0 be a Cauchy sequence in Enh,s, n ě 1. By definition, this

sequence clearly has a limit a P E0, and for any k, txT1, DXy . . . xTk, DXyajuj ě
1 is a Cauchy sequence in sw8pR2dq. So, for someX ÞÑ bkpt, Y, T1, . . . , Tk, Xq P
sw8pR2dq we have

lim
jÑ8

sup
}xT1, DXy ¨ ¨ ¨ xTk, DXyajpt, Y, ¨ q ´ bkpt, Y, T1, . . . , Tk, ¨ q}sw8

hkpk!qs
“ 0,

where the supremum is taken over all

k P t1, . . . , nu, t P IR and pY, T1, . . . , Tkq P Gk.

We need to prove that a P Enh,s, and aj Ñ a in Enh,s.

The conditions here above are equivalent to

lim
jÑ8

˜

sup
tPIR

sup
Y PR2d

}ajpt, Y, ¨ q ´ apt, Y, ¨ q}sw8

¸

“ 0 (6.16)
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and

lim
jÑ8

sup
}xT1, Dy ¨ ¨ ¨ xTk, Dyajpt, Y, ¨ q ´ bkpt, Y, T1, . . . , Tk, ¨ q}sw8

hkpk!qs
“ 0,

(6.17)

where the supremum is taken over all

k P t1, . . . , nu, t P IR and pY, T1, . . . , Tkq P Gk.

Since sw8pR2dq is continuously embedded in S 1pR2dq, it follows from
(6.16) and (6.17) that

X ÞÑ xT1, DXy ¨ ¨ ¨ xTk, DXyajpt, Y,Xq

has the limit

X ÞÑ xT1, DXy ¨ ¨ ¨ xTk, DXyapt, Y,Xq

in S 1pR2dq, and the limit

X ÞÑ bkpt, Y, T1, . . . , Tk, Xq

in sw8pR2dq, and thereby in S 1pR2dq, as j tends to 8. Hence

bkpt, Y, T1, . . . , Tk, Xq “ xT1, DXy ¨ ¨ ¨ xTk, DXyapt, Y,Xq

and it follows that Enh,s is a Banach space for every h ą 0, s ą 0 and integer
n ě 0.

If in addition tajujě0 is a Cauchy sequence in E8h,s, then the limit a
above satisfy (6.15). Since aj stays bounded in E8h,s, it follows that a has
bounded E8h,s norm, and therefore, E8h,s is complete and thereby a Banach
space.

The spaces E8h,s can be related to Γ
p1q
s and Γ

p1q
0,s, as the following lemma

shows. The details are left for the reader.

Lemma 6.11. Let a P L8pIR ˆ R2d; sw8pR2dqq. Then tapt, Y, ¨ qutPIR,Y PR2d

is a uniformly bounded family in Γ
p1q
s pR2dq ( Γ

p1q
0,spR2dq), if and only if

}a}E8h,s ă 8

for some h ą 0 (for every h ą 0).

Later on we also need the following result of differential equations with
functions depending on a real variable with values in E8h,s. The result follows
by standard consideration about ordinary differential equations involving
functions taking values in Banach spaces.
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Lemma 6.12. Suppose s ě 0, n ě 0 be an integer, T ą 0, and let K be an
operator from Enh,s to Enh,s for every h ą 0 such that

}Ka}Enh,s ď C}a}Enh,s , a P Enh,s, (6.18)

for some constant C which only depend on h ą 0. Then

dcptq

dt
“ Kpcptqq, cp0q P Enh,s,

has a unique solution t ÞÑ cptq from r´T, T s to Enh,s which satisfies

}cptq}Enh,s ď }cp0q}E
n
h,s
eCT ,

where C is the same as in (6.18). The same holds true with E8h,s in place of
Enh,s at each occurrence.





Chapter 7

A one-parameter group of
elliptic symbols in the classes

Γ
pωq
s pRdq

In the current chapter we show that, for suitable s and ω0, there are elements

a P Γ
pω0q
s and b P Γ

p1{ω0q
s such that a#b “ b#a “ 1. This is essentially a

consequence of Theorem 7.8, where it is proved that the evolution equation

(7.1) has a unique solution apt, ¨ q which belongs to Γ
pωϑtq
s , thereby deduc-

ing needed semigroup properties for scales of pseudo-differential operators.
Similar facts hold for corresponding Beurling type spaces (cf. Theorem 7.9).

Moreover, we will deduce an analog of (0.5) for the Gevrey type symbol
classes introduced in Section 5.4. As in [14], (0.5) is obtained by proving
that the evolution equation

pBtaqpt, ¨ q “ pb` log ϑq#apt, ¨ q, ap0, ¨ q “ a0 P Γpωqs , ϑ P Γpϑqs , (7.1)

analogous to (0.6), has a unique solution apt, ¨ q which belongs to Γ
pωϑtq
s (and

similarly when the Γ
pωq
s -spaces are replaced by corresponding Γ

pωq
0,s -spaces).

First we have the following result on certain logarithms of weight func-
tions.

Proposition 7.1. Let ω P PEpR2dq X Γ
pωq
s0 pR2dq, s0 P p0, 1s, v P PEpR2dq,

be such that ω is v-moderate, ϑpXq “ 1` log vpXq and let

cpX,Y q “ log
ωpX ` Y q

ωpY q
.

Then,

(1) tcp ¨ , Y quY PR2d is a uniformly bounded family in Γ
pϑq
s pR2dq, s ě 1;
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(2) for α “ 0, tpBαXcqp ¨ , Y quY PR2d is a uniformly bounded family in Γ
p1q
s pR2dq,

s ě 1.

For the proof of Proposition 7.1 we need the following multidimensional
version of the well-known Faà di Bruno formula for the derivatives of com-
posed functions. It can be found, e.g., setting q “ p “ 1, n “ 2d, in
equations (2.3) and (2.4) in [75].

Lemma 7.2. Let f : R Ñ R, g : R2d Ñ R. Then, for any α P Z2d
` , α “ 0,

Bαfpgpxqq

α!
“

ÿ

1ďkď|α|

f pkqpgpxqq

k!

ÿ

β1`¨¨¨`βk“α
βj “0, j“1,...,k

ź

1ďjďk

pBβjgqpxq

βj !
. (7.2)

We will also need the next factorial estimate, for expressions involving
decompositions of α P Z2d

` , α “ 0, into the sum of k nontrivial multi-indeces
βj , j “ 1, . . . , k, as in (7.2), and corresponding products of (powers of)
factorials.

Lemma 7.3. Let s0 P p0, 1s, α P Z2d
` , α “ 0. Then, for suitable C0 ą 0,

depending only in d,

ÿ

1ďkď|α|

1

k

ÿ

β1`¨¨¨`βk“α
βj “0, j“1,...,k

ź

1ďjďk

βj !
s0´1 À C

|α|
0 . (7.3)

Lemma 7.3 follows from Lemma A.2 in the Appendix.

Proof of Proposition 7.1. In order to prove (1) we need to show that cp ¨ , Y q

satisfies Γ
pϑq
s estimates, uniformly with respect to Y P R2d. By (5.1) and

(5.2) we get

cpX,Y q ď logpCvpXqq À 1` log vpXq “ ϑpXq

and

cpX,Y q ě logppCvpXqq´1q Á ´p1` log vpXqq “ ´ϑpXq.

Hence, |cpX,Y q| À ϑpXq, X P R2d. Now, for α P Z2d
` , α “ 0, (5.20) with

a “ ω and (7.2) give

BαXcpX,Y q “ α!
ÿ

1ďkď|α|

p´1qk`1

k rωpX ` Y qsk

ÿ

β1`¨¨¨`βk“α
βj “0, j“1,...,k

ź

1ďjďk

pBβjωqpX ` Y q

βj !
,
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and by (7.3),

|BαXcpX,Y q| À α!
ÿ

1ďkď|α|

1

k rωpX ` Y qsk

ÿ

β1`¨¨¨`βk“α
βj “0, j“1,...,k

ź

1ďjďk

ωpX ` Y qh|βj |βj !
s0

βj !

ď h|α| α!
ÿ

1ďkď|α|

1

k

ÿ

β1`¨¨¨`βk“α
βj “0, j“1,...,k

ź

1ďjďk

βj !
s0´1 À pC0hq

|α|α!s,

which gives the result.

Proposition 7.4. Assume s ą 1
2 and ωpXq À er|X|

1
s for some r ą 0. Let

tap ¨ , Y quY PR2d be a uniformly bounded family in ΣspR2dq and tcp ¨ , ZquZPR2d

be a bounded family in Γ
pωq
s pR2dq. Then,

tap ¨ , Y q#cp ¨ , ZquY,ZPR2d and tcp ¨ , Zq#ap ¨ , Y quY,ZPR2d

are bounded families in SspR2dq.

Proof. Let φ P Σs and a P Γ
pωq
s . By Lemma 6.7 it follows that

|Dα
Xpφ#aqpXq| ď Ch|α|α!se´r|X|

1
s , (7.4)

for some h, r ą 0. Then (7.4) holds true if and only if φ#a belongs to Ss.
By the proof of (7.4), the constants C, h and r can be chosen to depend

continuously on φ P ΣspR2dq and a P Γ
pωq
s pR2dq. Hence if Ω1 is bounded in

ΣspR2dq and Ω2 is bounded in Γ
pωq
s pR2dq, then it follows that tφ#auφPΩ1,aPΩ2

is a bounded family in SspR2dq.

The following result can be found e. g. in [113].

Lemma 7.5. Let a P S 1pR2dq. Then

}a}sw8 ď C
ÿ

|α|ďd`1

}Bαa}L8 (7.5)

and

}a}L8 ď C
ÿ

|α|ď2d`1

}Bαa}sw8 (7.6)

for some constant C ą 0 depending on the dimension d only.

Proposition 7.6. Let a P S 1pR2dq, s ě 1
2 and set bαβpXq “ B

αpXβapXqq
when α, β P Z2d

` . Then the following conditions are equivalent:

(1) a P SspR2dq (a P ΣspR2dq).
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(2) For some h ą 0 (every h ą 0) it holds

}bαβ}L8 À h|α`β|pα!β!qs, α, β P Z2d
` .

(3) For some h ą 0 (every h ą 0) it holds

}bαβ}sw8 À h|α`β|pα!β!qs, α, β P Z2d
` .

Proof. We only prove the result in the Roumieu case. The Beurling case
follows by similar arguments.

The equivalence between (1) and (2) follows from the definitions. The
proof of the equivalence of (2) and (3) follows by a straightforward applica-
tion of Lemma 7.5. In fact, assume that (2) holds true. Then (7.5) gives

}bαβ}sw8 ď C
ÿ

|γ|ďd`1

}Bγbαβ}L8 À
ÿ

|γ|ďd`1

h|α`β`γ|ppα` γq!β!qs

“ h|α`β|pα!β!qs
ÿ

|γ|ďd`1

h|γ|γ!s
ˆ

pα` γq!

α! γ!

˙s

À p2shq|α`β|pα!β!qs.

In the last inequality we have used

ÿ

|γ|ďd`1

h|γ|γ!s
ˆ

pα` γq!

α! γ!

˙s

ď C1 ¨ 2
sp|α|`d`1q ď C22s|α`β|,

where the constants C1 and C2 only depend on d and h. Hence (3) holds
true, as claimed. The proof of the converse follows by similar argument,
employing (7.6) instead of (7.5).

We also need the following characterisation of Γ
p1q
s pR2dq.

Proposition 7.7. Let a P S 1pR2dq and s ą 0. Then the following condi-
tions are equivalent:

(1) a P Γ
p1q
s pR2dq.

(2) There exists h ą 0 such that

}Bαa}L8pR2dq À h|α|α!s, α P Z2d
` .

(3) There exists h ą 0 such that

}Bαa}sw8 À h|α|α!s, α P Z2d
` . (7.7)

(4) There exists h ą 0 such that

}xT1, DXy ¨ ¨ ¨ xTm, DXya}sw8 À hmm!s, (7.8)

for any T1, . . . , Tm P R2d such that |Tj | ď 1, j “ 1, . . . ,m, m ě 1.
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Proof. The equivalence between (1) and (2) is well known. The equivalence
of (2) and (3) is proved by similar arguments to the one employed in the proof
of Proposition 7.6, using Lemma 7.5. It remains to prove the equivalence
with (4). Assume that (3) holds true, and let

Tk “
d
ÿ

l“1

ptk,lel ` τk,lεlq,

for the standard symplectic basis (5.33) of R2d. If we set ed`l “ εl, tk,d`l “
τk,l, l P t1, . . . , du, and letting Xl being the coordinates for X “ px, ξq P R2d

with respect to this basis, then

xTk, DXya “
2d
ÿ

l“1

tk,l
Ba

BXl
,

so that the symbol xT1, DXy ¨ ¨ ¨ xTm, DXya is in the span of symbols of the
form

˜

m
ź

k“1

tk,lk

¸

´

BX1,l1
¨ ¨ ¨ BXm,lma

¯

where the summation contains at most p2dqm terms. Since |Tj | ď 1, j “
1, . . . ,m, we obtain, by the hypothesis (3) that

}xT1, DXy ¨ ¨ ¨ xTm, DXya}sw8 ď p2dq
m sup
|α|“m

}Bαa}sw8

À sup
|α|“m

ÿ

|γ|ďd`1

h|α`γ|pα` γq!s

“ sup
|α|“m

h|α|α!s
ÿ

|γ|ďd`1

h|γ|γ!s
ˆ

pα` γq!

α! γ!

˙s

À p2s`1hqmm!s,

which gives (4).

If instead (4) holds, then choosing T1, . . . T|α| in suitable ways, the left-
hand sides of (7.7) and (7.8) agree. The assertion (3) now follows from (4)
by using the inequality |α|! ď d|α|α!.

The first main result of this chapter is the following analogy of [14, The-
orem 6.4] and [89, Theorem 2.6.15] in the framework of Gevrey regularity.
It deals with the existence of one-parameter groups of pseudo-differential
operators, obtained as solutions to suitable evolution equations.

Theorem 7.8. Let s ě 1, ω, ϑ P P0
E,spR2dq be such that ω P Γ

pωq
s pR2dq and

ϑ P Γ
pϑq
s pR2dq, and let a0 P Γ

pωq
s pR2dq, b P Γ

p1q
s pR2dq. Then, there exists a



126 One-parameter group of elliptic symbols

unique smooth map pt,Xq ÞÑ apt,Xq P C such that apt, ¨ q P Γ
pω ϑtq
s pR2dq for

all t P R, and
#

pBtaqpt, ¨ q “ pb` log ϑq#apt, ¨ q

ap0, ¨ q “ a0.
(7.9)

If in addition ω ” a0 ” 1, then apt,Xq also satisfies

#

pBtaqpt, ¨ q “ apt, ¨ q#pb` log ϑq

ap0, ¨ q “ a0,
(7.10)

and

apt1, ¨ q#apt2, ¨ q “ apt1`t2, ¨ q, apt, ¨ q P Γpϑ
tq

s pR2dq, t, t1, t2 P R. (7.11)

Proof. Step 1(Two auxiliary equations): First suppose that a solution
apt,Xq of (7.9) exists. Then

apt,Xq “ a0pXq `

ż t

0
cpu,Xq du

with

cpt, ¨ q “ pb` log ϑq#apt, ¨ q P Γpωϑ
txlog ϑyq

s pR2dq,

in view of Propositions 5.39 and 7.1. This implies that the map t ÞÑ apt, ¨ q
is C1 from r´R,Rs into the symbol space

Γpωpϑ`ϑ
´1qRxlog ϑyq

s pR2dq.

Choose s0 ă s, and φ, ψ P Ss0pR2dq such that (6.2) holds true. Let

c1pt, Y, ¨ q “ ωpY q´1ϑpY q´t φY #apt, ¨ q. (7.12)

By Lemma 6.7 (1) we have t ÞÑ c1pt, Y, ¨ q is a C1 map from r´R,Rs into
SspR2dq, for any Y P R2d. Moreover,

Btc1pt, Y, ¨ q “ ωpY q´1ϑpY q´t φY #fpY, ¨ q#apt, ¨ q

when

fpY,Xq “ bpXq ` log
ϑpXq

ϑpY q
.

