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Abstract: The concentration of estrogens in the body fluids of women is 

highly variable, due to the menstrual cycle, circadian oscillations, and 

other physiological and pathological causes. To date, only the cyclic 

fluctuations of the principal estrogens (estradiol and estrone) have been 

studied, with limited outcome of general significance. Aim of the present 

study was to examine in detail the cyclic variability of a wide 

estrogens' panel and to interpret it by multivariate statistics. 

Four estrogens (17α-estradiol, 17β-estradiol, estrone, estriol) and 

eleven of their metabolites (4-methoxyestrone, 2-methoxyestrone, 16α-

hydroxyestrone, 4-hydroxyestrone, 2-hydroxyestrone, 4-methoxyestradiol, 

2-methoxyestradiol, 4-hydroxyestradiol, 2-hydroxyestradiol, estriol, 16-

epiestriol, and 17-epiestriol) were determined in urine by a gas 

chromatography - mass spectrometry method, which was developed by design 

of experiments and fully validated according to ISO 17025 requirements. 

Then, urine samples collected every morning for a complete menstrual 

cycle from 9 female volunteers aged 24-35 years (1 parous) were analysed. 

The resulting three-dimensional data (subjects × days × estrogens) were 

interpreted using several statistical tools. Parallel Factor Analysis 

compared the estrogen profiles in order to explore the cyclic and inter-

individual variability of each analyte. Principal Component Analysis 

(PCA) provided clear separation of the sampling days along the cycle, 

allowing discrimination among the luteal, ovulation, and follicular 

phases. The scores obtained from PCA were used to build a Linear 

Discriminant Analysis classification model which enhanced the recognition 

of the three cycle's phases, yielding an overall classification non-error 

rate equal to 90%. These statistical models may find prospective 

application in fertility studies and the investigation of endocrinology 

disorders and other hormone-dependent diseases. 

 

 

 

 



Response to reviewers 
 
Reviewer #1: The manuscript requires additional careful editing for both content and context. 
 
A major issue is the reference to women between the ages of 25-35 as childbearing or fertile 
women, this implication is not necessary or helpful. All references to "fertile" or "childbearing" 
women should be removed from the manuscript and women should simply be described as 
between female volunteers aged 25-35 years. A reference to proportion of the 9 who have 
previously given birth may be appropriate for context (e.g. X% parous). Further, it is not accurate to 
refer to the women as reproductive-age women, as this encompasses all women aged 15-49. 
 
The text was modified in every phrase where either the term “fertile” or “childbearing” was referred 
to women in order to underline that they were in the pre-menopausal age. More accurate reference 
to the age was made and the inclusion of one parous woman within the group of nine volunteers 
was made explicit. 
 
Abstract: the abstract has been satisfactorily revised, however the last sentence is unclear - what 
is meant by "these models open an outlook"? 
 
The latter sentence was modified as follows: “These statistical models may find prospective 
application in…” 
 
Highlights: acronyms that are not common need to be avoided in the highlights unless they are 
defined. As such, the last two highlights need revised/rewritten 
 
The third and fourth highlights were revised by substituting the acronyms with more 
comprehensible verbal expressions. 
 
Introduction: The level of detail and citations in the introduction are excessive, it is unclear how the 
references to fluctuations in estrogens and characteristics like sexual behavior, preferences, 
PSYCHIATRIC (not psychic) disorders are relevant to the assay being developed or the current 
study. These should be omitted and the introduction shortened. 
 
The Introduction section was shortened and 12 citations were removed (former 13-18, 20-21, 23-
25, 27), according to the Reviewer’s suggestion. 
 
Also in the introduction, the reference and discussion of the studies that have employed the LC-MS 
estrogen metabolite assay need to be corrected. The NHSII citation (28) is correct in line 68 (need 
to correct pre-menopause to pre-menopausal), but the reference to the STUDIES (not study) 
conducted using primarily serum in postmenopausal women should be to the recent meta-analysis 
by Sampson et al. https://www.ncbi.nlm.nih.gov/pubmed/28011624, not reference 30 Falk et al. 
Further in premenopausal women, the following reference 
https://www.ncbi.nlm.nih.gov/pubmed/27138982 would be more relevant to the current study than 
the studies conducted in postmenopausal women. 
 
Citation of the two references suggested by the Reviewer was introduced in the dedicated 
paragraph and the text was modified accordingly. The two underlined misprints were corrected. 
 
Line 88 in introduction, the references to the methods papers should replace reference 28 with the 
actual methods paper from that article https://www.ncbi.nlm.nih.gov/pubmed/16223252 
 
The correct citation for the analytical method description was updated. 
 
Line 96 - progestins refers to only synthetic progestin compounds, authors should use 
progestogens (if they are referencing both naturally occurring progesterone and synthetic 
progesterone compounds (exogenous)) or progesterone (endogenous only) 
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The cited papers refer to endogenous substances only. The correct term “progesterone” replaced 
the wrong one (progestin). 
 
Line 99 - only 12 estrogen metabolites listed, unclear and not reconciled with the list of 15 at line 
111, please only list the 15 estrogen/estrogen metabolites once in the paper, (lists are provided at 
line 99, 111, 117, and elsewhere). 
 
The list of targeted steroids was: 
- maintained in the Abstract 
- eliminated from the Introduction (former lines 99-101) 
- maintained in the Material and Methods – Chemicals and reagents 
- transferred to the MethodX file within the Experimental Design section together with most of the 
Experimental and Discussion sections related to the analytical method. 
 
Urine sample collection, line 291 - unclear what is meant by 'did not assume birth control pills'; line 
292 how was creatinine measured? (need to state method). 
 
The phrase was substituted with the following “None of them was taking any pharmaceutical drug 
or combined oral contraceptive pills in the period of sample collection”. 
The method and instrumentation used to measure creatinine was specified in the text. 
 
The chemometrics section is much improved. 
 
Thank you. 
 
Results and discussion - it is suggested to move method development and experimental designs to 
either the methods or the supplemental material - it does not seem appropriate in the 
results/discussion section. 
 
Method validation results could be revised to reduce redundancies and report results more 
concisely, it is overly long as written. 
 
In general, the manuscript contains more details about the assay methods than are necessary, I 
agree with the other reviewer that much could be moved to supplemental material. 
 
