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ON THE REDUCTION OF THE INTERFERENCES IN THE
BORN–JORDAN DISTRIBUTION

ELENA CORDERO, MAURICE DE GOSSON, AND FABIO NICOLA

Abstract. One of the most popular time-frequency representation is certainly
the Wigner distribution. To reduce the interferences coming from its quadratic
nature, several related distributions have been proposed, among which the so-
called Born-Jordan distribution. It is well known that in the Born-Jordan dis-
tribution the ghost frequencies are in fact damped quite well, and the noise is in
general reduced. However, the horizontal and vertical directions escape from this
general smoothing effect, so that the interferences arranged along these directions
are in general kept. Whereas these features are graphically evident on examples
and heuristically well understood in the engineering community, there is not at
present a mathematical explanation of these phenomena, valid for general signals
in L2 and, more in general, in the space S ′ of temperate distributions. In the
present note we provide such a rigorous study using the notion of wave-front set
of a distribution. We use techniques from Time-frequency Analysis, such as the
modulation and Wiener amalgam spaces, and also results of microlocal regularity
of linear partial differential operators.

1. Introduction

The representation of signals in the time-frequency plane is a fascinating theme
involving several mathematical subtilities, mostly related to some form of the un-
certainty principle. The most popular time-frequency distribution is without any
doubt the Wigner distribution, defined by

(1.1) Wf(x, ω) =

∫
Rd
f
(
x+

y

2

)
f
(
x− y

2

)
e−2πiyω dy x, ω ∈ Rd

where the signal f is, say, in the space S ′(Rd) of temperate distributions in Rd.
The quadratic nature of this representation, however, causes the appearance of
interferences between several components of the signal. To damp this undesirable
effect numerous Reduced Interference Distributions have been proposed; see [6, 23]
for a detailed account. Here we will focus on the Born-Jordan distribution, first
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introduced in [5], and defined by

(1.2) Qf = Wf ∗Θσ

where Θ is Cohen’s kernel function, given by

(1.3) Θ(ζ1, ζ2) =
sin(πζ1ζ2)

πζ1ζ2

, ζ = (ζ1, ζ2) ∈ R2d

(ζ1ζ2 = ζ1 · ζ2 being the scalar product in Rd and Θ(ζ) = 1 for ζ = 0), and
Θσ(ζ) = Θσ(ζ1, ζ2) = Fa(ζ2,−ζ1), with ζ = (ζ1, ζ2), is the symplectic Fourier
transform of Θ, see [2, 5, 6, 7, 9, 12, 13, 23] and the references therein.

To motivate our results and for the benefit of the reader, we now compare (graph-
ically) the features of the Wigner and Born-Jordan distributions of some signals.
The following remarks are well known and we refer to [1, 2, 4, 6, 22, 25, 27, 28, 35,
36] and especially to [23] for more details; we also refer to the comprehensive list
of references at the end of [23, Chapter 5] for the relevant engineering literature
about the geometry of interferences and kernel design.

1.1. Graphical comparisons. Graphical examples both for test signals and real-
world signals show that the Born-Jordan distribution, in comparison with the
Wigner one, enjoys the following features (in dimension d = 1):

a) the so-called “ghost frequencies”, arising from the interferences of the sev-
eral components which do not share the same time or frequency localization,
are damped very well.

b) The interferences arranged along the horizontal and vertical direction are
substantially kept.

c) The noise is, on the whole, reduced.

These facts can be interpreted (still in dimension d = 1) in terms of the following

Principle. Compared with the Wigner distribution, the Born-Jordan distribution
exhibits a general smoothing effect, which however does not involve the horizontal
and vertical directions.

The persistence of interference terms in “vertical” and “horizontal” directions
is closely related to the fact that the Born-Jordan distribution preserves the so-
called “marginal distributions”. As is well-known, the requirement of preserv-
ing marginals in Cohen’s class implies Θ(ζ1, ζ2) to be such that Θ(ζ1, 0) = 1 and
Θ(0, ζ2) = 1, a property which is satisfied by the Born-Jordan kernel. As a result,
since two synchronous components with different frequencies exhibit a beating ef-
fect ending up with a modulated envelope in time, this must have a signature in
the time-frequency plane, and this is exactly given by the “vertical” cross-terms
in between the two considered components. By symmetry, the same applies as



INTERFERENCES IN THE BORN–JORDAN DISTRIBUTION 3

WV, lin. scale, imagesc, Threshold=5%

Time [s]

F
re

q
u

e
n

cy
 [

H
z]

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
BJ, Lg=40, Lh=40, Nf=128, lin. scale, contour, Threshold=5%

Time [s]

F
re

q
u

e
n

cy
 [

H
z]

20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 1. Wigner and Born-Jordan distribution of the sum of 4
Gabor atoms.
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Figure 2. Wigner and Born-Jordan distribution of a linear chirp
embedded in a white Gaussian noise.

well “horizontally” to two components that are disjoint in time but in the same
frequency band.