Then,

pBtc1qpt, Y, ¨ q “ ωpY q´1 ϑpY q´t
ż

R2d

φY #fpY, ¨ q#ψZ#φZ#apt, ¨ q dZ
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giving that

pBtc1qpt, Y, ¨ q “

ż

R2d

KY,Zpt, ¨ q#c1pt, Z, ¨ q dZ (7.13)

with

KY,Zpt, ¨ q “
ωpZqϑpZqt

ωpY qϑpY qt
φY #fpY, ¨ q#ψZ . (7.14)

We also need to consider the similar situation where fpY, ¨ q is replaced by
fpZ, ¨ q, that is

Btc2pt, Y, ¨ q “

ż

R2d

rKY,Zpt, ¨ q#c2pt, Z, ¨ q dZ, (7.13)1

where

rKY,Zpt, ¨ q “
ωpZqϑpZqt

ωpY qϑpY qt
φY #fpZ, ¨ q#ψZ , (7.14)1

and

c2p0, Y, ¨ q “ c1p0, Y, ¨ q “ ωpY q´1φY #a0. (7.15)

We consider the operators K and rK when acting on E0 from Section 6.2,
defined by

pKaqpt, Y,Xq “
ż

R2d

pKY,Zpt, ¨ q#apt, Z, ¨ qqpXq dZ,

and

prKaqpt, Y,Xq “
ż

R2d

p rKY,Zpt, ¨ q#apt, Z, ¨ qqpXq dZ.

We claim that

}Ka}Enh,s ď Cpn` 1q}a}Enh,s and }rKa}Enh,s ď Cpn` 1q}a}Enh,s (7.16)

for some constant C, which is independent of h, n and s.

In order to prove (7.16), it is convenient to let Pk be the family of all
subsets of t1, . . . , ku, k ě 1. For each P P Pk, a P sw8pR2dq, we set

Hpa, P q “

#

a when P “ H,

xTj1 , DXy ¨ ¨ ¨ xTjl , DXya when P “ tj1 ă ¨ ¨ ¨ ă jlu, l ď k.
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We shall estimate

}pxT1, DXy ¨ ¨ ¨ xTk, DXyKaqpt, Y, ¨ q}sw8pR2dq

hkpk!qs

when a P Enh,s. Since

pxT1, DXy ¨ ¨ ¨ xTk, DXyKaqpt, Y,Xq

“ xT1, DXy ¨ ¨ ¨ xTk, DXy

ż

R2d

pKY,Zpt, ¨ q#apt, Z, ¨ qqpXq dZ

“
ÿ

PPPk

ż

R2d

pHpKY,Zpt, ¨ q, P q#Hpapt, Z, ¨ q, P
cqqpXq dZ,

we find1

}pxT1, DXy ¨ ¨ ¨ xTk, DXyKaqpt, Y, ¨ q}sw8
hkpk!qs

ď

k
ÿ

l“0

ÿ

|P |“l

ˆ

k

l

˙´s ż

R2d

}HpKY,Zpt, ¨ q, P q}sw8
hl l!s

¨
}Hpapt, Z, ¨ q, P cq}sw8

hk´lppk ´ lq!qs
dZ

ď

k
ÿ

l“0

ÿ

|P |“l

}a}Ek´lh,s

ˆ

k

l

˙´s ż

R2d

}HpKY,Zpt, ¨ q, P q}sw8
hl l!s

dZ

À }a}Ekh,s

k
ÿ

l“0

ÿ

|P |“l

ˆ

k

l

˙´1 ż

R2d

}HpKY,Zpt, ¨ q, P q}sw8
hl l!s

dZ

ď pk ` 1qDkpY q}a}Ekh,s
, (7.17)

where

DkpY q “ sup
lďk

sup
|P |“l

ˆ
ż

R2d

}HpKY,Zpt, ¨ q, P q}sw8
hl l!s

dZ

˙

, (7.18)

Here the third inequality in (7.17) follows from the fact that s ě 1 and
}a}Enh,s increases with n.

We have to estimate DkpY q in (7.18) and study the different quantities
on the right-hand side of (7.14). Since ω and ϑ belong to P0

E,s, it follows
that for every r ą 0,

ωpZqϑpZqt

ωpY qϑpY qt
“
ωpZq

ωpY q

ˆ

ϑpZq

ϑpY q

˙t

À er|Y´Z|
1
s

ˆ

er|Y´Z|
1
s

˙t

“ erp1`tq|Y´Z|
1
s , Y, Z P R2d. (7.19)

1Recall that, by definition of P ,
ř

|P |“l 1 “
`

k
l

˘

.
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For the Weyl product in (7.14) we have

φY #fpY, ¨ q “ φp ¨ ´ Y q#
´

b` log
ϑ

ϑpY q

¯

“

´

φ#bp ¨ ` Y q
¯

Y
` φp ¨ ´ Y q#

´

log
ϑ

ϑpY q

¯

“

´

φ#bp ¨ ` Y q
¯

Y
`

´

φ# log
ϑp ¨ ` Y q

ϑpY q

¯

Y
.

By Propositions 7.1 and 7.4,

!

φ#bp ¨ ` Y q
)

Y PR2d
and

!

φ# log
ϑp ¨ ` Y q

ϑpY q

)

Y PR2d
(7.20)

are uniformly bounded families in SspR2dq. Note that

a2pZ,Xq “ ψZpXq ñ ta2pZ, ¨ ` ZquZPR2d “ tψuZPR2d ,

which is evidently a uniformly bounded family in SspR2dq. Combining this
last observation with the computations on φY #fpY, ¨ q above, using the fact
that Leibniz rule applied also on the #´product, Lemmata 6.5 and 6.7, we
finally obtain

|Dα
XpφY #fpY, ¨ q#ψZqpXq| À h|α|α!se´r0p|X´Y |

1
s`|X´Z|

1
s`|Y´Z|

1
s q,

X, Y, Z P R2d, α P Z2d
` ,

(7.21)

for some h, r0 ą 0.
By Proposition 7.7, (7.19), (7.21) and the fact that t is bounded, we get

for all P P Pk, Y,Z P R2d, and some r0, h ą 0 that

}HpKY,Zpt, ¨ q, P q}sw8 ď Chll!se´r0|Y´Z|
1
s , l “ |P |,

where C is independent of k. Hence Dk in (7.18) satisfies

DkpY q ď C1

ż

R2d

e´r0|Y´Z|
1
s dZ “ C2,

for some constants C1 and C2 which are independent of Y P R2d, h ą 0 and
k ě 0. Hence (7.17) gives

}Kapt, Y, ¨ q}sw8 ď C}a}Ekh,s
,

and
}xT1, DXy ¨ ¨ ¨ xTk, DXyKapt, Y, ¨ q}sw8

hkpk!qs
ď Cpk ` 1q}a}Ekh,s

,

as claimed, where C is independent of Y P R2d, k and h ą 0.
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By a completely similar argument, an analogous result can be obtained
for rK. In fact, by similar arguments that lead to (7.20) it follows that

tbp ¨ ` Zq#ψuZPR2d and

"

log
ϑp ¨ ` Zq

ϑpZq
#ψ

*

ZPR2d

are bounded in SspR2dq, given that (7.21) holds with fpZ, ¨ q in place of
fpY, ¨ q. This gives (7.16).

We have proven that for any T ą 0, then

}K}Enh,sÑEnh,s ď Cpn` 1q and }rK}Enh,sÑEnh,s ď Cpn` 1q, |t| ď T,

(7.22)
where C is independent of n. As a consequence, since ωpY q´1φY #a0 belongs
to Enh,s for every n and with uniform bound of the norms with respect to n
it follows that the equations

dc1

dt
“ Kc1,

dc2

dt
“ rKc2, c1p0q “ c2p0q “ ωpY q´1φY #a0, (7.23)

have unique solutions on r´T, T s belonging to Enh,s, in view of Lemma 6.12,
and that

}cj}Enh,s ď }cjp0q}E
n
h,s
eCpn`1qT ď }cjp0q}E8h,se

Cpn`1qT , j “ 1, 2, (7.24)

where the constant C is the same as in (7.22) and is therefore independent
of n. This gives

sup

ˆ

}xT1, DXy ¨ ¨ ¨ xTn, DXycjpt, Y, ¨ q}sw8
hnpn!qs

˙

ď }cjp0q}E8h,se
Cpn`1qT ,

which is the same as

sup

ˆ

}xT1, DXy ¨ ¨ ¨ xTn, DXycjpt, Y, ¨ q}sw8
hn0 pn!qs

˙

ď }cjp0q}E8h,se
CT , h0 “ heCT .

(7.25)
Here the supremum is taken over all T1, . . . , Tn, Y P R2d such that |Tj | ď 1,
and t P r´T, T s. By taking the supremum of the left-hand side of (7.25)
over all n ě 0 we get

}cj}E8h0,s
ď }cjp0q}E8h,se

CT , h0 “ heCT .

By Lemma 6.11 it follows that cjpt, Y, ¨ q P Γ
p1q
s pR2dq, uniformly in Y and

for bounded t.
In order to prove the uniqueness of the solution a of (7.9), first we assume

the existence and by what we have proven above i.e. that c1pt, Y, ¨ q in (7.12)
satisfies (7.23) which implies the uniqueness of the solution of (7.9), since

apt, ¨ q “

ż

R2d

ψY #φY #apt, ¨ q dY “

ż

R2d

ωpY qϑpY qtψY #c1pt, Y, ¨ q dY.

(7.26)
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Indeed, if we assume that there exist two solutions c1 and c̃1 in (7.12) satisfy
(7.23), then since (7.23) has a unique solution, it follows that c1 ” c̃1.
Therefore, if we assume that there exist two solutions a and a1 defined by
c1 and c̃1 respectively. Then, in view of the construction of the solution in
(7.26), it follows that a ” a1.

To prove the existence of a solution of (7.9), we consider the solution
c2pt, Y, ¨ q of (7.13)1 with the initial data (7.15), and we let

apt, ¨ q “

ż

R2d

ωpY qϑpY qtψY #c2pt, Y, ¨ q dY. (7.27)

By Propositions 5.15, that is the convolution between a weight and a Gelfand-
Shilov function, and 6.8, the family tψY #c2pt, Y, ¨ quY PR2d belongs to Ss and

apt, ¨ q belongs to Γ
pwϑtq
s . Moreover,

dapt, ¨ q

dt
“

ż

R2d

ωpY qϑpY qt log ϑpY qψY #c2pt, Y, ¨ q dY

`

ż

R2d

ż

R2d

ωpY qϑpY qtψY # rKY,Zpt, ¨ q#c2pt, Z, ¨ q dY dZ

“

ż

R2d

ωpZqϑpZqt log ϑpZqψZ#c2pt, Z, ¨ q dZ

`

ż

R2d

ż

R2d

ωpZqϑpZqtψY #φY #fpZ, ¨ q#ψZ#c2pt, Z, ¨ q dY dZ

“

ż

R2d

ωpZqϑpZqtpb` log ϑq#ψZ#c2pt, Z, ¨ q dZ

“ pb` log ϑq#apt, ¨ q,

with the initial data

ap0, ¨ q “

ż

R2d

ωpY qψY #pωpY q´1φY #a0q dY “ a0,

which provide a solution of (7.9).
In order to prove the last part we consider the unique solution apt, ¨ q of

(7.9) with the initial data ap0, ¨ q ” 1. If ω ” 1, then for u P R the mappings

t ÞÑ apt` u, ¨ q and t ÞÑ apt, ¨ q#apu, ¨ q

are both solutions of (7.9) with value apu, ¨ q at t “ 0, and

apt` u, ¨ q “ apt, ¨ q#apu, ¨ q, (7.28)

by the uniqueness property for the solution of (7.9).
Using (7.28) we have for all t P R, apt, ¨ q#ap´t, ¨ q “ 1. Taking the

derivative we get

0 “
d

dt
papt, ¨ q#ap´t, ¨ qq

“ pb` log ϑq#apt, ¨ q#ap´t, ¨ q ´ apt, ¨ q#pb` log ϑq#ap´t, ¨ q.
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That is, pb` log ϑq “ apt, ¨ q#pb` log ϑq#ap´t, ¨ q, implying the commuta-
tion for the sharp product of apt, ¨ q with pb ` log ϑq, and the result fol-
lows.

By similar argument as for the previous result we get the following.

Theorem 7.9. Let s ě 1, ω, ϑ P PE,spR2dq be such that ω P Γ
pωq
s pR2dq and

ϑ P Γ
pϑq
s pR2dq, and let a0 P Γ

pωq
0,s pR2dq, b P Γ

p1q
0,spR2dq. Then, there exists a

unique smooth map pt,Xq ÞÑ apt,Xq P C such that apt, ¨ q P Γ
pω ϑtq
s pR2dq for

all t P R, and apt, ¨ q satisfies (7.9).
Moreover, if ω ” a0 ” 1, then apt,Xq also satisfies (7.10) and

apt1, ¨ q#apt2, ¨ q “ apt1 ` t2, ¨ q, apt, ¨ q P Γ
pϑtq
0,s pR

2dq, t, t1, t2 P R.



Chapter 8

Lifting of pseudo-differential
operators on modulation
spaces and mapping
properties for Toeplitz
operators

In the this chapter we use the framework in [72] in combination with (0.5)
to extend the lifting properties in [72] in such ways that the involved weights
are allowed to belong to P0

E,s or in PE,s instead of the smaller set P which
is the assumption in [72].

8.1 Lifting of pseudo-differential operators on mod-
ulation spaces

In this section we apply the group properties in Theorems 7.8 and 7.9 to de-
duce lifting properties of pseudo-differential operators on modulation spaces.
Thereafter we combine these results with the Wiener property of certain
pseudo-differential operators with symbols in suitable modulation spaces to
get lifting properties for Toeplitz operators with weights as their symbols.

Theorem 8.1. Let s ě 1, p P p0,8s2d, A P Mpd,Rq, ω P P0
E,spR2dq, and

let B be an invariant BF-space on R2d, or B “ Lp
EpR

2dq for some phase
split basis E of R2d. Then the following statements hold true:

(1) There exist a P Γ
pωq
s pR2dq and b P Γ

p1{ωq
s pR2dq such that

OpApaq ˝OpApbq “ OpApbq ˝OpApaq “ IdS1spRdq . (8.1)
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Furthermore, OpApaq is an isomorphism from Mpω0,Bq onto Mpω0{ω,Bq,
for every ω0 P P0

E,spR2dq.

(2) Let a0 P Γ
pωq
s pR2dq be such that OpApa0q is an isomorphism from M2

pω1q
pRdq

to M2
pω1{ωq

pRdq for some ω1 P P0
E,spR2dq. Then OpApa0q is an iso-

morphism from Mpω2,Bq to Mpω2{ω,Bq, for every ω2 P P0
E,spR2dq.

Furthermore, the inverse of OpApa0q is equal to OpApb0q for some b0 P

Γ
p1{ωq
s pR2dq.

Theorem 8.2. Let s ą 1, p P p0,8s2d, A P Mpd,Rq, ω P PE,spR2dq, and
let B be an invariant BF-space on R2d, or B “ Lp

EpR
2dq for some phase

split basis E of R2d. Then the following properties hold true:

(1) There exist a P Γ
pωq
0,s pR2dq and b P Γ

p1{ωq
0,s pR2dq such that

OpApaq ˝OpApbq “ OpApbq ˝OpApaq “ IdΣ1spRdq . (8.2)

Furthermore, OpApaq is an isomorphism from Mpω0,Bq onto Mpω0{ω,
Bq, for every ω0 P PE,spR2dq.

(2) Let a0 P Γ
pωq
0,s pR2dq be such that OpApa0q is an isomorphism from M2

pω1q
pRdq

to M2
pω1{ωq

pRdq for some ω1 P PE,spR2dq. Then OpApa0q is an iso-

morphism from Mpω2,Bq to Mpω2{ω,Bq, for every ω2 P PE,spR2dq.
Furthermore, the inverse of OpApa0q is equal to OpApb0q for some b0 P

Γ
p1{ωq
0,s pR2dq.

We only prove Theorem 8.2. Theorem 8.1 follows by similar arguments.

Proof of Theorem 8.2. The existence of a P Γ
pωq
0,s pR2dq and b P Γ

p1{ωq
0,s pR2dq

such that (8.2) holds is guaranteed by the second part of Theorem 7.9.
By [126, Theorems 2.5 and 2.8] it follows that

OpApaq :Mpω0,Bq ÑMpω0{ω,Bq (8.3)

and

OpApbq :Mpω0{ω,Bq ÑMpω0,Bq (8.4)

are continuous. By (8.2) and the fact that Mpω0,Bq and Mpω0{ω,Bq are
contained in Σ1spR2dq, it follows that (8.3) and (8.4) are homeomorphisms,
and (1) follows.

