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Abstract 

Central nervous system (CNS) relapse carries a poor prognosis in diffuse large  

B-cell lymphoma (DLBCL). Integrating biomarkers into the CNS International 

Prognostic Index (CNS-IPI) risk model may improve identification of patients at high 

risk of developing secondary CNS disease. CNS relapse was analyzed in 1,418 

DLBCL patients treated with obinutuzumab or rituximab plus CHOP 

(cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy in the phase 

III GOYA study (NCT01287741). Cell-of-origin (COO) was assessed using gene 

expression profiling. BCL2 and MYC protein expression were analyzed by 

immunohistochemistry. The impact of CNS-IPI, COO, and BCL2/MYC dual-

expression status on CNS relapse was assessed using a multivariate Cox regression 

model (data available in n = 1,418, n = 933, and n = 688, respectively). High CNS-IPI 

score (hazard ratio [HR], 4.0; 95% confidence interval [CI], 1.3‒12.3; P = .02) and 

activated B-cell‒like (ABC) (HR, 5.2; 95% CI, 2.1‒12.9; P = .0004) or unclassified 

COO subtypes (HR, 4.2; 95% CI, 1.5‒11.7; P = .006) were independently associated 

with CNS relapse. BCL2/MYC dual-expression status did not impact CNS relapse 

risk. Three risk subgroups were identified according to the presence of high CNS-IPI 

score and/or ABC/unclassified COO (CNS-IPI-C model): low risk (no risk factors, n = 

450 [48.2%]); intermediate risk (one factor, n = 408 [43.7%]); and high risk (both 

factors, n = 75 [8.0%]). Two-year CNS relapse rates were 0.5%, 4.4%, and 15.2% in 

respective risk subgroups. Combining high CNS-IPI and ABC/unclassified COO 

improved CNS relapse prediction and identified a patient subgroup at high risk of 

developing CNS relapse. 

 

Word count: 250/250 
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Introduction 

Central nervous system (CNS) relapse is a rare, usually fatal, event in diffuse large 

B-cell lymphoma (DLBCL); median overall survival (OS) after its occurrence is 3.5 to 

7 months.1,2 Addition of rituximab (R) to cyclophosphamide, doxorubicin, vincristine, 

and prednisone (CHOP) significantly improves outcomes in DLBCL patients;3,4 

however, its impact on the incidence of secondary CNS disease remains unclear, 

with some studies demonstrating reduced CNS relapse risk in DLBCL patients 

treated with R-CHOP vs CHOP5,6 and others showing similar CNS relapse rates.7 

Reliable identification of patients at higher risk of developing secondary CNS disease 

is needed. Several clinical prognostic models have been proposed.1,2,8 The CNS 

International Prognostic Index (CNS-IPI) model is the most recently developed,1 and 

was built using a large dataset of patients with aggressive B-cell lymphomas (80% 

DLBCL), who were enrolled in studies from the German High-Grade Non-Hodgkin 

Lymphoma Study Group (DSHNHL) and MabThera International Trial (MInT), and 

was successfully validated in population-based DLBCL cohorts.9,10 The model 

includes the IPI risk factors plus involvement of the kidneys and/or adrenal glands. 

Implementation of biomarkers into the CNS-IPI model may improve identification of 

patients with high risk of CNS relapse.9  

DLBCL represents a biologically heterogeneous disease with germinal center B-cell–

like (GCB) and activated B-cell–like (ABC) subtypes, each arising from different non-

malignant lymphoid counterparts.11 DLBCL cell-of-origin (COO) subtypes harbor 

specific genetic abnormalities;12-14 for example, GCB DLBCL is characterized by 

frequent translocations of the BCL2 gene and loss of PTEN, while ABC DLBCL is 

characterized by biallelic loss of the CDKN2A gene, which encodes proteins 

implicated in regulation of the cell cycle (p16INK4A) and p53 (ARF), and chronically 
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active B-cell receptor and NFκB signaling.12,15-18 The impact of COO subtype on 