The Figures 1–3 illustrate the above principle. In Figure 1 the Wigner and
Born-Jordan distribution of the sum of 4 Gabor atoms is displayed; notice the
presence of 6 interferences (two of which superimposed at the center). In general
any two components generate an interference centered in the middle point and
arranged along the line joining those components. Notice the disappearance of the
“diagonal” interferences in the Born-Jordan distribution.

Figure 2 displays the Wigner and Born-Jordan distribution of a chirp signal
embedded in a white Gaussian noise.

Figure 3 shows the Wigner and Born-Jordan distribution of a bat sonar signal,
which presents inner interferences due to the curve nature of the component.
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Figure 3. Wigner and Born-Jordan distribution of a bat sonar signal.

A detailed and very clear mathematical discussion of the effect in the point a)
above was provided in [2] in the model case of signals given by the sum of two
Gabor atoms, so that there is only one interference term. Here we address to the
above phenomena from a more general perspective; in fact the results below hold
for any signal f ∈ S ′(Rd) (and in particular in any dimension).

1.2. Description of the results. In the engineering literature, the above princi-
ple is usually justified as the outcome of the convolution in (1.2), and the specific
form of the kernel Θ. While this is certainly true, a little reflection shows that
the issue is of a more subtle nature. The point is that the function Θσ in (1.2)
enjoys a very limited smoothness, which turns out to be difficult to quantify in
terms of decay of its (symplectic) Fourier transform Θ(z). In fact, the function
Θ(z) = Θ(ζ1, ζ2) is constant on the hypersurface ζ1ζ2 = const., so that it does not
decay pointwise at infinity, nor in Lp mean, because Θ 6∈ Lp for p <∞. Moreover
one can check (see [10]) that

Θσ 6∈ L∞loc(R2d) and Θσ 6∈ Lp(R2d) for any 1 ≤ p ≤ ∞,
so that the above phenomena are admittedly not completely evident a priori. Also,
we are not aware of a quantitative explanation of the above effects except for ex-
amples or model signals.

In the present note we provide a rigorous study in terms of suitable function
spaces. As we will see, the right spaces to quantify such a mild regularity and
decay seem to be the modulation space Mp,q, 1 ≤ p, q ≤ ∞, which were introduced
by H. Feichtinger in the 80’s [15] and are nowadays widely used in Time-frequency
Analysis as a standard tool to measure the time-frequency concentration of a signal
[11, 21]. We recall their precise definition in Section 2 below, but for heuristic
purposes in this introduction it is sufficient to think of a function f in Mp,q as a
function which locally is in the Fourier-Lebesgue space FLq –the space of functions
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whose Fourier transform is in Lq– and decays on average, at infinity, as a function
in Lp. We have Mp1,q1 ⊆ Mp2,q2 if p1 ≤ p1, q1 ≤ q2, and for p = q = 2 we have
M2,2 = L2.

Now, it is intuitively clear that the Born-Jordan distribution of a signal is cer-
tainly not rougher than the corresponding Wigner distribution; this is in fact our
first basic result.

Theorem 1.1. Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞. Then Qf ∈Mp,q(R2d).

To capture the above smoothing effect we need a microlocalized version of mod-
ulation spaces. In fact we can talk meaningfully of functions f in Mp,q at some
point and in some direction, and consequently distinguish different directions in
the time-frequency plane. Since the matter is now local, the above exponent p
does no longer play any role, and the relevant tool turns out to be the concept of
Fourier-Lebesgue wave-front set.

The notion of C∞ wave-front set of a distribution is nowadays a standard tool in
the study of the singularities of solutions to partial differential operators. The basic
idea is to detect the location and orientation of the singularities of a distribution f
by looking at which directions the Fourier transform of ϕf fails to decay rapidly,
where ϕ is a cut-off function supported sufficiently near any given point x0. This
test is implicitly used in several techniques for edge detection, where often the
Fourier transform is replaced by other transforms, see e.g. [26] and the references
therein. Actually here we are going to use a more refined notion of wave-front
set introduced in [29, 30, 31] and involving the Fourier-Lebesgue spaces FLqs(Rd),
s ∈ R, 1 ≤ q ≤ ∞. The definition goes as follows (see also Section 2 below).

First of all we recall that the norm in the space FLqs(Rd) is given by

(1.4) ‖f‖FLqs(Rd) = ‖f̂(ω)〈ω〉s‖Lq(Rd),

where as usual 〈ω〉 = (1 + |ω|2)1/2. Inspired by this definition, given a distribution
f ∈ D′(Rd) we define its wave-front set WFFLqs(f) ⊂ Rd × (Rd \ {0}), as the
set of points (x0, ω0) ∈ Rd × Rd, ω0 6= 0, where the following condition is not
satisfied: for some cut-off function ϕ ∈ C∞c (Rd) with ϕ(x0) 6= 0 and some open
conic neighborhood Γ ⊂ Rd \ {0} of ω0 we have

(1.5) ‖F [ϕf ](ω)〈ω〉s‖Lq(Γ) <∞.
We notice that WFFL2

s
(f) = WFHs(f) is the usual Hs wave-front set (see e.g.