We agree with the Reviewer that “Steroids” should not report detailed description of the analytical 
method optimization and validation. On the other hand, a previous publication reporting these 
details does not exist and we are interested that the present analytical method could be clearly 
described in an easily accessible format. Therefore, rather than transferring this content into the 
Supplementary Material, we included it into a MethodX file, to be published as an open access 
material. We hope that our proposal meets the Reviewer’s request and, at the same time, is 
acceptable by the Editor. 
 
Conclusions: citations are needed at line 522 regarding previously published GC-MS protocols. 
Last paragraph of the conclusion is not clear, in particular it is not clear what the authors are 
concluding after reading these three sentences. 
 
Citation of two papers - already mentioned in the Introduction - was added. 
The last paragraph was extensively revised, as follows: (a) the position of second and third 
sentences of the paragraph was inverted; (b) the central sentence was expanded and split in two 
to make the inherent conclusion clear. 
 
Other comments: 



- With respect to limitations, the authors need to clearly describe the limitations of their assay 
design and specifically reference possible limitations of using only 2 internal standards on 
identifying independent peaks when more standards are available. 
 
The following sentence was added to the first paragraph of the Conclusions: “In case that the 
concentration of one specific estrogen has to be determined with high accuracy, the method can 
be further improved by using a dedicated isotopically-labelled homolog as the internal standard.” 

 



Graphical Abstract



Highlights 

 A GC-MS method detecting 15 estrogens in urine was developed and fully-validated; 

 Urine samples from 9 women were collected daily for a menstrual cycle and analyzed; 

 Fluctuations along the cycle were observed using 3-D multivariate statistics; 

 A linear discriminant model allowed to single out the different menstrual phases. 

 

*Highlights (for review)
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INTRODUCTION 1 

 2 

Estrogens play a variety of crucial roles in the menstrual cycle and throughout the entire life of 3 

women. The menstrual cycle is the cyclic orderly sloughing of the uterine lining, in response to the 4 

interactions of hormones produced by the hypothalamus, pituitary and ovaries [1]. The duration 5 

of a complete menstrual cycle spans from 21 to 35 days, with an average of 28 days. The 6 

menstrual cycle is usually divided into the follicular and the luteal phases. The follicular phase 7 

begins from the first day of menses until ovulation, which typically occurs around the 14th day. 8 

After ovulation, the luteal phase starts and lasts 14 further days, on average [1–4]. Lifestyle 9 

factors, such as smoking, physical activity and alcohol consumption may affect the phases of the 10 

menstrual cycle [5]. Abnormally high and low values of body mass index (BMI) are frequently 11 

associated to menstrual dysfunctions, due to the correlation of the estrogens metabolism with the 12 

nutrition and dietary composition and the role of adipose tissue in aromatase conversion [6]. The 13 

natural rhythmic fluctuations of the estrogens that control the menstrual cycle influence the 14 

fertility [7–11] and various physical and psychological conditions [3,12–15]. 15 

An important methodological issue with the study of estrogens data is how to align the cycles of 16 

the different women to allow comparisons [9]. In the Nurses’ Health Study II, this issue was 17 

overcome by sampling all the women during their luteal phase [16]. The main problem for this 18 

approach is the difficult recognition of the menstrual phase in women with irregular periods. To 19 

date, only the variation of estrone or estradiol levels were evaluated across complete menstrual 20 

cycles, possibly because these are the main estrogens circulating in the human body, together 21 

with estriol [17]. A comprehensive evaluation of an extended estrogenic profile was previously 22 

proposed with the purposes of detecting any possible correlations between estrogens and breast 23 

cancer risk: the urinary estrogenic profile of 15 free and conjugated estrogens was collected from 24 

a large cohort of pre-menopausal women and retrospectively interpreted, on the basis of their 25 

clinical history [16] Extended estrogenic profiles were also correlated with terminal duct lobular 26 

unit involution, a marker of increased breast cancer risk [18]. In parallel studies on post-27 

menopausal women, the determination of blood estrogens and metabolites revealed a lower risk 28 

of breast cancer for the subjects with high levels of the hydroxylated 2-pathway metabolites 29 

[19,20]. 30 

The estrogen determinations most frequently reported in the literature are conducted on either 31 

urine or oral fluid, using radioimmunoassay (RIA), enzyme immunoassay (EIA), or enzyme-linked 32 

*Manuscript
Click here to view linked References
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immunosorbent assay (ELISA) [22]. While these immunoassay methods provide high throughput, 33 

efficiency, ease of use, fast turnaround time and low cost, they frequently do not have the 34 

necessary specificity and sensitivity to accurately measure low estrogen concentrations, due to 35 

cross-reactivity with structurally similar substances [21,22]. This limits the chance of estrogen 36 

profiling during the follicular and late luteal phases, when their concentration level is particularly 37 

low. In contrast, the hyphenation of chromatographic and mass spectrometric (MS) techniques 38 

provides the simultaneous dosage of both parent estrogens and their metabolites ensuring at the 39 

same time extremely low detection limits [21-23]. Liquid chromatography (LC) and gas 40 

chromatography (GC) coupled with MS are consistently used in multi-analyte profiling, with LC-MS 41 

increasingly favored for its straightforward applicability, even if GC-MS has traditionally dominated 42 

the analysis of estrogens and other endogenous steroids for years. Actually, GC-MS provides broad 43 

steroids profiles after a single derivatization step, achieving high specificity, good sensitivity, and 44 

limited matrix effects [23]. In general, the advantage of high-resolution separation is increasingly 45 

valued in targeted and untargeted metabolomics to obtain complete urinary endogenous steroid 46 

profiles that include estrogens, androgens, corticoids, and progesterone [24-26]. Multi-residual 47 

