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Abstract 30 

Robust T cell function recovery has been shown to be crucial in determining allogeneic 31 

hematopoietic stem cell transplantation outcome and there is growing evidence that the 32 

thymus plays a central role in regulating this process. We performed a long-term analysis 33 

of the role of thymic activity recovery in a population of pediatric patients undergoing 34 

allogeneic hematopoietic stem cell transplantation by signal joint T-cell receptor excision 35 

circle quantification. In this study, characterized by a long-term follow-up (median: 72 36 

months), we found that patients with higher levels of signal joint T-cell receptor excision 37 

circles before transplantation had a statistically significant reduced risk of death compared 38 

with patients with lower values (Relative Risk: 0.31 95% CI: 0.30-0.32 p=0.02) and we 39 

showed that this different outcome was mainly related to a reduction of relapse incidence 40 

(14% versus 43% p = 0.02). Unlike from previous reports we  observed no correlation 41 

between signal joint T-cell receptor excision circle levels and lymphocyte recovery. 42 

Moreover, we confirmed that only GvHD influenced thymic activity after transplantation. 43 

In conclusion, our results suggest that there is an association between pre-transplantation 44 

thymic activity and the long-term outcome of pediatric patients undergoing hematopoietic 45 

stem cell transplantation, mainly through a reduction of relapse opportunities 46 

 47 

Introduction 48 

Allogeneic Hematopoietic Stem Cells Transplantation (alloHSCT) is one of the best 49 

therapeutic options available for pediatric patients affected by various malignant diseases 50 

and other non-malignant disorders involving the hematopoietic system (1).  T lymphocyte 51 

function recovery is a crucial event in determining the prognosis of patients undergoing 52 

alloHSCT as its prolonged impairment may be related to the occurrence of infectious 53 
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complications and, in the malignant setting, also to the recurrence of primary disease (2, 54 

3). T cell recovery after alloHSCT typically evolves throughout two distinct phases called 55 

thymus-independent, or early phase, and thymus-dependent, or late phase. The thymus-56 

independent phase consists in the peripheral expansion of mature T cells transferred to the 57 

patient with the graft (4, 5). The thymus-dependent phase consists in the generation of new 58 

naïve T cells from the donor-derived hematopoietic progenitors occurring in the recipient’s 59 

thymus. The thymus-dependent phase accounts for the most durable reconstitution of the 60 

T-cell compartment, generates T Cell Receptor (TCR) repertoire diversity (6) and requires 61 

a functionally active thymus (7). Thymic function can be evaluated through the evaluation 62 

of the signal joint T-cell receptor excision circles (sjTRECs) by quantitative polymerase 63 

chain reaction (PCR). sjTRECs are episomal DNA fragments resulting from the deletion 64 

of the TCR δ region during TCR α locus rearrangement. As they cannot replicate and are 65 

not duplicated, they are diluted out during cell division allowing a direct evaluation of 66 

recent thymic output (8, 9). Some previous studies explored the relationship between 67 

sjTREC levels and the kinetics of the phenotypic and functional changes in peripheral T 68 

cells after alloHSCT, showing a direct correlation between sjTREC levels and the 69 

percentage of naïve T cells resulting from the thymus-dependent recovery pathway in both 70 

adults (10, 11) and pediatric (10-12) patients. sjTREC levels have also been associated with 71 

major parameters affecting the transplantation outcome such as the incidence of acute and 72 

chronic GvHD (13, 14), opportunistic infections (7, 13) and relapse (15, 16) but all these 73 

studies focused on a single parameter, in one single setting at a single time point (17) and 74 

in mixed (pediatric and adult) populations. In our study we conducted a long-term 75 

comprehensive analysis of the impact of sjTRECs on main transplantation outcome 76 

variables in a homogenous pediatric population undergoing alloHSCT.  77 
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 78 

Materials and methods 79 

Patients 80 

The study population included 57 patients (38 males and 19 females) aged from 0 to 22 81 

years (median age: 9 years) who underwent alloHSCT between April 2006 and October 82 

2008 at our Center. In order to exclude possible bias related to a too short observation 83 

period, analyses were performed when the majority of patients reached a median follow up 84 

of over 5 years. The Institutional Committee on Medical Ethics approved this study and 85 

patients or their legal representatives provided informed consent. 86 

Patients’ characteristics, conditioning regimens, hematopoietic stem cell sources, donor 87 

characteristics and GvHD prophylaxes are summarized in Table 1. 88 

Donor selection and HLA typing were performed according to the Italian Bone Marrow 89 

