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Abstract

Background: Insulin action on protein synthesis (translation of transcripts) and post-translational modifications, especially of
those involving the reversible modifications such as phosphorylation of various signaling proteins, are extensively studied
but insulin effect on transcription of genes, especially of transcriptional temporal patterns remains to be fully defined.

Methodology/Principal Findings: To identify significant transcriptional temporal patterns we utilized primary differentiated
rat skeletal muscle myotubes which were treated with insulin and samples were collected every 20 min for 8 hours. Pooled
samples at every hour were analyzed by gene array approach to measure transcript levels. The patterns of transcript levels
were analyzed based on a novel method that integrates selection, clustering, and functional annotation to find the main
temporal patterns associated to functional groups of differentially expressed genes. 326 genes were found to be
differentially expressed in response to in vitro insulin administration in skeletal muscle myotubes. Approximately 20% of the
genes that were differentially expressed were identified as belonging to the insulin signaling pathway. Characteristic
transcriptional temporal patterns include: (a) a slow and gradual decrease in gene expression, (b) a gradual increase in gene
expression reaching a peak at about 5 hours and then reaching a plateau or an initial decrease and other different variable
pattern of increase in gene expression over time.

Conclusion/Significance: The new method allows identifying characteristic dynamic responses to insulin stimulus, common
to a number of genes and associated to the same functional group. The results demonstrate that insulin treatment elicited
different clusters of gene transcript profile supporting a temporal regulation of gene expression by insulin in skeletal muscle
cells.
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Introduction

Skeletal muscle is responsible for about 65% of glucose disposal

following a meal [1] and reduced insulin induced glucose disposal

results in impaired glucose tolerance. In vivo, insulin plays an

important role in the regulation of skeletal muscle glucose uptake

and regulation of skeletal muscle protein, amino acid and fatty

acid metabolism [2,3]. Acutely, insulin stimulates glucose uptake

in skeletal muscle cells by accelerating the recruitment of GLUT4

to the sarcolemma [4–7], a process that is exquisitely regulated by

a specific insulin-responsive protein signaling cascade (i.e., IR/

IRS1/PI3K/Akt) [4,5,8,9]. Similarly, insulin acutely stimulates

protein synthesis (in the presence of adequate amino acids) by also

activating a specific insulin-responsive protein signaling cascade

(i.e., Akt/mTOR/S6K) [10–14]. Both of these responses are

regulated by reversible post-translational modifications (i.e.,

phosphorylation) of key signaling protein molecules. However,

less information is available about insulin impact on gene

transcription that also may affect insulin action: it is currently

unknown whether insulin acutely enhances transcription of genes

or whether there is a time related pattern in transcribing the genes

thereby having a different level of regulation of insulin action on

gene expression. A better understanding of the impact of insulin

on transcript levels of various genes is critical to acquire a more

thorough understanding on how insulin exerts its pleiotropic

effects on skeletal muscle glucose uptake as well as protein

synthesis.

The microarray technology has been extensively used to identify

differentially expressed genes in skeletal muscle cells under

different physiological states, e.g., non-diabetic vs. diabetic subjects

during poor glycemic control and following insulin treatment [15],

insulin treated versus insulin deprived type 1 diabetic patients [16],

and [15], normal vs. impaired glucose tolerant individuals [17],

and basal state vs. euglycemic hyperinsulinemic clamp [18].

Further information on transcriptional regulation can be gained by

monitoring gene transcripts related to time following insulin

administration. In fact, in pre/post stimulus studies in which the

transcriptional response is monitored at one specific time instant
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after a prolonged insulin exposure, genes showing a transient

response followed by a return to the pre-stimulus expression or a

systematic, but small in magnitude, change in the expression, are

likely to be missed. In contrast, monitoring the dynamic response

allows identifying transient responses, which might be character-

istic, and, if common to a number of genes associated to the same

functional group, might give insight into the function or functions

performed by the gene circuitry. The aim of the present work is to

exploit the potential of a dynamic study to investigate the

transcriptional response of skeletal muscle cells during acute

insulin stimulation. To this purpose, we designed and conducted

the present gene-array experiment in differentiated L6 myotubes.