[24, Chapter XIII] and Section 2 below). Roughly speaking, (x0, ω0) 6∈ WFFLqs(f)
means that f has regularity FLqs at x0 and in the direction ω0.

Now, we study the FLqs wave-front set of the Born-Jordan distribution of a
given signal. Let us observe, en passant, that the C∞ wave-front set of the Wigner
distribution also appeared in [3] as a tool to study instantaneous frequencies.
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Theorem 1.2. Let f ∈ S ′(Rd) be a signal, with Wf ∈ M∞,q(R2d) for some 1 ≤
q ≤ ∞. Let (z, ζ) ∈ R2d × R2d, with ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 6= 0. Then

(z, ζ) 6∈ WFFLq2(Qf).

Roughly speaking, if the Wigner distribution Wf has local regularity FLq and
some control at infinity, then Qf is smoother, possessing s = 2 additional deriva-
tives, at least in the directions ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 6= 0. In dimension
d = 1 this condition reduces to ζ1 6= 0 and ζ2 6= 0. Hence this result explains the
above smoothing phenomenon, which involves all the directions except those of the
coordinates axes. In particular, since the interferences of two components which
do not share the same time or frequency localization are arranged along an oblique
line, they came out substantially reduced.

In particular we have the following result.

Corollary 1.3. Let f ∈ L2(Rd), so that Wf ∈ L2(R2d). Let (z, ζ) be as in the
statement of Theorem 1.2. Then (z, ζ) 6∈ WFH2(Qf), i.e. Qf has regularity H2 at
z and in the direction ζ.

Theorem 1.2 by itself does not preclude the possibility that some subtle smooth-
ing effect could occur even in the directions ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 = 0. We
however will show that this is not the case, at least if smoothness is measured in
the scale of modulation spaces.

Theorem 1.4. Suppose that for some 1 ≤ p, q1, q2 ≤ ∞ and C > 0 we have

(1.6) ‖Qf‖Mp,q1 ≤ C‖Wf‖Mp,q2

for every f ∈ S(Rd). Then q1 ≥ q2.

In other terms, for a general signal, the Born-Jordan distribution is not every-
where smoother than the corresponding Wigner distribution. Needless to say, the
problems arise in the directions ζ = (ζ1, ζ2) such that ζ1 · ζ2 = 0.

As a final remark, besides Born-Jordan, the “correct marginals” property is
trivially satisfied by any Θ which is a function of the product of its variables:
Θ(ζ1, ζ2) = Φ(ζ1 · ζ2), with Φ(0) = 1 and, for a purpose of interference reduction,
any decaying Φ is a candidate. From a practical point of view, the most popular
choice has never really been the sinc of Born-Jordan, but rather the Gaussian
leading to the so-called “Choi-Williams distribution”. Since the Gaussian enjoys
much more regularity properties than the sinc function, better results are expected.
More generally, any Φ as above is certainly worth investigating in this connection.

The paper is organized as follows. In Section 2 we collect some preliminary
results from Time-frequency Analysis; in particular we review the definition and
basic properties of modulation and Wiener amalgam spaces. In Section 3 we study
the Born-Jordan kernel Θ from the point of view of the Time-frequency Analysis.
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Section 4 is devoted to the proof of Theorem 1.2, as well as a related global variant,
which also implies Theorem 1.1 above. In Section 5 we prove the negative result
stated in Theorem 1.4. At the end of the paper we report on some technical notes
on the toolbox used to produce the above figures.

2. Preliminaries

2.1. Notation. We denote by xω = x · ω = x1ω1 + . . . + xdωd the scalar product
in Rd. The notation 〈·, ·〉 stands for the inner product in L2(Rd), or also for the
duality pairing between Schwartz functions and temperate distributions (antilinear
in the second argument). For functions f, g, we use the notations f . g to denote
f(x) ≤ Cg(x) for every x and some constant C, and similarly for &. We write
f � g for f . g and f & g.

We denote by σ the standard symplectic form on the phase space R2d ≡ Rd×Rd;
the phase space variable is denoted z = (x, ω) and the dual variable by ζ = (ζ1, ζ2).
By definition σ(z, ζ) = Jz · ζ = ω · ζ1 − x · ζ2, where

J =

(
0d×d Id×d
−Id×d 0d×d

)
.

The Fourier transform of a function f(x) in Rd is normalized as

Ff(ω) = f̂(ω) =

∫
Rd
e−2πixωf(x) dx,

and the symplectic Fourier transform of a function F (z) in phase space R2d is

FσF (ζ) =

∫
R2d

e−2πiσ(ζ,z)F (z) dz.