GC-MS methods for the detection of wide estrogen profiles have occasionally been developed in 48 

the past [27-30], even if the laborious sample preparation steps somehow contributed to the 49 

progressive decline of GC-MS procedures in favor of LC-MS. 50 

In the present study, 15 estrogens were monitored in nine women along one menstrual period 51 

using an optimized and fully validated GC-MS method. The collected data were used to build a 52 

preliminary multivariate model shaping the menstrual cycle, which may represent a valuable tool 53 

in the study of fertility issues, as well as in the screening and evaluation of various pathological 54 

conditions, including endocrinology disorders and hormone-dependent cancers. 55 

 56 

MATERIAL AND METHODS 57 

 58 

Chemicals and reagents 59 

4-methoxyestrone, 4-methoxyestradiol, 2-methoxyestrone, 16α-hydroxyestrone, 2-60 

methoxyestradiol, 2-hydroxyestradiol, 4-hydroxyestrone, 4-hydroxyestradiol, 17-epiestriol and 16-61 

epiestriol were purchased from Toronto Research Chemical Inc. (Toronto, ON, Canada). 17α-62 

estradiol, 17β-estradiol, hexane, methanol, ethyl acetate, ascorbic acid, ammonium iodide, tert-63 

butyl methyl ether (TBME), dithioerythritol and N-methyl-N-(trimethylsilyl) trifluoroacetamide 64 
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(MSTFA), β-glucuronidase/arylsulfatase (from Helix pomatia) mixture, were provided by Sigma-65 

Aldrich (Milan, Italy). Estrone, 2-hydroxyestrone, estrone 3-(β-D-glucuronide) sodium salt, estriol, 66 

estrone-d4 and 17β-estradiol-d4 were supplied by LGC Promochem SRL (Milan, Italy). β-67 

glucuronidase from Escherichia coli was purchased from Roche Life Science (Indianapolis, IN, USA). 68 

Ultra-pure water was obtained from a Milli-Q® UF-Plus apparatus (Millipore, Bedford, MA, USA). 69 

C-18 endcapped Solid-Phase Extraction (SPE) cartridges were provided by UCT Technologies 70 

(Bristol, PA, USA) and estrone 3-sulfate sodium salt was supplied by Steraloids Inc. (Newport, RI, 71 

USA). 72 

All stock standard solutions were prepared in methanol at 1 mg/mL and stored at 20° C until use. 73 

Working solutions containing a mixture of all analytes were prepared at the final concentrations of 74 

20 µg/mL and 1 µg/mL by appropriate dilution with methanol. Estrone-d4 and 17β-estradiol-d4 75 

were used as isotopically labelled internal standards for quantitation and were added from 76 

separate methanol working solutions at the final concentrations of 100 µg/mL and 50 µg/mL, 77 

respectively.  78 

 79 

Sample preparation 80 

The sample preparation conditions were optimized after design of experiments [31], described 81 

elsewhere [32]. The urine sample (6 mL) was fortified with both 17β-estradiol-d4 and estrone-d4 82 

internal standard solutions at the final concentrations of 50 ng/mL and 25 ng/mL. After that, the 83 

pH was checked and, if necessary, some drops of HCl were added to attain a final pH of 5.5. 2 mL 84 

acetate buffer 1.1 M (pH 5.5) and 50 µL ascorbic acid 1 M were added, too. Ascorbic acid was 85 

necessary to protect the labile catechol groups and prevent their degradation [27,29]. A 86 

deconjugation step, useful to transform the glucuronide and sulphate conjugated estrogens 87 

[2,17,33] into the free form, was executed by adding 20 µL of β-glucuronidase/arylsulfatase 88 

mixture to the urine samples, which were then incubated at 37 °C overnight. The next morning, 89 

100 µL β-glucuronidase from Escherichia Coli was added, together with 50 µL of ascorbic acid 90 

solution and the final enzymatic deconjugation of the remaining glucuronide estrogens was 91 

carried out for 1 hour at 58 °C. Once the hydrolysis was completed, the mixture was cooled to 92 

room temperature and 2 mL of 0.1 M carbonate buffer (pH 9) with some drops of NaOH 1 M were 93 

added, to obtain a final pH > 9. Liquid-liquid extraction (LLE) was performed by adding 5 mL of 94 

ethyl acetate and hexane (2:3 v/v) mixture to the sample, which was subsequently shaken in a 95 

vortex multimixer (Tecnovetro, Monza, Italy) for 5 min and subjected to centrifugation (model 96 
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Megafuge 1.0 Heraeus; ASHI, Milan, Italy) at 4000 rpm for 5 min. The extraction process was 97 

repeated twice, and the two combined organic phases were transferred into a vial and evaporated 98 

to dryness under a gentle stream of nitrogen at 40 °C using a Techne Sample Concentrator 99 

(Barloworld Scientific, Stone, UK). The dried residue was reconstituted and derivatized for 1 hour 100 

at 70 °C by adding 50 µL of MSTFA/NH4I/dithioerythritol (1.000:2:4 v/w/w) solution. A 2 µL aliquot 101 

was injected into the GC/MS system in the splitless mode. 102 

 103 

GC-MS analysis 104 

All analyses were conducted on an Agilent 6890N Network GC System interfaced to a 5975 inert XL 105 

Mass Selective Detector (Agilent Technologies, Milan, Italy). The GC was equipped with a J&W 106 

Scientific HP-1 17.0 m x 200 µm (i.d.) x 0.11 µm (f.t.) capillary column. The helium gas carrier was 107 

employed at a constant pressure of 23.25 psi and 1.1 mL/min initial flow. The GC oven 108 

temperature was initially set at 200 °C, held for 2 min, then was raised to 225 °C with an 8 °C/min 109 

ramp. Then, the temperature was increased to 234 °C with a 3 °C/min heating rate, held for 3 min 110 

and raised again to 245 °C with a 3 °C/min ramp. The final oven temperature of 315 °C was 111 

reached with a 40 °C/min heating rate and held for 3 min. The total run time was 19.54 min. The 112 

GC injector and transfer line were maintained at the temperature of 280 °C. Trimethylsilyl 113 

derivatives of the analytes were ionized by electron ionization (EI) at 70 eV. Data were acquired in 114 

the selected ion monitoring (SIM) mode at a dwell time of 20 ms [32,34]. 115 

 116 

Method validation 117 

The analytical method was validated according to the Eurachem criteria and recommendations 118 

[35]: linearity range, selectivity, specificity, limit of detection (LOD), limit of quantitation (LOQ), 119 

intra-assay precision and accuracy, repeatability, matrix effect, extraction recovery, and carry-over 120 

were determined. A pool of urines collected from healthy male volunteers (laboratory personnel), 121 

was negativized by solid-phase extraction using a C-18 end-capped cartridge previously 122 

conditioned with 2-propanol and ultra-pure water. The absence of any detectable trace of 123 

estrogens was verified. The resulting sample was used as blank urine and spiked with the standard 124 

solutions within the validation procedure. Full details about the validation of the analytical 125 

method are reported in a dedicated publication [32].  126 

 127 

Linearity, LOD, LOQ 128 
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The calibration was performed by internal standardization using the least squares regression 129 

method from five replicate analyses for each data-point at six concentration levels in the range 1-130 