prognosis has been confirmed in several studies, with the ABC subtype predicting 

worse outcomes.19,20 ABC DLBCL was also shown to be the most common COO 

subtype in primary CNS lymphomas.21 Data are limited on the association of COO 

subtype with the risk of secondary CNS disease in DLBCL, with only one 

retrospective study published to date. Savage and colleagues showed that ABC (or 

non-GCB) DLBCL is associated with higher CNS relapse risk.9 In a multivariate 

analysis including COO subtype, dual-expression status of BCL2 and MYC proteins, 

and CNS-IPI, only high CNS-IPI score and BCL2/MYC dual-expression were 

significantly associated with CNS relapse risk.9  

GOYA is a multicenter, randomized, phase III trial (NCT01287741) investigating the 

efficacy and safety of obinutuzumab (G) or R plus CHOP in patients with previously 

untreated DLBCL. After a median observation time of 29.0 months, there were no 

significant differences between G-CHOP and R-CHOP for progression-free survival 

(PFS) and OS;22 3-year investigator-assessed PFS rates were 70% and 67%, 

respectively. Patients with GCB DLBCL demonstrated better outcomes than those 

with ABC or unclassified DLBCL, with 3-year PFS rates of 75%, 59%, and 63%, 

respectively. Using data from GOYA, we aimed to evaluate the impact of distinct 

COO subtypes and dual-expression of BCL2 and MYC proteins on CNS relapse risk.  

 

Methods 

Patients, treatment, and clinical assessments 

The GOYA study design is described in full elsewhere.22 Patients had previously 

untreated, histologically documented, CD20-positive DLBCL and an IPI score of ≥2, 

an IPI score of 1 (if age ≤60 years, with or without bulky disease), or an IPI score of 
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0 (with bulky disease [one lesion ≥7.5 cm]). Patients with CNS involvement at 

diagnosis were excluded.  

Patients received eight 21-day cycles of G or R plus six to eight cycles of CHOP 

chemotherapy. CNS prophylaxis with intrathecal chemotherapy was recommended 

to be given according to institutional practice. No systemic CNS-directed prophylaxis 

was administered.  

Staging investigations included computed tomography (CT) scan and bone marrow 

biopsy. Baseline lumbar puncture was recommended in patients with high-risk 

disease or with one or more of the following sites of involvement: paranasal sinuses, 

testicular, parameningeal, periorbital, paravertebral, or bone marrow. CNS relapse 

was diagnosed according to institutional practice via imaging (magnetic resonance 

imaging or CT scan), and/or presence of malignant cells in cerebrospinal fluid or 

affected tissue. The protocol was approved by the ethics committees of participating 

centers. All patients provided written informed consent. 

 

COO, immunohistochemical (IHC), and fluorescence in-situ hybridization 

(FISH) analyses  

COO classification was performed by a central laboratory based on gene-expression 

profiling using the NanoString Lymphoma Subtyping Research-Use-Only assay 

(NanoString Technologies, Seattle, WA). IHC analysis using BCL2 (clone 124) and 

MYC (clone Y69) assays (Ventana Medical Systems, Tucson, AZ) was conducted on 

slides cut from diagnostic formalin-fixed, paraffin-embedded (FFPE) blocks. Cut slide 

stability was not considered for selection of tissue sections for analysis. BCL2 protein 

expression was assessed according to the percentage of tumor cells with BCL2 

expression and staining intensity; positivity was defined as moderate or strong 
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staining in ≥50% of tumor cells. MYC positivity was defined as expression in ≥40% of 

tumor cells. IHC analyses were conducted in a central laboratory (Hematogenix, 

Chicago, IL). FISH was performed in a central laboratory (HistoGeneX, Antwerp, 

Belgium) on the diagnostic FFPE tissue sections using Vysis LSI dual-color break-

apart probes for BCL2 and MYC rearrangement detection, as previously described.23  

 

Targeted next-generation sequencing (NGS) 

Genomic DNA was extracted from diagnostic FFPE tissue sections containing ≥20% 

tumor cells. Samples were submitted to a central laboratory (Foundation Medicine, 