We observe that the symplectic Fourier transform is an involution, i.e. Fσ(FσF ) =
F , and moreover FσF (ζ) = FF (Jζ). We will also use the important relation

(2.1) Fσ[F ∗G] = FσF FσG.

For s ∈ R the L2-based Sobolev space Hs(Rd) is constituted by the distributions
f ∈ S ′(Rd) such that

(2.2) ‖f‖Hs := ‖f̂(ω)〈ω〉s‖L2 <∞.

2.2. Wigner distribution and ambiguity function [11, 21]. We already de-
fined in Introduction, see (1.1), the Wigner distribution Wf of a signal f ∈ S ′(Rd).
In general, we have Wf ∈ S ′(R2d). When f ∈ L2(Rd) we have Wf ∈ L2(R2d) and
in fact it turns out

(2.3) ‖Wf‖L2(R2d) = ‖f‖2
L2(Rd).
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In the sequel we will encounter several times the symplectic Fourier transform of
Wf , which is known as the (radar) ambiguity function Af . We have the formula

(2.4) Af(ζ1, ζ2) = FσWf(ζ1, ζ2) =

∫
Rd
f
(
y +

1

2
ζ1

)
f
(
y − 1

2
ζ1

)
e−2πiζ2y dy.

We refer to [11, Chapter 9] and in particular to [11, Proposition 175] for more
details.

2.3. Modulation spaces and Wiener amalgam spaces [11, 16, 17, 18, 21].
Modulation spaces and Wiener amalgam spaces are used in Time-frequency Anal-
ysis to measure the time-frequency concentration of a signal. Their construction
relies on the notion of short-time (or windowed) Fourier transform, which we are
going to recall.

For x, ω ∈ Rd we define the translation and modulation operators

Txf(y) = f(y − x), Mωf(y) = e2πiyωf(y),

and the time-frequency shifts

π(z)f(y) = MωTxf(y) = e2πiyωf(y − x), z = (x, ω).

Fix a Schwartz function g ∈ S(Rd) \ {0} (the so-called window). Let f ∈ S ′(Rd).
We define the short-time Fourier transform of f as

(2.5) Vgf(z) = 〈f, π(z)g〉 = F [fTxg](ω) =

∫
Rd
f(y) g(y − x) e−2πiyω dy

for z = (x, ω) ∈ Rd × Rd.
Let now s ∈ R, 1 ≤ p, q ≤ ∞. The modulation space Mp,q

s (Rd) consists of all
tempered distributions f ∈ S ′(Rd) such that

(2.6) ‖f‖Mp,q
s

:=

(∫
Rd

(∫
Rd
|Vgf(x, ω)|p〈ω〉sp dx

)q/p
dω

)1/q

<∞

(with obvious changes for p = ∞ or q = ∞). When s = 0 we write Mp,q(Rd)
in place of Mp,q

0 (Rd). The spaces Mp,q
s (Rd) are Banach spaces, and every nonzero

g ∈ S(Rd) yields an equivalent norm in (2.6).
Modulation spaces generalize and include as special cases several function spaces

arising in Harmonic Analysis. In particular for p = q = 2 we have

M2,2
s (Rd) = Hs(Rd),

whereas M1,1(Rd) coincides with the Segal algebra, and M∞,1(Rd) is the so-called
Sjöstrand class.

As already observed in Introduction, in the notation Mp,q
s the exponent p is a

measure of decay at infinity (on average) in the scale of spaces `p, whereas the
exponent q is a measure of smoothness in the scale FLq. The index s is a further
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regularity index, completely analogous to that appearing in the Sobolev spaces
Hs(Rd).

The Wiener amalgam space W (FLp, Lq)(Rd) is given by the distributions f ∈
S ′(Rd) such that

‖f‖W (FLp,Lq)(Rd) :=

(∫
Rd

(∫
Rd
|Vgf(x, ω)|p dω

)q/p
dx

)1/q

<∞

(with obvious changes for p = ∞ or q = ∞). Using Parseval identity in (2.5), we
can write the so-called fundamental identity of time-frequency analysis

Vgf(x, ω) = e−2πixωVĝf̂(ω,−x),

hence

|Vgf(x, ω)| = |Vĝf̂(ω,−x)| = |F(f̂ Tωĝ)(−x)|
so that

‖f‖Mp,q =

(∫
Rd
‖f̂ Tωĝ‖qFLp dω

)1/q

= ‖f̂‖W (FLp,Lq).

This means that the Wiener amalgam spaces are simply the image under Fourier
transform of modulation spaces: F(Mp,q) = W (FLp, Lq).

We will often use the following product property of Wiener amalgam spaces ([16,
Theorem 1 (v)]):

(2.7) If f ∈ W (FL1, L∞) and g ∈ W (FLp, Lq) then fg ∈ W (FLp, Lq).

