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The influence of water quality and macroinvertebrate colonization on

the breakdown process of native and exotic leaf types in sub-alpine

stream
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Ciencias, Universidad de Granada, 18071 Granada, Spain; dLegambiente Piemonte, Via Maria
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(Received 19 August 2013; accepted 19 November 2013)

Most of the energy input of low-order lotic food webs derives from non-living sources
of terrestrial organic matter. For this reason, many studies have examined patterns of
leaf breakdown; most recently, interest has focused on the importance of water quality
or the nature (native versus exotic) of plant material. In this study, we combined both
aspects by analyzing the breakdown process and macroinvertebrate colonization of
leaf bags containing leaves of different plant types in two nearby sites with different
levels of water quality. We exposed a total of 600 leaf bags made of five leaf types
(three native: Alnus incana, Populus alba and Quercus robur; and two exotic:
Reynoutria japonica and Robinia pseudoacacia) at two sites of the Pellice River
(northwestern Italy). Leaf bags were retrieved after 10, 20, 30, 40, 50 and 60 days,
leaf mass loss determined and the associated macroinvertebrates quantified.
Significant differences were found in the mass loss and in the colonization of leaf bags
between sites but not between native and exotic species. Dry mass loss was different
among species but without any evident relation with exotic or native origin of plants.
In our study sites, geographical origin of plant detritus is not per se central in shaping
macroinvertebrate colonization and mass loss because the impact of wastewater
treatment plant effluent seems to be much more important than plant origin in the
breakdown process.

Keywords: macroinvertebrates; water quality; leaf bag; exotic riparian vegetation;
Pellice River

Introduction

The importance of allochthonous organic matter inputs in stream food webs was early rec-

ognized and since the seminal work of Petersen and Cummins (1974), this topic has

become a central subject of research in stream ecology (Vannote et al. 1980; see review in

Tank et al. 2010). Leaf litter input from riparian vegetation represents an important source

of energy, especially to low- and medium-order lotic environments (Gessner et al. 1999;

Sabater et al. 2008), where current velocity and shading limit the opportunities for photo-

synthesis (Wallace et al. 1997). Terrestrial leaves that enter the stream generally breakdown

through a sequence of processes (Webster & Benfield 1986), such as leaching (dissolution

of labile organic compounds), conditioning (microbial colonization by bacteria and
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hyphomycetes), and consumption and fragmentation by macroinvertebrates and physical

abrasion (Tank et al. 2010). The rate of leaf litter breakdown is determined directly by

intrinsic characteristics of the debris (LeRoy & Marks 2006; Lecerf & Chauvet 2008),

water quality and geomorphological characteristics (Suberkropp & Chauvet 1995;

Sponseller & Benfield 2001), and indirectly through the activity of microbial and macro-

benthic organisms responsible for conditioning, fragmentation and consumption (Cuffney

et al. 1990; Findlay 2010). Breakdown of allochthonous leaf litter is generally measured

using the leaf bag approach, because these bags are generally thought to be representative

of the natural leaf accumulation on stream beds (see review in Graça et al. 2005).

Because of the great importance of allochthonous leaves in low-order streams (Hieber

& Gessner 2002), any disturbance that results in a change in the quality or amount of

allochthonous organic inputs might alter stream energy budgets and ecosystem function-

ing. In the last decades, lotic and riparian ecosystems have experienced severe degrada-

tion in many countries, because of increased water quality alteration (Mason 2002;

Dudgeon et al. 2006) and the substitution of native forest with exotic riparian plant spe-

cies (Richardson et al. 2007).

Leaf breakdown is generally considered a good indicator of stream integrity, espe-

cially because it accounts for a variety of biological, chemical and physical conditions

(Niyogi et al. 2003; Elosegi et al. 2006; Woodward et al. 2012). Numerous studies have

investigated the relationship between leaf breakdown processes and water quality (Young

et al. 2008). In addition, some recent studies have investigated the impact of the wide-

spread introduction of exotic plant species on the dynamics of litter in streams (Ferreira

et al. 2006). Nowadays, as a result of direct introduction by humans, hydrological distur-

bance and natural connectivity of lotic environments, exotic plant species represent an

average of more than 20% of plant species of riparian areas (Richardson et al. 2007).Q1 In

fact, this topic is quite complex, as exotic species have little effect on leaf decomposition

patterns if their physical and chemical characteristics are similar to the native species

(Braatne et al. 2007), but differences in decomposition rate tend to emerge where exotics

are invasive species with different leaf toughness (Serra et al. 2013) or C:N ratio (Royer

et al. 1999). In general, many studies suggested that the presence of exotic plant species

could modify the availability and turnover of benthic leaves, influencing the whole eco-

system efficiency (Pozo et al. 1997).

