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DNA methylation profiling
reveals common signatures
of tumorigenesis and defines
e epigenetic prognostic subtypes
et of canine Diffuse Large B-cell
Lymphoma

Serena Ferraresso?, Arianna Arico?, Tiziana Sanavia?, Silvia Da Ros?, Massimo Milan®?,
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Epigenetic deregulation is a hallmark of cancer characterized by frequent acquisition of new DNA
methylation in CpG islands. To gain insight into the methylation changes of canine DLBCL, we
investigated the DNA methylome in primary DLBCLs in comparison with control lymph nodes by
genome-wide CpG microarray. We identified 1,194 target loci showing different methylation levels
in tumors compared with controls. The hypermethylated CpG loci included promoter, 5/-UTRs,
upstream and exonic regions. Interestingly, targets of polycomb repressive complex in stem cells were
mostly affected suggesting that DLBCL shares a stem cell-like epigenetic pattern. Functional analysis
highlighted biological processes strongly related to embryonic development, tissue morphogenesis
and cellular differentiation, including HOX, BMP and WNT. In addition, the analysis of epigenetic
patterns and genome-wide methylation variability identified cDLBCL subgroups. Some of these

. epigenetic subtypes showed a concordance with the clinical outcome supporting the hypothesis that

. the accumulation of aberrant epigenetic changes results in a more aggressive behavior of the tumor.

. Collectively, our results suggest an important role of DNA methylation in DLBCL where aberrancies in

. transcription factors were frequently observed, suggesting an involvement during tumorigenesis. These

. findings warrant further investigation to improve cDLBCL prognostic classification and provide new
insights on tumor aggressiveness.

: Canine diffuse large B-cell lymphoma (cDLBCL) is the most frequent malignancy of B-lymphocytes in dog and
. comprises approximately 60-70% of all cases. Dose-intense chemotherapy, bone marrow transplantation and
immunotherapy have emerged as the treatments of choice, but current therapeutic strategies are associated with
short survival and high relapse rates!.
Recently, many efforts have been devoted to characterize, in a comprehensive way, the biological bases of
cDLBCL pathogenesis. Two different comparative gene expression studies>* demonstrated that cDLBCL shares
similar features with its human counterpart, in particular highlighting the interplay among specific molecular

!Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy. 2Department
of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 3Lymphoma & Genomics Research Program,
Institute of Oncology Research, Bellinzona, Switzerland. “Oncology Institute of Southern Switzerland, Bellinzona,
Switzerland. *Department of Veterinary Medicine, Universita degli Studi di Milano, Milano (M), Italy. ®Department
of Information Engineering, University of Padova, Padova (PD), Italy. ’Centro Oncologico Veterinario, Bologna, Italy.
Serena Ferraresso and Arianna Arico contributed equally to this work. Correspondence and requests for materials
should be addressed to L.A. (email: luca.aresu@unipd.it)

SCIENTIFICREPORTS|7: 11591 | DOI:10.1038/541598-017-11724-w 1


http://orcid.org/0000-0003-0246-9008
mailto:luca.aresu@unipd.it

www.nature.com/scientificreports/

pathways (i.e. NF-kB, PI3K/AKT, Notch and JAK/STAT), which may have potential therapeutic implications®*.
In addition, recurrent copy number variations were identified by array comparative genomic hybridization
(aCGH) including gains in chr13, syntenic to the region in human chromosome 8 containing MYC oncogene,
and chr31°7.

However, none of these gene signatures have been translated into clinic, suggesting the need for more robust
molecular and prognostic studies. In medical research, evidence showed that genetic and genomics alone are not
sufficient to explain the biological variability of cancer. The ability of epigenetic mechanisms to drive cells with
the same genome towards different phenotypic identities represents one of the best promises in cancer research®.
Normal epigenetic processes are usually disrupted during the initiation and progression of cancer and aberrant
DNA methylation within CpG islands (CpGls) is the first critical mark of epigenetic modifications affecting regu-
latory genomic regions in tumor cells. Hypermethylation of gene promoter regions commonly leads to transcrip-
tional silencing while DNA methylation changes in CpG-poor regions (i.e. genic/intergenic) can play a critical
role in the regulation of gene activity and genomic stability’.

In human, large-scale genomic studies have shown that perturbations of epigenetic patterning are frequent
events in B-cell lymphoma!?. The characterization of lymphoma methylation signatures and the understand-
ing of how their changes contribute to cancer phenotype have paved the way to new therapeutic approaches in
this tumor. Thus, nothing is known about the DNA methylome of canine B-cell lymphoma yet. The epigenetic
changes driving B-cell lymphoma have been scarcely investigated in dog and current studies on aberrant meth-
ylation patterns focused only on single genes!'!~'°. Here, genome-wide characterization of cDLBCL epigenome
was performed through a design of a CpG microarray platform targeting more than 40,000 CpG regions and
coding sequences (CDS) distributed across the entire dog genome. Then, we hypothesized that DNA methylation
patterning in cDLBCLs can provide clues about gene deregulation by identifying aberrantly methylated genes and
explaining the different clinical behavior of cDLBCL.

Results

Clinical characteristics of DLBCL dogs. Investigated dogs were composed by 32 (82.1%) purebred and
7 (17.9%) crossbred dogs. Among purebred dogs, German shepherds (n=5, 15.6%), Dobermann dogs (n=3,
9.3%) and Golden retrievers (n = 3, 9.3%) were the most common. There were 22 (56.4%) females and 17 (43.6%)
males. Median age was 7 years (mean, 7.5; range, 3-13 years), and median weight was 25.7 kg (mean, 28.4 kg;
range, 6.1-69kg). Regarding clinical stage, 3 (7.7%) dogs had stage III disease, 16 (41%) dogs had stage IV dis-
ease, and 20 (51.3%) dogs had stage V disease. Among dogs with stage V disease, 15 (75%) had bone marrow
involvement, 3 (15%) had lung involvement, 1 (5%) had cutaneous involvement, and 1 (5%) had peripheral blood
involvement. At the time of diagnosis, 27 (69.2%) dogs were asymptomatic (substage a), whereas 12 (30.8%) dogs
showed clinical signs (substage b). Overall, 15 (38.5%) dogs received prednisone at the dose of 0.5-1 mg/kg before
being referred. All dogs were treated with the same dose-intense chemotherapeutic (CH) protocol, consisting of
L-asparaginase (week 1), Vincristine (weeks 2, 3, 4 and 13), cyclophosphamide (weeks 2 and 13), doxorubicin
(weeks 7 and 16), lomustine (weeks 10 and 19), and prednisone (weeks 1 through 20). 23 dogs also received
an intradermal injection of an autologous vaccine (VAX) on weeks 4, 5, 6, 7, 12, 16, 20 and 24. 20 (51.3%) dogs
relapsed while being treated, whereas in 14 (35.9%) dogs lymphoma recurred after the end of treatment. 5 (12.8%)
dogs never relapsed and were still in first complete remission at data analysis closure. Median TTP for all dogs was
162 days (range 1-1174). Median LSS was 281 days (range 12-1175 days), with 1 dog being alive at data analysis
closure. Complete clinical features of dogs are reported in Supplementary File 1 (Table S1).

Identification of loci differentially methylated between cDLBCL and control lymph
nodes. Both raw and normalized methylation data are available at the Gene Expression Omnibus (GEO)
repository under accession number GSE94913 (AN: data are kept private until manuscript acceptance, how-
ever, for those interested, a reviewer access link has been provided to the editor). Analysis of differential meth-
ylated regions (DMRs) focused on 29,513 sequences (29,298 CpG regions and 215 CDS) after filtering out
sequences with low methylation. Mann-Whitney Wilcoxon test identified 1,011 hypermethylated CpG regions
and 183 hypomethylated sequences (140 CpG and 43 CDS regions) in cDLBCLs (n 37) versus control (n 7)
lymph nodes (Fig. 1A and Table S2). These sequences were annotated to genomic regions associated to 823 genes.
Interestingly, hyper-methylated sequences were enriched for promoter, 5'-UTRs, upstream and exonic regions
(Bonferroni-adjusted p-values < 0.006), whereas hypo-methylated sequences were enriched for exonic, 3’-UTRs
and downstream regions (Bonferroni-adjusted p-values < 0.0005, Fig. 1B).