50 ng/mL. Linearity was evaluated by lack-of-fit test, analysis of variance (ANOVA) test, Mandel's 131 

test, and relative standard deviation (RSD) of the slope, according to the approach described by 132 

Desharnais et al. [36]. Moreover, the residual plots and the deviation from back-calculated 133 

concentrations were examined. When heteroscedastic distribution of data-points was observed, a 134 

weighting factor of x–1 or x–2 was employed, depending on the rate of the variance increase with 135 

the concentration (linear or quadratic). 136 

LOD and LOQ were estimated for all the target analytes using the Hubaux-Vos’ algorithm at a 137 

significant level of 95% [37] from the 30 data-points collected to build the calibration lines. To 138 

confirm the correct estimation further, the calculated LOD and LOQ values were experimentally 139 

verified with blank samples spiked at concentrations close to the detectable and quantifiable 140 

values, respectively. In the operational practice, LOQ values were assumed at the lower level of 141 

the calibration curves. 142 

 143 

Repeatability and accuracy 144 

The retention time repeatability was verified on the chromatographic peak of the target analytes 145 

recorded in the 30 overall analyses used to build the five calibration curves (see above). Deviations 146 

below 1% from calibrators and controls were considered satisfactory. The repeatability of the 147 

relative ion abundance was evaluated on the selected ion chromatograms for each target analyte. 148 

The variations were considered acceptable within ±20%, with respect to the controls. 149 

For all analytes, intra-day repeatability and accuracy were evaluated on 10 blank urine samples 150 

spiked with all the target analytes at three concentration levels (1.0 ng/mL, 5.0 ng/mL and 25 151 

ng/mL). Precision and accuracy were estimated from the percent variation coefficient (CV%) and 152 

percent bias (bias%), respectively. Precision was considered satisfactory when the CV% values 153 

were below 15% for the low calibration level and below 10% for the other levels. Satisfactory 154 

accuracy was achieved when the experimentally determined average concentration lied within 155 

±10% from the expected value. 156 

 157 

Matrix effect, extraction recovery, enzyme performance, carry over 158 

The matrix effect was evaluated at the three concentration levels defined above by comparing the 159 

experimental results obtained from blank urine samples (mean value from five replicates) and 160 
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blank deionized water solution both spiked after the extraction step at the same concentration. 161 

The matrix effect for each target analyte was expressed as the percentage ratio between the two 162 

measured concentrations. Extraction recovery was calculated at the same concentration levels by 163 

comparing the experimental results from blank urine samples spiked respectively before and after 164 

the extraction step (5 replicates each) and expressed as the percentage ratio between the two 165 

data. 166 

The efficiency of β-glucuronidase and arylsulfatase to achieve exhaustive hydrolysis of the 167 

conjugated metabolites was tested at three concentration levels (1.0 ng/mL, 5.0 ng/mL and 25 168 

ng/mL) by measuring the percentage ratio between the recovered concentration of estrone 169 

glucuronide (and sulfate) spiked into a blank sample and that of free estrone spiked to another 170 

blank sample at the same molar concentration. All the analyses were performed in duplicate. 171 

The carry-over effect was evaluated by injecting in alternate sequence five blank urine samples 172 

spiked with all the analytes at the highest concentration and five blank deionized water solutions. 173 

Moreover, the carry-over effect was considered negligible if the S/N ratio was lower than 3 at the 174 

analytes’ retention time for each monitored ion chromatogram obtained from the latter solutions. 175 

 176 

Real urine sample collection 177 

First morning urine samples were collected every day during a complete menstrual cycle (28 days) 178 

from 9 female volunteers aged 24-35 years, average 27.6 y ± 3.4 (1 parous). The 252 total samples 179 

were maintained at 20 °C and randomly analysed once the monthly collection was completed. All 180 

the women were healthy. None of them was taking any pharmaceutical drug or combined oral 181 

contraceptive pills in the period of sample collection. For all urine samples, the analytical 182 

determinations were normalized against their creatinine concentration to compensate for the 183 

physiological urinary dilution [2,4]. Creatinine was determined by the alkaline picrate photometric 184 

method using the dedicated kit on Architect C800 instrumentation (Abbott srl, Rome). In order to 185 

follow privacy regulations, an anonymous code was attributed to each participant subject who, 186 

anyway, voluntarily donated samples to the present project. 187 

 188 

Chemometrics 189 

Multivariate data analysis was carried out using Matlab® (The MathWorks, MA, USA) version 9.0.0 190 

with PCA Toolbox version 1.2 [38], N-way Toolbox version 2.10 [39] and Classification Toolbox 191 

version 5.0 [40]. 192 
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Data were arranged into a three-dimensional array (3-way), labelled as X, with dimensions (I × J × 193 

K) chosen as follows: (I) 9 subjects (representing the female volunteers), (J) 28 days (representing 194 

the menstrual cycle duration), (K) 15 variables (representing the studied estrogens). To analyse the 195 

three-dimensional data, a PARAllel FACtor analysis (PARAFAC) model [41-43] was applied. The 196 

Alternating Least Squares (ALS) algorithm basically decomposes the X 3-way array into three two-197 

dimensional matrices , namely A (I × L), B (J × L) and C (K × L), where the former variables (I, J, K) 198 

are expressed as a function of a new multivariate parameter (L) representing the loadings [41-43]. 199 

The B and C matrices show the natural fluctuation of each estrogen concentration throughout the 200 

28-day menstrual cycle. 201 

In order to separate the different phases of the menstrual cycle (i.e., follicular phase, ovulation 202 

and luteal phase), the Principal Component Analysis (PCA) [44] was carried out, as an exploratory 203 

method for multivariate data analysis. Since PCA works on two dimensional data matrices, the 3-204 

way matrix X was unfolded in a JIK matrix (i.e., 28×135), after autoscaling. The PCA model was 205 

built employingfollowing a venetian blinds cross-validation procedure, with a number of data splits 206 

equals to 5. The optimal number of principal components (PCs) was chosen from the predicted 207 

residual sums of squares (PRESS), root mean squared error of cross-validation (RMSECV) and the 208 

scree plot. Further parameters, including eigenvalues, percentage variance captured by each PC 209 