To identify significant transcriptional temporal patterns in

muscle cells treated with insulin and to characterize them from a

functional point of view, here we propose a new analytical

method applied to experimental data. This method aims at

overcoming some drawbacks of the conventional analysis

approach based on selection of differentially expressed genes,

clustering and functional annotation based on Gene Ontology

(GO) [19]. The new approach that we apply in the current study

1) improves selection of differentially expressed genes by

diminishing the number of false negatives while maintaining

constant the false discovery rate, i.e. the number of false positives

divided by the number of selected genes; 2) clusters genes with the

same transcriptional pattern without requiring the user to fix the

number of clusters and 3) automatically annotates these clusters

with the most specific GO terms, avoiding redundancy of the

information.

Materials and Methods

Skeletal Muscle Culture
L6 skeletal muscle myoblasts (purchased from ATCC,

Manassas, VA) were grown and kept in low glucose (5 mM)

DMEM growth media supplemented with fetal bovine serum

(FBS) and an antibiotic antimycotic mixture (10% FBS, 4 mM L-

Glutamine, 1.0 mM sodium pyruvate, 100 ug/ml penicillin

100 ug/ml streptomycin). Four plates were prepared for each

pre-defined time sample at a density of 6:86105cells per 100 mm

dish and incubated overnight in DMEM growth media. On the

second day, the DMEM growth media was changed to DMEM

differentiation media with 1% FBS to initiate myotube

differentiation. The differentiation media was changed every 2

days. On sixth day differentiation was completed and medium

was changed to serum free DMEM for an 8 hour pre-incubation.

The culture was split into 2 different groups: insulin treated and

control. Just after the collection of the first biological sample at

time 09, for each time point the medium on one plate was

changed to serum free DMEM with 20 nM insulin, whereas one

plate was used as control (DMEM with 0 nM insulin). Cells were

harvested at the designated time points by decanting off

overlying medium, scraping the cells into cryovials and freezing

immediately in liquid nitrogen. Samples were collected at times

0, 20, 40, 60,…, 480 minutes (every 20 minutes, for 8 hours)

from both insulin treated and control cultures, for a total of 50

biological samples.

Samples (20–40–60), (80–100–120), (140,160,180), (200–220,

240), (260, 280, 300), (320,340,360) (380–400–420) and (440–460–

480) from insulin-treated and control culture were pooled

together, obtaining eight joint samples. Consistently, sample 09

was harvested and collected in triplicates and pooled together (0a–

0b–0c) for each culture and two targets for the hybridization were

prepared separately. The pooling step was chosen to achieve a

compromise between the cost of the experiment and the frequency

of the sampling grid: it is safer to average the signal by pooling the

biological samples than to use a sparse sampling grid (fast

regulated genes would be easily lost e.g. by collecting one sample

per hour).

All the culturing and sampling procedure described above was

repeated two additional times on different days, using the same

identical cell line, to obtain a complete triplicate of the experiment.

Measurements
Total RNAs were purified using an RNeasy Protect Mini Kit

from Qiagen. The quality and quantity of total RNA was

measured using the Agilent test on a Bioanalyzer (Agilent

Technologies, Palo Alto, CA). Gene transcript profiles in both

control and treated cultures were studied by high-density

oligonucleotide microarrays containing probes for 31,099 genes

and expressed sequence tags (Rat-230.2 GeneChip arrays;

Affymetrix, Santa Clara, CA), for a total of 54 chips. Sample

labeling, hybridization of test array, and hybridization of full-

size arrays were performed by the Mayo Clinic Advanced

Genomics Technology Center Microarray Lab using protocols

described in the Affymetrix GeneChip expression analysis

technical manual.

The data discussed in this publication are MIAME compliant and

have been deposited in NCBI’s Gene Expression Omnibus [20] and

are accessible through GEO Series accession number GSE28997

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28997).