Differentially methylated genes are involved in key pathways of development and morphogen-
esis. Functional analysis of differentially methylated genes identified 22 Biological Process (BP), 5 Molecular
Function (MF), 2 Cellular Component (CC) Gene Ontology (GO) terms and 3 KEGG pathways as significantly
enriched (Tables 1 and S4 for the list of annotated genes). Overall, 19 out of 22 GO_BP enriched terms were
involved in the development/morphogenesis of anatomical structures, including 10 terms directly linked to
embryogenesis (e.g. proximal/distal pattern formation, embryonic forelimb/hindlimb morphogenesis, spinal cord
association neuron differentiation, embryonic digestive tract morphogenesis, anterior/posterior axis specifica-
tion) and 9 related to specific tissues development (e.g. muscle organ development, ureter development, neuron
differentiation, positive regulation of chondrocyte differentiation). All these terms were mainly represented by
genes playing key role in regulating organogenesis (SHH, BMPs, GREM1), body patterning (HOX gene family)
and tissues differentiation (FGFR2, FGF18, SOX9).

All GO_MF and GO_CC enriched terms were involved in transcription regulation, as well as one of the
enriched GO_BP terms (i.e. positive regulation of transcription from RNA polymerase II promoter). These terms
were represented by several transcription factors belonging to different families such as HOX, AP-2, IRX and
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Figure 1. Genomic distribution of differentially methylated sequences in cDLBCLs versus control lymph
nodes. (A) Percentages of hyper- and hypo-methylated probes across CpG regions and CDS. Corresponding
sequence counts are reported in each barplot. (B) Distribution of hyper- and hypo-methylated features across
different genomic locations. Percentages with respect to the corresponding total number of hyper- and hypo-
methylated sequences are reported. Sequence counts allow repetitions, since a sequence can overlap more
than one genomic location. Asterisks (*) indicate enriched genomic locations, according to Fisher’s Exact test
(Supplementary File 1).

Zinc-finger transcription factors. Among the 3 significantly enriched KEGG pathways, “Pathways in cancer”
(KEGG ID 05200) showed highest significance (Bonferroni-adjusted p-value <0.001) and included 31 dif-
ferentially methylated genes (Table S4) involved in key mechanisms such as control of apoptosis (p53, HRK),
proliferation (PDGFA, FGFs, RARB, SHH, CCNE1, WNT, SHH) and angiogenesis (NOS2, SLC2A1). The 209
differentially methylated genes belonging to at least one enriched GO_BP, GO_MF term or KEGG pathway
(Table S4) were mapped to the protein-protein interaction (PPI) annotations from STRING database'®: 181 genes
shared at least one interaction, 98 of them either experimentally validated or database-curated (Fig. 2).

GSEA confirmed these results with highly enriched GeneSets related to tissue development and morpho-
genesis (Table S5). Focusing on lymphoid-specific gene expression signatures collected in Staudt’s SignatureDB
(https://lymphochip.nih.gov/signaturedb/)!7, 61 gene sets were found significantly enriched (FDR < 25%), within
those 46 showed NOM p-value < 0.05. In particular, two gene signatures specific for DLBCL'® and predictive
for survival outcome (STROMAL-1 and STROMAL-2_DLBCL_SURVIVAL_PREDICTOR) resulted significant
(Table S5).

Associations between methylation levels and clinical features in cDLBCL. The associations
between tumor methylation levels and clinical features (Supplementary File 1 - Table S1) were investigated
through statistical pairwise comparisons. For each comparison, samples were grouped as follows: (i) stage (III-IV
vs. V); (ii) substage (a vs. b); (iii) extra-nodal sites infiltration (yes vs. no); (iv) treatment (CH vs. CH + VAX); v)
steroid administration before diagnosis (yes vs. no); (vi) relapse (yes vs. no OR before the end of therapy vs. after
the end of therapy + no relapse). Mann-Whitney Wilcoxon test did not detect any association, whereas F-test
identified 87 sequences showing a significant differential variability in at least one clinical factor (Table S6). In
particular, 4 genes (U6, GRB10, CCDC73, ZFAT) and one miRNA (ENSCAFT00000040944) showed increased
methylation variability in dogs relapsing before the end of the therapy whereas 7 genes (OBSCN, THSD1, RNFT?2,
C6orf201, GRB10, CEP170B, ETV6) were associated to bone marrow infiltration. Only 3 CpG regions were
found significant combining the clinico-pathological features by multivariate linear regression model. These were
related to exonic regions of EIF2D (stage, LSS) and RNASEH]1 (age, therapy and TTP), and the intronic regions
of KCNAB?2 (age, stage, substage, therapy and TTP). Interestingly, among the 7,526 sequences characterized by a
nominal p-value <0.01 (Table S7), most of the 20 genes associated to a worse clinical behavior (i.e. relapse, TTP
and LSS) are involved in regulation of apoptosis and cell cycle (CCND2, SMG7, BCL2L1, BAG1).

DNA methylation identifies three DLBCL subgroups with different overall survival. Beyond the
classification provided by the available clinical factors, we investigated whether methylation profiles were able
to provide a different stratification of the cDLBCL samples. The principal component analysis (PCA) explained
nearly 25% of the variations in the methylation profiles across cDLBCLs with the first two components (PCs). In
total, 138 CpG sequences resulted significantly correlated to the first PC, while no sequences were selected for the
second PC. Hierarchical clustering (HCL) on the methylation levels of these CpGs (Fig. 3) identified 3 different
subgroups that apparently did not reflect any statistically significant association with the clinical features listed in
Table S1. Interestingly, dogs in Cluster#3 showed a higher median LSS (534 days) than Cluster#2 and Cluster#1
(296 and 172 days, respectively). Moreover, Kaplan-Meier curves for LSS confirmed a significant difference in
terms of survival between Cluster#3 and Cluster#1 (p-value = 0.02, Fig. 4). Finally, clustering across the 138
selected sequences identified two distinct groups of genes (Fig. 3). The former, including 4 CpG sequences asso-
ciated to FAM181A, PDE4C, PARVA and GRID1, showed higher methylation levels in Cluster#1 compared with
Cluster#2 and #3. Conversely, the latter group, including all the other CpGs, showed an opposite behavior.
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Category |ID Term Bonferroni-adjusted pvalue
GO0:0009954 | proximal/distal pattern formation 1.1E-09
GO:0048665 | neuron fate specification 2.8E-08
GO0:0035115 | embryonic forelimb morphogenesis 2.1E-07
GO0:0009952 | anterior/posterior pattern specification 5.9E-07
GO0:0021522 | spinal cord motor neuron differentiation 8.0E-05
GO:0072189 | ureter development 8.2E-05
GO:0001764 | neuron migration 9.8E-05
GO:0045944 %o;irts: (fteegrulation of transcription from RNA polymerase 1.3E-04
GO:0045666 | positive regulation of neuron differentiation 6.7E-04
GO:0045665 | negative regulation of neuron differentiation 1.1E-03

GO _Bp | GO:0007267 | cell-cell signaling 1.1E-03
GO0:0035116 | embryonic hindlimb morphogenesis 3.2E-03
GO0:0001759 | organ induction 5.3E-03
GO0:0003148 | outflow tract septum morphogenesis 9.6E-03
GO0:0002053 | positive regulation of mesenchymal cell proliferation 1.5E-02
GO:0007517 | muscle organ development 2.2E-02
GO0:0009948 | anterior/posterior axis specification 2.9E-02
GO:0048557 | embryonic digestive tract morphogenesis 3.2E-02
GO:0048664 | neuron fate determination 3.2E-02
GO:0021527 | spinal cord association neuron differentiation 3.2E-02
GO0:0032332 | positive regulation of chondrocyte differentiation 3.2E-02
GO:0048701 | embryonic cranial skeleton morphogenesis 3.9E-02
GO0:0043565 | sequence-specific DNA binding 1.6E-10
GOy | mmetond scr sy KN pmne T cor |51

R e T e L
GO:0003682 | chromatin binding 1.3E-06
GO:0000977 %II\\I& [i)?lll)(riﬁegase II regulatory region sequence-specific 2.1E-02

Go_CC GO:0005667 | transcription factor complex 9.0E-06
GO0:0005634 | nucleus 6.6E-03
5200 Pathways in cancer 3.2E-04

KEGG 4080 Neuroactive ligand-receptor interaction 2.3E-03
4950 Maturity onset diabetes of the young 3.2E-03

Table 1. Significantly enriched GO terms and KEGG pathways.