(Var%) and percentage cumulative variance captured by the model (CumVar%) were also 210 

evaluated [44]. 211 

Lastly, a linear discriminant analysis (LDA) model was built to verify the classification power of the 212 

multivariate estrogenic profile with respect to the phase of the menstrual cycle (e.g., luteal phase, 213 

ovulation and follicular phase). The variables used to build the LDA model were the first 10 PCs 214 

scores, obtained as linear combinations of the original estrogen concentrations. This approach has 215 

the advantage of removing noise from the dataset and improving the classification performances.  216 

The data multi-normality was verified and again a cross-validation procedure was performed by 217 

applying the venetian blinds design technique with 5 data splits. The classification criterion based 218 

on the Bayes’ rule assigned each sampled day to the category showing the highest probability [40]. 219 

 220 

RESULTS AND DISCUSSION 221 

 222 

Method optimization and validation 223 

 224 
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The DoE optimization of sample preparation [32] was aimed to achieve simpler and faster 225 

extraction conditions than those used in previous studies [27-30]. The best combination of drying 226 

temperature (found at 40°C) and extraction solvent was found with the ethyl acetate + hexane 227 

(2:3 v/v) mixture as it corresponded to higher resolution and intensity of the chromatographic 228 

peaks with respect to TBME [32]. 229 

Optimal chromatographic separation among the estrogens of similar chemical structure (for 230 

example, 2-methoxyestrone and 16α-hydroxyestrone) was obtained by using a slow increase of 231 

the oven temperature (3 °C/min) between 225 °C and 245 °C interrupted by a hold time at 234 °C 232 

for 3 min. Nevertheless, the full chromatographic run was completed in less than 20 minutes and 233 

the retention times of the target analytes lied between 6.58 min (17α-estradiol) and 10.50 min 234 

(16-epiestriol). 235 

 236 

Linearity, LOD, LOQ 237 

Full validation data are reported elsewhere [32]. The linearity of the calibration curves was tested 238 

in the concentration range of 1.0 – 50 ng/mL for all the analytes. Lack of fit’s, ANOVA, RSD slope 239 

and Back-calculation tests proved to yield calculated results below the respective critical values for 240 

all the target analytes. Among the target analytes, only 17α-estradiol, 4-hydroxyestradiol and 2-241 

methoxyestradiol were characterized by a quadratic calibration model. Most of the estrogens’ 242 

models used an x–2 weighting correction, except 17α-estradiol, 2-methoxyestradiol, estrone, 4-243 

methoxyestrone and estriol. From the residual plots, the calibration linearity was confirmed by the 244 

presence of random residuals patterns along the concentration ranges for all the analytes. 245 

LOD values ranged between 0.2 ng/mL and 0.4 ng/mL. The LOQ values, estimated below 1.0 246 

ng/mL for all target analytes, were verified experimentally. The first point (1.0 ng/mL) of each 247 

calibration range was successfully tested for precision and accuracy, as reported below, and was 248 

subsequently used as operational LOQ. 249 

 250 

Repeatability and accuracy 251 

Ion abundance and retention time repeatability proved experimentally appropriate. Intra-assay 252 

precision and accuracy satisfied the target criteria, as the CV% are lower than 15% for all the 253 

analytes at all tested concentration levels, while the percent bias (bias%) lied between 8.2% (2-254 

hydroxyestrone) and +12% (2-hydroxyestradiol) at 1.0 ng/mL, 11% (4-hydroxyestradiol) and 255 
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+6.8% (4-hydroxyestrone) at 5.0 ng/mL and 6.2% (17α-estradiol) and +5.6% (2-hydroxyestradiol) 256 

at 25 ng/mL [32]. 257 

 258 

Matrix effect, extraction recovery, enzyme performance, carry over 259 

The matrix effect values ranged from 12% for 4-methoxyestrone to +15% for 16α-hydroxyestrone 260 

at low level, from 9.2% for 4-hydroxyestrone to +12% for 17-epiestriol at medium level and from 261 

5.6% for 2-hydroxyestradiol to +6.3% for 16α-hydroxyestrone at high level. These scattered 262 

values are close to the experimental bias and do not evidence any significant matrix effect. The 263 

average recovery efficiency was 99%, with minima and maxima ranging from 89% for 4-264 

hydroxyestrone to 108% for 4-hydroxyestradiol and 17-epiestriol at 1.0 ng/mL; from 87% for 17α-265 

estradiol to 107% for 4-hydroxyestrone at 5.0 ng/mL; from 94% for 17α-estradiol to 110% for 2-266 

hydroxyestradiol at 25 ng/mL. Again, the extraction recovery was virtually complete at all 267 

concentration levels allowing a correct estimation of the target analytes’ concentration. 268 

The percent hydrolysis achieved by both β-glucuronidase and arylsulfatase on estrone glucuronide 269 

and estrone sulfate at all concentration levels was close to 100%, supporting the claim that the 270 

deconjugation efficiency on phase II metabolites could be considered complete. No carry over 271 

effect was observed. 272 

 273 

PARAFAC Model 274 

The PARAFAC approach is commonly employed in environmental data analysis, when repeated 275 

chronological monitoring of sampling sites yields three-dimensional data structures. The same 276 

statistical tool is suitable for our chronological monitoring of estrogen profiles [39,41-43]. A 277 

PARAFAC model was built to extract the concentration profile for each estrogen along the 28-day 278 

menstrual cycle, by smoothing the large individual variability of estrogenic profiles, that proved 279 

significant for the 9 investigated women. Due to the different duration of the menstrual cycles, 280 

spanning between 28 and 30 days, the ovulation peak occurred at different days, from the 13th to 281 

the 17th day, in agreement with the literature [17,45-47]. To comply with this source of variability, 282 

the extreme sampling days were removed from the series collected from the women with a 283 

menstrual cycle longer than 28 days. Actually, the extreme days (i.e. the first and the last of the 284 

menstrual cycle) exhibited comparable results with the subsequent and preceding samples, 285 

respectively. The final PARAFAC processing allowed the equalize each menstrual cycle within a 286 

unique scale so as to evaluate and compare the natural variation of the estrogenic levels. The 287 
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number of significant factors for the PARAFAC model was two, that explain a CumVar% of 86.98%, 288 

relative to Var%=75.17% and Var%=10.81% for factor 1 and factor 2, respectively. 289 