2.4. Dilation properties of modulation and Wiener amalgam spaces. We
recall here a few dilation properties (cf. [33, Lemma 3.2] and its generalization in
[8, Corollary 3.2]).

Proposition 2.1. Let 1 ≤ p, q ≤ ∞ and A ∈ GL(d,R). Then, for every f ∈
W (FLp, Lq)(Rd),

(2.8) ‖f(A ·)‖W (FLp,Lq) ≤ C| detA|(1/p−1/q−1)(det(I + A∗A))1/2‖f‖W (FLp,Lq).

In particular, for A = λI, λ > 0,

(2.9) ‖f(A ·)‖W (FLp,Lq) ≤ Cλd(
1
p
− 1
q
−1)(λ2 + 1)d/2‖f‖W (FLp,Lq).

As a byproduct of this result, we observe that the spaces W (FLp, Lq) are invari-
ant by linear changes of variables.

The following result was first proved in [34, Lemma 1.8] (see also [8, Lemma
3.2]).
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Lemma 2.2. Let ϕ(x) = e−π|x|
2

and λ > 0. Then we have the following dilation
properties:

‖ϕ(λ ·)‖Mp,q � λ−d/q
′

as λ→ +∞

‖ϕ(λ ·)‖Mp,q � λ−d/p as λ→ 0.

Finally we will need the following result.

Lemma 2.3. Let ψ ∈ C∞c (Rd)\{0} and λ > 0. Then we have the following dilation
properties:

(2.10) ‖ψ(λ ·)‖W (FLp,Lq) � λ−d/p
′

as λ→ +∞

(2.11) ‖ψ(λ ·)‖W (FLp,Lq) � λ−d/q as λ→ 0.

Proof. The formula (2.10) follows by observing that for, say, λ ≥ 1, the functions
ψ(λ ·) are supported in a fixed compact set, so that their Mp,q norm is equivalent
to their norm in FLp, which is easily estimated.

Let us now prove (2.11). Observe, first of all, that for f ∈ S(Rd), g ∈ C∞c (Rd),
q ≥ 1 we have

‖fTxg‖FL1 .
∑
|α|≤d+1

‖∂α(fTxg)‖L1 .
∑
|α|≤d+1

‖∂α(fTxg)‖Lq ,

so that

‖f‖W (FLp,Lq) . ‖f‖W (FL1,Lq) .
∑
|α|≤d+1

‖∂αf‖Lq .

Applying this formula with f = ψ(λx), 0 < λ ≤ 1, we obtain

‖ψ(λ ·)‖W (FLp,Lq) . λ−d/q.

To obtain the lower bound we observe that

λ−d‖ψ‖2
L2 = ‖ψ(λ ·)‖2

L2

. ‖ψ(λ ·)‖W (FLp′ ,Lq′ )‖ψ(λ ·)‖W (FLp,Lq)

. λ−d/q
′‖ψ(λ ·)‖W (FLp,Lq),

which implies

‖ψ(λ ·)‖W (FLp,Lq) & λ−d/q.
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2.5. Wave-front set for Fourier-Lebesgue spaces [24, 29]. We have briefly
discussed in Introduction the idea underlying the concept of C∞ wave-front set
of a distribution. Among the several refinements which have been proposed, the
notion of Hs wave-front set allows one to quantify the regularity of a function or
distribution in the Sobolev scale, at any given point and direction. This is done by
microlocalizing the definition of the Hs norm in (2.2) as follows (cf. [24, Chapter
XIII]).

Given a distribution f ∈ D′(Rd) we define its wave-front set WFHs(f) ⊂ Rd ×
(Rd \ {0}), as the set of points (x0, ω0) ∈ Rd × Rd, ω0 6= 0, where the following
condition is not satisfied: for some cut-off function ϕ ∈ C∞c (Rd) with ϕ(x0) 6= 0
and some open conic neighborhood of Γ ⊂ Rd \ {0} of ω0 we have

‖F [ϕf ](ω)〈ω〉s‖L2(Γ) <∞.

More in general one can start from the Fourier-Lebesgue spaces FLqs(Rd), s ∈ R,
1 ≤ q ≤ ∞, which is the space of distributions f ∈ S ′(Rd) such that the norm in
(1.4) is finite. Arguing exactly as above (with the space L2 replaced by Lq) one
then arrives in a natural way to a corresponding notion of wave-front set WFFLqs(f)
as we anticipated in Introduction (see (1.5)).

We now recall from [29] some basic results about the action of partial differential
operators on such a wave-front set. We consider the simplified case of constant
coefficient operators, since this will suffice for our purposes.

Consider a constant coefficient linear partial differential operator

P =
∑
|α|≤m

cα∂
α

where cα ∈ C. Then it is elementary to see that, for 1 ≤ q ≤ ∞, s ∈ R, f ∈ D′(Rd),

WFFLqs(Pf) ⊂ WFFLqs+m(f).