(2) It suffices to prove the result in the Weyl case, A “ 1
2I, in view of

Proposition 5.38. By (1), we may find

a1 P Γ
pω1q

0,s , b1 P Γ
p1{ω1q

0,s , a2 P Γ
pω1{ωq
0,s , b2 P Γ

pω{ω1q

0,s

satisfying the following properties:
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• Opwpajq and Opwpbjq are inverses to each others on Σ1spRdq for j “ 1, 2;

• For arbitrary ω2 P PE,spR2dq, the mappings

Opwpa1q : M2
pω2q

ÑM2
pω2{ω1q

,

Opwpb1q : M2
pω2q

ÑM2
pω2ω1q

,

Opwpa2q : M2
pω2q

ÑM2
pω2ω{ω1q

,

Opwpb2q : M2
pω2q

ÑM2
pω2ω1{ωq

(8.5)

are isomorphisms.

In particular, Opwpa1q is an isomorphism from M2
pω1q

to L2, and Opwpb1q

is an isomorphism from L2 to M2
pω1q

.

Now set c “ a2#a0#b1. Then by [24, Proposition 5.38], the symbol c
satisfies

c “ a2#a0#b1 P Γ
pω1{ωq
0,s #Γ

pωq
0,s #Γ

p1{ω1q

0,s Ď Γ
p1q
0,s.

Furthermore, Opwpcq is a composition of three isomorphisms and conse-
quently Opwpcq is boundedly invertible on L2.

By Proposition 5.44 (2), Opwpcq´1 “ Opwpc1q for some c1 P Γ
p1q
0,s. Hence,

by (1) it follows that Opwpcq and Opwpc1q are isomorphisms on Mpω2,Bq,
for each ω2 P PE,spR2dq. Since Opwpcq and Opwpc1q are bounded on every
Mpω,Bq, the factorization of the identity OpwpcqOpwpc1q “ Id is well-
defined on every Mpω,Bq. Consequently, Opwpcq is an isomorphism on
Mpω,Bq.

Using the inverses of a2 and b1, we now find that

Opwpa0q “ Opwpb2q ˝Opwpcq ˝Opwpa1q

is a composition of isomorphisms from the domain space Mpω2,Bq onto the
image space Mpω2{ω,Bq (factoring through some intermediate spaces) for
every ω2 P PE,spR2dq and every invariant BF-space B. This proves the
isomorphism assertions for Opwpa0q.

Finally, the inverse of Opwpa0q is given by

Opwpb1q ˝Opwpc1q ˝Opwpa2q.

which is a Weyl operator with symbol in Γ
p1{ωq
0,s , and the result follows.

Remark 8.3. If g is the constant euclidean metric on the phase space R2d,
then Spω0, gq equals Spω0qpR2dq, which is defined by (5.21). We notice that
also for such simple choices of g, (0.5) given in the introduction, leads to
lifting properties that are not trivial. In fact, let ω and ω0 be polynomially
moderate weight on the phase space, and let B be a suitable translation
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invariant BF-space. Then it is observed in [72] that the continuity results for
pseudo-differential operators on modulation spaces in [116, 118] imply that
Opwpaq in (0.5) is continuous and bijective from Mpω0ω,Bq to Mpω,Bq
with continuous inverse Opwpbq. In particular, by choosing B to be the
mixed norm space Lp,qpR2dq of Lebesgue type, then Mpω,Bq is equal to the
classical modulation space Mp,q

pωq. Consequently, Opwpaq above lifts Mp,q
pω0ωq

into Mp,q
pωq.

Remark 8.4. The SG-class in Part I, the Shubin classes in [107, Definition
23.1] and other well-known families of symbol classes are given by Spω, gq for
suitable choices of strongly feasible metrics g and pσ, gq-temperate weights ω.

8.2 Mapping properties for Toeplitz operators on
modulation spaces

In this section we study the isomorphism properties of Toeplitz operators
between modulation spaces as in [72]. We first state results for Toeplitz op-
erators that are well-defined in the sense of (5.60) and Propositions 5.46 and
5.47. Then we state and prove more general results for Toeplitz operators
that are defined only in the framework of pseudo-differential calculus.

We start with the following result about Toeplitz operators with smooth
symbols.

Theorem 8.5. Let s ě 1 ω, ω0, v P P0
E,spR2dq be such that ω0 P Γ

pω0q
s pR2dq

and that ω0 is v-moderate, and let B be an invariant BF-space on R2d or
B “ Lp

EpR
2dq for some phase split basis E of R2d. If φ P M1

pvqpR
dq, then

Tpφpω0q is an isomorphism from Mpω,Bq to Mpω{ω0,Bq.

In the next result we relax our restrictions on the weights but impose
more restrictions on B.

Theorem 8.6. Let s ą 1, 0 ď t ď 1, p, q P r1,8s, and ω, ω0, v0, v1 P

PE,spR2dq be such that ω0 is v0-moderate and ω is v1-moderate. Set v “

vt1v0, ϑ “ ω
1{2
0 and let ω0,t be the same as in (5.61). If φ P M1

pvqpR
dq and

ω0 P M8
p1{ω0,tq

pR2dq, then Tpφpω0q is an isomorphism from Mp,q
pϑωqpR

dq to

Mp,q
pω{ϑqpR

dq.

Before the proofs we have the following consequence of Theorem 8.6
which is the Gevrey version of [72, Corollary 4.3], as well as the original
goal of our investigations.

Corollary 8.7. Let s ě 1, ω, ω0, v1, v0 P PE,spR2dq and that ω0 is v0-

moderate and ω is v1-moderate. Set v “ v1v0 and ϑ “ ω
1{2
0 . If φ PM1

pvqpR
dq,

then Tpφpω0q is an isomorphism from Mp,q
pϑωqpR

dq to Mp,q
pω{ϑqpR

dq simultane-

ously for all p, q P r1,8s.
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Proof. Let ω1 P PE,spR2dq X Γ
pω1q

0,s pR2dq be such that C´1 ď ω1{ω0 ď C,
for some constant C. Hence, ω1{ω0 P L

8 Ď M8. By Theorem 2.2 in [118],
it follows that ω “ ω1 ¨ pω{ω1q belongs to M8

pω2q
pR2dq, when ω2px, ξ, η, yq “

1{ω0px, ξq. The result now follows by setting t “ 1 and q0 “ 1 in Theorem
8.6.

Theorems 8.5 and 8.6 are special cases of the following results.

Theorem 8.51. Let s ě 1, ω, v, v0 P P0
E,spR2dq be such that ω0 P Γ

pω0q
s pR2dq

and that ω0 is v-moderate, and let B be an invariant BF-space on R2d or
B “ Lp

EpR
2dq for phase split basis E of R2d. If φ PM2

pvqpR
dq, then Tpφpω0q

is an isomorphism from Mpω,Bq to Mpω{ω0,Bq.

Theorem 8.61. Let s ą 1, 0 ď t ď 1, p, q, q0 P r1,8s and ω, ω0, v0, v1 P

PE,spR2dq be such that ω0 is v0-moderate and ω is v1-moderate. Set r0 “

2q0{p2q0 ´ 1q, v “ vt1v0, ϑ “ ω
1{2
0 and let ω0,t be the same as in (5.61).

If φ P M r0
pvqpR

dq and ω0 P M
8,q0
p1{ω0,tq

, then Tpφpω0q is an isomorphism from

Mp,q
pϑωqpR

dq to Mp,q
pω{ϑqpR

dq.

We postpone the proofs of these theorems after performing some prepa-
rations and deducing some results of independent interests.

Lemma 8.8. Let s ě 1, ω, v P PE,spR2dq be such that ϑ “ ω1{2 is v-
moderate. Assume that φ P M2

pvq. Then Tpφpωq is an isomorphism from

M2
pϑqpR

dq onto M2
p1{ϑqpR

dq.

Proof. Recall from Remark 5.24 that for φ P M2
pvqpR

dqzt0u the expression

}Vφf ¨ ϑ}L2 defines an equivalent norm on M2
pϑq. Thus the occurring STFTs

with respect to φ are well-defined.

Since Tpφpωq is bounded from M2
pϑq to M2

p1{ϑq by Proposition 5.47, the
estimate

}Tpφpωqf}M2
p1{ϑq

À }f}M2
pϑq

(8.6)

holds true for all f PM2
pϑq. Next, we observe that

pTpφpωqf, gqL2pRdq “ pωVφf, VφgqL2pR2dq “: pf, gq
M2,φ
pϑq
, (8.7)

for f, g PM2
pϑqpR

dq and φ PM2
pvqpR

dq. The duality of modulation spaces [116,

Proposition 1.2] now yields the following identity:

}f}M2
pϑq

— sup
}g}

M2
pϑq
“1
|pf, gqM2

pϑq
|

— sup
}g}

M2
pϑq
“1
|pTpφpωqf, gqL2 | — }Tpφpωqf}M2

p1{ϑq
. (8.8)
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In view of (8.8) it follows that }f}M2
pϑq

and }Tpφpωqf}M2
p1{ϑq

are equivalent

norms on M2
pϑq.

In particular, Tpφpωq is one-to-one from M2
pϑq to M2

p1{ϑq with closed

range. Since Tpφpωq is self-adjoint with respect to L2, it follows by du-
ality that Tpφpωq has dense range in M2

p1{ϑq. Consequently, Tpφpωq is onto

M2
p1{ϑq. By Banach’s theorem, it follows that Tpφpωq is an isomorphism

from M2
pϑq to M2

p1{ϑq.

We need a further generalization of Proposition 5.46 to more general
classes of symbols and windows. Set

ω1pX,Y q “
v0p2Y q

1{2v1p2Y q

ω0pX ` Y q1{2ω0pX ´ Y q1{2
. (8.9)

Proposition 8.9. Let s ě 1, 0 ď t ď 1, p, q, q0 P r1,8s, and ω, ω0, v0, v1 P

PE,spR2dq be such that v0 and v1 are submultiplicative, ω0 is v0-moderate
and ω is v1-moderate. Set

r0 “ 2q0{p2q0 ´ 1q, v “ vt1v0 and ϑ “ ω
1{2
0 ,

and let ω0,t and ω1 be as in (5.61) and (8.9). Then the following statements
hold true:

(1) The definition of pa, φq ÞÑ Tpφpaq from ΣspR2dqˆΣspRdq to LpΣspRdq,Σ1spRdqq
extends uniquely to a continuous map from M

8,q0
p1{ω0,tq

pR2dqˆM r0
pvqpR

dq to

LpΣspRdq,Σ1spRdqq.

(2) If φ P M r0
pvqpR

dq and a P M
8,q0
p1{ω0,tq

pR2dq, then Tpφpaq “ Opwpa0q for

some a0 P M
8,1
pω1q
pR2dq, and Tpφpaq extends uniquely to a continuous

map from Mp,q
pϑωqpR

dq to Mp,q
pω{ϑqpR

dq.

For the proof we need the following result, which follows from [117,
Proposition 2.1] and its proof.

Lemma 8.10. Assume that s ě 1, q0, r0 P r1,8s satisfy r0 “ 2q0{p2q0 ´

1q. Also assume that v P PE,spR2dq is submultiplicative, and that κ, κ0 P

PE,spR2d ‘ R2dq satisfy

κ0pX1`X2, Y q ď CκpX1, Y q vpY `X2qvpY ´X2q X1, X2, Y P R2d, (8.10)

for some constant C ą 0. Then the map pa, φq ÞÑ Tpφpaq from ΣspR2dq ˆ

ΣspRdq to LpΣspRdq,Σ1spRdqq extends uniquely to a continuous mapping from
M
8,q0
pωq pR

2dqˆM r0
pvqpR

dq to LpΣspRdq,Σ1spRdqq. Furthermore, if φ PM r0
pvqpR

dq

and a PM8,q0
pκq pR

2dq, then Tpφpaq “ Opwpbq for some b PM8,1
pκ0q

.
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Proof of Proposition 8.9. We show that the conditions on the involved pa-
rameters and weight functions satisfy the conditions of Lemma 8.10.

First we observe that

vjp2Y q ď CvjpY `X2qvjpY ´X2q, j “ 0, 1

for some constant C which is independent of X2, Y P R2d, because v0 and
v1 are submultiplicative. Refering back to (8.9) this gives

ω1pX1 `X2, Y q “
v0p2Y q

1{2v1p2Y q

ω0pX1 `X2 ` Y q1{2ω0pX1 `X2 ´ Y q1{2

ď C1
v0p2Y q

1{2v1p2Y qv0pX2 ` Y q
1{2v0pX2 ´ Y q

1{2

ω0pX1q

“ C1v1p2Y q
1´t v0p2Y q

1{2v1p2Y q
tv0pX2 ` Y q

1{2v0pX2 ´ Y q
1{2

ω0pX1q

ď C2v1p2Y q
1´t v1pX2 ` Y q

tv1pX2 ´ Y q
tv0pX2 ` Y qv0pX2 ´ Y q

ω0pX1q
.

Hence

ω1pX1 `X2, Y q ď C
v1p2Y q

1´tvpX2 ` Y qvpX2 ´ Y q

ω0pX1q
. (8.11)

By letting κ0 “ ω1 and κ “ 1{ω0,t, it follows that (8.11) agrees with (8.10).
The result now follows from Lemma 8.10.

Theorem 8.51 is an immediate consequence of Theorem 8.1, Lemma 8.8
and the following proposition.

Proposition 8.11. Assume that s ě 1, ω0 P P0
E,spR2dq be such that

ω0 P Γ
pω0q
s pR2dq, that v P P0

E,spR2dq is submultiplicative, and that ω
1{2
0 is v-

moderate. If φ PM2
pvqpR

dq, then Tpφpω0q “ Opwpbq for some b P Γ
pω0q
s pR2dq.

Proof. By Propositions 5.38 and 5.39, we have ω0 P M
8,1
p1{ω0,r0 q

pR2dq for

some r0 ě 0, where ω0,r0pX,Y q “ ω0pXqe
´r0|Y |

1
s . Furthermore, by letting

v1pY q “ er0|Y |
1
s and v0 “ v, with ω1 in (8.9) we have

ω1pX,Y q Á
er0|2Y |

1
s vp2Y q1{2

ω0pX ` Y q1{2ω0pX ´ Y q1{2
Á
er0|Y |

1
s

ω0pXq
.

Proposition 8.9 implies that existence of some b P M
8,1
p1{ω0,r0 q

pR2dq Ď Γ
pω0q
s

pR2dq.
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The following generalization of Theorem 0.1 is an immediate consequence
of Theorem 8.1, Lemma 8.8 and Proposition 8.11, since it follows by straight-
forward computations that Ss Ď M2

pvq when v satisfies the hypothesis in
Proposition 8.11.

Theorem 0.11. Let s ě 1, ω, ω0 P P0
E,spR2dq, p P p0,8s2d, B be an invari-

ant BF-space on R2d or B “ Lp
EpR

2dq for some phase split basis E of R2d,
and let φ P SspRdq. Then the Toeplitz operator Tpφpω0q is an isomorphism
from Mpω,Bq onto Mpω{ω0,Bq.

For the proof of Theorem 8.61 we need the following Gevrey version
of [72, Proposition 2.11].

Lemma 8.12. Let s ě 1, ω0, v0, v1 P P0
E,spR2dq be such that ω0 is v0-

moderate. Set ϑ “ ω
1{2
0 , and

ω1pX,Y q “
v0p2Y q

1{2v1p2Y q

ϑpX ` Y qϑpX ´ Y q
,

ω2pX,Y q “ ϑpX ´ Y qϑpX ` Y qv1p2Y q,

v2pX,Y q “ v1p2Y q. (8.12)

Then

Γp1{ϑqs #M
8,1
pω1q

#Γp1{ϑqs ĎM
8,1
pv2q

, (8.13)

Γp1{ϑqs #M
8,1
pv2q

#Γp1{ϑqs ĎM
8,1
pω2q

. (8.14)

The same holds true with PE,s and Γ
p1{ϑq
0,s in place of P0

E,s and Γ
p1{ϑq
s

respectively, at each occurrence.

Proof. We shall mainly follow the proof of [72, Proposition 2.11]. Since

Γ
p1{ϑq
s “

Ť

rě0 M
8,1
pϑrq

with ϑrpX,Y q “ ϑpXqer|Y |
1
s (Proposition 5.38(3)), it

suffices to argue with the symbol class M
8,1
pϑrq

for some sufficiently large r

instead of Γ
p1{ϑq
s .

For suitable r we show that

ω3pX,Y q À ω1pX ´ Y ` Z,ZqϑrpX ` Z, Y ´ Zq (8.15)

v1p2Y q À ϑrpX ´ Y ` Z,Zqω3pX ` Z, Y ´ Zq , (8.16)

where

ω3pX,Y q “
v1p2Y qϑpX ` Y q

ω0pX ´ Y q
.