All the extrapolated estrogenic profiles are reported in Figure 1 and exhibit several remarkable 290 

features. In particular, 17β-estradiol (2a) and estrone (2b) show two peaks, the first occurring 291 

close to the ovulation with a time-shift of 3-4 days between the two hormones, while the second 292 

smoother peak appears in the period around the 20th-25th day of the cycle. These profiles are 293 

comparable to those reported in the literature [7–9,12,48]. In contrast, no peak is observed for 294 

17α-estradiol (2a) in the central part of the cycle and only a faint increase of its level is detectable 295 

in the luteal phase of the cycle. The lack of correlation between 17α- and 17β-estradiol profiles 296 

may explain the scarce specificity of the immunoassays methods used for their quantification. 297 

Several metabolite profiles are characterized by the occurrence of a single concentration peak 298 

around the ovulation, namely 2-hydroxyestradiol (1c), 4-hydroxyestradiol (1c), and 2-299 

methoxyestrone (1f) at the 15th day, but 4-hydroxyestrone (1e) and 2-hydroxyestrone (1e) 300 

together with estrone (1b) at the 17th day. Surprisingly, 2-methoxyestrone shows a chronological 301 

correlation with hydroxyestradiol isomers instead of hydroxyestrone isomers, as it would be 302 

expected. On the other hand, 4-methoxyestrone (1f) show a sharp peak in the follicular phase of 303 

the cycle, that is not observed for the isomer 2-methoxyestrone. The different behaviour observed 304 

for 2- and 4-methoxyestrone isomers contrasts with those recorded for the analogous 305 

hydroxyestrone (1e) and hydroxyestradiol (1c) isomers. All these observations add details on the 306 

complex regulating system of the estrogen biochemistry active during the ovulation phase which 307 

can not be explained by straightforward and progressive metabolic pathways [14]. 308 

4-methoxyestradiol (1d), 16-epiestriol, and 17-epiestriol (1g) display a profile in which the 309 

concentration increases around the ovulation and remains quite stable for the subsequent 10 310 

days, whereas 2-methoxyestradiol (1d) shows a constant decrease along the cycle. 311 

Barrett et al [7] and Venners et al [9] determined the urinary concentration of estrone alongside 312 

the entire menstrual cycle by immunoassay: the resulting profiles showed the same pattern that 313 

we observed in the PARAFAC profile, even if the analytical methods were different. A comparable 314 

profile was also observed by Baird et al [8] who used a radio-immunoassay method. Likewise, the 315 

profiles of 17α- and 17β-estradiol that we observed substantially overlaps the ones reported by 316 

Roney et al [12] and Barrett et al [48], although in these studies the concentrations were 317 

measured by immunoassay in the oral fluid. Basically, two peaks are observed, the first one just 318 
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before the ovulation and the second during the luteal phase. Noteworthy, the first peak has not 319 

been observed in our study for 17α-estradiol. 320 

The correspondence of our data with literature profiles and the agreement between oral fluid and 321 

urine data, and between GC-MS and immunoassay methods represent further confirmation of the 322 

reliability of the present approach to gain general information about the relative concentration of 323 

the circulating hormones. The multi-residual GC-MS method proposed in this study proved to 324 

represent a fast, cheap, practical, and reliable analytical tool for the monitoring of an extended 325 

estrogenic profile in young women (24-35 years), overcoming the lack of specificity typical of 326 

immunoassay methods. 327 

 328 

PCA results and LDA model 329 

Principal component analysis (PCA) was performed on the complete 28 × 135 data matrix with the 330 

purpose of discovering any underlying structure in the data The optimal number of principal 331 

components (PC) to be considered was two representing a CumVar% of 28.22% and a RMSECV% of 332 

16.13%. The limited percentage of total variance explained by PC1+PC2 (only 28.22%) is coherent 333 

with the large variability of the data. In practice, the new PC variables, as linear combination of the 334 

old ones (concentration of estrogens), emphasize the information content present in the data 335 

while reducing the contribution of their random fluctuation. The scores plot of PC1 (Var% 14.91%) 336 

vs PC2 (Var% 13.31%) is reported in Figure 2A and shows the occurrence of three broad clusters 337 

corresponding to the three phases of the menstrual cycle: follicular, ovulation, and luteal. The 338 

follicular and ovulation phase data are separated along PC2, while the ovulation and luteal phase 339 

data along PC1. 340 

By plotting PC1 and PC2 as a function of the menstrual cycle day in two separate diagrams (Figure 341 

2B-2C), the phase transitions become visible and the starting point of both the ovulation and 342 

luteal phase can be clearly identified. 343 

A preliminary LDA model was built using the information extracted by the PCA scores. While the 344 

PARAFAC technique demonstrated that the original data were affected by large internal variability 345 

which prevented the construction of a reliable and stable classification model based on them, the 346 

PC scores are free from correlation and noisy pattern. Therefore, the PCA scores were used 347 

instead of the original estrogen data to build the LDA model. 348 

The multi-normality of the PC scores was successfully checked (Figure 3A) and then a cross-349 

validating procedure was applied to the 28×10 matrix (10 PCs were considered). A cross-validated 350 
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non-error rate of 90% was achieved, together with an accuracy equal of 93%, as is shown in the 351 

confusion matrix reported in Table 1. Only two data-points were misclassified, namely the 17th 352 

day, which was classified in class 3 (luteal phase) instead of class 2 (ovulation), and the 18th day, 353 

which was classified in class 1 (follicular phase) instead of class 3. The misclassification of the 17th 354 

and 18th days was not surprising since both data-points belong to the transition period from the 355 

ovulation to the luteal phase and correspond to a sudden drop of the estrone, 2- and 4-356 

hydroxyestrone concentrations (Figure 1b, 1e). The accurate classification of all days belonging to 357 

the transition from the follicular to the ovulation phase is explained by the smoother 358 

concentration increment observed for 17β-estradiol, 2- and 4-hydroyestradiol from the 11th to the 359 