Preprocessing
Image quantification was performed using GeneChip (Affyme-

trix, SantaClara, CA) scanner and software. Preprocessing steps

such as background subtraction, probe cell normalization and

expression level calculations, were performed using quantile

normalization and Robust Microarray Analysis (RMA) software

[21].

Genes were pre-filtered using Affymetrix Detection calls (genes

that were not present in at least one chip were filtered out). The

remaining 21958 probes were analyzed using the method

described in the following for the function-based discovery of

significant transcriptional temporal patterns.

Analysis of Significant Transcriptional Temporal Patterns
A new method is here proposed to identify significant

transcriptional temporal patterns, based on four different compu-

tational steps: 1) Gene Ranking, i.e. all genes are ranked according to

a false discovery rate p-value reflecting the likelihood that the gene

is differentially expressed; 2) Functional Gene Annotation based on

GO; 3) Search for the Temporal Patterns, i.e. each functional group is

searched for temporal patterns characterizing it; 4) Selection of

Differentially Expressed Genes, based on both the false discovery rate

(FDR) p-values and the characteristic patterns.

The output of the method is a set of clusters of differentially

expressed genes, each characterized by a specific temporal pattern

and by the most specific functional annotations. The four steps of

the methods are described in what follows.

Gene Ranking
Genes are ranked according to FDR p-values using a selection

method of choice. In the case of the data analysis performed in this

work, we used a method previously proposed [22] that calculates

the area of the region bounded by the time series expression profile

and assigns a p-value to the gene according to this area and a null

hypothesis distribution, based on a model of the experimental

error, to be derived from experimental replicates. The two

Transcriptional Patterns in Insulin Signaling
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replicates available at time zero were used to derive the

experimental error distribution at different intensity expression

values and, consequently, the null hypothesis distribution of the

area bounded by the treated-minus-control expression profile.

Functional Gene Annotation
Gene Ontology annotation is used to define the biologically

relevant sets of genes. GO terms are organized in a directed

acyclic graph in which each node corresponds to a GO term and

may have multiple parents: nodes farther from the root correspond

to more specialized terms; nodes closer to the root to less

specialized terms, thus implying that genes annotated with a

specific node are also annotated with every ancestor of that node.

In the case of the data analysis performed in this work, we used

Molecular Function GO annotation. An additional set containing

159 genes involved in insulin signaling according to GenMapp

pathway [23] was also used.

Search for the Temporal Patterns
For each GO node, the algorithm searches the representative

temporal patterns characterizing the transcriptional response. In

particular, among the genes associated to a specific GO term, the

algorithm searches for a subset of genes whose time series

expression profile Xi = ,xi(1), …, xi(m). can be modeled by the

following equation:

Xi~ki.Pzqiz
X

ð1Þ

where P = ,p(1), …, p(m). is the characteristic temporal

expression pattern, i.e. a vector of m (number of time points)

expression values, ki and qi are the gene i specific parameters and

S encodes the measurement error variance. The algorithm

iteratively performs a gene-specific parameter identification step

and a temporal pattern search step. In the first step, the

parameters ki and qi are identified for each gene i, using weighted

least squares method. A goodness of fit test is performed for each

gene i and only genes with significant p-value are kept in the

cluster. In the second step, P is estimated at each sampling time,

using again weighted least squares, but considering as data the ki

and qi of the genes belonging to the cluster and estimated at the

previous step. All the n genes being analyzed go again through the

first step, so to identify new ki and qi and re-define the cluster

membership based on the newly estimated pattern P. All the

procedure is reiterated until the list of genes in the cluster does not

change or a maximum number of iterations is reached. Each

identified pattern is thus characterized by a cluster of genes with

correlated profiles and the same annotation.

For each discovered pattern, the set of genes fitting this pattern

(fitP) and the set of genes that do not fit it (—|fitP) are defined. Only

if significant, i.e. if it contains at least one gene with false discovery

rate p-value lower than a fixed threshold, e.g. 0.05, fitP is recorded

as a cluster in the GO node under analysis. The procedure is then

iteratively applied to —|fitP, until —|fitP contains no genes or no

significant patterns are discovered.