Proposition 5.43 applied to (8.15) shows that M8,1
pω1q

#Γ
p1{ϑq
s ĎM

8,1
pω3q

, and

(8.16) implies that Γ
p1{ϑq
s #M

8,1
pω3q

ĎM
8,1
pv2q

, and (8.13) holds.
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Since ϑ is v
1{2
0 -moderate and v0 P P0

E,s, we have

ϑpX´Y q´1 ď v0p2Zq
1{2ϑpX´Y`2Zq´1 and ϑpX`Y q ď ϑpX`Zqer|Y´Z|

1
s

for suitable r ą 0. Using the fact that v1 is an even function and that

v1p2Y q “ v1p2Y ´ 2Z ` 2Zq ď v1p2Zqe
2r0|Y´Z|

1
s for every r0 ą 0, these give

ω3pX,Y q À
v0p2Zq

1{2v1p2ZqϑpX ` Zqe
r|Y´Z|

1
s

ϑpX ´ Y ` 2ZqϑpX ´ Y q

“ ω1pX ´ Y ` Z,ZqϑrpX ` Z, Y ´ Zq,

for some r ą 0. We also have

v1p2Y q “
ϑpX ´ Y qv1p2Y qϑpX ´ Y q

ϑpX ´ Y q2
À
ϑpX ´ Y qv0p2Y q

1{2v1p2Y qϑpX ` Y ´ 2Y q

ϑpX ´ Y q2

À
ϑpX ´ Y qv0p2Y q

1{2v1p2Y qϑpX ` Y qv0p2Y q
1{2

ϑpX ´ Y q2

À
ϑpX ´ Y ` Zqer|Z|

1
s v0p2pY ´ Zqq

1{2v1p2pY ´ ZqqϑpX ` Y q

ϑpX ´ Y ` 2Zq2

“ ϑrpX ´ Y ` Z,Zqω3pX ` Z, Y ´ Zq.

The inclusion (8.14) is proved similarly. Let

ω4pX,Y q “ ϑpX ´ Y qv1p2Y q “ ϑpX ´ Y ` Z ´ Zqv1p2pY ´ Zq ` 2Zq

be the intermediate weight. Then, the inequality

ω4pX,Y q À ϑpX ´ Y ` Zqer1|Z|
1
s v1p2pY ´ Zqqe

2r0|Z|
1
s

À ϑpX ´ Y ` Zqer|Z|
1
s v1p2pY ´ Zqq

“ ϑrpX ´ Y ` Z,Zqv2pX ` Z, Y ´ Zq

implies that Γ
p1{ϑq
s #M

8,1
pv2q

ĎM
8,1
pω4q

.

Similarly we obtain

ω2pX,Y q À ϑpX ´ Y qv1p2ZqϑpX ` Zqe
r|Z´Y |

1
s

“ ω4pX ´ Y ` Z,ZqϑrpX ` Z, Y ´ Zq,

and thus M
8,1
pω4q

#Γ
p1{ϑq
s ĎM

8,1
pω2q

.

The case PE,s and Γ
p1{ϑq
0,s in place of P0

E,s and Γ
p1{ϑq
s respectively, at

each occurrence, is treated in similar ways.
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Proof of Theorem 8.61. First we note that the Toeplitz operator Tpφpω0q is
an isomorphism from M2

pϑq to M2
p1{ϑq in view of Lemma 8.8. With ω1 defined

in (8.9), Proposition 8.9 implies that there exist b P M
8,1
pω1q

and c P S 1spR2dq

such that

Tpφpω0q “ Opwpbq and Tpφpω0q
´1 “ Opwpcq .

Let

ω2pX,Y q “ ϑpX ´ Y qϑpX ` Y qv1p2Y q and ω3pX,Y q “
ϑpX ` Y q

ϑpX ´ Y q
.

(8.17)
We shall prove that c PM8,1

pω2q
pR2dq.

By Theorem 7.9, there are a P Γ
p1{ϑq
0,s pR2dq and a0 P Γ

pϑq
0,s pR2dq such that

the map

Opwpaq : L2pRdq ÑM2
pϑqpR

dq

is an isomorphism with inverse Opwpa0q. By Propositions 5.38 and 5.39,
Opwpaq is also bijective from M2

p1{ϑqpR
dq to L2pRdq. Furthermore, by Theo-

rem 8.2 it follows that a PM8,1
pϑrq

when r ě 0, where

ϑrpX,Y q “ ϑpXqer|Y |
1
s .

Let b0 “ a#b#a. From Lemma 8.12 we know that

b0 PM
8,1
pv2q
pR2dq, where v2pX,Y q “ v1p2Y q (8.18)

is submultiplicative and depends on Y only. Since Opwpbq is bijective from
M2
pϑq to M2

p1{ϑq by Lemma 8.8 (2), Opwpb0q is bijective and continuous on

L2.

Since v2 is submultiplicative and in PE,spR2dq, M8,1
pv2q

is a Wiener algebra

by Proposition 5.44. Therefore, the Weyl symbol c0 of the inverse to the
bijective operator Opwpb0q on L2 belongs to M

8,1
pv2q
pR2dq.

Since

Opwpc0q “ Opwpb0q
´1 “ Opwpaq´1 Opwpbq´1 Opwpaq´1,

we find

Opwpcq “ Opwpbq´1 “ OpwpaqOpwpc0qOpwpaq,

or equivalently,

c “ a#c0#a, where a P Γ
p1{ϑq
0,s and c0 PM

8,1
pv2q

. (8.19)
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The definitions of the weights are chosen such that Lemma 8.12 implies that
c PM8,1

pω2q
, and the assertion on c follows. By Proposition 5.42, the mappings

Opwpbq : Mp,q
pωϑq ÑMp,q

pω{ϑq and Opwpcq : Mp,q
pω{ϑq ÑMp,q

pωϑq (8.20)

are continuous. We have

ω1pX ´ Y ` Z,Zqω2pX ` Z, Y ´ Zq

“

´ v0p2Zq
1{2v1p2Zq

ϑpX ´ Y ` 2ZqϑpX ´ Y q

¯

¨
`

ϑpX ´ Y ` 2ZqϑpX ` Y qv1p2pY ´ Zqq
˘

“
v0p2Zq

1{2v1p2Zqv1p2pY ´ ZqqϑpX ` Y q

ϑpX ´ Y q

Á
ϑpX ` Y q

ϑpX ´ Y q
“ ω3pX,Y q .

Therefore Proposition 5.43 shows that b#c P M
8,1
pω3q

. Since Opwpbq is an

isomorphism from M2
pϑq to M2

p1{ϑq with inverse Opwpcq, it follows that b#c “

1 and that the constant symbol 1 belongs to M
8,1
pω3q

. By similar arguments

it follows that c#b “ 1. Therefore the identity operator Id “ Opwpbq ˝
Opwpcq on Mp,q

pωϑq factors through Mp,q
pω{ϑq, and thus Opwpbq “ Tpφpω0q is

an isomorphism from Mp,q
pωϑq to Mp,q

pω{ϑq with inverse Opwpcq. This gives the

result.

8.3 Specific bijective pseudo-differential operators
on modulation spaces

In this section we construct explicit isomorphisms between modulation spaces
with different weights. Applying the results of the previous sections, these
may be either in the form of pseudo-differential operators or of Toeplitz
operators.

Proposition 8.13. Let s ě 1, ω0 P P0
E,spR2dq, and let B be an invariant

BF-space on R2d or B “ Lp
EpR

2dq for some phase split basis E of R2d. Let

Φλpx, ξq “ Ce´pλ1|x|
2`λ2|ξ|2q λ “ pλ1, λ2q P R2

`.

Then the following statements hold true:

(1) ω0 ˚ Φλ belongs to P0
E,spR2dq X Γ

pω0q

0,1 for all λ P R2
` and

ω0 ˚ Φλ — ω0 .
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(2) If λ1 ¨ λ2 ă 1, then there exists ν P R2
` and a Gauss function φ on Rd

such that Opwpω0 ˚ Φλq “ Tpφpω0 ˚ Φνq is bijective from Mpω,Bq to

Mpω{ω0,Bq for all ω P PE,spR2dq.

(3) If λ1 ¨ λ2 ď 1 and in addition ω0 P Γ
pω0q
s pR2dq, then Opwpω0 ˚ Φλq “

Tpφpω0q is bijective from Mpω,Bq to Mpω{ω0,Bq for all ω P PE,spR2dq.

The argument is similar to the proof of [72, Proposition 5.1].

Proof. The assertion (1) is a straightforward consequence of the definitions.
(2) Choose µj ą λj such that µ1 ¨ µ2 “ 1. Then Φµ “ cW pφ, φq with

φpxq “ e´µ1|x|
2{2, and there is another Gaussian Φν such that Φλ “ Φµ ˚Φν .

Using (5.62), this factorization implies that the Weyl operator with symbol
ω0 ˚ Φλ is the Toeplitz operator

Opwpω0 ˚ Φλq “ Opwpω0 ˚ Φν ˚ cW pφ, φqq “ cp2πq
d
2 Tpφpω0 ˚ Φνq.

By (1) ω0˚Φν P P0
E,spR2dqXΓ

pω0q

0,1 pR2dq is equivalent to ω0. Hence Theo-
rem 8.51 shows that Opwpω0 ˚Φλq is bijective from Mpω,Bq to Mpω{ω0,Bq,
and (2) follows.

The assertion (3) follows from (2) in the case λ1 ¨ λ2 ă 1. If λ1 ¨ λ2 “ 1,
then Φλ “ cW pφ, φq for φpxq “ e´λ1|x|

2{2 and thus

Opwpω0 ˚ Φλq “ Tpwφ pω0q

is bijective from Mpω,Bq to Mpω{ω0,Bq, since ω0 P P0
E,spR2dqXΓ

pω0q
s pR2dq.



Chapter 9

Characterizations of symbols
via the short-time Fourier
transform

The aim of the current chapter is to characterize the symbol class from the
previous chapter in term of estimates of their short-time Fourier transform.

In what follows we let κ be defined as

κprq “

$

&

%

1 when r ď 1,

2r´1 when r ą 1.
(9.1)

In the sequel we shall frequently use the inequality

|x` y|
1
s ď κps´1qp|x|

1
s ` |y|

1
s q, s ą 0, x, y P Rd,

which follows by straightforward computations.

Proposition 9.1. Let s, σ ą 0 be such that s ` σ ě 1 and ps, σq ‰ p1
2 ,

1
2q,

φ P Σσ
s pRdqz0, r ą 0 and let f be a Gelfand-Shilov distribution on Rd. Then

the following statements hold true:

(1) If f P C8pRdq and satisfies

|Bαfpxq| À h|α|α!σer|x|
1
s (9.2)

for every h ą 0 (for some h ą 0), then

|Vφfpx, ξq| À eκps
´1qr|x|

1
s´h|ξ|

1
σ (9.3)

for every h ą 0 (for some new h ą 0).
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(2) If

|Vφfpx, ξq| À er|x|
1
s´h|ξ|

1
σ (9.4)

for every h ą 0 (for some h ą 0), then f P C8pRdq and satisfies

|Bαfpxq| À h|α|α!σeκps
´1qr|x|

1
s

for every h ą 0 (for some new h ą 0).

Proof. We only prove the assertion when (9.2) or (9.4) are true for every
h ą 0. The other cases follow by straightforward modifications.

Assume that (9.2) holds. Then, for every x P Rd the function

y ÞÑ Fxpyq ” fpy ` xqφpyq

belongs to Σσ
s pRdq, and

|Bαy Fxpyq| À h|α|α!σeκps
´1qr|x|

1
s e´r0|y|

1
s ,

for every h, r0 ą 0. In particular, for α “ 0, in view of Proposition 5.2, we
have

|Fxpyq| À eκps
´1qr|x|

1
s e´r0|y|

1
s and | pFxpξq| À eκps

´1qr|x|
1
s e´r0|ξ|

1
σ , (9.5)

for every r0 ą 0. Since |Vφfpx, ξq| “ | pFxpξq|, the estimate (9.3) follows from
the second inequality in (9.5), and (1) follows.

Next we prove (2). By the inversion formula we get

fpxq “ p2πq´
d
2 }φ}´2

L2

ĳ

R2d

Vφfpy, ηqφpx´ yqe
ixx,ηy dydη. (9.6)

Here we notice that

px, y, ηq ÞÑ Vφfpy, ηqφpx´ yqe
ixx,ηy

is smooth and

py, ηq ÞÑ ηαVφfpy, ηqB
βφpx´ yqeixx,ηy

is an integrable function for every x, α and β, giving that f in (9.6) is
smooth. By differentiation and the fact that φ P Σσ

s we get

|Bαfpxq| —

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

βďα

ˆ

α

β

˙

i|β|
ĳ

R2d

ηβVφfpy, ηqpB
α´βφqpx´ yqeixx,ηy dydη

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

βďα

ˆ

α

β

˙
ĳ

R2d

|ηβer|y|
1
s e´h|η|

1
σ
pBα´βφqpx´ yq| dydη

À
ÿ

βďα

ˆ

α

β

˙

h
|α´β|
2 pα´ βq!σ

ĳ

R2d

|ηβ|e´h|η|
1
σ er|y|

1
s e´h1|x´y|

1
s dydη,
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for every h1, h2 ą 0. Using Stirling’s approximation we get

|ηβe´h|η|
1
σ
| À h

|β|
2 pβ!qσe´

h
2
¨|η|

1
σ , (9.7)

we get

|Bαfpxq|

À h
|α|
2

ÿ

βďα

ˆ

α

β

˙

pβ!pα´ βq!qσ
ĳ

R2d

e´
h
2
¨|η|

1
σ er|y|

1
s e´h1|x´y|

1
s dydη

À p4h2q
|α|α!σ

ż

Rd
er|y|

1
s e´h1|x´y|

1
s dy. (9.8)

Since |y|
1
s ď κps´1qp|x|

1
s ` |y ´ x|

1
s q and h1 can be chosen arbitrarily

large, it follows from the last estimate that

|Bαfpxq| À p4h2q
|α|α!σerκps

´1q|x|
1
s ,

for every h2 ą 0. This gives the result.

By similar arguments we get also the following result.

Proposition 9.11. Let sj , σj ą 0 be such that sj ` σj ě 1 and psj , σjq ‰
p1

2 ,
1
2q, j “ 1, 2, φ P Σσ1,σ2

s1,s2 pRd1`d2qz0, r ą 0 and let f be a Gelfand-Shilov
distribution on Rd1`d2. Then the following statements hold true:

(1) If f P C8pRd1`d2q and satisfies

|Bα1
x1 B

α2
x2 fpx1, x2q| À h|α1`α2|α1!σ1α2!σ2erp|x1|

1
s1 `|x2|

1
s2 q (9.2)1

for every h ą 0 (resp. for some h ą 0), then

|Vφfpx1, x2, ξ1, ξ2q| À eκps
´1
1 qr|x1|

1
s1 `κps´1

2 qr|x2|
1
s2 ´hp|ξ1|

1
σ1 `|ξ2|

1
σ2 q (9.3)1

for every h ą 0 (resp. for some new h ą 0).

(2) If

|Vφfpx1, x2, ξ1, ξ2q| À erp|x1|
1
s1 `|x2|

1
s2 q´hp|ξ1|

1
σ1 `|ξ2|

1
σ2 q (9.4)1

for every h ą 0 (resp. for some h ą 0), then f P C8pRd1`d2q and
satisfies

|Bα1
x1 B

α2
x2 fpx1, x2q| À h|α1`α2|α1!σ1α2!σ2eκps

´1
1 qr|x1|

1
s1 `κps´1

2 qr|x2|
1
s2 ,

for every h ą 0 (resp. for some new h ą 0).
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As a consequence of the previous result we get the following.

Proposition 9.2. Let sj , σj ą 0 be such that sj ` σj ě 1 and psj , σjq ‰
p1

2 ,
1
2q, j “ 1, 2, φ P Σσ1,σ2

s1,s2 pRd1`d2qz0 and let f be a Gelfand-Shilov distribu-
tion on Rd1`d2. Then the following properties hold true:

(1) There exist h, r ą 0 such that (9.4)1 holds true, if and only if f P

Γσ1,σ2s1,s2 pRd1`d2q.

(2) There exists r ą 0 such that (9.4)1 holds true for every h ą 0, if and
only if f P Γσ1,σ2;0

s1,s2 pRd1`d2q.

(3) (9.4)1 holds for every h, r ą 0, if and only if f P Γσ1,σ2;0
s1,s2;0 pRd1`d2q.

By similar arguments that led to Proposition 9.2 we also get the follow-
ing.