Cambridge, MA) for NGS-based genomic profiling. Adaptor-ligated DNA underwent 

hybrid capture for all coding exons of 465 cancer-related genes (FoundationOne 

Heme platform). Captured libraries were sequenced to a median exon coverage 

depth of >500× (DNA) using Illumina sequencing, and resultant sequences were 

analyzed for base substitutions, small insertions and deletions (indels), copy number 

alterations (focal amplifications and homozygous deletions), and gene 

fusions/rearrangements, as previously described.24 Frequent germline variants from 

the 1000 Genomes Project (dbSNP142) were removed. To maximize mutation-

detection accuracy (sensitivity and specificity) in impure clinical specimens, the test 

was previously optimized and validated to detect base substitutions at a ≥ 5% mutant 

allele frequency (MAF), indels with a ≥ 10% MAF with ≥ 99% accuracy, and fusions 

occurring within baited introns/exons with > 99% sensitivity.24 Known confirmed 

somatic alterations deposited in the Catalogue Of Somatic Mutations In Cancer 

(COSMIC v62) are called at allele frequencies ≥ 1%.25 NGS-based genomic profiling 

was performed in a subset of patients (617 of 1,418) who provided an optional 
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written informed consent; data that passed the quality check criteria were evaluable 

in 499 of 617 patients. 

 

Statistical analysis 

The event-specific, cumulative incidence of CNS relapse and time to CNS relapse 

were estimated with Kaplan-Meier statistics. The impact of variables of interest 

(CNS-IPI, COO, BCL2/MYC dual-expression status, CDKN2A alteration, and the 

GOYA study randomization stratification factors—number of planned chemotherapy 

cycles, geographical region) on CNS relapse was assessed using univariate and 

multivariate Cox regression models. In these models, the endpoint of interest was 

time to CNS relapse, defined through the manual review of patients with disease 

progression or a death event at the time of the primary analysis cut-off (29 April 

2016). The significance level, used consistently, was 5%; all tests are two-sided. No 

multiplicity adjustment was performed in order to avoid loss of power due to the low 

number of events, which is a structural limitation of such rare phenomena. The R 

statistical software package version 3.4.0,26 together with RStudio version 1.0.153,27 

was used for all analyses. 

 

Results 

Overall, 1,418 DLBCL patients, randomized and treated with G-CHOP (n = 706) or 

R-CHOP (n = 712) in GOYA, were analyzed for CNS relapse occurrence. Baseline 

characteristics are shown in Table 1. According to CNS-IPI score, 279 (19.7%) 

patients were categorized as being at low risk (0 to 1), 894 (63.0%) at intermediate 

risk (2 to 3), and 245 (17.3%) at high risk (4 to 6) of developing CNS relapse. COO 

was available for 933 patients, of whom 540 (57.9%), 243 (26.0%), and 150 (16.1%) 
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were classified as GCB, ABC, and unclassified DLBCL, respectively. Both COO and 

BCL2/MYC protein expression were available in 688 patients; 295 (42.9%) were 

BCL2/MYC dual-expressers. More patients with ABC DLBCL were BCL2/MYC dual-

expressers compared with GCB or unclassified (136 [70.5%] vs 117 [30.7%] vs 42 

[36.8%], respectively; Table 2).  

 

Incidence and outcome of CNS relapse  

After a median observation of 29.0 months (interquartile range, 24.5‒37.4), 38 

(2.7%) of the 1,418 patients developed CNS relapse (17 patients treated with 

chemotherapy only, 6 with chemotherapy and radiotherapy, 4 with radiotherapy only, 

6 received no treatment; data not available in 5 patients); 37 of these had either 

radiological signs of CNS relapse and/or infiltrated CSF. In one patient, CNS relapse 

(intraocular) was diagnosed via cytological evaluation of corpus vitreum. Most CNS 

relapses were localized in the brain parenchyma (parenchymal only, n = 27 [71.1%]; 

leptomeningeal only, n = 6 [15.8%]; parenchymal and leptomeningeal, n = 3 [7.9%]; 

intraocular, n = 1 [2.6%], and data not available, n = 1 [2.6%]). Median time to CNS 

relapse was 8.5 months (range, 0.9‒43.5). The majority (34 [89.5%]) of CNS 

relapses occurred within 2 years of randomization. The 2-year CNS relapse rate for 

the whole cohort was 2.8%. Twenty-four (63%) of 38 patients with CNS relapse were 

dead at the time of the analysis; median survival after CNS relapse was 5.9 months. 