Nodes are analyzed starting from the leaves of the GO graph,

i.e. the nodes farthest from the root, which are the most specific

GO terms; whenever a significant pattern is identified, genes

correlated to the pattern are removed from all the ancestors of the

node, so to avoid redundancy and annotate genes with the most

specific available biological information, analogously to what has

been proposed in [24]. Conversely, genes correlated to a pattern

are not removed from the sibling nodes.

Further details about the method are given in (Methods S1).

Selection of Differentially Expressed Genes
Given the high number of genes and the lack of replicates that

usually characterize high-throughput studies, gene selection

procedure has low statistical power. Moreover, the need to control

the false positive rate in a multiple testing condition, e.g. by using

FDR, leads to very small significant level a thus increasing the

number of false negatives. To lower the percentage of false

negatives, we recover, among the gene not selected as differentially

expressed by a FDR threshold of 5%, those genes that: (a) have a

p-value (not corrected for multiple testing) lower than 5%; are

associated to a cluster of genes: i) sharing the same temporal

transcriptional profile; ii) all annotated with the same functional

term, iii) containing at least one gene with significant FDR

corrected p-value.

2) are associated with a gene cluster containing at least 1 gene

with significant FDR corrected p_value. As d above, membership

to a cluster is based, beside common functional annotation, on the

goodness of fit to the corresponding temporal pattern and it is

statistically assessed in comparison to a flat profile.

Intuitively, since a group of genes associated to a pattern

contains at least one gene with significant false discovery rate p-

value, all genes in the group significantly correlated to the same

temporal pattern, significantly different from a flat profile and

sharing the same functional annotation are likely to be

differentially expressed.

Simulated Data
100 data sets of 1000 genes monitored on 13 time samples were

simulated. Each data set consists of 120 differentially expressed

genes separated in 6 clusters characterized by different temporal

patterns (Figure 1) and 880 not differentially expressed profiles.

Patterns 1, 2 and 3 in Figure 1, vary between 21 and 1; whereas

patterns 4, 5 and 6 vary between 0 and 1. Differentially expressed

gene profiles were generated from the pre-defined patterns, using

the model described in Eq. (1): for each pattern 20 gene profiles

were generated: 10 with ki and qi sampled from uniform

distributions in the intervals 6(0.5, 2) and (20.5, 0.5), respectively,

and 10 with ki and qi sampled from uniform distribution in the

intervals 6(1, 3) and (23, 3), respectively. Gaussian noise was

added to all data with mean 0 and standard deviation equal to 0.2

(the range of expression of genes varies at maximum between 26

and 6).

Results

Method validation
The ability of the method to identify groups of genes belonging

to the same pattern was assessed on synthetic data by comparing

identified to simulated clusters, in terms of precision (number of

correctly classified genes among the inferred ones) and recall

(number of correctly classified genes among the true ones).

Figure 1 illustrates the characteristic patterns used to generate the

data (columns) and the results (rows) for one representative data set

among the 1000 simulated, containing 6 clusters of 20 genes each,

and 880 noisy expression profiles. The number of genes in the

intersection between a simulated and an identified cluster is

indicated; the maximum of these number for each simulated

cluster is assumed as the number of true positives, that is the

measure of the ability to identify clusters with all or most genes

belonging to a single (simulated) cluster. For each column,

precision is calculated as true positives divided by the number of

genes identified in the cluster; recall as true positives divided by the

number of genes in the simulated cluster. The average results on

the 100 simulated datasets are shown in Table 1.

Transcriptional Patterns in Insulin Signaling

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e32391



Since the method was applied in a pipeline with a selection

procedure, it is also of interest to assess its ability to select

differentially expressed genes. In average, on 100 simulations the

number of false negatives diminishes from 11% to 9% (p-

value = 0.0091, Wilcoxon test) in correspondence of a constant

false discovery rate (number of false positives divided by the

number of selected genes) of 5%. Therefore, the pattern search

applied in combination with the selection method, besides being

able to identify the main temporal patterns of expression, improves

the selection by lowering the percentage of the false negatives.