Proposition 9.3. Let sj , σj ą 0 be such that sj ` σj ě 1, j “ 1, 2, φ P
Sσ1,σ2s1,s2 pRd1`d2qz0 and let f be a Gelfand-Shilov distribution on Rd1`d2. Then
there exists h ą 0 such that (9.4)1 holds true for every r ą 0, if and only if
f P Γσ1,σ2s1,s2;0pRd1`d2q.

We also have the following version of Proposition 9.11, involving certain
types of moderate weights.

Proposition 9.4. Let s, σ ą 0 be such that s ` σ ě 1, φ P Sσ,ss,σpR2dqz0
(φ P Σσ,s

s,σpR2dqz0), r ą 0, ω P P0
s,σpR2dq (ω P Ps,σpR2dq) and let a be

a Gelfand-Shilov distribution on R2d. Then the following statements hold
true:

(1) If a P C8pR2dq and satisfies

|BαxB
β
ξ apx, ξq| À h|α`β|α!σβ!sωpx, ξq, (9.9)

for some h ą 0 (for every h ą 0), then

|Vφapx, ξ, η, yq| À ωpx, ξqe´rp|η|
1
σ`|y|

1
s q, (9.10)

for some r ą 0 (for every r ą 0).

(2) If (9.10) holds true for every r ą 0 (for some r ą 0), then a P C8pR2dq

and (9.9) holds true for some h ą 0 (for every h ą 0).

Proof. We shall use similar arguments as in the proof of Proposition 9.1. Let
X “ px, ξq P R2d, Y “ py, ηq P R2d, Z “ pz, ζq P R2d and let φ P Σσ,s

s,σpR2dqz0.
Suppose that ω P Ps,σpR2dq and that (9.9) holds for all h ą 0. If

FXpY q ”
apY `XqφpY q

ωpXq
,
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then, the fact that ωpXq À ωpY `Xqer0p|y|
1
s`|η|

1
σ q gives that

tY ÞÑ FXpY q ; X P R2d u

is a bounded set in Σσ,s
s,σ. Hence

|Bαy B
β
ηFXpy, ηq| À h|α`β|α!σβ!se´rp|y|

1
s`|η|

1
σ q,

for every h, r ą 0. In particular,

|FXpy, ηq À e´rp|y|
1
s`|η|

1
σ q

and |pFFXqpζ, zq| À e´rp|z|
1
s`|ζ|

1
σ q,

(9.11)

for every r ą 0. Since

|Vφapx, ξ, η, yq| “ |pFFXqpη, yqωpXq|,

it follows that (9.10) holds true for all r ą 0. This gives (1) in the case when
ω P Ps,σpR2dq and φ P Σσ,s

s,σpR2dqz0. In the same way, (1) follows in the case
when ω P P0

s,σpR2dq and φ P Sσ,ss,σpR2dqz0.

Next we prove (2) in the case when ω P Ps,σ and φ P Σσ,s
s,σ. Therefore,

suppose (9.10) holds for all r ą 0. Then a is smooth in view of Proposition
9.11. By differentiation, (9.6), the fact that, Z “ pz, ζq,

ωpZq À ωpXqer0p|x´z|
1
s`|ξ´ζ|

1
σ q

for some r0 ą 0, and the fact that φ P Σσ,s
s,σ we get

|BαxB
β
ξ apx, ξq|

À
ÿ

γďα

δďβ

ˆ

α

γ

˙ˆ

β

δ

˙
ĳ

R4d

|ηγyδVφapz, ζ, η, yqpB
α´γ
x B

β´δ
ξ φqpX ´ Zq| dY dZ

À
ÿ

γďα

δďβ

ˆ

α

γ

˙ˆ

β

δ

˙

h|α`β´γ´δ|pα´ γq!σpβ ´ δq!sIγ,δpXq,
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where

Iγ,δpXq “

ĳ

R4d

ωpZq|ηγyδe´pr`r0qp|x´z|
1
s`|y|

1
s`|ξ´ζ|

1
σ`|η|

1
σ q dY dZ

À ωpXq

ĳ

R4d

|ηγyδe´rp|z|
1
s`|y|

1
s`|ζ|

1
σ`|η|

1
σ q dY dZ

À h|γ`δ|γ!σδ!sωpXq

ĳ

R4d

e´
r
2
p|z|

1
s`|y|

1
s`|ζ|

1
σ`|η|

1
σ q dY dZ

— h|γ`δ|γ!σδ!sωpXq

for every h, r ą 0. Here the last inequality follows from (9.7). It follows that
(9.9) holds true for every h ą 0, by using the estimates above and similar
computations as in (9.8).

The remaining case follows by similar arguments.

The following result is a straightforward consequence of Proposition 9.4
and the definitions.

Proposition 9.5. Let R ą 0, q P p0,8s, s, σ ą 0 be such that s ` σ ě 1
and ps, σq ‰ p1

2 ,
1
2q, φ P Σσ,s

s,σpR2dqz0, ω P Ps,σpR2dq, and let

ωRpx, ξ, η, yq “ ωpx, ξqe´Rp|y|
1
s`|η|

1
σ q.

Then,

Γσ,s
pωqpR

2dq “
ď

Rą0

t a P pΣσ,s
s,σq

1pR2dq ; }ω´1
R Vφa}L8,q ă 8u,

Γσ,s;0
pωq pR

2dq “
č

Rą0

t a P pΣσ,s
s,σq

1pR2dq ; }ω´1
R Vφa}L8,q ă 8u.

(9.12)



Chapter 10

Invariance, continuity and
algebraic properties for
pseudo-differential operators
with Gelfand-Shilov symbols

In this chapter we deduce invariance, continuity and composition properties
for pseudo-differential operators with symbols in the classes considered in
the previous Chapters 5 and 9. In the first part we show that for any such
class S, the set OpApSq of pseudo-differential operators is independent of
the matrix A. Thereafter we deduce that such operators are continuous on
Gelfand-Shilov spaces and their duals. In the last part we deduce that these
operator classes are closed under compositions.

10.1 Invariance properties

An essential part of the study of invariance properties concerns the operator
eixADξ,Dxy when acting on the symbol classes introduced in chapter 5.

Theorem 10.1. Let s, s1, s2, σ, σ1, σ2 ą 0 be such that

s` σ ě 1, s1 ` σ1 ě 1, s2 ` σ2 ě 1, s2 ď s1 and σ1 ď σ2,

and let A P Mpd,Rq. Then the following statements hold true:

(1) eixADξ,Dxy on S pR2dq restricts to a homeomorphism on Sσ1,s2s1,σ2 pR2dq, and
extends uniquely to a homeomorphism on pSσ1,s2s1,σ2 q

1pR2dq.

(2) If in addition ps1, σ1q ‰ p1
2 ,

1
2q and ps2, σ2q ‰ p1

2 ,
1
2q, then eixADξ,Dxy

restricts to a homeomorphism on Σσ1,s2
s1,σ2pR2dq, and extends uniquely to

a homeomorphism on pΣσ1,s2
s1,σ2q

1pR2dq.
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(3) eixADξ,Dxy is a homeomorphism on Γσ,ss,σ;0pR2dq.

(4) If in addition ps, σq ‰ p1
2 ,

1
2q, then eixADξ,Dxy is a homeomorphism on

Γσ,s;0s,σ pR2dq and on Γσ,s;0s,σ;0pR2dq.

The assertion (1) in the previous theorem is proved in [24] and is es-
sentially a special case of Theorem 32 in [129], whereas (2) can be found
in [24,25]. Thus we only need to prove (3) and (4) in the previous theorem,
which are extensions of [24, Theorem 4.6 (3)].

Proof. Let φ P Sσ,ss,σpR2dq and φA “ eixADξ,Dxyφ. Then φA P Sσ,ss,σpR2dq, in
view of (1), and

|pVφApe
ixADξ,Dxyaqqpx, ξ, η, yq| “ |pVφaqpx´Ay, ξ ´A

˚η, η, yq| (10.1)

by straightforward computations, where A˚ denotes the transpose of A.
Then a P Γσ,ss,σ;0pR2dq is equivalent to the property for some h ą 0,

|Vφapx, ξ, η, yq| À erp|x|
1
s`|ξ|

1
σ q´hp|η|

1
σ`|y|

1
s q,

holds true for every r ą 0, in view of Proposition 9.3. By (10.1) and (1)
it follows, by straightforward computation, that the latter condition is in-
variant under the mapping eixADξ,Dxy, and (3) follows from these invariance
properties. By similar arguments, taking φ P Σσ,s

s,σpR2dq and using (2) instead
of (1), we deduce (4).

Corollary 10.2. Let s, σ ą 0 be such that s ` σ ě 1 and σ ď s. Then
eixADξ,Dxy is a homeomorphism on Sσs pR2dq, Σσ

s pR2dq, pSσs q1pR2dq and on
pΣσ

s q
1pR2dq.

We also have the following extension of (4) in [24, Theorem 4.1].

Theorem 10.3. Let ω P Ps,σpR2dq, s, σ ą 0 be such that s` σ ě 1. Then

a P Γσ,s;0
pωq pR

2dq if and only if eixADξ,Dxya P Γσ,s;0
pωq pR

2dq.

We need some preparation for the proof and start with the following
proposition.

Proposition 10.4. Let s, σ ą 0 be such that s` σ ě 1 and ps, σq ‰ p1
2 ,

1
2q,

φ P Σσ,s
s,σpR2dqz0, ω P Ps,σpR2dq and let a be a Gelfand-Shilov distribution

on R2d. Then, the following conditions are equivalent:

(1) a P Γσ,s;0
pωq pR

2dq.

(2) For every α, β P Zd`, h ą 0, R ą 0 and x, y, ξ, η in Rd it holds

ˇ

ˇ

ˇ
BαxB

β
ξ

´

eipxx,ηy`xy,ξyVφapx, ξ, η, yq
¯
ˇ

ˇ

ˇ
À h|α`β|α!σβ!sωpx, ξqe´Rp|y|

1
s`|η|

1
σ q.

(10.2)
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(3) For α “ β “ 0, (10.2) holds for every h ą 0, R ą 0 and x, y, ξ, η P Rd.

Proof. Obviously, (2) implies (3). Assume now that (1) holds true. Let

Fapx, ξ, y, ηq “ apx` y, ξ ` ηqφpy, ηq.

By straightforward application of Leibniz rule in combination with (5.6) we
obtain

|BαxB
β
ξ Fapx, ξ, y, ηq| À h|α`β|α!σβ!sωpx, ξqe´Rp|y|

1
s`|η|

1
σ q

for every h ą 0 and R ą 0. Hence, if

Ga,h,x,ξpy, ηq “
BαxB

β
ξ Fapx, ξ, y, ηq

h|α`β|α!σβ!sωpx, ξq
,

then using Leibniz formula and the properties of a and φ it follows that

BδyB
ρ
ηGa,h,x,ξpy, ηq is bounded by h

|δ`ρ|
1 δ!σρ!se´rp|y|

1
s`|η|

1
σ q for every h, h1, r ą

0, δ, ρ P Zd` and x, ξ P Rd. Thus tGa,h,x,ξ ; x, ξ P Rd u is a bounded set in
Σσ,s
s,σpR2dq for every fixed h ą 0. Let F2Fa be the partial Fourier transform of

Fapx, ξ, y, ηq with respect to the py, ηq-variable. Then, in view of Proposition
5.2, we get

|BαxB
β
ξ pF2Faqpx, ξ, ζ, zq| À h|α`β|α!σβ!sωpx, ξqe´Rp|z|

1
s`|ζ|

1
σ q,

for every h ą 0 and R ą 0. This is the same as (2).
It remains to prove that (3) implies (1), but this follows by similar ar-

guments as in the proof of Proposition 9.1.

Proposition 10.5. Let R ą 0, q P r1,8s, s, σ ą 0 be such that s ` σ ě 1
and ps, σq ‰ p1

2 ,
1
2q, φ P Σσ,s

s,σpR2dqz0, ω P Ps,σpR2dq, and let

ωRpx, ξ, η, yq “ ωpx, ξqe´Rp|y|
1
s`|η|

1
σ q.

Then

Γσ,s;0
pωq pR

2dq “
č

Rą0

t a P pΣσ,s
s,σq

1pR2dq ; }ω´1
R Vφa}L8,q ă 8u. (10.3)

Proof. Let φ0 P Σσ,s
s,σpR2dqz0, a P pΣσ,s

s,σq
1pR2dq, and set

F0,apX,Y q “ |pVφ0aqpx, ξ, η, yq|, FapX,Y q “ |pVφaqpx, ξ, η, yq|

and Gpx, ξ, η, yq “ |pVφφ0qpx, ξ, η, yq|,

where X “ px, ξq and Y “ py, ηq. Proposition 5.9 and the proof of (2) in
Proposition 10.4 give that Vφφ0 P Σσ,s

s,σpR4dq, then we have

0 ď Gpx, ξ, η, yq À e´Rp|x|
1
s`|ξ|

1
σ`|η|

1
σ`|y|

1
s q for every R ą 0. (10.4)
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By [67, Lemma 11.3.3], we have Fa À F0,a ˚G. We obtain

pω´1
R ¨ FaqpX,Y q

À ωpXq´1eRp|y|
1
s`|η|

1
σ q

ĳ

R4d

F0,apX ´X1, Y ´ Y1qGpX1, Y1q dX1dY1

À

ĳ

R4d

pω´1
cR ¨ F0,aqpX ´X1, Y ´ Y1qpω̃cR,κ ¨ GqpX1, Y1q dX1dY1

À

ĳ

R4d

pω´1
cR ¨ F0,aqpX ´X1, Y ´ Y1qG1pX1, Y1q dX1dY1 (10.5)

where ω̃cR,κpX1, Y1q “ ecRpκpsq|x1|
1
s`κpσq|ξ1|

1
σ`|y1|

1
s`|η1|

1
σ q, thus G1 satisfying

(10.4) for some c ą 0 independent of R. By applying the L8-norm on the
last inequality we get

}ω´1
R Fa}L8pR4dq

À sup
Y

¨

˝

ĳ

R4d

`

suppω´1
cR ¨ F0,aqp¨, Y ´ Y1q

˘

G1pX1, Y1q dX1dY1

˛

‚

ď sup
Y

`

}pω´1
cR ¨ F0,aqp¨ ´ p0, Y q}L8,q

˘

}G1}L1,q1 — }ω
´1
cR ¨ F0,a}L8,q .

We only consider the case q ă 8 when proving the opposite inequality.
The case q “ 8 follows by similar arguments. By (10.5) we have

}ω´1
R ¨ Fa}

q
L8,q À

ż

R2d

psupHp ¨ , Y qqq dY,

where H “ K1 ˚ G1 and Kj “ ω´1
jcR ¨ F0,a, j ě 1. Let Y1 “ py1, η1q be new

variables of integration. Then Minkowski’s inequality gives

sup
X
HpX,Y q

À

ĳ

R4d

`

supK2p ¨ , Y ´ Y1q
˘

e´cRp|y´y1|
1
s`|η´η1|

1
σ qG1pX1, Y1q dX1dY1

À }K2}L8

ĳ

R4d

e´cRp|y´y1|
1
s`|η´η1|

1
σ qG1pX1, Y1q dX1dY1.
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By combining these estimates we get

}ω´1
R ¨ Fa}

q
L8,q

À }K2}
q
L8

ż

R2d

¨

˝

ĳ

R4d

e´cRp|y´y1|
1
s`|η´η1|

1
σ qG1pX1, Y1q dX1dY1

˛

‚dY

— }K2}
q
L8 .

That is,

}ω´1
R ¨ Fa}L8,q À }ω

´1
2cR ¨ F0,a}L8 ,

and the result follows.

Proof of Theorem 10.3. The case s “ σ “ 1
2 follows from [24, Theorem

4.1]. We may therefore assume that ps, σq ‰ p1
2 ,

1
2q. Let φ P Σσ,s

s,σpR2dq and

φA “ eixADξ,Dxyφ. Then φA P Σσ,s
s,σpR2dq, in view of (2) in Theorem 10.1.

Also let

ωA,Rpx, ξ, η, yq “ ωpx´Ay, ξ ´A˚ηqe´Rp|y|
1
s`|η|

1
σ q.

By straightforward applications of Parseval’s formula, we get

|pVφApe
ixADξ,Dxyaqqpx, ξ, η, yq| “ |pVφaqpx´Ay, ξ ´A

˚η, η, yq|

(cf. Proposition 1.7 in [116] and its proof). This gives

}ω´1
0,RVφa}Lp,q “ }ω

´1
A,RVφApe

ixADξ,Dxyaq}Lp,q .