Consider now the inverse inclusion. We say that ζ ∈ Rd, ζ 6= 0, is non characteristic
for the operator P if ∑

|α|=m

cαζ
α 6= 0.

This means that P is elliptic in the direction ζ. We have then the following result,
which is a microlocal version of the classical regularity result of elliptic operators
(see [29, Corollary 1 (2)]).

Proposition 2.4. Let 1 ≤ q ≤ ∞, s ∈ R and f ∈ D′(Rd). Let z ∈ Rd and suppose
that ζ ∈ Rd \ {0} is non characteristic for P . Then, if (z, ζ) 6∈ WFFLqs(Pf) we
have (z, ζ) 6∈ WFFLqs+m(f).
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3. Time-frequency Analysis of the Born-Jordan kernel

In this section we show that the Born-Jordan kernel Θ(ζ) in (1.3) belongs to
the space W (FL1, L∞)(R2d). This information will be a basic ingredient for the
analysis in the next sections.

Let us recall the distribution Fourier transform of the generalized chirp below
(cf. [20, Appendix A, Theorem 2]):

Proposition 3.1. Let B a real, invertible, symmetric n×n matrix, and let FB(x) =
eπixBx. Then the distribution Fourier transform of FB is given by

(3.1) F̂B(ω) = eπi](B)/4| detB|e−πiωB−1ω,

where ](B) is the number of positive eigenvalues of B minus the number of negative
eigenvalues.

If we choose

B = B−1 =

(
0d×d Id×d
Id×d 0d×d

)

(hence n = 2d) then formula (3.1) becomes

(3.2) F(e2πiζ1ζ2)(z1, z2) = F̂B(z) = e−2πiz1z2 .

We now show that FB belongs to W (FL1, L∞)(R2d).

Proposition 3.2. The function F (ζ1, ζ2) = e2πiζ1ζ2 belongs to W (FL1, L∞)(R2d).

Proof. Consider the Gaussian function g(ζ1, ζ2) = e−πζ
2
1e−πζ

2
2 as window function

to compute the W (FL1, L∞)-norm. Then we have

‖F‖W (FL1,L∞)(R2d) = sup
u∈R2d

‖F(FTug)‖L1(R2d).
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Let us compute F(FTug)(z). For z = (z1, z2),

F(FTug)(z1, z2) = (F(F ) ∗M−uĝ)(z1, z2)

=

∫
R2d

e−2πi(z1−y1)·(z2−y2)e−2πi(u1,u2)·(y1,y2)e−πy
2
1e−πy

2
2 dy1dy2

= e−2πiz1z2

∫
R2d

e−2πiy1y2+2πi(z2y1+z1y2)−2πi(u1y1+u2y2)e−πy
2
1e−πy

2
2 dy1dy2

= e−2πiz1z2

∫
Rd
e2πi(z1y2−u2y2)e−πy

2
2

(∫
Rd
e−2πiy1·(y2−z2+u1)e−πy

2
1 dy1

)
dy2

= e−2πiz1z2

∫
Rd
e−2πiy2·(u2−z1)e−πy

2
2e−π(y2−z2+u1)2 dy2

= e−2πiz1z2e−π(u1−z2)2
∫
Rd
e−2πiy2·(u2−z1)e−2π(y22+(u1−z2)·y2) dy2

= e−2πiz1z2e−π(u1−z2)2+π
2

(u1−z2)2
∫
Rd
e−2πiy2·(u2−z1)e−2π(y2+

u1−z2
2

)2 dy2

= e−2πiz1z2e−
π
2

(u1−z2)2F
(
T−u1−z2

2
e−2π|·|2

)
(u2 − z1)

= 2−d/2e−2πiz1z2e−
π
2

(u1−z2)2e−
π
2

(u2−z1)2eπi(u1−z2)·(u2−z1)

= 2−d/2eπi(u1u2−z1z2−u1z1−u2z2)e−
π
2

(u1−z2)2e−
π
2

(u2−z1)2 .

Hence

‖F(FTug)‖L1 = 2−d/2‖e−
π
2
|·|2‖L1 = C,

for a constant C independent of the variable u and, consequently,

sup
u∈R2d

‖F(FTug)‖L1 <∞

as desired.

Remark 3.3. Since W (FL1, L∞)(R2d) can be characterized as the space of point-
wise multipliers on the Segal algebra W (FL1, L1)(R2d) [19, Corollary 3.2.10], the
result in Proposition 3.2 could also be deduced from general results about the ac-
tion of second order characters on the Segal algebra, cf. [14, 32]. However, the
proof above is clearly more direct and elementary.

We also observe that by the restriction property of the Segal algebra, one also ob-
tains, as a consequence, that the chirp function eπi|x|

2
belongs to W (FL1, L∞)(Rd),

which is well known.