Donor Registry (IBMDR) Standard of Practice. In the analyses, total nucleated cells (TNC) 90 

and CD34+ cells values were expressed in percentiles and in quartiles according to their 91 

non-Gaussian distribution. Pre-transplantation co-morbidities were scored according to a 92 

previously reported classification for pediatric patients (18). The patients underwent 93 

clinical and hematological post-transplantation assessments according to our Center’s 94 

policy. Complete blood counts were performed daily until hematological recovery, twice a 95 

week until day + 100 and according to the patients’ clinical conditions thereafter. 96 

aGvHD and cGvHD were diagnosed and classified according to previously reported 97 

criteria (19, 20). To monitor patients for viral complications, cytomegalovirus (CMV), 98 

Epstein-Barr virus (EBV) and adenovirus PCR were performed weekly on peripheral 99 

blood. 100 

 101 
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sjTREC Frequency Evaluation 102 

The day before starting the conditioning regimen, on days 907, 1807 and 3657 patients 103 

were evaluated for sjTREC frequency according to previously reported method (21, 22) on 104 

peripheral blood mononuclear cells (PBMC) by real time quantitative PCR (TaqMan 105 

Technology). The primer TREC sequences and probes used were: forward: 5’-106 

TGGTTTTTGTGCCCAC-3’; reverse: 5’- GTGCCAGCTGCAGGGTTT-3’; probe: 107 

5’(FAM) CATAGGCACCTGCACCCCGTGC (TAMRA) P-3’. PCR conditions were: 2 108 

minutes at 50°C, 10 minutes at 95°C followed by 45 cycles of amplification (95°C for 15 109 

seconds, 60°C for 1 minute). In order to obtain absolute sjTREC quantification we prepared 110 

a standard curve by using five different concentrations of a PCR2-1TA plasmid encoding 111 

the sjTREC sequence. PCR was performed using the ABI PRISM 7900HT Sequence 112 

Detection System (Applied Biosystem, Foster City, CA) and data obtained were analyzed 113 

using SDS.2 software (Applied Biosystems, Foster City, CA). sjTREC values are 114 

expressed as copy number/100 ng DNA from PBMC. As the non-Gaussian distribution of 115 

sjTREC values and almost all patients enrolled in this study had median sjTREC values 116 

under the median value of age-matched controls at all the time points, all analyses were 117 

performed considering sjTREC percentiles and quartiles of the study population. 118 

 119 

 120 

 121 

Definitions and Outcome Endpoints 122 

The primary endpoint of this study is the assessment of the impact of sjTREC levels on the 123 

overall survival rates in a population of pediatric patients undergoing HSCT. 124 
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The secondary endpoints of the study are the assessment of sjTREC levels on both 125 

Transplant Related Mortality and Relapse Incidence and the identification of transplant-126 

related factors able to influence sjTREC levels. Overall survival (OS) is defined as the 127 

probability of survival irrespective of the disease state at any point in time. If, at the end of 128 

the study time, the patient is still alive data are censored at the last follow-up date. 129 

Transplant Related Mortality (TRM) is defined as the probability of dying without a 130 

previous relapse occurrence. If the patient either experienced relapse or is still alive at the 131 

end of the study time, data are censored at the relapse date or at last follow-up date 132 

respectively. For malignant diseases, relapse incidence (RI) is defined as the probability of 133 

having had a relapse. If the patient either died without experiencing relapse or is still alive 134 

at the end of the study time, data are censored at the date of death or at the last follow-up 135 

date respectively. For malignancies, patients not in a first complete remission at the time 136 

of transplant and patients who had previously failed at least one first-line treatment were 137 

considered as being in an advanced disease phase, while all other patients were considered 138 

as being in an early disease phase. 139 

 140 

Chimerism and immune recovery evaluation 141 

Donor chimerism was determined at +307 and +607 days after alloHSCT on whole bone 142 

marrow mononuclear cells and at +1807 and +3657 days on PBMC by quantitative PCR 143 

of informative short tandem repeats (STR) in the recipient and donor, according to a 144 

previously described method (23). Absolute Lymphocyte numbers were obtained from 145 

complete blood count analyses and compared to normal values according to the patient’s 146 

age (24).  Lymphocyte recovery was defined as the first of three consecutive days with an 147 

absolute lymphocyte count over the 5th percentile of normal values for the patient’s age. In 148 
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a subset of patients, we also investigated specific lymphocyte sub-population recovery at 149 