Hence Proposition 10.5 gives

a P Γσ,s;0
pωq pR

2dq ô }ω´1
0,RVφa}L8 ă 8 for every R ą 0

ô }ω´1
A,RVφApe

ixADξ,Dxyaq}L8 ă 8 for every R ą 0

ô }ω´1
0,RVφApe

ixADξ,Dxyaq}L8 ă 8 for every R ą 0

ô eixADξ,Dxya P Γσ,s;0
pωq pR

2dq,

and the result follows in this case. Here the third equivalence follows from
the fact that

ω0,R`c À ωt,R À ω0,R´c,

for some c ą 0.
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We note that ifA,B P Mpd,Rq and a, b P pSσ,ss,σq1pR2dq or a, b P pΣσ,s
s,σq

1pR2dq,
then the first part of the previous proof shows that

OpApaq “ OpBpbq ô eixADξ,Dxya “ eixBDξ,Dxyb. (10.6)

The following result follows from Theorems 10.1 and 10.3.

Theorem 10.6. Let s, s1, s2, σ, σ1, σ2 ą 0 be such that

s` σ ě 1, s1 ` σ1 ě 1, s2 ` σ2 ě 1, s2 ď s1 and σ1 ď σ2,

A,B P Mpd,Rq, ω P Ps,σpR2dq, and let a and b be Gelfand-Shilov distri-
butions such that OpApaq “ OpBpbq. Then the following statements hold
true:

(1) a P Sσ1,s2s1,σ2 pR2dq (resp. a P pSσ1,s2s1,σ2 q
1pR2dq) if and only if b P Sσ1,s2s1,σ2 pR2dq

(resp. b P pSσ1,s2s1,σ2 q
1pR2dq).

(2) a P Σσ1,s2
s1,σ2pR2dq (resp. a P pΣσ1,s2

s1,σ2q
1pR2dq) if and only if b P Σσ1,s2

s1,σ2pR2dq

(resp. b P pΣσ1,s2
s1,σ2q

1pR2dq).

(3) a P Γσ,ss,σ;0pR2dq if and only if b P Γσ,ss,σ;0pR2dq. If in addition ps, σq ‰

p1
2 ,

1
2q, then a P Γσ,s;0s,σ pR2dq if and only if b P Γσ,s;0s,σ pR2dq, and a P

Γσ,s;0s,σ;0pR2dq if and only if b P Γσ,s;0s,σ;0pR2dq.

(4) a P Γσ,s;0
pωq pR

2dq if and only if b P Γσ,s;0
pωq pR

2dq.

The following corollary is a consequence of Theorem 10.6.

Corollary 10.7. Let s, σ ą 0 such that s` σ ě 1 ω P Ps,σpR2dq, A1, A2 P

Mpd,Rq, and that a1, a2 P pΣ
σ,s
s,σq

1pR2dq are such that OpA1
pa1q “ OpA2

pa2q.
Then

a1 P Γσ,s;0
pωq pR

2dq ô a2 P Γσ,s;0
pωq pR

2dq

and similarly for Γσ,s
pωqpR

2dq in place of Γσ,s;0
pωq pR

2dq.

10.2 Continuity for pseudo-differential operators
with symbols of infinite order on Gelfand-
Shilov spaces of functions and distributions

Next we deduce continuity for pseudo-differential operators with symbols in
the classes given in Definitions 5.20 and 5.21. We begin with the case when
the symbols belong to Γσ,ss,σ;0pR2dq.
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Theorem 10.8. Let A P Mpd,Rq, s, σ ą 0 be such that s ` σ ě 1, and let
a P Γσ,ss,σ;0pR2dq. Then OpApaq is continuous on Sσs pRdq and on pSσs q1pRdq.

For the proof we need the following result.

Lemma 10.9. Let s, σ ą 0 be such that s` σ ě 1, h1 ě 1, Ω1 be a bounded
set in Sσs;h1pR

dq, and let

h2 ě 22`sh1 and h3 ě 24`s`σh1.

Then

Ω2 “

"

x ÞÑ
xγfpxq

p21`sh1q
|γ|γ!s

; f P Ω1, γ P Zd`
*

is a bounded set in Sσs;h2pR
dq, and

Ω3 “

"

x ÞÑ
Dδxγfpxq

p23`s`σh1q
|γ`δ|γ!sδ!σ

; f P Ω1, γ, δ P Zd`
*

is a bounded set in Sσs;h3pR
dq.

Proof. Since Ω1 is a bounded set in Sσs;h1pR
dq, there is a constant C ą 0

such that

|xαDβfpxq| ď Ch
|α`β|
1 α!sβ!σ, α, β P Zd`, (10.7)

for every f P Ω1. We shall prove that (10.7) is true for all f P Ω2 for a new
choice of C ą 0, and h2 in place of h1.

Let f P Ω2. Then

fpxq “
xγf0pxq

p21`sh1q
|γ|γ!s
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for some f0 P Ω1 and γ P Zd`, and

|xαDβfpxq| “

ˇ

ˇ

ˇ

ˇ

xαDβpxγf0qpxq

p21`sh1q
|γ|γ!s

ˇ

ˇ

ˇ

ˇ

ď
ÿ

γ0ďγ,β

ˆ

β

γ0

˙

γ!

pγ ´ γ0q!
¨
|xα`γ´γ0Bβ´γ0f0pxq|

p21`sh1q
|γ|γ!s

À
ÿ

γ0ďγ,β

ˆ

β

γ0

˙ˆ

γ

γ0

˙

γ0! ¨
h
|α`β`γ´2γ0|
1 pα` γ ´ γ0q!

spβ ´ γ0q!
σ

p21`sh1q
|γ|γ!s

À h
|α`β|
1 α!sβ!σ

ÿ

γ0ďγ,β

ˆ

β

γ0

˙ˆ

γ

γ0

˙

2´p1`sq|γ|
ˆ

pα` γ ´ γ0q!γ0!

α!γ!

˙sˆ
pβ ´ γ0q!γ0!

β!

˙σ

À h
|α`β|
1 α!sβ!σ

ÿ

γ0ďγ,β

ˆ

β

γ0

˙ˆ

γ

γ0

˙

2´p1`sq|γ|
ˆ

pα` γ ´ γ0q!γ0!

pα` γq!

˙sˆα` γ

γ

˙s

À h
|α`β|
1 α!sβ!σ

ÿ

γ0ďγ,β

2|β|2|γ|2´p1`sq|γ|2s|α`γ|

À 2s|α|2|β|h
|α`β|
1 α!sβ!σ

ÿ

γ0ďβ

1.

Since
ÿ

γ0ďβ

1 À 2|β|,

we get

|xαDβfpxq| ď C2s|α|22|β|h
|α`β|
1 α!sβ!σ ď Ch

|α`β|
2 α!sβ!σ

for some constant C which is independent of f , and the assertion on Ω2

follows. The same type of arguments shows that
"

x ÞÑ
Dδfpxq

p21`sh1q
|δ|δ!σ

; f P Ω1, δ P Zd`
*

(10.8)

is a bounded set in Sσs;22`σh1pR
dq, and the boundedness of Ω3 in Sσs;h3pR

dq

follows by combining the boundedness of Ω2 and the boundedness of (10.8)
in Sσs;h2pR

dq.

Lemma 10.10. Let s, τ ą 0, and set

msptq “
8
ÿ

j“0

tj

pj!q2s
and ms,τ pxq “ mspτxxy

2
q t ě 0, x P Rd.

Then,

C´1ep2s´εqτ
1
2s xxy

1
s
ď ms,τ pxq ď Cep2s`εqτ

1
2s xxy

1
s
, (10.9)
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for every ε ą 0, and

xα

ms,τ pxq
À h

|α|
0 α!se´r|x|

1
s , (10.10)

for some positive constant r which depends on d, s and τ only.

The estimate (10.9) follows from [82], and (10.10) also follows from com-
putations given in e. g. [24, 82]. For the sake of completeness we present a
proof of (10.10).

Proof. We have

xα

ms,τ pxq
À

d
ź

j“1

gαj pxjq,

where

gkptq “ tke´2r0t
1
s , t ě 0,

for some r0 ą 0 depending only on d, s and τ . Let

g0,kptq “ Cke
´r0t, t ě 0,

where

Ck “ sup
tě0
ptske´r0tq.

Then, gkptq ď g0,kpt
1
s q, and the result follows if we prove Ck À hk0k!s.

By straightforward computations, it follows that the maximum of tske´r0t

is attained at t “ sk{r0, giving that

Ck “

ˆ

s

r0e

˙sk

pkkqs À hk0k!s, h0 “

ˆ

s

r0

˙s

,

where the last inequality follows from Stirling’s formula. This gives the
result.

Proof of Theorem 10.8. By Theorem 10.1 it suffices to consider the case
A “ 0, that is for the operator

Op0paqfpxq “ p2πq
´ d

2

ż

Rd
apx, ξq pfpξqeixx,ξy dξ.

Observe that

1

ms,τ pxq

8
ÿ

j“0

τ j

pj!q2s
p1´∆ξq

jeixx,ξy “ eixx,ξy.
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Let now h1 ą 0 and f P Ω, where Ω is a bounded subset of Sσs,h1pR
dq. For

fixed α, β P Zd` we get

p2πq
d
2xαDβ

xpOp0paqfqpxq

“ xα
ÿ

γďβ

ˆ

β

γ

˙
ż

Rd
ξγDβ´γ

x apx, ξq pfpξqeixx,ξy dξ

“
xα

ms,τ pxq

ÿ

γďβ

ˆ

β

γ

˙

gτ,β,γpxq, (10.11)

gτ,β,γpxq “
8
ÿ

j“0

τ j

pj!q2s

ż

Rd
p1´∆ξq

j
´

ξγDβ´γ
x apx, ξq pfpξq

¯

eixx,ξy dξ.

By Lemma 10.9 and the fact that, p2jq! ď 4jj!2, it follows that for some
h ą 0,

Ω “

#

ξ ÞÑ
p1´∆ξq

jpξγDβ
xapx, ξq pfpξqq

h|β`γ|`jj!2sγ!σβ!σer|x|
1
s

; j ě 0, β, γ P Zd`

+

is bounded in SsσpRdq for every r ą 0. This implies that, for some positive
constants h and r0, we get

|p1´∆ξq
jpξγDβ

xapx, ξq
pfpξqq| À h|β`γ|`jj!2sγ!σβ!σer|x|

1
s´r0|ξ|

1
σ ,

for every r ą 0. Hence,

|gτ,β,γpxq| À
8
ÿ

j“0

τ j

pj!q2s
h|β|`jj!2sγ!σpβ ´ γq!σer|x|

1
s

ż

Rd
e´r0|ξ|

1
σ dξ

À h|β|β!σer|x|
1
s

8
ÿ

j“0

pτhqj — h|β|β!σer|x|
1
s

for every r ą 0, provided τ is chosen such that τh ă 1.
By inserting this into (10.11) and using Lemma 10.10 we get, for some

h ą 0 and some r0 ą 0, that

|xαDβ
xpOp0paqfqpxq| À h|α|α!se´r0|x|

1
s
ÿ

γďβ

ˆ

β

γ

˙

|gτ,β,γpxq|

À h|α`β|2|β|α!sβ!σe´pr0´rq|x|
1
s

¨

˝

ÿ

γďβ

1

˛

‚À p2hq|α`β|α!sβ!σ,

provided that r above is chosen to be smaller than r0. Then, the continuity
of OpApaq on Sσs pRdq follows. The continuity of OpApaq on pSσs q1pRdq now
follows from the previous continuity and duality.
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Next we shall discuss corresponding continuity in the Beurling case. The
main idea is to deduce such properties by suitable estimates on short-time
Fourier transforms of involved functions and distributions. First we have the
following relation between the short-time Fourier transforms of the symbols
and kernels of a pseudo-differential operator.

Lemma 10.11. Let A P Mpd,Rq, s, σ ą 0 be such that s ` σ ě 1, a P
pSσ,ss,σq1pR2dq (a P pΣσ,s

s,σq
1pR2dq), φ P Sσ,ss,σpR2dq (φ P Σσ,s

s,σpR2dq), and let

Ka,Apx, yq “ p2πq
´ d

2 pF´1
2 aqpx´Apx´ yq, x´ yq

and

ψpx, yq “ Kφ,Apx, yq “ p2πq
´ d

2 pF´1
2 φqpx´Apx´ yq, x´ yq

be the kernels of OpApaq and OpApφq, respectively. Then

pVψKa,Aqpx, y, ξ, ηq

“ p2πq´deixx´y,η´A
˚pξ`ηqypVφaqpx´Apx´yq,´η`A

˚pξ`ηq, ξ`η, y´xq.
(10.12)

The essential parts of (10.12) is presented in the proof of [121, Proposi-
tion 2.5]. In order to be self-contained we here present a short proof.

Proof. Let
TApx, yq “ x´Apx´ yq

and

Q “ Qpx, x1, y, ξ, ξ1, ηq “ xx´ y, ξ1 ´ TA˚p´η, ξqy ´ xx1, ξ ` ηy.

By formal computations, using Fourier’s inversion formula we get

pVψKa,Aqpx, y, ξ, ηq

“ p2πq´3d

ĳ

Ka,Apx1, y1qψpx1 ´ x, y1 ´ yqe
´ipxx1,ξy`xy1,ηyq dx1dy1

“ p2πq´2d

ĳ

apx1, ξ1qφpx1 ´ TApx, yq, ξ1 ´ TA˚p´η, ξqqe
iQpx,x1,y,ξ,ξ1,ηq dx1dξ1

“ p2πq´deixx´y,η´A
˚pξ`ηqypVφaqpTApx, yq, TA˚p´η, ξq, ξ ` η, y ´ xq,

where all integrals should be interpreted as suitable Fourier transforms. This
gives the result.

Before continuing the discussion about the continuity of pseudo-differential
operators, we observe that the previous lemma in combination with Propo-
sitions 9.2 and 9.3 give the following.
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Proposition 10.12. Let A P Mpd,Rq, s, σ ą 0 be such that s` σ ě 1 and
ps, σq ‰ p1

2 ,
1
2q, φ P Σσ

s pR2dqz0, a be a Gelfand-Shilov distribution on R2d

and let Ka,A be the kernel of OpApaq. Then, the following conditions are
equivalent:

(1) a P Γσ,ss,σpR2dq (resp. a P Γσ,s;0s,σ pR2dq).

(2) For some r ą 0,

|VφKa,Apx, y, ξ, ηq| À erp|x´Apx´yq|
1
s`|η´A˚pξ`ηq|

1
σ q´hp|ξ`η|

1
σ`|x´y|

1
s q

holds for some h ą 0 (for every h ą 0).

By similar arguments we also get the following.

Proposition 10.13. Let A P Mpd,Rq, s, σ ą 0 be such that s ` σ ě 1,
φ P Sσs pR2dqz0, a be a Gelfand-Shilov distribution on R2d and let Ka,A be
the kernel of OpApaq. Then the following conditions are equivalent:

(1) a P Γσ,ss,σ;0pR2dq (resp. a P Γσ,s;0s,σ;0pR2dq).

(2) For some h ą 0 (for every h ą 0),

|VφKa,Apx, y, ξ, ηq| À erp|x´Apx´yq|
1
s`|η´A˚pξ`ηq|

1
σ q´hp|ξ`η|

1
σ`|x´y|

1
s q

holds for every r ą 0.

Theorem 10.14. Let A P Mpd,Rq, s, σ ą 0 be such that s ` σ ě 1 and
ps, σq ‰ p1

2 ,
1
2q, and let a P Γσ,s;0s,σ pR2dq. Then OpApaq is continuous on

Σσ
s pRdq, and is uniquely extendable to a continuous map on pΣσ

s q
1pRdq.

Proof. By Theorem 10.1 we may assume that A “ 0. Let

gpxq “ Op0paqfpxq “ pKa,0px, ¨ q, fq “ pha,x, fq,

where ha,x “ Ka,0px, ¨ q, and let φj P Σσ
s pRdq be such that }φj}L2 “ 1,

j “ 1, 2. By Moyal’s identity (cf. [67]) we get

gpxq “ pha,x, fqL2pRdq “ pVφ1ha,x, Vφ1fqL2pR2dq.