Transcriptional Temporal Patterns in Insulin Stimulated
Muscle Cells

326 genes were selected as differentially expressed and clustered

into 12 different clusters, each characterized by a specific expression

pattern. Figure 2 shows in red the average differential (treated

minus control) expression profiles of the genes in the different

clusters; the number of genes in each cluster and their differential

expression profile (in gray) is also reported. A detailed list of selected

genes, their annotation with the GO molecular function term and

the associated patterns is available in Table S1 (Tables S1.1,
S1.2, s1.3, S1.4, S1.5, S1.6, S1.7, S1.8, S1.9, S1.10, S1.11,
S1.12, S1.13). To obtain a more synthetic annotation, the GO

nodes directly connected by a path in the GO graph were grouped,

thus obtaining 13 GO groups plus the group of genes annotated to

insulin signaling. Each GO group, thus characterized by an isolated

sub-graph of siblings or ancestors terms, was labeled with the most

general of these terms. Genes can appear annotated in more than

one GO term and/or in more patterns since, as explained in

Method, a gene associated to a pattern and a GO term is deleted

from the ancestor of the GO node it belongs to, but not from its

siblings. Figure 3 shows, for each pattern, the percentage of genes

belonging to insulin signaling pathway (IS) and to each GO group

(G1–G13). GO enrichment analysis based on Fisher’s Exact Test

was also performed to highlight the most relevant GO terms

associated with the genes belonging to each pattern with respect to

the total number of selected genes. Enriched GO terms (p-

value,0.05) are highlighted with a star symbol in Figure 3.

104 genes annotated to GO nodes isolated in the GO tree, i.e.

without sibling or parent nodes found as significant after the

analysis, are not shown in Figure 3 and in

S1.3, S1.4, S1.5, S1.6, S1.7, S1.8, S1.9, S1.10, S1.11,
S1.12, S1.13; complete results and information on selected genes,

Table S2.

Genes belonging to patterns 1 and 4, which are also the most

numerous, are annotated to many different GO groups, of which

many are also significantly enriched. Patterns 5, 9, 10, 11 and 12, on

the opposite, are characterized by genes belonging to a single GO

group: nucleotide binding (G8) for pattern 5, RNA binding (G11)

for pattern 10 and insulin signaling (IS) for patterns 9, 11 and 12.

Patterns 2, 3, 6, 7 and 8 are in an intermediate situation, with genes

annotated to a number of GO groups ranging from 3 to 6.

Looking at the GO groups associated to a limited number of

patterns, we found that transmembrane transporter activity (G1) is

characterized by 2 genes belonging to pattern 1 and 2 to pattern 2;

protein serine/threonine kinase activity (G2) by 3 genes belonging

to pattern 1, 2 to pattern 4 and 2 to pattern 3, these latter with

kinase inhibitor activity; Cation transmembrane transporter

activity (G5) is characterized by 3 genes belonging to pattern 1,

and 2 to pattern 8. Oxidoreductase activity (G7) and GTPase

activity (G9) contains genes associated only to pattern 1.

Interestingly, 62 of the 326 selected genes belong to insulin

signaling pathway, defined according to GenMapp annotation.

They are shown in Figure 4 in red, together with the identifier of

their cluster. Most of them are associated with pathways showing

down-regulation in treated vs. control cultures such as pattern 1, 8

and 12. In details, 14 genes are associated with pattern 1, 1 with

pattern 2, 2 with pattern 3, 3 with pattern 4, 1 with pattern 5, 1

with pattern 6, 3 with pattern 7, 15 with pattern 8, 2 with pattern

9, 1 with pattern 10, 4 with pattern 11 and 15 with pattern 12.

Among these genes, glycogen synthase 1 (GYS1) had not a

significant false discovery rate p-value, but it was selected because

highly correlated with other 14 significant genes in cluster 12, all

belonging to insulin signaling node.

Table 1. Results of the clustering on simulated data.