Corollary 3.4. For ζ = (ζ1, ζ2), consider the function FJ(ζ) = F (Jζ) = e−2πiζ1ζ2.
Then FJ ∈ W (FL1, L∞)(R2d).
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Proof. The result immediately follows by Proposition 3.2 and by the dilation prop-
erties for Wiener amalgam spaces (2.8).

For ζ = (ζ1, ζ2) ∈ Rd×Rd, we have defined the Born-Jordan kernel Θ(ζ) in (1.3).

Proposition 3.5. The function Θ in (1.3) belongs to W (FL1, L∞)(R2d).

Proof. It is well known that

sinc(ζ1ζ2) =

∫ 1/2

−1/2

e−2πiζ1ζ2t dt =

∫ 1/2

0

e2πiζ1ζ2t dt+

∫ 1/2

0

e−2πiζ1ζ2t dt.

Now, we have proved in Proposition 3.2 that the function e2πiζ1ζ2 belongs to the
space W (FL1, L∞)(R2d), and the same holds for e−2πiζ1ζ2 , by Corollary 3.4. Using
the dilation relations for Wiener amalgam spaces (2.9) for λ =

√
t, 0 < t < 1/2,

p = 1, q =∞, we obtain

‖e±2πiζ1ζ2t‖W (FL1,L∞) ≤ C‖e±2πiζ1ζ2‖W (FL1,L∞)

so that

‖Θ‖W (FL1,L∞) ≤ C

∫ 1/2

0

‖e2πiζ1ζ2‖W (FL1,L∞) + ‖e−2πiζ1ζ2‖W (FL1,L∞) dt <∞

and we obtain the claim.

4. Smoothness of the Born-Jordan distribution

In the present section we study the smoothness of the Born-Jordan distribution of
a signal, in comparison with the corresponding Wigner distribution. In particular
we prove Theorem 1.2.

We begin with the following global result, which in particular implies Theorem
1.1.

Theorem 4.1. Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞. Then

Qf ∈Mp,q(R2d)

and moreover

(4.1) ∇x · ∇ωQf ∈Mp,q(R2d).

Here we used the notation

∇x · ∇ω :=
d∑
j=1

∂2

∂xj∂ωj
.
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Proof. Let us first prove that Qf ∈ Mp,q(R2d). Taking the symplectic Fourier
transform in (1.2) we are reduced to prove that

ΘFσ(Wf) ∈ W (FLp, Lq)
(as already observed in (2.4), Fσ(Wf) = Af is the ambiguity function of f).

Now, this follows from the product property (2.7): in fact by Proposition 3.5 we
have Θ ∈ W (FL1, L∞), and by assumption Wf ∈ Mp,q(R2d) so that F(Wf) ∈
W (FLp, Lq), and therefore Fσ(Wf)(ζ) = F(Wf)(Jζ) belongs to W (FLp, Lq) as
well (by Proposition 2.1).

Let us prove (4.1). Taking the symplectic Fourier transform we see that it is
sufficient to prove that

ζ1ζ2 sinc(ζ1ζ2)FσWf =
1

π
sin(πζ1ζ2)FσWf ∈ W (FLp, Lq).

Now,

sin(πζ1ζ2) =
eπiζ1ζ2 − e−πiζ1ζ2

2i
,

and the claim follows again as above using the product properties for Wiener amal-
gam spaces (2.7), Proposition 3.2 and Proposition 2.1 with the scaling λ = 1/

√
2.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We will apply Proposition 2.4 to the second order operator
P = ∇x · ∇ω in R2d. Observe that the non characteristic directions are given by
the vectors ζ = (ζ1, ζ2) ∈ Rd×Rd, satisfying ζ1 · ζ2 6= 0. By (4.1) (with p =∞) we
have

WFFLq(∇x · ∇ωQf) = ∅,
because ϕF ∈ FLq if ϕ ∈ C∞c (R2d) and F ∈ M∞,q(R2d) (we apply this remark
with F = ∇x · ∇ωQf). Hence we have certainly

(z, ζ) 6∈ WFFLq(∇z1 · ∇z2Qf).

Since ζ is non characteristic for the operator∇x·∇ω, by Proposition 2.4 we therefore
have

(z, ζ) 6∈ WFFLq2(Qf)

for every z ∈ R2d.

Proof of Corollary 1.3. It is sufficient to apply Theorem 1.2 with q = 2. In fact
if f ∈ L2(Rd) we have Wf ∈ L2(R2d) = M2,2(Rd) (cf. (2.3)) and therefore Wf ∈
M∞,2(R2d). Moreover, as already observed, the FL2

2 wave-front set coincides with
the H2 wave-front set.
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5. Negative results (proof of Theorem 1.4)

In this section we prove Theorem 1.4. We need the following result.