According to CNS-IPI, 10.5% of patients with CNS relapse were categorized as low-

risk, 42.1% as intermediate-risk, and 47.4% as high-risk. Two-year CNS relapse 

rates were 0.8% (95% CI, 0.0‒1.9), 1.9% (95% CI, 0.9‒2.9), and 8.9% (95% CI, 4.7‒

12.9) for the low-, intermediate-, and high-risk CNS-IPI subgroups, respectively 

(Figure 1A). 
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Treatment arm and prophylaxis with intrathecal chemotherapy and CNS 

relapse risk 

The number of CNS relapses was similar in the G-CHOP and R-CHOP arms (20 vs 

18, respectively), with no impact of treatment arm on the incidence of CNS relapse 

(hazard ratio [HR], 1.13; 95% CI, 0.60‒2.15; P = .70). Overall, 140 (9.9%) of 1,418 

patients received intrathecal methotrexate or cytarabine or a combination of both as 

CNS relapse prophylaxis. Within the low-, intermediate-, and high-risk CNS-IPI 

groups, 16 (5.7%) of 279, 94 (10.5%) of 894, and 30 (12.2%) of 245 patients 

received intrathecal CNS relapse prophylaxis, respectively (Supplemental Table S1). 

Two-year CNS relapse rates were not different between patients who did or did not 

receive CNS relapse prophylaxis (2.8% vs 2.6%). Similarly, the number of CNS 

relapses was not different in patients treated with or without prophylaxis in any of the 

CNS-IPI categories (0.0% vs 0.9%, 1.3% vs 2.0%, and 8.5% vs 9.0% for the low-, 

intermediate-, and high-risk CNS-IPI subgroups, respectively; Supplemental Table 

S1).  

 

COO and BCL2/MYC dual-expression status and CNS relapse risk 

In patients with COO available (n = 933, 30 CNS-relapse events; Supplemental 

Table S2), 2-year CNS relapse rates were 1.4% (95% CI, 0.0‒3.2), 2.2% (95% CI, 

0.9‒3.5), and 9.6% (95% CI, 4.5‒14.5) for the low-, intermediate-, and high-risk 

CNS-IPI subgroups, respectively (Figure 1B). On univariate analysis, patients with 

ABC and unclassified DLBCL had significantly higher CNS relapse risk than those 

with GCB DLBCL (HR, 5.2; 95% CI, 2.1‒12.7; P = .0003; and HR, 4.2; 95% CI, 1.5‒

11.7; P = .005; respectively). Two-year CNS relapse rates were 6.9%, 4.8%, and 

1.3% for patients with ABC, unclassified, and GCB DLBCL, respectively. There was 
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no significant association between BCL2/MYC dual-expression and the risk of CNS 

relapse on univariate analysis (HR, 1.5; 95% CI, 0.7‒3.5, P = .3196; 2-year CNS 

relapse rate: dual-expressers 4.0% vs non-dual-expressers 2.2%; n = 688). In a 

multivariate analysis on the COO-available population (n = 933), ABC (HR, 5.2; 95% 

CI, 2.1‒12.9; P = .0004) and unclassified COO subtype (HR, 4.2; 95% CI, 1.5‒11.7; 

P = .006), and high CNS-IPI (HR, 4.0; 95% CI, 1.3‒12.3; P = .02) were associated 

with greater CNS relapse risk (Table 3). In a multivariate analysis on the population 

with COO and BCL2/MYC dual-expression status available (n = 688, 22 

CNS-relapse events; Supplemental table S2), there was no impact of BCL2/MYC 

dual-expression (HR, 0.8; 95% CI, 0.3‒2.1; P = .69) on CNS relapse risk, while ABC 

and unclassified COO subtype remained significantly associated with higher CNS 

relapse risk (Table 4). In this population, high CNS-IPI score was not significantly 

associated with CNS relapse risk, although a trend for greater risk was observed 

(HR, 2.8; 95% CI, 0.8‒9.4; P = .10). 