These perturbations (water quality alteration and invasion of exotic species) might

occur together and it is likely that both of them will become more important in the future

due to intensification of human activities and climate change effects. Therefore, it is nec-

essary to address the effect of both changes in combination. In this study, we hypothesize

that mass loss and colonization of leaf bags by macroinvertebrates can be influenced by

both the water quality and the type of leaf material. Research conducted so far in this con-

text has focused only on one of these effects. The purpose of this study is to combine both

impacts, analyzing the breakdown process of native and exotic terrestrial leaf materials in

lotic reaches with different water quality levels.

Methods

The study took place in two sites of the Pellice River, a third-order, sub-alpine, open-can-

opy stream in northwest Italy: site A (Villar Pellice – 44�80045.900 N, 7�15074.000 E) and
site B (Luserna – 44�80086.500 N 7�27035.700 E). Sites are relatively close to one another

(about 9 km), with no relevant differences in morphology, discharge or flow velocity. At

both the sites, the channel width was about 7–9 m, with a mean depth of 40–60 cm.

2 T. Bo et al.
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Stream substrate was generally coarse, consisting mainly of gravel, cobbles and boulders.

The climate is temperate alpine, with high autumn rainfall and spring snowmelt. Sites dif-

fer in water quality because the downstream site (B) receives wastewater treatment plant

effluent; this originates from the municipal wastewater treatment plant (sedimentation

and aerobic digestion only; at present decommissioned) of the city of Luserna (approxi-

mately 5000 inhabitants). The plant contributed approximately 10% of the total stream

discharge. In late autumn, when leaves detach and fall from trees naturally and accumu-

late in the stream, we placed 300 leaf packs in the river bed at each site consisting of five

leaf types, two exotic (Japanese knotweed Reynoutria japonica Houtt and black locust

Robinia pseudoacacia L.) and three native (Grey Alder Alnus incanaMoench, white pop-

lar Populus alba L. and pedunculate oak Quercus robur L.). These species were chosen

because they were common in the riparian zone of the Pellice River and all contribute to

the benthic litter standing stock. Leaves were collected in situ upon natural abscission,

then they were air dried. Approximately 5.03 g (�0.04 SD) of air-dried leaves were

placed in nylon mesh bags (0.5 cm mesh size), after having been weighed to the nearest

0.01 g and then humidified to minimize breakageQ2 , according to Woodcock and Huryn

(2005). We used this mesh size to allow access by macroinvertebrates that utilize leaves

and associated matter as food and shelter. On 9 December 2010, 60 bags/species were

placed in each site. Packs were fixed to stones and randomly located in riffle areas. After

10, 20, 30, 40, 50 and 60 days, 10 bags of each leaf species were removed from each site,

inserted separately into plastic bags with stream water and immediately transported to the

laboratory. Macroinvertebrates were sorted under a dissecting microscope (Nikon� SMZ-

1500). All macroinvertebrates were manually collected with forceps and preserved in

70% ethanol. Organisms were counted and identified to the genus level, except for Chiro-

nomidae, Simuliidae and early instars of some Trichoptera and Diptera, which were iden-

tified to the family level. Leaves were washed to remove silt, and then oven dried at

105 �C until a constant mass was reached in order to determine the remaining mass. Leaf

bag mass loss was quantitatively modeled using percentage remaining mass, and the

breakdown rate (k) was then calculated by using an exponential decay model with the

scope to incorporate all of the temporal variations (Benfield 1996; B€arlocher 2005).
Main chemical and microbiological parameters at the two stations were collected at

the beginning of the study, by applying the following standard tests: 2030, 4110A2, 4020,

3030, 7030 MAN 29/2003 and ISO 157052002. Water temperatures were measured

hourly in the two sites with HOBO� Water Temp Pro Dataloggers (0.01 �C accuracy).