The magnitude of methylation disruption reveals prognostic relevance. The stratification of
cDLBCLs considering degree and direction of relative methylation difference between cDLBCL and the mean
of control lymph nodes, defined as methylation disruption (see Methods), shows how common hyper- and
hypo-methylation events among samples are able to identify distinct cDLBCL subgroups according to methyl-
ation variability profiles (MVPs, details in Methods and Supplementary File 1). The first two PCs from PCA on
methylation changes explained more than 80% of the variation (Supplementary File 1 - Figure S9). HCL based
on the MVPs of CpGs correlating to the first PC identified 3 different cDLBCL subgroups, where the previously
identified Cluster#3 was confirmed also by MVPs analysis (Cluster#C in Figure S9).

Focusing on groups of cDLBCLs characterized by methylation disruption driven by the most variable hyper-
and hypo-methylation events, consensus HCL was performed on subsets of sequences ranging between 250 and
20,000, sorted by decreasing median absolute deviations (MADs) on MVPs. Interestingly, up to the first 2,000
sequences with the highest MADs the clustering was able to identify a specific subgroup of 6 cDLBCLs charac-
terized by the highest variability of differential methylation changes between cDLBCLs and control lymph nodes
(Supplementary File 1 - Figure S10); 5 of these dogs showed short-term LSS (LSS < 180 days, p-value < 0.03,
Fisher’s Exact Test).

Technical and functional validation of microarray results. A technical validation of microarray
platform by methylation-specific PCR was performed on 5 differentially methylated genes (FGFR2, HOXD10,
RASAL3, CYP1B1 and ITIH5) involved in key biological pathways of cancer development (e.g. MAP/ERK,
Homeobox signaling and FGF signaling pathways). The methylation levels were assessed in 13 cDLBCLs and 5
control lymph nodes. The promoters of the tested genes resulted hyper-methylated and a statistical significance
for HOXD10, RASAL3, CYP1B1 and ITTH5 was found (p < 0.01), thus confirming the reliability of the microar-
ray platform (details in Supplementary File 1).
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Figure 2. PPI sub-networks from differentially methylated genes belonging to the enriched GO terms and
KEGG pathways. The thickness of network edges correlates with the confidential score provided by STRING
database: the thicker is the edge, the higher is the confidence score of the interaction.

A functional validation of microarray data was also performed selecting 3 hypermethylated genes (CADM1,
CDHI11 and ABCB1). In this respect, the mRNA restoration after the treatment of a canine B-cell lymphoma cell
line (CLBL1)" with two hypomethylating agents (azacytidine and decitabine) was evaluated through quantitative
Real Time PCR. The three transcripts resulted highly expressed in control lymph nodes and scarcely expressed in
CLBL1 cells. After azacytidine treatment a significantly restoration of expression for the three genes was found,
conversely decitabine affected only ABCB1 expression (Supplementary File 1).

Discussion

Origin of B-cell lymphoma in dog results from inherited mutations in the germ line or changes in DNA sequences
during life®®. Recently, extensive gene expression profiling identified molecular signatures of cDLBCL and defined
two distinct subgroups with prognostic significance® . However, the biology of this tumor is still not entirely
explained by genomic events and transcriptional programs, and much less is known about epigenetic changes''.
Therefore, genome-wide DNA methylome has been investigated in this study using for the first time a canine
DNA CpG microarray. Results revealed that cDLBCLs are characterized by a widespread aberrant methylation
affecting 1,194 regions, corresponding to 823 genes. The hyper-methylated sequences were enriched in upstream
(<10kb) or promoter regions, while the hypo-methylated sequences were preferentially located in gene bodies
and downstream regions. This was quite expected considering that CpGIs are highly susceptible to DNA methyl-
transferases in cancer, determining gene silencing. Conversely, CpG-poor regions undergo to a global decrease of
genomic DNA methylation affecting genome stability, transcriptional elongation, and RNA splicing®2!-%.

In order to indirectly confirm the relationship between methylation and transcription in cDLBCL, we inte-
grated our data with the cDLBCL gene expression dataset published by Mudaliar et al.2. A total of 107 significant
genes were found in common between the two platforms and 98% of the hypermethylated upstream/promoter
regions resulted downregulated. The same was observed for hyper-methylated CpGIs in gene bodies. By contrast,
hyper-methylation of the downstream regions and CpGls hypo-methylation did not show any consistent rela-
tionship with gene expression. Hypo-methylated CpGs-poor CDS regions represented the only exception, being
downregulated in tumors.
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Figure 3. Heatmap of the 138 CpG sequences highly correlated with the first principal component. Methylation
levels were centered and scaled by sequence.

The biological processes significantly enriched in cDLBCLs appear to be strongly related to embryonic
development, tissue morphogenesis and cellular differentiation. DMRs included genes encoding proteins with
key roles in development and cell fate determination in all types of cells, such as HOX, BMP, WNT, and SOX.
Interestingly, inappropriate or deregulated expression of HOX genes has been implicated in several human can-
cers and associated to promoter methylation**-2. Furthermore, the expression of HOX genes during maturation
of hematopoietic cells results tightly regulated and modifications of this mechanism seem to contribute to neo-
plastic transformation. The hyper-methylation of several members of HOX gene family in our study suggests a
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Figure 4. Survival outcomes in patient cohort. Kaplan-Maier curves for LSS according to cDLBCL subgroups
defined by PCA and hierarchical clustering on methylation patterns.

possible contribution to cDLBCL pathogenesis and points to the importance of certain signaling pathways across
human and dog.

Wnt pathway is one of the “usual suspects” in cancer biology. The cellular processes modulated by Wnts range
from stem cell self-renewal to cell motility, and are mediated by transcriptional activation as well as through
direct effects on cytoplasmic targets?’. In the present study, several components of this pathway (i.e. WNT2B,
WNT5A, WNT7B, FZD1 and LEF1) were found hyper-methylated in cDLBCL. This signaling cascade is multi-
faceted and somehow enigmatic since it has been widely reported that some members can play tumor-promoting
or suppressing role depending on the cell type or availability of key receptors*?°. An emblematic example is given
by Wnt5a, reported overexpressed in several human cancers?”>?, that in the presence of specific FZ isoforms,
could promote tumor growth by activating the cancer-promoting canonical Wnt signaling pathway. However, in
hematological malignancies, including B-cell lymphoma, WNT5A acts as a tumor suppressor able to antagonize
the WNT/B-catenin signaling**-*? and it is found silenced by tumor-specific methylation. Hyper-methylation of
Wnt5a promoter was observed in the present study, supporting its role in inhibiting B-cell proliferation, while the
significance of FZD1 and LEF1 epigenetic silencing remains unclear. To date, both genes were reported activated
in several cancers and associated to chemoresistance and poor prognosis® .

BMPs frequently inhibit cell differentiation and proliferation and are involved in cancerogenesis in different
manners. Indeed, there are controversial in vitro and in vivo studies regarding the role of BMPs in promoting
tumorigenesis and metastasis® and showing biological behavior associated with cancer origin®®. However, several
studies reported that BMPs can influence the hematopoietic system and regulate development of hematopoietic
stem cells. Interestingly, B- and T-cell lymphopoiesis is inhibited by inducing the activation of Smad 1/5/8*. In
the present study, three BMPs members belonging to the Transforming growth factor beta (TGF-B) superfamily,
namely BMP3, BMP4 and BMP7, were found hyper-methylated in cDLBCL, supporting the role of BMP families
as tumor suppressor genes. BMP7 was demonstrated to be methylated both in human DLBCL and follicular lym-
phoma indicating its physiological relevance.