Overall, 560 (39.5%) of 1,418 patients had FISH results available. Twenty patients 

(3.6%) harbored both BCL2 and MYC translocations, of whom only one patient 

developed CNS relapse (FISH data were not included in the statistical analysis due 

to the low number of CNS relapses within the double-hit DLBCL).  

CNS-IPI and COO were combined (1 point for high CNS-IPI, 1 point for ABC or 

unclassified COO) to create a modified risk stratification model, CNS-IPI-C. Three 

CNS-IPI-C subgroups were identified as having low (no risk factor, n = 450 [48.2%]), 

intermediate (1 risk factor, n = 408 [43.7%]), and high (2 risk factors, n = 75 [8.0%]) 

CNS relapse risk. The 2-year CNS relapse rates were 0.5% (95% CI, 0.0‒1.3), 4.4% 

(95% CI, 2.2‒6.6), and 15.2% (95% CI, 5.4‒24.0), respectively, resulting in a 22-fold 
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higher risk of CNS relapse in the high- vs low-risk groups (Figure 2; Supplemental 

Table S3).  

 

Mutational profile 

Mutational profiles were available in 499 of 1,418 patients (12 of 38 patients with 

CNS relapse; 487 of 1,380 without CNS relapse; Supplemental Table S2). A detailed 

description of all gene alterations for the patients with CNS relapse is listed in 

Supplemental Table S4. CDKN2A was the most frequently (8 of 12; 66.6%) altered 

gene in patients who developed CNS relapse, with seven cases having homozygous 

deletion of CDKN2A and one case harboring nonsynonymous CDKN2A mutation; in 

the population of patients without CNS relapse, the prevalence of CDKN2A gene 

alterations was 21.6% (105 of 487). On multivariate analysis, CDKN2A gene 

alterations were associated with higher risk of CNS relapse (HR, 7.2; 95% CI, 2.1‒

25.0; P = .002) independent of clinical factors. The impact of CDKN2A gene 

alterations on CNS relapse risk was weakened after inclusion of COO into the model 

(HR, 3.6; 95% CI, 0.93‒14.0; P = .064). Alterations of genes known to deregulate 

NFκB signaling were also observed, such as mutations of MYD88, which were found 

in 5 (42%) of 12 cases compared with 78 (16.0%) of 487 cases in the cohort with no 

CNS relapse. Three of the 5 patients with MYD88 mutation had simultaneous 

CD79B mutation. 

 

Discussion 

The current analysis of GOYA evaluated risk factors associated with CNS relapse in 

newly diagnosed DLBCL patients treated with anti-CD20-based 

immunochemotherapy (R- or G-CHOP). We found no difference in CNS relapse risk 
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between R and G, with the incidence of CNS relapse similar in both treatment arms 

and consistent with the literature.1  

With these data, we have provided an independent validation of the CNS-IPI 

prognostic model.1 Patients with high CNS-IPI scores had significantly higher risk of 

CNS relapse than those with intermediate or low CNS-IPI scores. High CNS-IPI 

score was also an independent risk factor for CNS relapse on multivariate analysis. 

The 2-year CNS relapse rate for the high-risk CNS-IPI subgroup in GOYA (8.9%) 

was consistent with previous data from Schmitz and colleagues (10.2%).1 No 

significant difference in the incidence of CNS relapse was observed between the 

intermediate- and low-risk CNS-IPI groups. This may be due to differences in 

baseline patient characteristics in the DSHNHL/MInT (testing cohort for CNS-IPI 

building) and GOYA study cohorts.1 In the current study, we confirmed that CNS-IPI 

is a valuable clinical tool for identification of DLBCL patients with high CNS relapse 

risk.  