Lemma 5.1. Let χ ∈ C∞c (R). Then the function χ(ζ1ζ2) belongs to W (FL1, L∞)(R2d).

Proof. We write

χ(ζ1ζ2) =

∫
R
e2πitζ1ζ2χ̂(t) dt

and the desired result then follows as in proof of Proposition 3.5, because χ̂(t) lies
in S(R) ⊂ L1(R).

Proof of Theorem 1.4. We test the estimate (1.6) on the Gaussian functions f(x) =

ϕ(λx), where ϕ(x) = e−π|x|
2

and λ > 0 is a large parameter.
An explicit computation (see e.g. [21, Formula (4.20)]) gives

(5.1) W (ϕ(λ ·))(x, ω) = 2d/2λ−dϕ(
√

2λx)ϕ(
√

2λ−1 ω).

Hence we have, for every 1 ≤ p, q ≤ ∞,

‖W (ϕ(λ ·))‖Mp,q = 2d/2λ−d‖ϕ(
√

2λ ·)‖Mp,q‖ϕ(
√

2λ−1 ·)‖Mp,q .

Now it follows from Lemma 2.2 that

(5.2) ‖W (ϕ(λ ·))‖Mp,q � λ−2d+d/q+d/p as λ→ +∞.

Let us now estimate from below

‖Q(ϕ(λ ·))‖Mp,q = ‖Θσ ∗W (ϕ(λ ·))‖Mp,q .

By taking the symplectic Fourier transform and using Lemma 5.1 and the product
property (2.7) we have

‖Θσ ∗W (ϕ(λ ·))‖Mp,q � ‖ΘFσ[W (ϕ(λ ·))]‖W (FLp,Lq)

& ‖Θ(ζ1, ζ2)χ(ζ1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq)

for any χ ∈ C∞c (R). We now choose χ supported in the interval [−1/4, 1/4] and
= 1 in the interval [−1/8, 1/8] (the latter condition will be used later), and we
write

χ(ζ1ζ2) = χ(ζ1ζ2)Θ(ζ1, ζ2)Θ−1(ζ1, ζ2)χ̃(ζ1ζ2),

with χ̃ ∈ C∞c (R) supported in [−1/2, 1/2] and χ̃ = 1 on [−1/4, 1/4], therefore on
the support of χ. Since by Lemma 5.1 the function Θ−1(ζ1, ζ2)χ̃(ζ1ζ2) belongs to
W (FL1, L∞), again by the product property the last expression is estimated from
below as

& ‖χ(ζ1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq).



INTERFERENCES IN THE BORN–JORDAN DISTRIBUTION 17

We now consider a function ψ ∈ C∞c (Rd) \ {0}, supported where |ζ1| ≤ 1/4. Using
the Cauchy-Schwarz inequality in the form

|ζ1ζ2| ≤
1

2
(|λζ1|2 + |λ−1ζ2|2)

we see that χ(ζ1ζ2) = 1 on the support of ψ(λζ1)ψ(λ−1ζ2), for every λ > 0.
Then, we can write

ψ(λζ1)ψ(λ−1ζ2) = χ(ζ1ζ2)ψ(λζ1)ψ(λ−1ζ2)

and by Lemma 2.3 we also have

‖ψ(λζ1)ψ(λ−1ζ2)‖W (FL1,L∞) . 1

so that we can continue the above estimate as

& ‖ψ(λζ1)ψ(λ−1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq).

Using the formula (5.1) we have

Fσ[W (ϕ(λ ·))(ζ1, ζ2) = 2−d/2λ−dϕ((
√

2λ)−1 ζ2)ϕ((1/
√

2)λ ζ1),

so that we obtain

‖ψ(λζ1)ψ(λ−1ζ2)Fσ[W (ϕ(λ ·))]‖W (FLp,Lq)

= 2−d/2λ−d‖ψ(λζ1)ψ(λ−1ζ2)ϕ((
√

2λ)−1 ζ2)ϕ((1/
√

2)λ ζ1)‖W (FLp,Lq)

= 2−d/2λ−d‖ψ(λζ1)ϕ((1/
√

2)λ ζ1)‖W (FLp,Lq)‖ψ(λ−1ζ2)ϕ((
√

2λ)−1 ζ2)‖W (FLp,Lq).

Using Lemma 2.3 to estimate the last expression we deduce

‖Q(ϕ(λ ·))‖Mp,q & λ−2d+d/p+d/q as λ→ +∞.

A comparison with (5.2) gives the desired conclusion.

Technical notes

The figures in Introduction were produced by the Time-Frequency Toolbox (TFTB),
distributed under the terms of the GNU Public Licence:

http://tftb.nongnu.org/

In particular the bat sonar signal in Figure 3 was recorded as a .mat file in that
toolbox. The figures are inspired by the several examples appearing in the tutorial
of the toolbox, and in the book [23].

http://tftb.nongnu.org/
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