In our study, we identified a high proportion of Polycomb Group (PcG)-target genes (243/823, 29.5%) differ-
entially methylated. The genes included WNTs, Hedgehog, BMPs, PAXs, FGFs, and FOX factors. Polycomb group
(PcG) proteins represent a global silencing system involved in development control and they are able to regulate
the transition from proliferation to differentiation, contributing to stem-cell maintenance, and inhibit inappro-
priate activation of differentiation programs. Recent studies have provided evidence that PcG-target genes are fre-
quently hyper-methylated in several tumors, including lymphoma, and our findings confirm the same trend for
cDLBCL. As proposed by Martin-Subero et al.®, this scenario allows a double interpretation. The most consistent
relies on the effect of PcG-target genes aberrant methylation in tumor precursor cells with stem cell-like features
initially conferring a growth advantage and abnormal proliferation. In turn, this uncontrolled expansion and the
consequent genome instability would promote the gain of further oncogenic mutations (i.e. chromosomal aber-
ration), which foster malignancy progression?> "], This concept supports the “cancer stem cell theory” which
states that primordial cancer-initiating cells, exhibiting self-renewal capacity and multilineage potential, may
expand and form the biological origin for the rest of the tumor*>*’. The second hypothesis relies on the capacity
of the neoplastic cells to secondary acquire a stem cell-like epigenetic pattern through gene deregulation caused
by chromosomal aberrations*. The mechanisms regulating the interplay between DNA promoter methylation
and PcG-driven silencing, if any, are still unknown. DNA methylation and histone methylation (i.e. H3K27me3)
directed by the PcG family protein EZH2 are mutually exclusive in normal cells, but this relationship seems
not maintained in cDLBCL?%*°. In human, mutations in the SET domain of EZH?2 are associated to aberrant
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epigenetic events both in DLBCL and follicular lymphoma***°, whereas this is the first evidence supporting a
role of PcG proteins in dog and further investigation are necessary to study the mechanism of EZH2 in cDLBCL.

In human DLBCL, intra-tumor and inter-patient variability in promoter DNA methylation, as well as specific
methylation states have been reported to be associated to tumor clinical behaviour**-*%. Here, the F-test was applied
for our data and the analysis yielded 4 genes (U6, GRB10, CCDC73 and ZFAT) with the highest ability to predict
survival. Both GRB10 and ZFAT are known to play a role in regulating hematopoietic stem cell self-renewal and
haematopoiesis and several studies revealed an association with cancer progression**->!. However, their contribution
in B-cell lymphoma remains poorly understood. One limitation of our study is the number of cases that might affect
the statistical power of testing differential methylation for the clinical features. Further studies with a higher caseload
are needed to assess the associations between specific gene methylation and clinical behaviour.

A second aim of this study was to explore whether epigenetic profiles might help to classify cDLBCLs into
biologically relevant subgroups. Analysis of methylation levels identified 3 potential subgroups described by 138
CpG sequences which mainly contributed to methylome-wide variations among the cDLBCLs and characterized
by biological pathways that are mainly related to nervous system development, cell differentiation and morpho-
genesis (data not shown). A clear correspondence with the canine ABC and GCB-like DLBCLs, characterized by a
differential expression of NF-xB and B-cell receptor pathways, was not established®. A comparative approach was
attempted by considering the canine-specific geneset, reported by Richards et al.’, whose expression was able to
distinguish cBCL into “ABC-like” and “CCB-like” subtypes. Out of 787 genes (1,180 probes), 597 (1,464 features)
were represented in the dog CH3 microarray and the corresponding methylation levels were employed as dataset
to perform HCL of cDLBCLs. No distinct separation into two subgroups was achieved; the same evidence was
obtained when limiting the dataset to those regions (n=17) already found differentially methylated between
c¢DLBCL and control lymph nodes (data not shown).

Interestingly, one of the cDLBCL subgroups defined by our methylation profiles (Cluster#3) is associated to
long-term survival with respect to the other samples. Comparable results were obtained by stratifying cDLBCLs
considering the magnitude of methylation changes with respect to control lymph nodes. This latter analysis repro-
duces the methodological approach described in Chambwe et al., where 6 subgroups of DLBCL in human with
prognostic relevance were identified, “refining” the ABC- and GCB-DLBCL classification?. The main advan-
tage of this approach is exploiting the methylation profiles of control samples as a reference in order to perform
PCA and clustering focusing on the hyper- and hypo-methylation events in each sample. In the present study,
3 cDLBCL subgroups with different magnitude of DNA methylation changes were identified, confirming the
Cluster#3 characterized by long-term survival (Cluster#C). Since many sequences were characterized by low
differential methylation levels, which might confound the detection of small cDLBCL subgroups defined by a lim-
ited number of sequences showing high variations of methylation disruption, a consensus HCL was performed
on subsets of sequences sorted by decreasing MADs of the MVPs. Interestingly, a cluster of 6 dogs based on
about 2,000 sequences characterized by the highest methylation variability changes was significantly associated
to poor prognosis (LSS < 180 days, p < 0.03). The consensus clustering showed that 6 dogs characterized by poor
prognosis robustly clustered together and not with the other samples of the two other clusters by performing
HCL several times on subset of samples (Figure S10C). In addition, methylation changes observed in these dogs
were characterized by a higher number of hyper-methylation events compared to the other samples, as shown by
the average of density plots of their methylation changes (Figure S10A) and the highest Methylation Variability
Scores (Figure S10B) defined in Chambwe et al.*, (i.e. quantitative measures reflecting the magnitude of methyl-
ation disruption). This finding supports the hypothesis that the progressive accumulation of aberrant epigenetic
changes might confer aggressiveness to the tumor. Future studies with a higher number of cases will be definitely
necessary to better assess the contribution of epigenetic profiles in both biological and clinical stratification of
cDLBCL. In this context, investigating the level of methylation variability of cDLBCL might be a starting point to
highlight the contribution of DNA methylation in the clonal evolution of this tumor®.

In conclusion, we profiled genome-wide DNA methylation in cDLBCLSs using DNA methylation array and
we technically and functionally validated our results by methylation-specific PCR and the treatment of a canine
B-cell lymphoma cell line with hypomethylating agents, providing insights on epigenetic switching and heter-
ogeneity of this tumor. Findings collected, herein, suggest that cDLBCL aberrantly has tumorigenic and stem
cell-like signatures, highlighting some methylation-based cDLBCL subgroups showing prognostic relevance. In
future, new brand high-resolution techniques will be required to better define the contribution of methylation
in cDLBCL associated with functional studies of the aberrant methylated genes and the identification of putative
tumor biomarkers to predict the clinical outcome.

Methods

Dogs and samples.  The study cohort included 40 dogs affected by newly diagnosed, multicentric DLBCL that
underwent complete and standardized staging work-up and that were treated with chemotherapy or chemo-im-
munotherapy®2. The diagnosis of DLBCL was obtained by histopathological and immunohistochemical analysis
(CD20 and CD79) of one enlarged peripheral lymph node surgically removed at initial presentation. A portion of
the tumor was preserved frozen in RNAlater® solution (Life Technologies, Carlsbad, CA) under sterile conditions.
Medical records of all dogs were reviewed to obtain relevant clinical information, including signalment, breed, sex,
age, hematological and biochemical abnormalities, clinical stage, substage and treatment (Supplementary File 1-
Table S1). Time to progression (TTP) was measured as the interval between initiation of treatment and progressive
disease (PD). Dogs not experiencing PD at the end of the study or dogs lost to follow-up before PD were censored
for TTP analysis. Lymphoma-specific survival (LSS) was measured as the interval between initiation of treatment
and lymphoma-related death. 8 dogs with no cancer disease and defined clinically healthy by a complete blood exam
and physical examination underwent lymphadenectomy and lymph nodes were used as controls. Samples stored in
RNA-later were analyzed to selectively extract DNA from regions compatible with lymphoid follicles.
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The study was approved by Committee of the University of Padova (CPDA148778/14 - protocol 20086 MSFH3)
and a mandatory written consent from all dog’s owners was obtained. All the experiments were performed in
accordance with relevant guidelines and regulations.