To compare mass loss, we performed a two-way ANOVA using the factors site and

species. We used remaining mass as the dependent variable, separately for each removal

dates (10, 20, 30, 40, 50 and 60 days). We tested normality using the Kolmogorov–

Smirnov test and homoscedasticity using the Levene’s test (Levene 1960). As data had

no homoscedasticity in the 60 days removal date, we performed an x2 transformation.

After this, all data followed a normal distribution (K-S, p > 0.05) and had homogeneity

of variances (Levene’s test, p > 0.05). To detect eventual differences between sites in

macroinvertebrate abundance (N) and taxa richness (S), we performed a Mann–Whitney

U-test for each leaf species on the six removal dates separately, as data did not follow a

normal distribution. On the fourth removal date, when, according to previous studies,

assemblage of colonizer macroinvertebrates is sufficiently structured (Peralta-Maraver

et al. 2011), we also performed an ANOSIMQ3 test (with 10,000 permutations) comparing

community composition between sites (considering only this factor) and one ANOSIM

test (also with 10,000 permutations) for each site separately comparing community com-

position with leaf species as a factor.

Journal of Freshwater Ecology 3
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Results

We detected an evident difference in the water quality between the two sites, because in

site B the wastewater treatment plant effluent caused an increase in organic matter, tem-

perature, nutrient concentrations and conductivity, and a decrease in dissolved oxygen

levels (Table 1; Figure 1). The biological quality, described by the extended biotic index

(IBE, Ghetti 1997), dropped from the first (at site A) to the fourth class (at site B,

Table 1).

Leaf bags exhibited an exponential mass loss over time (Figure 2). We detected sig-

nificant differences in the mass loss among leaf species and also between sites (Table 2).

We found significant differences among species in mass loss, but these differences were

not related to the plant type. Comparing patterns in the two sites, we detected that two

native species showed the most diverse trends of mass loss. P. alba showed the highest

Table 1. Main chemical and biological variables at the two sites of the Pellice River at the begin-
ning of the experiment (extended biotic index, Ghetti, 1997).Q4

Parameters Site A Site B

Conductivity (mS/cm) 142 516
DO (mg/L) 9.0 6.5
Total P (mg/L) <0.05 1.13
COD (mg/L) <5 42.3
NH4

þ (mg/L) <0.05 4
NO3

� (mg/L) 3 4.2
pH 6.90 7.78
Escherichia coli (CFU/mL) 35 2330
Extended biotic index value 10 5
Extended biotic index class I IV

Figure 1. Water temperatures in the two study sites of Pellice River.

4 T. Bo et al.

Q4
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Figure 2. Mean remaining mass in leaf bags on the six removal dates (mean � SE; solid
symbols ¼ unpolluted site A; open symbols ¼ polluted site B; RE ¼ Reynoutria japonica, RO ¼
Robinia pseudoacacia; AL ¼ Alnus incana, PO ¼ Populus alba and QU ¼ Quercus robur).

Table 2. Two-way ANOVA results of leaf mass remaining using as factors site and leaf species. A
separate analysis was conducted for each harvest date.Q5

df SS MS F p

10 days
Site 1 0.096 0.096 0.89 <0.001
Leaf species 4 10.4 2.60 24.2 <0.001
Site�Leaf species 4 1.56 0.38 3.62 <0.01
Error 90 9.67 0.11
Total 99 21.7

20 days
Site 1 2.13 2.13 26.1 <0.001
Leaf species 4 17.3 4.33 53.0 <0.001
Site�Leaf species 4 0.71 0.17 2.17 n.s.
Error 90 7.36 0.081
Total 99 27.5

30 days
Site 1 2.06 2.06 28.7 <0.001
Leaf species 4 19.2 4.80 66.7 <0.001
Site�Leaf species 4 2.27 0.56 7.88 <0.001
Error 89 6.41 0.07
Total 98 29.8

40 days
Site 1 3.65 3.65 21.6 <0.001
Leaf species 4 16.5 4.12 24.3 <0.001
Site�Leaf species 4 0.45 0.11 0.66 n.s.

(continued)

Journal of Freshwater Ecology 5
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mass loss, while Q. robur the lowest in both A and B sites, while the native A. incana and

the exotic R. japonica and R. pseudoacacia showed intermediate patterns (Figure 2). Fur-

thermore, leaf breakdown appeared to proceed faster at the control site (A) compared to

the polluted site (B). Values of breakdown rates (k) are reported in Table 3.