Most primary DLBCLs of the CNS resemble the ABC subtype, suggesting that this 

biological subtype may be prone to CNS infiltration.21 In the current study, patients 

with ABC and unclassified DLBCL had significantly higher CNS relapse risk 

compared with GCB, and in the multivariate analysis, COO and a high CNS-IPI 

score were shown to be independent risk factors for CNS relapse. Previous data by 

Savage and colleagues showed that BCL2/MYC dual-expression is associated with 

higher probability of CNS relapse.9 Given the association of the ABC subtype with 

dual-expression of BCL2 and MYC proteins, we analyzed whether the higher risk of 

CNS relapse, at least in patients with ABC DLBCL, is related to the high prevalence 

of BCL2/MYC dual-expression. Surprisingly, we did not observe a higher incidence 

of CNS relapse in BCL2/MYC dual-expressers compared with non-dual-expressers 
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in univariate or multivariate analyses, which may be due to the higher prevalence of 

BCL2/MYC dual-expression (driven by a high rate of MYC positivity) in the GOYA 

study compared with the population in Savage and colleagues (42.1% vs 29.7%, 

respectively).9,23 The reason for the high rate of MYC positivity detected in the GOYA 

study is not entirely clear. One possible explanation is that the proportion of patients 

enrolled with low IPI scores (or low CNS-IPI) was relatively low, and there was 

therefore a high proportion of high-risk patients who are more likely to be BCL2/MYC 

dual expressers. Larger studies may provide further insight.  

Primary CNS lymphomas frequently, if not uniformly, exhibit biallelic loss of 

CDKN2A, resulting in cell cycle and p53 pathway deregulation, or mutations of 

MYD88 and CD79B, thereby deregulating NFκB and B-cell receptor signaling.21,28-31 

Although data on the mutational profile were only available for a limited number of 

patients, CDKN2A loss and mutation of MYD88 were the most commonly observed 

alterations in patients with CNS relapse. In the multivariate analysis, CDKN2A loss 

was associated with higher risk of CNS relapse independent of clinical factors. 

However, the impact of CDKN2A loss on the risk of CNS relapse was weaker in a 

model that included COO, probably due to the association of CDKN2A alterations 

with the ABC subtype, which has been demonstrated in GOYA as well as other 

studies.32,33 Due to the limited number of patients with CNS relapse and mutational 

profile data available in the GOYA study, further studies are needed to confirm our 

hypothesis and to explore the impact of specific gene alterations on the risk of CNS 

relapse, especially in the context of particular COO subtypes.  

Because ABC/unclassified COO subtypes and high CNS-IPI were independent risk 

factors for CNS relapse, we combined both factors to improve the risk stratification 

ability of CNS-IPI, resulting in a modified CNS-IPI-C model. CNS-IPI-C allowed the 
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identification of three subgroups with different 2-year CNS relapse risks. This 

incorporation of biomarkers into the CNS-IPI-C model improved the discrimination of 

subgroups with a very low and high 2-year CNS relapse risk compared with the 

CNS-IPI model (2-year relapse rate in low- and high-risk subgroups 0.5% vs 1.4% 

and 15.2% vs 9.6%, respectively). This could help identify patients who should 

undergo a more comprehensive examination of the CNS to exclude asymptomatic 

CNS lymphoma involvement. It may also identify patients who could potentially 

benefit from treatment with effective prophylaxis to reduce CNS relapse risk.34,35 Last 

but not least, CNS-IPI-C identifies a large subgroup of patients with a very low risk of 

CNS relapse who could be spared invasive diagnostic and prophylactic 

interventions. However, it must be noted that CNS-IPI-C needs to be validated in an 

independent cohort of DLBCL patients before its potential clinical use.  