Dog CH3 microarray design. In order to assess methylation profiles of dogs affected by DLBCL, a canine
CpG microarray platform was developed (GEO accession: GPL23069). Probe design was carried out by the
Agilent bioinformatic support team using proprietary prediction algorithms to locate CpG Islands on C. famil-
iaris draft genome as deposited on Ensembl database (CanFam 3.1) and to design high quality oligo-probes.
Microarray probes were selected in order to provide the highest possible coverage of dog genome. CDS regions
and CpG islands were given top priority. Chromosome X was excluded from analysis and probe design. A total
of 170,000 probes (60mers, sense orientation) were designed on both CpG and CDS regions. In details, 102,000
probes were designed targeting a total of 36,807 CpG regions while 68,000 probes were directed against 672 CDS;
average base pare tiling was 90 bp. Microarray probes were synthesized in situ using the Agilent non-contact
ink-jet technology with a 4 x 180K format. Each array included Agilent’s default positive and negative controls.

Sample processing and data normalization. Detailed description of sample processing, data quality
assessment and normalization is reported in Supplementary File 1. Briefly, for both cDLBCLs and control lymph
nodes, DNA methylation was measured by two-color competitive hybridization between the methylated fraction
and a not-enriched aliquot of the same DNA. Loess normalization was applied to correct for the Cy3/Cy5 dye bias
for each dye. After quality control (QC) of the resulting log2 ratios, between-samples Quantile normalization was
then applied to the QC-passed arrays (37 cDLBCLs and 7 controls).

Data Analysis. Data analyses were performed using R statistical computing software (http://www.r-project.
org). Details are reported in Supplementary File 1. The median of the probe signal was calculated to retrieve
the methylation levels of the target 672 CDS and 36,807 CpG regions. DMRs between cDLBCLs and lymph
nodes were identified by Mann-Whitney Wilcoxon test, filtering out sequences showing enriched methylation
in less than 25% of the two groups (i.e. cDLBCLs and control lymph nodes). Both Mann-Whitney Wilcoxon
and F-test for differential variability were then applied to study associations between gene methylation levels
and clinical features. Possible combinations of multiple clinical features were also investigated by multivariate
linear regression model. For all the statistical tests, Bonferroni-adjusted p-values < 0.01 were considered signifi-
cant. Functional characterization of DMRs was performed by different state-of-the-art enrichment approaches as
topGO and Gene Set Enrichment Analysis (GSEA).

The ability of methylation profiles in defining new tumor stratifications was first investigated by applying
PCA. Target sequences showing high correlation (i.e. above 0.85) with the main principal components (PCs) were
selected by using one-way analysis of variance®. Focusing on these sequences, HCL using Euclidean distance and
Ward linkage was applied to identify cDLBCLSs subgroups characterized by different methylation profiles and
clusters of CpG/CDS regions characterized by a specific methylation pattern across cDLBCLs.

PCA and HCL were applied to MVPs, representing the density functions of the differential methylation levels
between each cDLBCL and the median methylation level calculated across control lymph nodes. Clustering was
performed according to a distance defined by the area bounded by the MVP-based density curves of sample pairs
(Supplementary File 1). Moreover, consensus clustering on subsets of sequences sorted by decreasing MAD was
applied to stratify according to sequences characterized by highly variable methylation disruption across cDLBCL
samples. To evaluate the robustness of the results, the consensus clustering provides quantitative evidence for
determining the number and membership of possible clusters by randomly subsampling 1,000 times the samples.
Clustering performance from subsampling are summarized by a consensus matrix with values ranging between 0
(never clustered together) and 1 (always clustered together). In addition, each cDLBCL sample was characterized
by a Methylation Variability Score (MVS) representing the difference of the area under the density curves between
the MVP of each cDLBCL sample and the median MVP from the controls: the higher the MVS, the greater the
methylation disruption?. Further details on the analysis of methylation disruption and the consensus clustering
are reported in Supplementary File 1. Finally, Fisher’s exact test was performed on the whole CpG-probe set 3
values treated as categorical data to identify the differentially methylated probes. The probes were classified as
“methylated” (3 value > 0.5) or “unmethylated” (3 value < 0.5) (for details see Table S3).
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SUPPLEMENTAL MATERIAL AND METHODS

c¢DLBCL cohort

Clinical features of dogs affected by DLBCL are reported in Table S1.
Table S1. Clinical data of DLBCL dogs included in the study

Dog Age | Sex | Stage | Sub- Extranodal site Treatment | Pre- | Relapse pre/post
Number | (y) stage infiltration Pred | end of therapy
1* 13 M 5 b BM 13,5% CH+VAX | yes post
2 5 M 5 b BM 12,7%, lung CH+VAX no post
3 8 F 5 b lung CH yes pre
4 12 F 3 a no CH+VAX no never
5 5 M 3 a no CH+VAX | yes post
6 3 M 5 a BM 4,3% CH no pre
7 7 M 4 a no CH yes pre
8 8 F 4 a no CH+VAX no never
9 3 M 5 a PB 10% CH no pre
10* 13 F 5 b BM 7,2% CH no pre
11 8 F 5 a BM 3,1% CH+VAX no post
12 6 M 5 b BM 47.,4% CH yes pre
13 10 M 3 a no CH yes post
14 6 M 5 a skin CH+VAX no post
15 9 F 5 b lung CH+VAX no pre
16 5 M 4 a no CH+VAX | yes post
17 10 F 4 a no CH+VAX no pre
18 5 F 5 b BM 5,3% CH+VAX | yes pre
19 10 M 4 b no CH+VAX no pre
20 9 F 5 a BM 55,2% CH no pre
21 13 F 4 a no CH+VAX | yes pre
22 5 M 4 a no CH+VAX no post
23 10 F 4 a no CH+VAX no never
24 5 M 5 a BM 4,7% CH no pre
25 6 F 5 a BM 5,7% CH+VAX no post
26 10 F 4 a no CH+VAX no post
27 5 M 5 a BM 6,6% CH+VAX no post
28 10 F 5 a BM 14,9% CH yes pre
29 11 F 4 b no CH+VAX | yes post
30 10 M 5 b lung CH yes pre
31 6 M 4 b no CH yes pre
32 4 F 4 b no CH+VAX | yes post
33 12 F 4 a no CH no pre
34 4 F 5 a BM 11,2% CH+VAX no pre
35 8 F 5 a BM 5,1% CH+VAX no pre
36 4 F 5 a BM 5% CH+VAX no never
37 5 F 4 a no CH no never
38 5 F 4 a no CH yes post
39 10 M 4 a no CH no pre
40* 10 M 5 a BM 5% CH yes pre

M=male, F= female, Pre-pred= steroid administration before diagnosis, BM=Bone Marrow Cells; PB=Peripheral
Blood cells; CH=chemio; VAX=vaccine. (*): Sample excluded from statistical analyses



DNA extraction and sonication

Genomic DNA was extracted from lymph nodes using the DNeasy Blood & Tissue Kit (QIAGEN,
CA, USA) according to the manufacturer’s instructions. DNA concentration and quality were
measured by Qubit fluorometer (Life Technologies, CA, USA) and by Agarose gel electrophoresis.
An amount of 5 pg of extracted genomic DNA was fragmented by sonication, using Covaris S2
(Covaris, MA, USA), to obtain a fragmented DNA that ranges from 200 to 700 bp in size, diluted in
130 pl. Covaris settings were the following: n°® cycles= 2, cycle duration= 60 sec, duty cycle= 10%,
cycle/burst= 200 and intensity= 5, with a bath temperature of 5+1°C. An aliquot of 20 ul (total 700-
800 ng) was used as reference DNA, not enriched of methylated double-stranded DNA.
Enrichment of methylated double-stranded DNA

The remaining aliquot (110 pl, ~4 pg) of fragmented DNA was enriched of methylated double-
stranded DNA by using MethylMiner™ Methylated DNA Enrichment Kit (Life Technologies),
following the manufacturer’s recommendations. MethylMiner™ uses a biotinylated recombinant
fragment of the human MBD2 protein to enrich for fragments of methylated DNA. The methylated
fraction of genomic DNA thus obtained was employed for methylation analysis through canine
methylation microarray.