Applying the short-time Fourier transform on g and using Fubini’s theorem
on distributions we get

Vφ2gpx, ξq “ xJpx, ξ, ¨ q, F y,

where

F py, ηq “ Vφ1fpy,´ηq, Jpx, ξ, y, ηq “ VφKa,0px, y, ξ, ηq
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and φ “ φ2 b φ1.
Now suppose that r ą 0 is arbitrarily chosen. By Proposition 9.2 we get,

for some c P p0, 1q which depends on s and σ only, that for some r0 ą 0 and
with r1 “ pr ` r0q{c, that

|Jpx, ξ, y, ηq| À er0p|x|
1
s`|η|

1
σ qe´r1p|y´x|

1
s`|ξ`η|

1
σ q

À e´ppcr1´r0q|x|
1
s`cr1|ξ|

1
σ qer1|y|

1
s`pr1`r0q|η|

1
σ

À e´rp|x|
1
s`|ξ|

1
σ qer2p|y|

1
s`|η|

1
σ q,

where r2 only depends on r and r0. Since f P Σσ
s pRdq we have

|F px, ξq| À }f}Sσs;he
´p1`r2qp|x|

1
s`|ξ|

1
σ q,

where h ą 0 only depends on r2, and thereby depends only r and r0. This
implies

|Vφ2gpx, ξq| “ |xJpx, ξ, ¨ q, F y|

À }f}Sσs;h

ˆ
ĳ

er2p|y|
1
s`|η|

1
σ qe´p1`r2qp|y|

1
s`|η|

1
σ q dydη

˙

e´rp|x|
1
s`|ξ|

1
σ q

— }f}Sσs;he
´rp|x|

1
s`|ξ|

1
σ q, (10.13)

which shows that g P Σσ
s pRdq in view of [123, Proposition 2.1]. Since the

topology of Σσ
s pRdq is given by the semi-norms

g ÞÑ sup
x,ξPRd

|Vφ2gpx, ξqe
rp|x|

1
s`|ξ|

1
σ q|,

it follows from (10.13) that Oppaq is continuous on Σσ
s pRdq.

By duality it follows that Oppaq is uniquely extendable to a continuous
map on pΣσ

s q
1pRdq.

The following result follows by similar arguments as in the previous
proof.

Theorem 10.15. Let A P Mpd,Rq, s, σ ą 0 be such that s ` σ ě 1 and
ps, σq ‰ p1

2 ,
1
2q, and let a P Γσ,ss,σpR2dq. Then, OpApaq is continuous from

Σσ
s pRdq to Sσs pRdq, and from pSσs q1pRdq to pΣσ

s q
1pRdq.

10.3 Compositions of pseudo-differential operators

Next we deduce algebraic properties of pseudo-differential operators consid-
ered in Theorems 10.8, 10.14 and 10.15. We recall that for pseudo-differential



164 Invariance, continuity and composition for ψdo

operators with symbols, for instance, in Hörmander classes, we have

Op0pa1#0a2q “ Op0pa1q ˝Op0pa2q,

where
a1#0a2px, ξq ”

`

eixDξ,Dyypa1px, ξqa2py, ηq
˘

ˇ

ˇ

ˇ

py,ηq“px,ξq
.

More generally, if A P Mpd,Rq and a1#Aa2 is defined by

a1#Aa2 ” eixADξ,Dxy
´

`

e´ixADξ,Dxya1

˘

#0

`

e´ixADξ,Dxya2

˘

¯

, (10.14)

for a1 and a2 belonging to certain Hörmander symbol classes, then it follows
from the analysis in [81] that

OpApa1#Aa2q “ OpApa1q ˝OpApa2q (10.15)

for suitable a1 and a2.
We recall that the map a ÞÑ Ka,A is a homeomorphism from Sσ,ss,σpR2dq

to Sσs pR2dq and from Σσ,s
s,σpR2dq to Σσ

s pR2dq. It is also immediate to observe
that the map

pK1,K2q ÞÑ

ˆ

px, yq ÞÑ pK1 ˝K2qpx, yq “

ż

Rd
K1px, zqK2pz, yq dz

˙

is sequentially continuous from Sσs pR2dq ˆ Sσs pR2dq to Sσs pR2dq, and from
Σσ
s pR2dqˆΣσ

s pR2dq to Σσ
s pR2dq. Here we have identified operators with their

kernels. For compositions with three operator kernels we have

pK1 ˝K2 ˝K3qpx, yq “ xK2, TK1,K3px, y, ¨ qy

with TK1,K3px, y, z1, z2q “ K1px, z1qK3pz2, yq
(10.16)

when Kj P L
2pR2dq, j “ 1, 2, 3. Notice that

pK1,K2,K3q ÞÑ ppx, yq ÞÑ xK2, TK1,K3px, y, ¨ qyq

is sequentially continuous from Sσs pR2dqˆ pSσs q1pR2dqˆSσs pR2dq to Sσs pR2dq,
and from Σσ

s pR2dq ˆ pΣσ
s q
1pR2dq ˆΣσ

s pR2dq to Σσ
s pR2dq. The following result

follows from these continuity properties and (10.15).

Proposition 10.16. Let A P Mpd,Rq, and let s, σ ą 0 be such that s`σ ě
1. Then the following properties hold true:

(1) The map pa1, a2q ÞÑ a1#Aa2 is continuous from Sσ,ss,σpR2dq ˆ Sσ,ss,σpR2dq

to Sσ,ss,σpR2dq.

(2) The map pa1, a2q ÞÑ a1#Aa2 is continuous from Σσ,s
s,σpR2dq ˆ Σσ,s

s,σpR2dq

to Σσ,s
s,σpR2dq.
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(3) The map pa1, a2, a3q ÞÑ a1#Aa2#Aa3 from Sσ,ss,σpR2dqˆSσ,ss,σpR2dqˆSσ,ss,σpR2dq

to Sσ,ss,σpR2dq extends uniquely to a sequentially continuous and associa-
tive map from Sσ,ss,σpR2dq ˆ pSσ,ss,σq1pR2dq ˆ Sσ,ss,σpR2dq to Sσ,ss,σpR2dq.

(4) The map pa1, a2, a3q ÞÑ a1#Aa2#Aa3 from Σσ,s
s,σpR2dqˆΣσ,s

s,σpR2dqˆΣσ,s
s,σpR2dq

to Σσ,s
s,σpR2dq extends uniquely to a sequentially continuous and associa-

tive map from Σσ,s
s,σpR2dq ˆ pΣσ,s

s,σq
1pR2dq ˆ Σσ,s

s,σpR2dq to Σσ,s
s,σpR2dq.

We have the following corresponding algebra result for Γσ,s;0s,σ and related
symbol classes.

Theorem 10.17. Let A P Mpd,Rq, and let s, σ ą 0 be such that s` σ ě 1.
Then the following statements hold true:

(1) The map (1) in Proposition 10.16 extends uniquely to a continuous map
from Γσ,ss,σ;0pR2dq ˆ Γσ,ss,σ;0pR2dq to Γσ,ss,σ;0pR2dq, and from Γσ,s;0s,σ;0pR2dq ˆ

Γσ,s;0s,σ;0pR2dq to Γσ,s;0s,σ;0pR2dq.

(2) If in addition ps, σq ‰ p1
2 ,

1
2q, the map (2) in Proposition 10.16 ex-

tends uniquely to a continuous map from Γσ,s;0s,σ pR2dq ˆ Γσ,s;0s,σ pR2dq to
Γσ,s;0s,σ pR2dq, and from Γσ,ss,σpR2dqˆΓσ,s;0s,σ pR2dq or from Γσ,s;0s,σ pR2dq ˆΓσ,ss,σpR2dq

to Γσ,ss,σpR2dq.

Proof. We prove only the first assertion in (2). The other statements follow
by similar arguments.

By Theorem 10.6 it suffices to consider the case when A “ 0. Let
φ1, φ2, φ3 P Σσ

s pRdqz0, such that }φ2}L2 “ 1, aj P Γσ,s;0s,σ pR2dq, j “ 1, 2, and
let K be the kernel of Op0pa1q ˝Op0pa2q. By Proposition 10.12 we need to
prove that for some r ą 0,

|Vφ1bφ3Kpx, y, ξ, ηq| À erp|x|
1
s`|η|

1
σ q´hp|ξ`η|

1
σ`|x´y|

1
s q (10.17)

for every h ą 0.
Therefore, let h ą 0 be arbitrarily chosen but fixed, and let Kj be the

kernel of Op0pajq, j “ 1, 2,

F1px, y, ξ, ηq “ Vφ1bφ2K1px, y, ξ, ηq,

F2px, y, ξ, ηq “ Vφ2bφ3K2px, y,´ξ, ηq

and

Gpx, y, ξ, ηq “ Vφ1bφ3Kpx, y, ξ, ηq.

Then,

Gpx, y, ξ, ηq “

ĳ

R2d

F1px, z, ξ, ζqF2pz, y, ζ, ηq dzdζ, (10.18)
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by Moyal’s identity (cf. proof of Theorem 10.14). Since aj P Γσ,s;0s,σ pR2dq we
have for some r0 ą 0 that

|F1px, y, ξ, ηq| À er0p|x|
1
s`|η|

1
σ q´rp|ξ`η|

1
σ`|x´y|

1
s q

and

|F2px, y, ξ, ηq| À er0p|x|
1
s`|η|

1
σ q´rp|ξ´η|

1
σ`|x´y|

1
s q

for every r ą 0. By combining this with (10.18) we get, for some r0 ą 0,

|Gpx, y, ξ, ηq| À

ĳ

R2d

eϕr0,r1 px,y,z,ξ,η,ζq`ψr0,r1 px,y,z,ξ,η,ζq dzdζ, (10.19)

where r1 ě 2cr ` cr0,

ϕr0,rpx, y, z, ξ, η, ζq “ r0p|x|
1
s ` |ζ|

1
σ q ´ rp|ζ ´ η|

1
σ ` |y ´ z|

1
s q,

ψr0,rpx, y, z, ξ, η, ζq “ r0p|z|
1
s ` |η|

1
σ q ´ rp|ξ ` ζ|

1
σ ` |x´ z|

1
s q,

and c ě 1 is chosen such that

|x` y|
1
s ď cp|x|

1
s ` |y|

1
s q and |ξ ` η|

1
σ ď cp|ξ|

1
σ ` |η|

1
σ q, x, y, ξ, η P Rd.

Then,

ϕr0,r1px, y, z, ξ, η, ζq ď cr0p|x|
1
s ` |η|

1
σ q ´ pr1 ´ cr0qp|ζ ´ η|

1
σ ` |y ´ z|

1
s q

ď cr0p|x|
1
s ` |η|

1
σ q ´ 2crp|ζ ´ η|

1
σ ` |y ´ z|

1
s q

and

ψr0,r1px, y, z, ξ, η, ζq ď cr0p|x|
1
s ` |η|

1
σ q ´ 2crp|ξ ` ζ|

1
σ ` |x´ z|

1
s q.

This gives

ϕr0,r1px, y, z, ξ, η, ζq ` ψr0,r1px, y, z, ξ, η, ζq

ď 2cr0p|x|
1
s ` |η|

1
σ q ´ 2crp|ξ ` ζ|

1
σ ` |ζ ´ η|

1
σ ` |x´ z|

1
s ` |y ´ z|

1
s q.

Since

´ 2crp|ξ ` ζ|
1
σ ` |ζ ´ η|

1
σ ` |x´ z|

1
s ` |y ´ z|

1
s q

ď ´rp|ξ ` η|
1
σ ` |x´ y|

1
s q ´ crp|ξ ` ζ|

1
σ ` |ζ ´ η|

1
σ ` |x´ z|

1
s ` |y ´ z|

1
s q

ď ´rp|ξ ` η|
1
σ ` |x´ y|

1
s q ´ crp|ξ ` ζ|

1
σ ` |x´ z|

1
s q,



Invariance, continuity and composition for ψdo 167

we get, by combining these estimates with (10.19), that

|Gpx, y, ξ, ηq| À

ĳ

R2d

e2cr0p|x|
1
s`|η|

1
σ q´rp|ξ`η|

1
σ`|x´y|

1
s q´crp|ξ`ζ|

1
σ`|x´z|

1
s q dzdζ,

— e2cr0p|x|
1
s`|η|

1
σ q´rp|ξ`η|

1
σ`|x´y|

1
s q.

Since r0 ą 0 is fixed and r ą 0 can be chosen arbitrarily, the result follows.

Theorem 10.18. Let A P Mpd,Rq, s, σ ą 0 be such that s` σ ě 1, and let
ωj P Ps,σpR2dq, j “ 1, 2. Then the following statements true:

(1) The map pa1, a2q ÞÑ a1#Aa2 from Σσ,s
s,σpR2dq ˆΣσ,s

s,σpR2dq to Σσ,s
s,σpR2dq is

uniquely extendable to a continuous map from Γσ,s;0
pω1q

pR2dq ˆ Γσ,s;0
pω2q

pR2dq

to Γσ,s;0
pω1ω2q

pR2dq.

(2) If in addition ωj P P0
s,σpR2dq, j “ 1, 2, then the map pa1, a2q ÞÑ a1#Aa2

from Sσ,ss,σpR2dqˆSσ,ss,σpR2dq to Sσ,ss,σpR2dq is uniquely extendable to a con-
tinuous map from Γσ,s

pω1q
pR2dq ˆ Γσ,s

pω2q
pR2dq to Γσ,s

pω1ω2q
pR2dq.

For the proof we need the following lemma.

Lemma 10.19. Let ω be a weight on R4d, ω0px, ξq “ ωpx, x, ξ, ξq when
x, ξ P Rd, s, σ ą 0 be such that s` σ ě 1. Then, the trace map which takes

R4d Q px, y, ξ, ηq ÞÑ F px, y, ξ, ηq

to

R2d Q px, ξq ÞÑ F px, x, ξ, ξq

is linear and continuous from Γσ,s
pωqpR

4dq into Γσ,s
pω0q
pR2dq. The same holds

true with Γσ,s;0
pωq and Γσ,s;0

pω0q
in place of Γσ,s

pωq and Γσ,s
pω0q

, respectively, at each
occurrence.

Lemma 10.19 follows by similar arguments as in the proof of Lemma
10.9, using the Leibniz type rule

BαxB
β
ξ pF px, x, ξ, ξqq “

ÿ

γďα

ÿ

δďβ

ˆ

α

γ

˙ˆ

β

δ

˙

pB
α´γ
1 B

β´δ
2 B

γ
3B

δ
4F qpx, x, ξ, ξq.

Proof of Theorem 10.18. We may assume that A “ 0 by Theorem 10.1. We
only prove (2), since the assertion (1) follows by similar arguments.
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Let

Fa1,a2px1, x2, ξ1, ξ2q “ a1px1, ξ1qa2px2, ξ2q

and

ωpx1, x2, ξ1, ξ2q “ ω1px1, ξ1qω2px2, ξ2q.

By the definitions, it follows that the map T1 which takes pa1, a2q into Fa1,a2
is continuous from Γσ,s

pω1q
pR2dq ˆ Γσ,s

pω2q
pR2dq to Γσ,s

pωqpR
4dq.

Theorem 10.3 implies that the map T2 which takes F px1, x2, ξ1, ξ2q to
eixDξ1 ,Dx2yF px1, x2, ξ1, ξ2q is continuous on Γσ,s

pωqpR
4dq. Hence, if T3 is the

trace operator which takes F px1, x2, ξ1, ξ2q into F0px, ξq ” F px, x, ξ, ξq, the
Lemma 10.19 shows that T ” T3 ˝ T2 ˝ T1 is continuous from Γσ,s

pω1q
pR2dq ˆ

Γσ,s
pω2q
pR2dq to Γσ,s

pω1ω2q
pR2dq.

By [81, Theorem 18.1.8] we have T pa1, a2q “ a1#0a2 when a1, a2 P

Σσ,s
s,σpR2dq. If instead aj P Γσ,s

pωjq
pR2dq, j “ 1, 2, then we take T pa1, a2q as the

definition of a1#0a2. By the continuity of T it follows that pa1, a2q ÞÑ a1#0a2

is continuous from Γσ,s
pω1q
pR2dq ˆ Γσ,s

pω2q
pR2dq to Γσ,s

pω1ω2q
pR2dq.

Since Γσ,s
pωjq
pR2dq Ď Γσ,ss,σ;0pR2dq, we get Op0pa1#0a2q “ Op0pa1q˝Op0pa2q

and that a1#0a2 is uniquely defined as an element in Γσ,ss,σ;0pR2dq, in view of

Theorem 10.17. Hence a1#0a2 is uniquely defined in Γσ,s
pω1ω2q

pR2dq, since all

these symbol classes are subspaces of C8pR2dq. This gives the result.



Chapter 11

Pseudo-differential operators
with symbols of infinite
order on modulation spaces

In this chapter we discuss continuity for operators in OppΓσ,s
pω0q
q and OppΓσ,s;0

pω0q
q,

given in Definition 5.20, when acting on a general class of modulation spaces.
In Theorem 11.1 continuity is proved where the symbols belong to Γσ,s

pω0q
and

in Theorem 11.5 continuity is proved where the symbols belong to Γσ,s;0
pω0q

.