There is growing evidence that CNS prophylaxis with intrathecal methotrexate is not 

sufficient to prevent CNS relapse.5,36 Some trials indicate that intravenous high-dose 

methotrexate (3 g/m2) can prevent CNS relapse;37 however, treatment can be 

associated with significant toxicity, and an acceptable risk-benefit ratio should be 

carefully considered. Overall, 9.9% of patients were treated with prophylactic 

intrathecal chemotherapy in GOYA. We did not observe a significant difference in the 

incidence of CNS relapse in patients who received intrathecal chemotherapy 

compared with those who did not, neither in the whole cohort nor in the different risk 

groups according to CNS-IPI. It must be noted, however, that GOYA was not 

designed to assess the impact of CNS prophylaxis on CNS relapse risk. CNS 

prophylaxis was indicated and administered upon investigator decision, based on 

institutional practice, resulting in heterogeneous schedules and doses. Randomized 

clinical trials would be required to define appropriate CNS prophylaxis in DLBCL. 
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In conclusion, using the largest prospective dataset of previously untreated DLBCL 

with relevant biomarker data to date, we validated the CNS-IPI clinical prognostic 

model and demonstrated that ABC and unclassified DLBCL are associated with 

higher CNS relapse risk compared with GCB DLBCL. Combining CNS-IPI and COO 

helped to improve stratification of DLBCL patients with different CNS relapse risks.  
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TABLES 
 
Table 1. Key baseline clinical characteristics (CNS-IPI risk factors, CNS-IPI score) of 
patients who developed CNS relapse compared with patients with no CNS relapse 
and the overall GOYA study population 
 

Characteristic 
CNS relapse No CNS relapse All patients 

(n = 38) (n = 1,380) (N = 1,418) 

Median age (range), years  66.5 (21-81) 61.0 (18-86) 62.0 (18-86) 
<60 13 (34.2) 591 (42.8) 604 (42.6) 
≥60 25 (65.8) 789 (57.2) 814 (57.4) 

ECOG PS 
0-1 31 (81.6) 1,200 (87.0) 1,231 (86.9) 
2-3 7 (18.4) 179 (13.0) 186 (13.1) 

Ann Arbor Stage 
I and II 4 (10.5) 337 (24.4) 341 (24.1) 
III and IV 34 (89.5) 1,042 (75.6) 1,076 (75.9) 

Elevated LDH 26 (68.4) 790 (57.5) 816 (57.7) 
Number of extranodal sites 

0-1 15 (39.5) 900 (65.2) 915 (64.5) 
>1 23 (60.5) 480 (34.8) 503 (35.5) 

Involvement of kidneys  
and/or adrenal glands 11 (28.9) 80 (5.8) 91 (6.4) 

CNS-IPI  
Low (0-1) 4 (10.5) 275 (20.0) 279 (19.7) 
Intermediate (2-3) 16 (42.1) 878 (63.6) 894 (63.0) 
High (4-6) 18 (47.4) 227 (16.5) 245 (17.3) 

NOTE. Data are presented as No. (%) unless otherwise noted. Data for ECOG PS and Ann 
Arbor Stage were not available in one case, and data on LDH were not available in five 
cases. Differences ≥ 10% between CNS relapse/no relapse groups are highlighted in bold.  
CNS, central nervous system; ECOG PS, Eastern Cooperative Oncology Group 
performance status; IPI, International Prognostic Index; LDH, lactate dehydrogenase.  
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Table 2. Key clinical and biomarker characteristics of patients with distinct COO 
subtypes: GCB, Unclassified, and ABC DLBCL 
 

Characteristic 
GCB 

(n = 540) 
Unclassified 

(n = 150) 
ABC 

(n = 243) 
Median age (range), years 62.5 (18-83) 62.0 (21-83) 64.0 (29-86) 

<60 228 (42.2) 59 (39.3) 70 (28.8) 
≥60 312 (57.8) 91 (60.7) 173 (71.2) 

ECOG PS 
0-1 475 (88.1) 126 (84.0) 209 (86.0) 
2-3 64 (11.9) 24 (16.0) 34 (14.0) 