Sample labeling and hybridization

Enriched-fraction and total gDNA (reference) obtained from 48 lymph node samples (40 cDLBCLs
and 8 control dogs) were labelled independently with cyanine 5-deoxyuridine triphosphate (dUTP)
and cyanine 3-dUTP, respectively. Sample labeling was performed by using SureTag Complete
DNA Labeling Kit (Agilent Technologies) following the manufacturer’s recommendations. For
each sample, equal amount of enriched (Cy5-labeled) and reference (Cy3-labeled) DNAs were co-
hybridized to the microarray platform. Arrays were scanned at 3um resolution using an Agilent
G2565CA scanner, and image data were processed using Feature Extraction version 10.7 with
CGH-1200-Jun14 protocol (Agilent Technologies).

Data Quality Control and Preprocessing

A total of 58 probes exhibiting signal saturation and one cDLBCL sample not valid according to
Methylation Microarray QC metrics (Agilent Technologies) were filtered out. The MedianSignal of
the probes was considered for further preprocessing. The ProcessedSignal provided by Agilent
Feature Extraction algorithm was not employed since it was characterized by a higher overall
variability. Differences on signal variability were observed between Cy3 and CyS5 signals, probably
due to the capture/enrichment step performed on DNA of Cy5-labeled samples. To adjust the

Cy3/Cy5 dye bias, Loess normalization was applied to each dye using the information between-



array to remove intensity-dependent trends, but without scaling the overall median signal towards
zero. Specifically, the Loess curve was estimated keeping the within-array median value calculated
across the probes. After dye bias correction, quality assessment of the resulting log2-signal ratios
was performed using the arrayQualityMetrics package in Bioconductor (http://www.bioconductor.
org). Principal Component Analysis (PCA) was also considered to evaluate anomalies among the
samples. Three samples (i.e. Dog#1, Dog#10 and one control dog) failing quality controls on MA
plots, box-plots and between-array distances were excluded from the analysis. On the remaining
arrays, between-samples Quantile normalization was applied to the corresponding log2-signal
ratios. The distribution of the median log2-ratios calculated across samples was characterized by
two clear peaks (Figure S1): the first one (log2-ratios > 2) represented hyper-methylated probes,
while the second one (0 <log2-ratios <1) represented probes showing a methylation level similar to
the reference. The latter was not centered to zero since the MedianSignal included the background
noise that may be different between the dyes. Therefore, in order to subtract the background noise
and having this peak centered to zero, the overall signal was finally scaled by a factor equal to 0.85.

To estimate the peaks, we used the function findPeaks of R package quantmod.
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Figure S1. Density plot of the median array calculated from the normalized data.

Details on statistical analyses

F-test: Since cDLBCL is a heterogeneous disease, driven by perturbations of different molecular
pathways, and varying from individual to individual, epigenetic instability or the loss of epigenetic
control of important genomic domains can lead to increased methylation variability, not always
associated to a difference of methylation levels. Recently, it has been found that differential
variability between normal and cancer tissues can be very useful for identifying methylation

markers of cancer (Hansen et al., 2011). Therefore, for the clinical factors differential variability



was tested using the F-test, one of the most popular approaches for testing the equality of
variances.

Multivariate linear regression: Linear combinations of clinical/pathological factors significantly

associated to methylation level were investigated through a multivariate linear regression model.
Specifically, the factors of the final model were selected with a step-down procedure: all the factors
were initially included in the full model considering main effects only, then they were sequentially
removed if their removal did not result in a significant change in fitting the data, using F-test.

Analysis of methylation disruption: Starting from methylation data in cDLBCL samples and control

lymph nodes a matrix X was defined describing the methylation changes for each sequence j and
each cDLBCL sample i as x;j = y; — z;, which is the methylation difference between the sample 1
and the median methylation z; calculated across the 7 control lymph nodes at sequence j. PCA
analysis was performed on x; values as preliminary analysis of the variability in methylation
changes. The methylation variability profile for each cDLBCL sample i (MVP) was then defined as
the density function fi(x) across all the regions represented on the array. The function was estimated
using the density() function in R with bandwidth parameter 0.1%.

To define a distance matrix for the clustering, the squared L2-distance between the MVP density
functions were calculated for all pairs of patient samples. This distance represents the squared
difference in the area under the curve between two samples and is approximated using the
Trapezoidal rule (Supplementary Material in Chambwe et al.*).

Consensus clustering was then performed on this matrix applying Ward’s linkage, using R package
ConsensusClusterPlus (Wilkerson et al., 2010). Specifically, HCL was performed 1,000 times on
resampled subsets of the cDLBCL samples (using 80% of samples as subset) and evaluated the
number of clusters k=2,3...... 15. We note that the relative change in area under the cumulative
distribution functions of the consensus matrix (described in Methods) for each k is maximum at 3,
indicating the best separation of the clusters.

Finally, to provide also a quantitative measure of the magnitude of methylation disruption observed
in each sample, Methylation Variability Score of cDLBCL sample 1 was defined as the deviation of
each cDLBCL MVP describe by fi(x) to that of the expected MVP of a control lymph node,

described by the mean density function g (x):

mvs; = [1iG0 - georas

Annotation and functional analysis
In order to improve the biological interpretation of the significant sequences, CanFam3 annotations
from both RefSeq and Ensembl retrieved from UCSC table browser were associated to each

sequence. In particular, we first checked whether each sequence overlaps at least one of the



following genomic locations: 5’-UTR, 3’-UTR, exonic, intronic, promoter/upstream (i.e. 2k/10k
bases upstream from transcription start site, respectively), downstream (i.e. 2k bases from
transcription start site). If the sequence did not overlap any of these locations (i.e. it is an intergenic
region), the nearest gene was associated, assuming possible distal regulatory effects on the

associated gene.
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Figure S2. Distribution of target sequences (CpG and CDS) across the dataset. Percentages
with respect to the total number of sequences in the chip are reported. The sum of these

percentages is not equal to 100% since each sequence can overlap more than one genomic region.

In order to identify enriched genomic locations with respect to the selection of the differentially
methylated sequences, Fisher’s Exact test was performed on the number of the selected sequences
with respect to the total number of sequences available in the microarray platform.

Finally, the biological terms from Gene Ontology (GO) and KEGG pathways able to significantly
characterize the selected sequences were identified by performing an enrichment analysis. topGO R
package with default options (Alexa et al., 2006) and Fisher's Exact test were applied on GO terms
and KEGG pathways respectively, considering as significant the terms/pathways with adjusted
Bonferroni p-value <0.05. Functional annotations were retrieved from R packages org.Cf.eg.db,
GO.db and KEGG.db. Focusing on the selected sequences belonging to the enriched terms, the
corresponding protein-protein interactions (PPIs) derived from STRING database were considered
for further interpretation of the obtained results (Szklarczyk et al., 2015).

Gene set enrichment analysis (GSEA) was performed on the entire dataset using the Gene Set
Enrichment Analysis v2.0.13 software (Subramanian et al. 2005) downloaded from the Broad
Institute (www.broadinstitute.org/gsea.). GSEA analysis was performed by using gene symbols

retrieved by blastx against UniProt database. For enrichment analysis Gene sets were downloaded



from the C2-CP C4-CM and C6 collections in MsigDB v3.1 (Molecular Signature Database). In
addition, more specific lymphoid gene sets were retrieved from Staudt’s SignatureDB
(https://lymphochip.nih.gov/signaturedb/, Shaffer et al. 2006). Pathway Enrichment analysis was
performed on each collection independently, T-test metric was employed for gene ranking, and
1,000 permutations were applied for p-value assignment.