Regarding the macroinvertebrates colonizing leaf bags, we generally found higher

abundances and higher taxonomic richness at the unpolluted site A than in the polluted

site B (Figure 3(a) and 3(b)). Assemblages of colonizing benthic macroinvertebrates after

40 days were clearly different between sites. In the leaf bags of the unpolluted site A, Ple-

coptera represented 73.4% of total collected invertebrates, with Leuctra spp. and Nem-

oura spp. being the most abundant taxa. Diptera, Ephemeroptera and Trichoptera were

less abundant, accounting, respectively, for 17.7%, 6.28% and 2.45% of total inverte-

brates. Oligochaeta, Crustacea and Tricladida together accounted for only 1.7% of the

total. On the contrary, colonizing assemblages in the site B were dominated by Diptera

(81.1% of total, mostly represented by Chironomidae, 56.1%). Also, Annelida were con-

spicuously represented, with Oligochaeta (9.56%, mostly Naididae and Tubificidae) and

Hirudinea (8.08%, principally Erpobdella sp.). Plecoptera, Ephemeroptera and Trichop-

tera were almost exclusively absent in the B samples (Table 4). Regarding the macroin-

vertebrate colonizing assemblages, we noticed some evident temporal differences

between the two sites: in site A we observed, in general, a trend of positive growth while

Table 2. (Continued ).

df SS MS F p

Error 91 15.4 0.17
Total 100 36.1

50 days
Site 1 6.38 6.38 80.78 <0.001
Leaf species 4 26.78 6.69 84.75 <0.001
Site�Leaf species 4 2.10 0.53 6.67 <0.001
Error 87 6.84 0.079
Total 96 42.23

60 days
Site 1 9.18 9.18 50.70 <0.001
Leaf species 4 23.00 5.75 31.76 <0.001
Site�Leaf species 4 1.18 0.30 1.63 n.s.
Error 90 16.30 0.18
Total 99 49.66

Table 3. Species-specific decomposition rates (k, d�1) for the different leaf types at the two sites.

Site A B

AL 0.012 0.007
PO 0.014 0.010
RE 0.011 0.006
RO 0.011 0.008
QU 0.005 0.003

RE¼ Reynoutria japonica and RO¼ Robinia pseudoacacia; AL ¼ Alnus incana, PO¼ Populus alba and QU¼
Quercus robur.

6 T. Bo et al.
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Figure 3. Number of (a) invertebrates and (b) taxa colonizing leaf bags during the study period
(solid symbols ¼ unpolluted site A; open symbols ¼ polluted site B).

Journal of Freshwater Ecology 7
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in site B we normally detected an intermediate peak. This happened, generally speaking,

for both macroinvertebrate abundance (N, Figure 3(a)) and taxa richness (S, Figure 3(b)).

The ANOSIM test showed a significant difference between sites in the community com-

position when considering all leaf species together (ANOSIM R ¼ 0.62, p < 0.05), but no

significant differences within each site among leaf species (ANOSIM R ¼ 0.02, p > 0.05

for site A and ANOSIM R ¼ 0.01, p > 0.05 for site B).

Discussion

Litter inputs from the riparian vegetation are of fundamental importance in low-order

stream systems, where they represent the main energy source and support complex ben-

thic food webs (Tank et al. 2010). For this reason, it is crucial to investigate the effects of

human activities on this process. In this study, we analyzed the breakdown process of ter-

restrial litter inputs by comparing (1) the type (native/exotic) of the leaf litter and (2) the

level of water quality (unpolluted/polluted) of the stream reach. In the last several deca-

des, there has been an impressive increase in the number and spread of exotic, invasive

plant species in riparian environments (Richardson et al. 2007). Some studies suggested

that invasive species can cause alterations at different levels in the structure and function-

ing of ecosystems (Ehrenfeld 2010). Moreover, the establishment of exotic riparian plants

can alter the exchange of organic material between terrestrial and lotic ecosystems, both

changing the quantity (Mineau et al. 2011, 2012) or the quality (B€arlocher & Graça 2002)

of terrestrial litter inputs, leading to alterations in the composition (Serra et al. 2013) and

density (Lester et al. 1994) of benthic assemblages. Many studies have shown that, for

instance, the introduction and spread of Eucalyptus globulus plantations in Spain had a

strong effect on in-stream terrestrial detritus colonization and degradation (Chauvet et al.