Ann Arbor Stage 
I and II 146 (27.0) 34 (22.7) 52 (21.4) 
III and IV 394 (73.0) 116 (77.3) 191 (78.6) 

Elevated LDH 308 (57.1) 76 (50.7) 169 (70.4) 
Number of extranodal sites    

0-1 355 (65.7) 95 (63.3) 158 (65.0) 
>1 185 (34.3) 55 (36.7) 85 (35.0) 

Involvement of kidneys  
and/or adrenal glands 36 (6.7) 9 (6.0) 13 (5.3) 

CNS-IPI  
Low (0-1) 115 (21.3) 29 (19.3) 28 (11.5) 
Intermediate (2-3) 335 (62.0) 97 (64.7) 164 (67.5) 
High (4-6) 90 (16.7) 24 (16.0) 51 (21.0) 

BCL2/MYC dual-expression n = 381 n = 114 n = 193 
Non-dual expressers 264 (69.3) 72 (63.2) 57 (29.5) 
Dual expressers 117 (30.7) 42 (36.8) 136 (70.5) 

NOTE. Data are presented as No. (%) unless otherwise noted. Data for ECOG PS were not 
available in one case, and data on LDH were not available in three cases.  
ABC, activated B-cell–like; CNS, central nervous system; COO, cell-of-origin; DLBCL, 
diffuse large B-cell lymphoma; ECOG PS, Eastern Cooperative Oncology Group 
performance status; GCB, germinal center B-cell–like; IPI, International Prognostic Index; 
LDH, lactate dehydrogenase.  
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Table 3. Results of multivariate Cox regression analysis on factors associated with 
CNS relapse in the COO-available population (n = 933), CNS relapses (n = 30) 
 

Factor HR* 95% CI P value 

CNS-IPI intermediate (v low) 0.88 0.29-2.74 .8312 

CNS-IPI high (v low) 3.97 1.28‒12.33 .0172 

ABC COO (v GCB) 5.18 2.09‒12.87 .0004 

Unclassified COO (v GCB) 4.18 1.50‒11.66 .0062 
*Adjusted for study randomization stratification factors (number of planned chemotherapy 
cycles, geographic region).  
ABC, activated B-cell–like; CNS, central nervous system; COO, cell-of-origin; GCB, germinal 
center B-cell–like; HR, hazard ratio; IPI, International Prognostic Index. 
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Table 4. Results of multivariate Cox regression analysis on factors associated with 
CNS relapse in the COO and BCL2/MYC dual-expression status-available 
population (n = 688), CNS relapses (n = 22) 
 

*Adjusted for study randomization stratification factors (number of planned chemotherapy 
cycles, geographic region).  
ABC, activated B-cell–like; CNS, central nervous system; COO, cell-of-origin; GCB, germinal 
center B-cell–like; HR, hazard ratio; IPI, International Prognostic Index. 
 
 
  

Factor HR* 95% CI P value 

CNS-IPI intermediate (v low) 0.75 0.23‒2.45 .6378 

CNS-IPI high (v low) 2.76 0.81‒9.42 .1042 

ABC COO (v GCB) 4.78 1.49‒15.29 .0084 

Unclassified COO (v GCB) 4.24 1.32‒13.61 .0151 
BCL2/MYC dual expresser  
(v non-dual expresser) 0.83 0.34‒2.06 .6931 



29 

FIGURE LEGENDS 

 

Figure 1. Risk of CNS relapse by CNS-IPI categories in (A) overall GOYA study 

population (N = 1,418), and (B) COO available population (n = 933). CNS, central 

nervous system; COO, cell-of-origin; EoT, end of treatment; IPI, International 

Prognostic Index.  

 

Figure 2. Risk of CNS relapse by CNS-IPI and COO (CNS-IPI-C) in the COO 

available population (n = 933). ABC, activated B-cell–like; CNS, central nervous 

system; COO, cell-of-origin; EoT, end of treatment; H-R, high risk; IPI, International 

Prognostic Index; I-R, intermediate risk; L-R, low risk; UNCL, unclassified. 
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