+180 days and +365 days by flow-cytometry. Helper T cell (CD3+CD4+), cytotoxic T cell 150 

(CD3+CD8+), NK cell (CD16+CD56+) and B cell (CD19+CD20+) recovery was defined as 151 

the presence of an absolute number of cells over the 5th percentile of normal values 152 

according to the patient’s age (24).  153 

 154 

Statistical analysis 155 

OS was calculated according to the Kaplan-Meier method and the significance between the 156 

observed differences were established by the log-rank test (25).  157 

The multivariate analysis on OS was performed using Cox’s method. 158 

TRM and Relapse rate were calculated as a cumulative incidence (CI) to adjust the analysis 159 

for competing risks: relapse and transplant-related death were considered competing risks, 160 

respectively. The differences in terms of CI were compared using Grey’s test. To assess 161 

the influence of different transplant-related variables on sjTREC levels, a two-tailed Fisher 162 

Test was performed. A p-value less than 0.05 was considered statically significant. To 163 

perform multivariate analyses we selected variables reaching p-values less than 0.1 in the 164 

univariate analyses. All the statistical analyses were performed using SPSS (IBM Corp. 165 

2012, Armonk, NY, USA), NCSS (Hintze, 2001; NCSS PASS, Number Crunched 166 

Statistical System, Kaysville, UT, USA) and R 2.5.0 software packages. 167 

 168 

Results  169 

sjTREC Frequency  170 

Median sjTREC values were 16 (0-1684), 1 (0-160), 14 (0-553) and 201 (0-1006) sjTREC 171 

copies/100 ng DNA before HSCT and at day +90, day +180 and day +365, respectively.  172 
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In order to identify transplant-related factors associated to the frequency of sjTRECs, we 173 

evaluated the impact of different variables on median sjTREC values before HSCT and 174 

then at different time points (Table 2).  175 

 176 

Overall Survival  177 

As at March 2014, the median follow-up time of patients who are still alive is 72 months 178 

(42-90). The overall Survival (OS) rate at 7 years of the entire study population is 70% 179 

(95%CI: 58-82). We found a statistically significant relationship between sjTREC 180 

frequency before transplantation and 7 years OS. Patients with sjTRECs below the 50th 181 

percentile of the study population values before HSCT had an OS of 56% (95%CI: 38-73), 182 

while patients with sjTRECs above the 50th percentile had an OS of 85% (95%CI: 71-98) 183 

(p=0.02) (Table 3 and Figure 1). Moreover, before transplantation, it was possible to 184 

perform a more extended analysis considering the sjTREC frequency sub-grouped into 185 

quartiles: patients with sjTREC values in the 1st, 2nd, 3rd and 4th quartiles had OS rates of 186 

40% (95%CI: 14-65), 71% (95% CI: 47-94), 87% (95%CI: 69-100) and 83% (95%CI: 63-187 

100) respectively, and these differences were statistically significant (p= 0.009). 188 

Considering OS at 2 years, we found that there is a difference according to pre HSCT 189 

sjTREC levels: patients with sjTREC levels under the median value of the study population 190 

had an OS of 73% (95% CI: 57-89), while patients with sjTREC levels over the median 191 

value of the study population had an OS of 89 % (95% CI: 57-89), although at this time 192 

point this difference is not statistically significant (p= 0.13). Restricting 2-years OS 193 

analysis according to pre HSCT sjTREC levels only to the cohort of patients affected by 194 

malignant diseases, we also highlighted a difference (p= 0,14) but not statistically 195 

significant. Female patients showed better OS compared to male patients [89% (CI95%: 196 
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75-100) versus 60% (CI95%: 44-76) p=0.035] and patients in an early disease phase had 197 

better OS compared to patients in advanced disease phases [100% versus 60% (95%CI: 44-198 

76) p= 0.04]. All the other variables investigated in the univariate analysis (Table 3) 199 

showed no correlation with OS. In particular we did not observe a correlation between OS 200 

or sjTREC levels at +90, +180 and +365 days after HSCT (Table 3). To perform 201 

multivariate analysis we selected from among variables listed in Table 3, those reaching a 202 

p value less than 0.1 in the univariate analysis (sex, co-morbities, disease phase at HSCT 203 

and pre HSCT sjTREC levels). In the multivariate analysis, sjTREC levels before 204 

transplantation and pre HSCT co-morbities were the only variables we found to be 205 

associated with OS: the patients with higher sjTRECs values showed a statistically 206 

significant reduced risk of death compared with patients with lower sjTRECs values 207 