Clusters: 1 2 3 4 5 6

Precision 98% 99% 91% 96% 97% 98%

(2%) (1%) (9%) (3%) (1%) (1%)

Recall 85% 86% 33% 49% 35% 85%

(8%) (8%) (14%) (11%) (13%) (7%)

Average precision and recall results on 100 simulated data sets; standard
deviation in parenthesis.
doi:10.1371/journal.pone.0032391.t001

Figure 1. Temporal patterns used to simulate the data
(columns) and identified by the method (rows) for a specific
simulated data set. 100 data sets of 1000 genes monitored on 13
time samples were simulated. Each data set, like the one shown in this
figure, consists of 120 differentially expressed genes separated in 6
clusters characterized by different temporal patterns and 880 not
differentially expressed profiles. The number of genes in the
intersection between a simulated and an identified cluster is indicated;
the maximum of these numbers for each simulated cluster is assumed
as the number of true positives. For each column, precision is calculated
as true positives divided by the number of genes identified in the
cluster; recall as true positives divided by the number of genes in the
simulated cluster.
doi:10.1371/journal.pone.0032391.g001
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Discussion

In the current study we applied a gene array profiling approach

to the transcriptional response of skeletal muscle myotubes treated

with insulin, to identify the main temporal expression patterns

associated to functional groups of differentially expressed genes.

We chose skeletal muscle cell line for this study considering that

frequent sampling from human and animal studies are fraught

with many logistical problems including ethical issues. The results

from the current study knowing the critical time points at which

the transcriptional responses are altered by insulin will enable

planning of future in vivo studies to assess insulin’s effect on muscle

Figure 2. Expression profile of genes selected as differentially expressed clustered in groups of genes sharing the same temporal
patterns. The average differential expression profiles (treated minus control) of the genes in the different clusters is shown in red; the number of
genes in each cluster and their differential expression profile (in gray) is also reported for each cluster.
doi:10.1371/journal.pone.0032391.g002

Transcriptional Patterns in Insulin Signaling

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32391



Transcriptional Patterns in Insulin Signaling

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e32391



gene transcripts. A prior time course of insulin response in primary

human myotubes from type 2 diabetic and non-diabetic

individuals (0, 0.5, 1, 2, 4, 8, and 24 hours) by Hansen et al.

[25] demonstrated a time dependent transcriptional responses of

inflammatory and pro-angiogenic pathways in relationship to

glycogen synthesis. The authors identified 102 transcripts as

differentially expressed in response to insulin some of which were

similar to those among the 326 gene transcripts that were

differentially expressed in our analysis. For example, the

angiogenic/anti-apoptotic gene transcripts, VEGF, FOS, and

SRF, were up-regulated in both studies. Comparison of the above

study to the current study is difficult since different species and cell

types were used, different insulin concentrations (20 nM vs. 1 mM)

were used, and the statistical analysis and the objectives of the two

studies differ. The analysis in the current study aimed at

integrating selection, clustering and functional annotation to find

the main temporal patterns associated to functional groups of

differentially expressed genes.

Our method was applied using a previously proposed method

for gene selection [22], but different choices are possible, as long as

the selection method provides a list of p-values associated to the list

of analyzed genes. Analogously, Gene Ontology functional

annotation or different annotation databases can be used. If the

functional annotation is hierarchical, it has to be codified in a

hierarchical direct graph as in the case of GO, before the search of

temporal patterns is performed. To associate patterns to the most

specific Gene Ontology nodes and avoid redundancy of the

information, our method starts searching patterns from the leaves

of the GO graph (i.e. the nodes farthest from the root, which are

the most specific) and whenever a significant pattern is identified,

genes correlated to the pattern are removed from all the ancestors

of the node. The pattern search is based on a linear model whose

parameters are identified using least squares, thus it accounts for

the error measurement, does not require the user to fix the

number of clusters and is not computationally demanding. Our

method improves the selection procedure by combining informa-

tion on false discovery rate p-value with both functional group and

characteristic temporal pattern association, thus diminishing the

number of false negatives without significantly increasing the

number of false positives. Previous works have addressed the

integration of prior knowledge either in clustering algorithms [26–

28] or in selection procedures [29], whereas our approach

integrates selection, clustering and annotation in a single

computational framework.