This gives an analogy to [120, Theorem 3.2], within the frameworks of op-
erator theory and Gelfand-Shilov classes.

The main result of the current chapter is the next Theorem 11.1.

Theorem 11.1. Let A P Mpd,Rq, s, σ ě 1, ω, ω0 P P0
s,σpR2dq, a P

Γσ,s
pω0q
pR2dq, and that B is an invariant BF-space on R2d. Then OpApaq

is continuous from Mpω0ω,Bq to Mpω,Bq.

We need some preparations for the proof, and start with the following
remark.

Remark 11.2. Let s, σ ą 0 be such that s ` σ ě 1. If a P pΣσ,s
s,σq

1pR2dq,
then there is a unique b P pΣσ,s

s,σq
1pR2dq such that Oppaq˚ “ Oppbq, where

bpx, ξq “ eixDξ,Dxyapx, ξq in view of [80, Theorem 18.1.7]. Furthermore, by
the latter equality and [24, Theorem 4.1] it follows that

a P Γσ,s
pωqpR

2dq ô b P Γσ,s
pωqpR

2dq.

Lemma 11.3. Suppose s, σ ě 1, ω P PEpRd0q and that f P C8pRd`d0q
satisfies

|Bαfpx, yq| À h|α|α!σe´r|x|
1
s ωpyq, α P Zd`d0` , (11.1)

for some h ą 0 and r ą 0. Then there are f0 P C
8pRd`d0q and ψ P Sσs pRdq

such that (11.1) holds true with f0 in place of f for some for some h ą 0
and r ą 0, and fpx, yq “ f0px, yqψpxq.
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Proof. By Proposition 5.12, there is a submultiplicative weight v0 P PE,spRdq
XC8pRdq such that

v0pxq — e
r
2
|x|

1
s (11.2)

and

|Bαv0pxq| À h|α|α!σv0pxq, α P Zd` (11.3)

for some h, r ą 0. Since s, σ ě 1, a straightforward application of Faà di
Bruno’s formula, for the composed function ψpxq “ gpv0pxqq, where gptq “
1
t , on (11.3) gives

ˇ

ˇ

ˇ

ˇ

Bα
ˆ

1

v0pxq

˙ˇ

ˇ

ˇ

ˇ

À h|α|α!σ ¨
1

v0pxq
, α P Zd` (11.3)1

for some h ą 0. It follows from (11.2) and (11.3)1 that if ψ “ 1{v0, then ψ P
Sσs pRdq. Furthermore, if f0px, yq “ fpx, yqv0pxq, then through an application
of Leibnitz formula we get

|BαxB
α0
y f0px, yq| À

ÿ

γďα

ˆ

α

γ

˙

|BδxB
α0
y fpx, yq| |Bα´δv0pxq|

À h|α|`|α0|
ÿ

γďα

ˆ

α

γ

˙

pγ!α0!qσe´r|x|
1
s ωpyqpα´ γq!σv0pxq

À p2hq|α|`|α0|pα!α0!qσe´r|x|
1
s v0pxqωpyq

À p2hq|α|`|α0|pα!α0!qσe´
r
2
|x|

1
s ωpyq,

for some h ą 0, which gives the desired estimate on f0, since it is clear that
fpx, yq “ f0px, yqψpxq.

Lemma 11.4. Let s, σ ě 1, ω P P0
s,σpR2dq, v1 P P0

E,spRdq and v2 P

P0
E,σpRdq be such that v1 and v2 are submultiplicative, and ω P Γσ,s

pωqpR
2dq

is v1 b v2-moderate. Also, let a P Γσ,s
pωqpR

2dq, f P Sσs pRdq, φ P Σσ
s pRdq,

φ2 “ φv1. If

Φpx, ξ, z, ζq “
apx` z, ξ ` ζq

ωpx, ξqv1pzqv2pζq
(11.4)

and

Hpx, ξ, yq “

ĳ

Φpx, ξ, z, ζqφ2pzqv2pζqe
ixy´x´z,ζy dzdζ, (11.5)
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then

VφpOppaqfqpx, ξq “ p2πq´dpf, eix ¨ ,ξyHpx, ξ, ¨ qqωpx, ξq. (11.6)

Furthermore the following statements hold true:

(1) H P C8pR3dq and satisfies

|BαyHpx, ξ, yq| À h
|α|
0 α!σe´r0|x´y|

1
s , (11.7)

for every α P Zd` and some h0, r0 ą 0.

(2) There are functions H0 P C
8pR3dq and φ0 P Sσs pRdq such that

Hpx, ξ, yq “ H0px, ξ, yqφ0py ´ xq, (11.8)

and such that (11.7) holds true for some h0, r0 ą 0, with H0 in place of
H.

Lemma 11.4 follows by similar arguments as in [126]. In order to be self
contained, we give bellow a (different) proof.

Proof. By straightforward computations we get

VφpOppaqfqpx, ξq “ p2πq´dpf, eix ¨ ,ξyH1px, ξ, ¨ qqωpx, ξq, (11.9)

where

H1px, ξ, yq “ p2πq
de´ixy,ξypOppaq˚pφp ¨ ´ xq eix¨,ξyqqpyq{ωpx, ξq

“

ĳ

apz, ζq

ωpx, ξq
φpz ´ xqeixy´z,ζ´ξy dzdζ

“

ĳ

Φpx, ξ, z ´ x, ζ ´ ξqφ2pz ´ xqv2pζ ´ ξqe
ixy´z,ζ´ξy dzdζ.

If z ´ x and ζ ´ ξ are taken as new variables of integrations, it follows that
the right-hand side is the same as (11.5). Hence (11.6) holds true. This
gives the first part of the lemma.

The smoothness of H is a consequence of the uniqueness of the adjoint
(cf. Remark 11.2 and [126, Lemma 2.7]).

To show that (11.7) holds, let

Φ0px, ξ, z, ζq “ Φpx, ξ, z, ζqφ2pzq,

where Φ is defined as in (11.4), and let Ψ “ F3Φ0, where F3Φ0 is the partial
Fourier transform of Φ0px, ξ, z, ζq with respect to the z variable. Then it
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follows, from the assumptions and (11.3)1 and Proposition 5.12, that for
some r ą 0

|Bαz Φ0px, ξ, z, ζq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γďα

ˆ

α

γ

˙

Bγz

ˆ

apx` z, ξ ` ζq

ωpx, ξqv1pzqv2pζq

˙

Bα´γφ2pzq

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

γďα

ˆ

α

γ

˙

ÿ

λďγ

ˆ

γ

λ

˙

ˇ

ˇ

ˇ
B
γ´λ
z apx` z, ξ ` ζq

ˇ

ˇ

ˇ

ωpx, ξqv2pζq

ˆ Bλ
ˆ

1

v1pzq

˙

h|α´γ|pα´ γq!σe´r|z|
1
s

À
ÿ

γďα

ˆ

α

γ

˙

ÿ

λďγ

ˆ

γ

λ

˙

h|α|pα´ γq!σpγ ´ λq!σλ!σe´r0|z|
1
s

À h|α|α!σ
ÿ

γďα

ˆ

α

γ

˙

ÿ

λďγ

ˆ

γ

λ

˙ˆ

pα´ γq!γ!

α!

˙σ ˆ
pγ ´ λq!λ!

γ!

˙σ

e´r0|z|
1
s

À p4hq|α|α!σe´r|z|
1
s
ÿ

γďα

1 ¨
ÿ

λďγ

1.

Since
ř

λďγ

1 À 2|γ|, we get

|Bαz Φ0px, ξ, z, ζq| ď Cp16hq|α|α!σe´r0|z|
1
s
ď Ch

|α|
0 α!σe´r0|z|

1
s , (11.10)

for some C, h0, r0 ą 0. Then z ÞÑ Φ0px, ξ, z, ζq is an element in Sσs pRdq.
Moreover, tΦ0px, ξ, z, ζquzPRd is a bounded set in Γσ,s

p1qpR
dˆR2dq. Indeed, for

a fixed z0 P Rd, an application of Leibnitz formula, Faà di Bruno’s formula,
Proposition 5.12 and (11.3)1, gives

ˇ

ˇ

ˇ
BαxB

β
ξ B

γ
ζΦ0px, ξ, z0, ζq

ˇ

ˇ

ˇ
ď

ÿ

ˆ

α

α1

˙ˆ

β

β1

˙ˆ

γ

γ1

˙

Bα1
x B

β1
ξ

ˆ

1

ωpx, ξq

˙

ˆ B
γ1
ζ

ˆ

1

v2pζq

˙

ˇ

ˇ

ˇ
Bα´α1
x B

β´β1
ξ B

γ´γ1
ζ apx` z0, ξ ` ζq

ˇ

ˇ

ˇ
¨
|φpz0q|

v1pz0q

À
ÿ

ˆ

α

α1

˙ˆ

β

β1

˙ˆ

γ

γ1

˙

h|α1`β1`γ1|α1!σpβ1!γ1!qs

ˆ

ˆ

1

ωpx, ξqv1pz0qv2pζq

˙

ˇ

ˇ

ˇ
Bα´α1
x B

β´β1
ξ B

γ´γ1
ζ apx` z0, ξ ` ζq

ˇ

ˇ

ˇ

À h|α`β`γ|
ÿ

ˆ

α

α1

˙ˆ

β

β1

˙ˆ

γ

γ1

˙

¨

¨ ppα´ α1q!α1!qσ ppβ ´ β1q!β1!qs ppγ ´ γ1q!γ1!qs

À p4hq|α`β`γ|α!σpβ!γ!qs, (11.11)
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where the summations above are taken over all α1 ď α, β1 ď β and γ1 ď γ.
In view of Proposition 5.5 and (11.10) we have

|BαηΨpx, ξ, η, ζq| À h
|α|
0 α!se´r0|η|

1
σ ,

for some h0, r0 ą 0. Hence

|Bαη pΨpx, ξ, ζ, ζqv2pζqq| À h
|α|
0 α!se´r0|ζ|

1
σ ,

for some h0, r0 ą 0.
By letting H2px, ξ, ¨ q be the inverse partial Fourier transform of Ψpx, ξ,

ζ, ζqv2pζq with respect to the ζ variable, it follows that

|BαyH2px, ξ, yq| À h
|α|
0 α!σe´r0|y|

1
s , (11.12)

for some h0, r0 ą 0. The assertion (1) now follows from the latter estimate
and the fact that Hpx, ξ, yq “ H2px, ξ, y ´ xq.

In order to prove (2) we notice that (11.12) shows that y ÞÑ H2px, ξ, yq
is an element in Sσs pRdq with values in Γσ,s

p1qpR
2dq, in view of (11.11) and the

construction of H2. It follows by Lemma 11.3 that there exist H3 P C
8pR3dq

and φ0 P Sσs pRdq such that (11.12) holds for some h0, r0 ą 0 with H3 in place
of H2, and

H2px, ξ, yq “ H3px, ξ, yqφ0p´yq.

This is the same as (2), and the result follows.

Proof of Theorem 11.1. It is not restrictive to assume that A “ 0, in view
of the invariance properties given by Chapter 10. Let G “ Oppaqf . In view
of Lemma 11.4 we have

VφGpx, ξq “ p2πq
´ d

2 F ppf ¨ φ0p ¨ ´ xqq ¨H0px, ξ, ¨ qqpξqωpx, ξq

“ p2πq´dpVφ0fqpx, ¨ q ˚ pF pH0px, ξ, ¨ qqqpξqωpx, ξq.

Since ω and ω0 belong to P0
s,σpR2dq, then, for every r0 ą 0 and x, ξ, η P Rd,

we have

ωpx, ξqω0px, ξq À ωpx, ηqω0px, ηqe
r0
2
|ξ´η|

1
σ .

Such inequality and (2) in Lemma 11.4 give

|VφGpx, ξqω0px, ξq| À

ˆ

|pVφ0fqpx, ¨ qωpx, ¨ qω0px, ¨ q| ˚ e
´
r0
2
| ¨ |

1
σ

˙

pξq.

In view of Definition 5.25, we get, for some v P P0
σpRdq,

}G}Mpω0,Bq À }|pVφ0fq ¨ ω ¨ ω0| ˚ δ0 b e
´r0| ¨ |

1
σ
}B

ď }pVφ0fq ¨ ω ¨ ω0}B}e
´r0| ¨ |

1
σ v}L1 — }f}Mpω¨ω0,Bq.

The proof is complete.
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By similar arguments as in the proof of Theorem 11.1 and Lemma 11.4
we can prove the next two results.

Theorem 11.5. Let A P Mpd,Rq, s, σ ě 1, ω, ω0 P Ps,σpR2dq, a P Γσ,s;0
pω0q

pR2dq. Assume also that B is an invariant BF-space on R2d. Then, OpApaq
is continuous from Mpω0ω,Bq to Mpω,Bq.

Lemma 11.6. Let s, σ ě 1, ω P Ps,σpR2dq, v1 P PspRdq and v2 P PσpRdq
be such that v1 and v2 are submultiplicative, and ω P Γσ,s;0

pωq pR
2dq is v1 b v2-

moderate. Also, let a P Γσ,s;0
pωq pR

2dq, f, φ P Σσ
s pRdq, φ2 “ φv1, and let Φ

and H be as in Lemma 11.4. Then (11.6) and the following statements hold
true:

(1) H P C8pR3dq and satisfies (11.7) for every h0, r0 ą 0.

(2) There are functions H0 P C
8pR3dq and φ0 P ΣspRdq such that (11.8)

holds true, and such that (11.7) holds true for every h0, r0 ą 0, with H0

in place of H.



Appendix A

Proof of Lemma 7.3

Lemma A.1. Let α “ pα1, . . . , αdq P Zd`. Then the number of elements in
the set

Ωk,α ” t pβ1, . . . , βkq P Zkd` ; β1 ` ¨ ¨ ¨ ` βk “ α u (A.1)

is equal to
d
ź

j“1

ˆ

αj ` k

k

˙

.

For the proof we recall the formula

k
ÿ

j“0

ˆ

n` j

j

˙

“

ˆ

n` k ` 1

k

˙

, (A.2)

which follows by a standard induction argument.

Proof. Let N be the number of elements in the set (A.1), which is the
searched number, and let Nj be the number of elements of the set

t pβ0
1 , . . . , β

0
kq P Zk` ; β0

1 ` ¨ ¨ ¨ ` β
0
k “ αj u, j “ 1, . . . , d.

By straightforward computations it follows that N “ N1 ¨ ¨ ¨Nd, and it suf-
fices to prove the result in the case d “ 1, and then α “ pα1q.

In order to prove the result for d “ 1, let γ P Z`,

S1pγq “ 1,

and define inductively

Sj`1pγq “

γ
ÿ

β“0

Sjpβq, j “ 1, 2, . . . .

By straightforward computations it follows that N “ N1 “ Skpα1q. We
claim

Sjpγq “

ˆ

γ ` j

j

˙

, j “ 1, 2, . . . . (A.3)



176 ψdo with symbols of infinite order on modulation spaces

In fact, (A.3) is clearly true for j “ 1. Assume that (A.3) holds for
j “ n, and consider Sn`1pγq. Then, (A.2) gives

Sn`1pγq “

γ
ÿ

β“0

Snpβq “

γ
ÿ

β“0

ˆ

β ` n

n

˙

“

γ
ÿ

β“0

ˆ

β ` n

β

˙

“

ˆ

γ ` n` 1

γ

˙

“

ˆ

γ ` n` 1

n` 1

˙

,

which gives (A.3) when j “ n` 1. This proves (A.3), and the result follows.

Lemma A.2. Let α P Zd`z0, s0 P p0, 1s, and let Ωk,α be the same as in
(A.1). Then

|α|
ÿ

k“1

1

k

ÿ

βPΩk,α

pβ!qs0´1 ď 6|α|.

Proof. By Lemma A.1, observing that β P Ωk,α ùñ β! ě 1 and, of course
k ě 1 ùñ 1

k ď 1. Recalling that s0 ´ 1 ă 0 we get

|α|
ÿ

k“1

1

k

¨

˝

ÿ

βPΩk,α

β!s0´1

˛

‚ď

|α|
ÿ

k“1

¨

˝

ÿ

βPΩk,α

1

˛

‚“

|α|
ÿ

k“1

˜

d
ź

j“1

ˆ

αj ` k

k

˙

¸

ď |α|
d
ź

j“1

22αj “ |α| ¨ 4|α| ď 6|α|.
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