15th day of the cycle (Figure 1a, 1c). 360 

The scores plot reported in Figure 3B shows the good partition of the days in three well-defined 361 

classes corresponding to the follicular phase, the ovulation and the luteal phase. The loadings plot, 362 

representing the PC variables in the space of the LDA canonical variables (Figure 3C), indicates the 363 

correspondence between class discrimination and PCs. In particular, PC2 is high during the 364 

ovulation and low during the follicular and luteal phases. Hence, it is able to identify the ovulation 365 

period from the other phases of the cycle. On the other hand, the luteal phase is characterized by 366 

elevated values of PC1 (and PC7), which is low in the follicular phase and especially low during the 367 

ovulation, distinguished also by a high value of PC8. 368 

Studies that use the menstrual cycle phase as a proxy for directly measured ovarian hormone 369 

levels typically fail to capture their inherent variability. The lack of reliable methods to divide the 370 

menstrual cycle into its component phases was proved, as divergent outcomes may be produced 371 

by using different methods [3,10]. The application of the present multivariate statistical model to 372 

GC-MS data is expected to overcome this limit and allow a correct definition of the phases of the 373 

menstrual cycle, an important issue in the study of fertility. For example, Barrett et al [7] who 374 

determined the concentration of urinary estrone alongside a complete menstrual cycle 375 

established the difference in ovarian function between nulliparous and parous women. In general, 376 

the menstrual cycle features represent important indicators of the reproductive health and 377 

endocrine function. For example, Small et al [11] found a connection between the menstrual cycle 378 

variability and the likelihood of pregnancy, Venners et al [9] discovered that higher estrogen 379 

concentrations were associated with the occurrence of clinical pregnancy, and Baird et al [8] 380 

studied the hormonal pattern most appropriate for pre-implantation. All the areas of interest 381 

linked to reproduction could benefit from a multivariate interpretation of a wide estrogen profile, 382 
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such as the one proposed in the present study, which may find application also in the investigation 383 

of a variety of physical and psychological disorders. 384 

 385 

CONCLUSIONS 386 

 387 

In the present study, a GC-MS method is proposed for the simultaneous detection of 15 estrogens 388 

in the urine of a group of young women, that involves easy sample pretreatment, overcoming 389 

some of the limitations of previously published GC-MS protocols [28,29]. The reliability of the 390 

procedure was validated following a rigorous protocol and good performances were obtained, 391 

particularly in terms of efficient extraction recovery and adequate sensitivity, making the GC-MS 392 

approach competitive with the more demanding LC-MS/MS technique. In case that the 393 

concentration of one specific estrogen has to be determined with high accuracy, the method can 394 

be further improved by using a dedicated isotopically-labelled homolog as the internal standard. 395 

Despite the large variability of the experimental data, the use of multivariate statistics on urine 396 

sample sequences collected from nine women – in particular the application of the PARAFAC 397 

approach - proved capable to extract the typical concentration profile for each analyte along the 398 

menstrual cycle, including estriol and the eleven metabolites not previously investigated in 399 

women. As a matter of fact, most of the existing literature only reports the variations of estrone 400 

and estradiol concentrations across the complete menstrual cycle, whereas in the present case a 401 

generalized picture for a broad urinary estrogen panel along the whole menstrual period has been 402 

described for the first time.  403 

The advantages of using multivariate data analysis was made evident by the application of PCA, 404 

which yielded an easier visualization and efficient partition of the data into three groups, 405 

corresponding to the three phases of the menstrual cycle, namely the follicular phase, ovulation, 406 

and the luteal phase, together with the transitions between the phases. 407 

The preliminary LDA model built on the PCA scores produced a reliable classification of each day 408 

along the cycle series, with a satisfactory cross-validated non-error rate of 90%. Therefore, the 409 

multivariate comparison of the estrogen profile collected from a single urine sample with the 410 

proposed model is likely to provide a trustworthy classification of this sample in terms of phase of 411 

the menstrual cycle (follicular, ovulation, luteal). Possible applications of the model include the 412 

detection of the fertile days along the cycle, the screening of pathological conditions, and the 413 

identification of particular stressing or psychological conditions of the investigated subjects. 414 
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Further refinement of the present classification model is underway, as its full validation will 415 

require a much larger training and test sets than the one used in this proof-of-concept 416 

contribution based the on the recruitment of nine volunteers. 417 

 418 
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Figure captions 542 

Figure 1. Concentration profile (normalized for the creatinine value) of the target analytes along the 28-day 543 

menstrual cycle achieved by applying PARAFAC approach: (a) 17α-estradiol and 17β-estradiol, (b) estrone 544 

and estriol, (c) 2-hydroxyestradiol and 4-hydroxyestradiol, (d) 2-methoxyestradiol and 4-methoxyestradiol, 545 

(e) 2-hydroxyestrone and 4-hydroxyestrone, (f) 2-methoxyestrone and 4-methoxyestrone, (g) 16α-546 

hydroxyestrone and 16-epiestriol, and (h) 17-epiestriol. 547 

 548 

Figure 2.  Results provided by the PCA model: (a) Score plot relevant to PC1 (Var. = 14.91 %) vs PC2 (Var. = 549 

13.31%) showing the occurrence of three different clusters corresponding to the three phases of the 550 

menstrual cycle, i.e. follicular phase (blue dots), ovulation (red dots) and luteal phase (green dots). (b) PC1 551 

vs menstrual cycle day, representing the transition from the follicular phase to the ovulation phase. (c) PC2 552 

vs menstrual cycle day, representing the transition from the ovulation phase to the luteal phase. 553 

 554 

Figure 3. Results achieved by building the LDA model. (a) Multinormality test graph. (b) Score Plot relevant 555 

to the first two latent variables, showing the partition of the data in three well-defined classes: follicular 556 

phase (blue dots), ovulation (red dots) and luteal phase (green dots). (c) Loading Plot relevant to the first 557 

two latent variables, showing the PCs that mainly characterize the three classes of samples.  558 

 559 
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Table 1. Validation parameters and results relative to the evaluation of the calibration curves for all the target analytes, as follows: dynamic range of 

calibration, coefficient of determination (R2), limit of detection (LOD), limit of quantitation (LOQ), lack-of-fit, ANOVA and RSD slope tests, back calculation 

results, type of model and relative weights. The critical values of the significance tests are reported, too. 