Based on our analysis, 326 genes were selected as differentially

expressed and 12 different patterns of gene expression profile were

identified. For example, the expression pattern 1 (Figure 2) shows

a slow and gradual decrease in gene expression whereas in pattern

4 there is a gradual increase in gene expression reaching a peak at

about 5 hours and then reaching a plateau. These patterns are

annotated with a number of functional annotation (Figure 3). In

particular, pattern 1 is enriched with GO groups Ion binding,

Cation transmembrane transporter activity, Transferase activity,

Oxidoriductase activity, Nucleotide binding; GTPase regulator

activity, DNA binding and Protein binding; whereas pattern 4 is

enriched with GO groups Ion binding, Transferase activity,

Nucleotide binding, RNA binding, Receptor activity and Protein

binding. Interestingly pattern 3, showing an initial decrease in

gene expression followed by a variable pattern of increase in gene

expression over time, is enriched with GO group Phosphatase

activity and is anticorrelated with pattern 2, enriched with GO

group Protein serine/threonine kinase activity. Besides generic

annotation as Protein binding or RNA binding, pattern 2 is also

enriched with GO groups Transmembrane transporter activity,

Transferase activity and Receptor activity. All genes in pattern 5

are annotated as Nucleotide binding, all genes in pattern 10 as

DNA binding. More interestingly, all genes in patterns 9, 11 and

12 are annotated in Insulin signaling pathway, with patterns 9 and

11 anticorrelated. 65% of the genes in pattern 8 are also annotated

in Insulin signaling pathway; the remaining genes associated to

pattern 8 are annotated in GO groups Phosphatase activity and

Cation transmembrane transporter activity. Finally, patterns 6 and

7 are enriched with GO group Ion binding; pattern 6 also with

GO group Receptor activity. The identified patterns are followed

rather tightly by the genes in each cluster. Such a consistent

behavior supports our confidence on the reliability of the cluster

average pattern. Moreover the three replicated experiments show

high data reproducibility: the variance calculated across replicates

for the 326 genes selected as differentially expressed has median

value equal to 7% with first and third quartiles equal to 0.03 and

0.15 respectively.

Approximately 20% of the genes that were differentially

expressed were identified as belonging to the insulin signaling

pathway (Figure 4). Of interest, most of the genes were down-

regulated in response to insulin treatment under the present

experimental conditions. The results that demonstrate that IRS-1

mRNA abundance is initially down-regulated (pattern 12) with

insulin treatment is consistent with the recent observation the IRS-

1 mRNA abundance was down-regulated following a three hour

insulin infusion during an in vivo hyperinsulinemic-euglycemic

clamp [30]. It should be noted that after 6 h of treatment the IRS-

1 mRNA abundance returned to baseline, followed by a slight

increase in mRNA abundance above baseline between 6 and 8 h.

However, the present results are in contrast to the recent finding

that genes involved in insulin signaling were largely up-regulated

in response to a three hour insulin infusion during an in vivo

hyperinsulinemic-euglycemic clamp [18]. Moreover, our results

that IRS-2 mRNA abundance is down-regulated (pattern 2) in

response to insulin treatment in vitro under the present experi-

mental conditions is in contrast to modest increase in IRS-2

mRNA abundance in response to a four hour insulin infusion

during an in vivo hyperinsulinemic-euglycemic clamp [31]. In

addition, the angiogenic/anti-apoptotic gene transcripts, VEGF,

FOS, and SRF, were up-regulated in response to the insulin

treatment, which is consistent with the findings of Hansen and

colleagues [25]. Greenhaff and colleagues have recently reported

[32] AKT (PKB) mRNA abundance remains unchanged following

three hours of hyperinsulinemia under four different steady-state

insulin concentrations range from 5 mU/l to ,170 mU/L. The

mRNA (transcripts) expressions in the current study and other

studies represent the net changes related to production and

degradation of mRNA. It is possible that insulin’s primary effect is

translation of the transcripts involved in glucose metabolism. A

higher rate of transcription than translation of these genes would

have resulted in higher transcript levels. In addition, insulin also

stimulates skeletal muscle glucose uptake by the phosphorylation

of specific signaling proteins involved in glucose metabolism in

skeletal muscle [33].