Bisulfite conversion

Genomic DNA from 13 ¢cDLBCLs (Dog number:1, 6, 14, 15, 18, 19, 20, 24, 30, 32, 33, 34, 38) and
five lymph node samples (Ctrl#1, Ctrl#2, Ctr#4, Ctr#7, Ctrl#8) was quantified using
NanoDrop1000 Spectrophotometer (Thermo Scientific). For each sample, 500 ng of genomic DNA
were bisulfite treated using the MethylCodeTM Bisulfite Conversion Kit (Invitrogen™, Carlsbad,
California) following manufacturer's specifications. Bisulfite-converted DNA was then employed
as template for MSP.

Methylation specific PCR (MSP)

A technical validation of microarray platform by methylation-specific PCR (Hernandez et al. 2013)
was performed on 5 differentially methylated genes (FGFR2, HOXD10, RASAL3, CYPIBI and
ITIHS). On the CpG islands of these genes (Table S2), Methylation-specific primers were designed
by means of Methyl Primer Express software (Applied Biosystems, Foster City, CA). For each
gene, two primer sets were designed: 1)) METH primers designed to amplify the DNA if methylated
(scenario in which the cytosines in CpG dinucleotides are methylated and are not be bisulfite
converted into uracil); i) NO-METH primers designed to amplify the same DNA if not methylated
(scenario in which all cytosines are supposed to be bisulfite converted into uracil).

All the MSPs were carried out using 5 ng of bisulfite-converted gDNA; 600-600 nM primer pair
was used for all genes apart from CYP1B1 (300-600nM METH, 600-300nM NO-METH), ITIH5
METH (300-600nM), RASAL3 METH and NO-METH (50-50 nM). Real time amplification was
carried out using the Master Mix SYBR® Green PCR Master Mix Applied Biosystems and
Stratagene Mx3000P Agilent Technologies. For CYP1B1 and ITIHS genes the Ct values were
acquired at 76 and 74 °C, respectively, to eliminate primer dimer contribution to the amplification
plot. Negative controls (with no bisulfite-converted gDNA or water as template) were run in every
plate for each assay. The quantification of methylation level for each target gene was carried out by
calculating the ratio of methylated to unmethylated primers pairs as ACT (=CT Meth —
CT_NoMeth) as described by Zeschnigk et al. (2004).

Statistical analyses were performed using a commercially available statistical software program

(SPSS v20.0). Data were analysed using a non-parametric statistical method because of the limited



number of cases. Sample methylation levels, were evaluated for significant differences between

controls and cDLBCLs using the Mann-Whitney test.

Table S2. Primer pairs employed for MSP

Gene Methylation primer 5°-3° No Methylation primer 5°-3’
FGFR2 Forward GTTATACGGGGGCGTTGAC TGTGGTTATATGGGGGTGTTGAT
Reverse GCGAAAACCAAATACCGAATACG | ACTCCTTCACAAAAACCAAATACCA
HOXD10 Forward GGTCGGTTGTTTGTAGCGC GTTGGGTTGGTTGTTTGTAGTGT
Reverse CTCGCAAATCACGTACTCCG CCTCCTCACAAATCACATACTCCA
ITIH5 Forward AGAATTTCGGGGATGCGGATC TGTAGAATTTTGGGGATGTGGATT
Reverse CAACTATCCACGACGTCCTCG AAACAACTATCCACAACATCCTCA
RASAL3 Forward CGTTGGAGTTCGCGTTGTTC GGGTGTTGGAGTTTGTGTTGTTT
Reverse CACCCTACTCCCCGAAACG ACCAACCTCTAATCACTCAAATCCA
CYP1B1 Forward GGTTAGAGGTCGGTAGGTTGC GTGGTTAGAGGTTGGTAGGTTGT
Reverse AAACGCTACTCTACGCTCCG AAATTCCCACACACCTATCAAAACA

Gene expression analysis of CLBL1 cells treated with hypomethylating agents

A functional validation of microarray data was performed evaluating the mRNA expression
restoration of 3 hypermethylated genes after the treatment of a canine B-cell lymphoma cell line
(CLBLI: Riitgen et al., 2010), with hypomethylating agents. To this purpose azacytidine (AZA) and
decitabine (DEC) were used. Among the hypermethylated genes, CADM1, CDH11 and ABCBI1
were selected.

The CLBLI1 cell line was maintained in T25 or T75 flasks as previously reported (Riitgen et al.,
2010). Cells were seeded at a concentration of 3x10° cells/well in a 6-well flat bottom plate
(Sarstedt Italia, Verona, Italy) and incubated for 72 h with AZA and DEC (Sigma-Aldrich, Milan,
Italy) at the final concentration corresponding to their ICso values (3.42 and 0.13 uM, respectively),
determined by Alamar Blue test (Promega, Madison, USA). Due to its chemical instability, AZA
dilution was freshly prepared every 24 h and added onto each well. Four independent experiments
were performed.

At the end of the treatment, cells were collected and washed with PBS. Then, total RNA was
extracted using the RNeasy® Mini Kit (Qiagen®, Hilden, Germany) and quantified with NanoDrop
1000 Spectrophotometer (Thermo Scientific, Waltham, Massachusetts, USA). One pug of total RNA
was reverse-transcribed using the High Capacity ¢cDNA Reverse Transcription kit (Life
Technologies, Carlsbad, California, United States), according to the manufacturer’s instructions.
For each target transcript, gene-specific primers encompassing one intron were designed (see Table
S3). Two internal control genes (ICGs: GOLGA1 and CCZ1) previously published in Giantin et al.
(2013) and Giantin et al. (2016) were selected.

The qPCR reaction was performed in a final volume of 10 puL, using 12.5 ng of cDNA, the Power
SYBR Green PCR Master Mix (Life Technologies, Carlsbad, California, United States) and a




Stratagene Mx3000P thermal cycler (Agilent Technologies, Santa Clara, California, United States).
Standard qPCR conditions were used, except for the analysis of CADMI1 and CDHI11, for which Ct
values were acquired at 78°C to eliminate primer dimers contribution to the amplification plot.
Different concentrations of forward (F) and reverse (R) primers were tested. The presence of
specific amplification products was confirmed by dissociation curve analysis. For each qPCR assay,
negative controls (with total RNA or water as template) and positive controls (the cDNA of 6
canine control lymph nodes) were run. Standard curves were obtained using the best performing
primer concentration and serial dilutions of control lymph node cDNA. Each dilution was amplified
in duplicate. The AACt method (Livak and Schmittgen, 2001) was used for the analysis of gene
expression results.

Statistical analysis was performed using GraphPad Prism version 5.00 for Windows (GraphPad
Software, San Diego, USA). Data were analysed using unpaired t-test. A P value < of 0.05 or less

was considered as statistically significant.

Table S3. Primer pairs used for gene expression analysis (QPCR) in CLBL1

Gene Primer sequence 5°-3° Primer concentration (nM)
CADM1 Forward GGTGAGGAGATTGAAGTGAACTG 50
Reverse TCCTCCACCTCCGATTTGC 300
CDH11 Forward CATTAACGACAACCCTCCTGAG 300
Reverse CTGGATGACCGACGTTCCC 50
ABCBI1 Forward GACGTTGGGGAGCTTAACAC 300
Reverse CGCCAATTCCTTCATTGATT 600




SUPPLEMENTAL RESULTS

Data preprocessing

The combining Loess and Quantile normalization pre-process used to normalize the methylation
data, was able to overcome some pitfalls of the data distribution. In Fig. S3, the position of Dog#19
is shown both in the PCA and MA plots with respect to the median across the samples, highlighting
the difference obtained by the two normalization approaches. In Fig S3 A. and C., only Quantile
normalization is applied, whereas in Fig S4 B. and D. Loess approach is combined with Quantile. In
the latter, Dog#19 clustered with the cDLBCLs group. Indeed, this sample showed the most evident
dye-bias (Figure S4) generated by the fact that Cy5 signal was altered by the experimental
enrichment step generating an additional bias compared to the Cy3-labeled reference. This trend
was observed in more than half of the samples of the dataset. The Loess normalization step was able
to determine the adjustment of this bias using the information from each dye. Furthermore, since
Quantile normalization assumes a common distribution of data, the Loess-normalized data were
characterized by a more similar between-array distribution compared to the raw data (Figure S5),

thus allowing Quantile-normalization to have the best fit.
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Figure S3. Differences between Quantile-only and Loess-plus-Quantile normalization on methylation data. PCA
analysis on cDLBCL and control samples (upper panel) and MA plots on sample Dog#19 (lower panel), showing
differences between Quantile normalization applied directly on raw data (left panel) and the same Quantile
normalization applied on Loess-normalized data adjusted for the dye-bias. Arrows in the PCA plots indicate the

positions of Dog#19.



s 10 12 | 6 8 10 12 14

Figure S4. Between-array MA plot of cDLBCL Dog#19, separating Cy5-dye (right panel) and Cy3-dye (left
panel) signals.
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Figure SS. Density plots of the arrays on raw (left panel) and Dye-bias normalized (right panel) data.