 
 
 
 
Lack of fit’s test – Fcrit = 2.776 (n1 = 4 and n2 = 24 degrees of freedom) 
ANOVA – Ftab = 3.842 (n1 = 1 and n2 = 28 degrees of freedom) 
RSD slope test - %RSD threshold = 5.00% 
Back calculation test - % threshold = 20% 

 

Analyte 
Linearity 

range 
(ng/mL) 

Correlation 
coefficient 

(R2) 

LOD 
(ng/mL) 

LOQ 
(ng/mL) 

Lack of 
fit’s 
test 
(Fexp) 

ANOVA 
(Fexp) 

RSD 
slope 

test (%) 

Back 
calculation test 

(%) 
Model Weight 

17α-estradiol 1.0 – 50.0 0.9977 0.33 0.67 2.31 1.62 2.37 17 Quadratic x-1 
17β-estradiol 1.0 – 50.0 0.9985 0.27 0.55 2.73 1.39 1.94 15 Linear x-2 

2-hydroxyestradiol 1.0 – 50.0 0.9968 0.40 0.80 1.93 1.85 2.84 19 Linear x-2 
4-hydroxyestradiol 1.0 – 50.0 0.9976 0.35 0.69 2.26 1.18 2.45 19 Quadratic x-2 
2-methoxyestradiol 1.0 – 50.0 0.9985 0.28 0.55 1.12 1.02 1.97 16 Quadratic x-1 
4-methoxyestradiol 1.0 – 50.0 0.9988 0.25 0.49 1.23 1.03 1.75 13 Linear x-2 

Estrone 1.0 – 50.0 0.9980 0.31 0.63 0.77 0.97 2.23 14 Linear x-1 
2-hydroxyestrone 1.0 – 50.0 0.9985 0.27 0.54 1.07 1.01 1.92 15 Linear x-2 
4-hydroxyestrone 1.0 – 50.0 0.9966 0.41 0.83 1.37 1.05 2.94 19 Linear x-2 

16α-hydroxyestrone 1.0 – 50.0 0.9988 0.24 0.49 0.17 0.88 1.74 8 Linear x-2 
2-methoxyestrone 1.0 – 50.0 0.9993 0.19 0.38 0.10 0.87 1.34 16 Linear x-2 
4-methoxyestrone 1.0 – 50.0 0.9993 0.19 0.38 0.29 0.90 1.36 15 Linear x-1 

Estriol 1.0 – 50.0 0.9990 0.22 0.44 0.20 0.89 1.56 11 Linear x-1 
16-epiestriol 1.0 – 50.0 0.9983 0.29 0.58 2.09 1.30 2.04 15 Linear x-2 
17-epiestriol 1.0 – 50.0 0.9987 0.25 0.50 1.58 1.08 1.77 12 Linear x-2 

Table 1



 Table 2. Intra-day precision (CV%), accuracy (bias%), matrix effect and recovery for each analyte tested, together with hydrolysis efficiency of the enzyme. Levels I, II and III 

represent the concentration levels at which the selected parameters were evaluated, i.e. 1.0 ng/mL, 5.0 ng/mL and 25 ng/mL, respectively. 

 

 

 

 

 

 

 

 

 

   

 

Analyte 
Precision (CV%)  Accuracy (bias%)  Matrix effect (%)  Recovery (%) 

Level I Level II Level III  Level I Level II Level III  Level I Level II Level III  Level I Level II Level III 

17α-estradiol 13 9.7 7.3  +7.9 +2.7 -6.2  +8.1 +10 +4.4  106 87 94 

17β-estradiol 7.5 1.4 4.1  +7.6 +5.3 -1.1  +3.1 +1.8 +4.4  101 98 100 

2-hydroxyestradiol 13 9.4 3.5  +12 -2.6 +5.6  -6.4 -2.1 -5.6  105 97 110 

4-hydroxyestradiol 7.3 8.0 1.4  +6.5 -11 +2.3  -1.8 -1.1 -0.3  108 90 101 

2-methoxyestradiol 8.1 6.6 1.5  +10 +6.1 -0.5  +2.2 +0.1 +2.0  104 99 98 

4-methoxyestradiol 4.9 0.4 1.4  +2.0 +3.5 -0.05  +1.8 +0.6 +3.7  100 99 98 

Estrone 13 5.6 1.2  +7.3 +1.8 +3.6  -3.9 -7.3 -2.1  107 97 102 

2-hydroxyestrone 12 3.4 1.7  -8.2 +5.0 -2.1  -9.9 -8.6 -1.2  93 100 99 

4-hydroxyestrone 9.7 4.1 3.0  -7.8 +6.8 -1.0  -5.0 -9.2 -4.8  89 107 99 

16α-hydroxyestrone 13 4.4 5.0  -6.6 -2.0 -2.2  +15 +8.1 +6.3  95 99 101 

2-methoxyestrone 11 7.0 3.8  +8.9 -2.1 +1.7  +8.5 +10 +3.1  93 100 101 

4-methoxyestrone 12 9.3 7.1  +3.6 +4.8 -4.1  -12 -2.4 -0.1  99 104 100 

Estriol 13 9.2 2.9  +9.6 +4.6 +1.5  -9.5 -0.6 -1.5  95 102 96 

16-epiestriol 1.3 1.9 2.0  +3.7 +5.1 -0.5  -0.2 -1.1 -3.7  102 95 97 

17-epiestriol 4.3 2.2 0.4  +5.8 +5.4 -0.4  +9.8 +12 +2.9  108 92 99 

            

            

Enzymes 
 

Deglucuronidation (%)  Desulphatation (%)         

Level I Level II Level III  Level I Level II Level III         

β-glucuronidase, arylsulfatase 99 101 98  102 97 94         

Table 2



Table 3. Confusion matrix provided by the LDA model. The rows represent the real classes, while the columns represent the predicted ones; the correctly classified samples 

are reported on the diagonal. Overall non-error rate is reported, too. 

 

Confusion matrix 
Follicular 

Phase 
Ovulation 

Luteal 
Phase 

Follicular Phase 12 0 0 

Ovulation 0 4 1 

Luteal Phase 1 0 10 

Non-error rate  90% 

Table 3
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