Figure 3. Percentage of genes belonging to insulin signaling pathway (IS) and to 13 different GO groups. Each group is defined as a set
of nodes directly connected in the GO graph and labeled with the most general of these nodes. Enriched GO terms (p-value,0.05) are highlighted
with a star symbol.
doi:10.1371/journal.pone.0032391.g003
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The present results also indicate that insulin treatment in vitro

stimulates gene expression changes that likely promote protein

synthesis. Specifically, insulin treatment resulted in down-regula-

tion of mRNA abundance of TSC2 (pattern 12), which is a known

negative regulator of protein synthesis. Mechanistically, TSC1

(hamartin) forms a complex with TSC2 (tuberin) [TSC1–TSC2

complex], which functions as a critical regulator of protein

synthesis and cell growth [34,35]. Indeed, loss-of-function

mutations in TSC2 have been shown to reduce mTOR and s6k

activity [36]. Moreover, insulin treatment resulted in up-regulation

of mRNA abundance of Rheb (pattern 7), which is known positive

regulator of protein synthesis [37]. Mechanistically, Rheb-GTP

binds directly to the mTOR kinase domain, which in turn

activates mTOR’s catalytic function [30]. Insulin treatment also

likely promotes translational initiation by down-regulating mRNA

abundance of EIFBP1 (pattern 12), while simultaneously up-

regulating mRNA abundance of EIF4E (pattern 4). These findings

are consistent with recent finding reported by Colleta and

colleagues [31] who observed an increased mRNA abundance

for EIF4E following a four hour insulin infusion during an in vivo

Figure 4. Mapping of differentially expressed genes on the insulin signaling pathway. 62 genes (in red) belonging to the insulin signaling
pathway (GenMapp), selected as differentially expressed and associated with significant temporal expression patterns.
doi:10.1371/journal.pone.0032391.g004
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hyperinsulinemic-euglycemic clamp. Furthermore, insulin treat-

ment resulted in up-regulation of mRNA abundance of DNA-

directed RNA polymerase I polypeptides E (pattern 4), B (pattern

4), C (pattern 7) and DNA-directed RNA polymerase II

polypeptide C (pattern 7) [Table S1.10] as well as mRNA

abundance of several RNA binding proteins (patterns 2, 4 and 7)

[Table S1.11].

The current in vitro experiments cannot be directly translated in

to in vivo situation in either human or animals. First, the present

experiments were conducted in differentiated L6 myotubes and

not in fully developed skeletal muscle fibers. Second, the

differentiated L6 myotubes were incubated in normal-glucose

(5 mM glucose) in the presence of relatively high insulin

concentrations (20 nM) in order to elicit maximal effect in an ex-

vivo study. Moreover, the present experiments were conducted in a

serum starved state. Therefore, the changes in mRNA transcripts

both in the treated and control conditions likely also reflect the

effects of progressive serum starvation. The responses may be

different in hyperglycemic conditions with lower or higher insulin

concentrations. Moreover, insulin is known to reduce protein

degradation and amino acid levels [38] Therefore, future in vivo

studies are warranted that examine the effect of hyperinsulinemia

while maintaining both euglycemia and euaminoacidemia.

The present investigation demonstrates a gene array experi-

mental design and methodology for examining temporal changes

in gene expression. Using gene array profiling, we identified 12

different temporal patterns of gene expression in response to eight

hours of insulin treatment in vitro. These results are likely to help

design of in vivo studies to examine the effect of insulin treatment

on the temporal regulation of gene expression related to glucose

uptake in human and animals. Finally, the insulin treatment

affected not only the transcripts involved in glucose metabolism

but also stimulated gene transcripts that would promote protein

synthesis.
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