Microarray data technical validation

In order to quantify the ratio of methylated to unmethylated alleles, the ACT (=CT_Meth —
CT_NoMeth) value was determined (Table S3) as described by Zeschnigk et al. (2004). The Mann-
Whitney test comparing Meth/No-Meth primer pairs showed a significant hypermethylation
between the two groups for HOXD10, RASAL3 (p<0.001), CYP1BI and ITIHS (p<0.01), while
FGFR2 was only marginally significant (p=0.07).



Table S3. ACT values calculated, for each target gene, on cDLBCL and Control samples

¢cDLBCL FGFR2 HOXD10 ITIH5 RASALS3 CYP1B1
15 3.56 -1.94 -6.51 -3.99 3.95
30 2.94 -1.07 -5.45 -3.51 5.73
20 -1.48 -1.45 -5.07 -3.14 -1.02
33 5.04 -0.69 -2.77 -3.08 5.21
14 1.16 -2.61 -4 -4.17 35
24 5.45 -1.08 -3.27 -2.96 0.08
12 5.62 -2.65 - -4.5 4.73
19 -0.16 0.98 0.2 -2.28 1.43
6 1.94 -0.35 -3.36 -4.07 2.84
38 7.25 0 -2.56 -6.36 1.23
32 7.12 -2.03 -2.92 -4.44 0.55
18 5.82 0.27 -3.79 -3.64 3.95
34 9.31 2.37 -3.8 -4.03 3.29
Controls

Ctrl#7 4.4 3.47 -0.89 -0.34 4.9

Ctrl#4 7.13 4.4 -1.69 -1.07 5.87

Ctrl#8 8.36 4.03 -2.65 -2.64 5.73

Ctrl#2 8.6 5.57 -2.22 -2.57 6.51

Ctrl#1 6.39 3.72 -1.96 -1.49 5.56

Microarray data functional validation

All primer pairs for gene expression analysis had an acceptable efficiency (range 90 % + 110 %)),

and a slope in the range of -3.6/-3.1. The main features of the validated qPCR assays are reported in

Table S4.

Table S4. Main features (slope, efficiency, R2, dynamic range) for each qPCR assay.

Gene Slope Efficiency (%) R2 Dynamic range (Ct)
CADM1 -3.36 98.4 0.99 24.48 — 34.60
CDH11 -3.47 94.1 0.99 22.75 - 36.62
ABCB1 -3.18 106.4 0.99 28.79 - 36.17

The effect of AZA and DEC treatment on CADM1, CDHI1 and ABCB1 mRNA expression are

summarized in Figure S6-S8, respectively.

Selected genes were all constitutively and highly expressed in the control lymph nodes, while in the

B-cell lymphoma cell line (CLBL1) they were almost completely silenced. Following the treatment

with AZA, the mRNA expression was significantly restored (P<0.05 or less). Conversely, DEC
affected the re-expression of ABCB1 (P<0.01), while did not exert any effect on CADM1 and
CDHI11 (data not shown).
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Figure S6: CADM1 mRNA expression in control lymph nodes (LN), CLBL1 cells alone and treated with
azacytidine (AZA, 3.42 pM). RQ values are expressed in arbitrary units (AU) as means £ SEM.
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Figure S7: CDH11 mRNA expression in control lymph nodes (LN), CLBL1 cells alone and treated with
azacytidine (AZA, 3.42 pM). RQ values are expressed in arbitrary units (AU) as means + SEM.
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Figure S8: ABCB1 mRNA expression in control lymph nodes, CLBL1 cells alone and treated with the vehicle
(DMSO 0.1%), azacytidine (AZA, 3.42 pM) and decitabine (DEC, 0.13 pM). RQ values are expressed in
arbitrary units (AU) as means = SEM.
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Figure S9. PCA plot on ¢cDLBCL samples based on MVPs. Colors correspond to the clusters identified by the

sequences highly correlated with the first principal component.
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Figure S10: Consensus hierarchical clustering on the first 2,000 sequences showing the highest median absolute
deviation of the MVPs across cDLBCLs A. Density function of MVPs of cDLBCL clusters compared to those of
controls, B. Boxplot of the MVS by cluster. C. Heatmap for consensus matrix (K=3)



SUPPLEMENTAL TABLES

Excel file Supplementary Table S2

Table S2.xIs Differentially hyper- and hypo-methylated sequences on cDLBCL samples with
respect to normal lymph nodes. Columns H-I report the median methylation level across
cDLBCL and normal samples, respectively. Columns K-R report the overlapping Refseq (K-N) and
Ensembl (O-R) transcripts, considering for each transcript the following genomic locations: exon,
intron, 5’-UTR, 3’-UTR, “proxUP” (i.e. until 2kb upstream from transcription start site), “upstr”
(i.e. from 2kb to 10kb upstream from transcription start site), “proxDOWN” (i.e. until 2kb
downstream from transcription start site). Columns S-V: nearest Refseq or Ensembl transcripts

calculating the distance from the transcription start site (TSS).

Excel file Supplementary Table S3
Table S3.xls List of significant probes/genes obtained after categorical division of the Beta values
in two classes. Column A reports the exact genomic location of the probe and Column B reports the

gene symbol.

Excel file Supplementary Table S4
Table S4.xls Significantly enriched GO terms and KEGG pathways for the differentially
hyper- and hypo-methylated sequences on cDLBCL samples with respect to normal lymph

nodes.

Excel file Supplementary Table S5
Table SS.xIs Significantly enriched gene signatures highlighted by Gene Set Enrichment
Analysis (GSEA) on the entire dataset of probes.

Excel file Supplementary Table S6

Table S6.xls Sequences showing differential methylation variability on one or more clinical
factors across the cDLBCL samples. Columns G-N report the overlapping Refseq (G-J) and
Ensembl (K-N) transcripts, considering for each transcript the following genomic locations: exon,
intron, 5’-UTR, 3’-UTR, “proxUP” (i.e. until 2kb upstream from transcription start site), “upstr”
(i.e. from 2kb to 10kb upstream from transcription start site), “proxDOWN” (i.e. until 2kb
downstream from transcription start site). Columns O-R: nearest Refseq or Ensembl transcripts

calculating the distance from the transcription start site (TSS).



Excel file Supplementary Table S7

Table S7.xls Results from multivariate linear regression analysis, investigating different
combination of clinical factors across the cDLBCL samples. Columns H-R: clinical factors
considered for the analysis; “1” indicates the presence of that factor in the linear regression model.
Columns S-Z report the overlapping Refseq (S-V) and Ensembl (W-Z) transcripts, considering for
each transcript the following genomic locations: exon, intron, 5’-UTR, 3’-UTR, “proxUP” (i.e.
until 2kb upstream from transcription start site), “upstr” (i.e. from 2kb to 10kb upstream from
transcription start site), “proxDOWN” (i.e. until 2kb downstream from transcription start site).
Columns AA-AD: nearest Refseq or Ensembl transcripts calculating the distance from the

transcription start site (TSS).
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