1997; Pozo et al. 1998; Ferreira et al. 2006), while other studies have shown weak influ-

ence of exotic species on streams (Braatne et al. 2007).

Our study gave evidence that mass loss of leaf bags was generally higher in the unpol-

luted site A rather than in the polluted site B. Comparing the breakdown rate (k) of the

five leaf species, the highest values were always found in the unpolluted site A. P. alba,

170
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Table 4. Total number of individuals of the most dominant taxa at each site.

Taxa Site A Site B

Leuctridae Leuctra sp. 6099 1
Nemouridae Nemoura sp. 1113 0

Amphinemura sp. 199 0
Perlodidae Isoperla sp. 370 0
Heptageniidae Ecdyonurus sp. 565 1

Rhithrogena sp. 55 0
Limnephilidae 205 0
Hydropsychidae Hydropsyche sp. 30 35
Chironomidae 1734 3327
Athericidae Atherix sp. 104 15
Psychodidae 7 163
Erpobdellidae 0 478
Naididae 1 240
Tubificidae 0 152
Lumbriculidae 0 135
Lumbricidae 1 40

8 T. Bo et al.
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R. japonica, R. pseudoacacia and A. incana showed a ‘fast’ decay in site A and a

‘medium’ decay in site B (sensu, B€arlocher 2005). Although the decay of Q. robur was

always classified as ‘slow’, it was faster in site A than in site B. Interestingly, we observed

that decomposition rates were different among species and, therefore, organic litter might

be available at different times within the system. The two exotic species exhibited break-

down rates that were similar to A. incana but lower than those of P. alba and faster than

those of Q. robur. If the non-native plant species are invasive, and therefore, create the

majority of the detritus available within the system; this may compound the effects of the

poor water quality on the stream ecological function. We must consider that many inva-

sive species are good competitors and may form monospecific populations in riparian

areas. This could result in the limited availability of allochthonous organic input into the

river system with potentially serious repercussions throughout the lotic system.

The ANOSIM test showed clear differences in macroinvertebrate assemblages among

sites. In the unpolluted site A, bags were colonized by very diverse macroinvertebrate

assemblages, with an important presence of stenoecious taxa such as Plecoptera, some

Diptera, Ephemeroptera and Trichoptera. In the polluted site B, bags were almost entirely

colonized by euriecious and tolerant taxa, such as Chironomidae and Annelida. This

diversity is also evident analyzing the temporal trends of colonization: while in site A the

resource is colonized over time by a growing number of individuals and taxa, in site B an

intermediate (and lower) peak is reached and then macroinvertebrate assemblages began

to diminish in both density and taxonomic richness. The difference in mass loss could be

related to these differences in colonizing assemblages, because it is known that a diminu-

tion in the diversity, including both taxonomic and functional aspects, reduces ecosystem

functioning (Woodcock & Huryn 2005). Shredders, such as Leuctridae, Nemouridae and

Limnephilidae, constitute the largest colonizing group in site A, while they are almost

absent in site B, where macroinvertebrate assemblages were dominated by collectors–

gatherers, such as Chironomidae and various groups of Oligochaeta (Table 4). It is known

that wastewater treatment plant effluents can have significant impacts on macrobenthic

communities or in-stream primary productivity (Bo & Fenoglio 2011), but this study

underlines that they can also influence the decomposition rate of terrestrial organic mat-

ter. Our findings suggest that the richer benthic communities in site A increased leaf

breakdown rates (despite site B having a warmer temperature; Figure 1). On the other

hand, ANOSIM tests did not show any clear difference in leaf bag macroinvertebrate

assemblages between native and exotic species either in site A or in site B.

Our study supports the hypothesis that geographical origin of plant detritus (native/

exotic) is not per se central in shaping macroinvertebrate colonization and mass loss in

the Pellice River. The main result of this study is that, considering both mass loss and col-

onizing macroinvertebrate characteristics, the most significant impact was related to the

water quality change due to the wastewater treatment plant effluent in site B. We can con-

clude that the effect of exotic terrestrial organic input on in-stream processes can differ

widely, depending on the nature of the material but that the origin of the debris may be

less important than water quality.Q6
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