(Relative Risk: 0.49 95%CI: 0.48-0.5 p=0.03) and patients in low risk group according to 208 

Smith et al (18) showed a statistically significant reduced risk of death compared with 209 

patients in the intermediate risk group (Relative Risk: 2.5 95%CI: 2.49-2.5 p=0.03). In 210 

multivariate analysis sex and the disease phase showed no statistically significant 211 

relationship with OS. 212 

 213 

Transplant Related Mortality 214 

The overall Transplant Related Mortality (TRM) was 5% (95%CI: 2-16). In the univariate 215 

analysis sjTREC levels before transplantation and sjTREC levels at +90 days did not show 216 

any correlation with the TRM. At +180 days from the transplant the patients with sjTRECs 217 

values under the 50th percentile had TRM of 11% (95%CI: 4-32) versus TRM of 0 of 218 

patients with sjTREC values over the 50th percentile. Likewise, at +365 days patients with 219 

sjTREC values under the 50th percentile had TRM of 10% (95%CI: 1-37) versus TRM of 220 
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0 of patients with sjTREC values over the 50th percentile. These differences in terms of 221 

TRM were not statistically significant (p= 0.1 and p= 0.17 respectively) (Table 4). 222 

 223 

Relapse Incidence 224 

For malignant disease, the overall Relapse Incidence (RI) was 30% (95% CI: 20-46). 225 

sjTREC levels before transplantation were related to the relapse. Patients with sjTREC 226 

levels below the 50th percentile of the study population relapsed in 43% of cases (95% CI: 227 

28-66), while 14% patients with sjTREC levels above the 50th percentile experienced a 228 

relapse (95% CI: 5-41) and this difference was statistically significant (p= 0.02) (Table 4 229 

and Figure 2). Considering sjTREC levels before the transplant sub-grouped in quartiles, 230 

patients with sjTREC levels in the 1st, 2nd, 3rd and 4th quartiles had a relapse in 64% (95% 231 

CI: 43-95), 21% (95% CI: 8-58), 14% (95% CI: 4-51) and 14% (95% CI: 2-88) of cases, 232 

respectively, and this difference was statistically significant (p=0.01). sjTREC levels at 233 

+90, +180 and +365 days were not related to the recurrence. Among other variables 234 

investigated by univariate analysis the patient’s gender showed a relationship with RI: male 235 

patients relapsed in 40% (95% CI: 27-60) while female patients relapsed in 7% (95% CI: 236 

1-47) p= 0.03 (Table 5). To perform multivariate analysis, we selected, from among the 237 

variables listed in Table 5, those reaching a p value less than 0.1 in the univariate analysis 238 

(sex and pre-HSCT sjTREC levels) and disease phase at HSCT. In the multivariate analysis 239 

sjTREC levels before transplantation were the only variables we found to be statistically 240 

associated (RR 0  0 p < 0.0001) with RI. 241 

 242 

Chimerism and Immune Recovery 243 

All the patients showed sustained engraftment and we did not observe any cases of either 244 
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early- or late-graft loss. Patients enrolled in the study reached the 5th percentile of normal 245 

lymphocyte values for the patient’s age in a median of 70 days (range: 21-420) with no 246 

differences related to pre-HSCT sjTREC levels: 73 days (range: 25-420) for patients with 247 

sjTRECs over the 50th percentile before HSCT versus 65 days (range: 21-385) for patients 248 

with sjTRECs under the 50th percentile before HSCT. Considering the lymphocyte 249 

subpopulations, the proportion of patients who reached the 5th percentile of normal values 250 

for their ages of CD3+CD4+, CD3+CD8+, CD16+CD56+ and CD19+CD20+ cells was 17%, 251 

65%, 82% and 60% at day +180 and 70%, 85%, 88% and 77% at day +365, respectively, 252 

with no differences related to pre-HSCT sjTREC levels. 253 

 254 

Discussion 255 

T cell function recovery has been shown to be one of the most important factors in 256 

determining the prognosis of patients undergoing alloHSCT and the role of the thymus in 257 

this process is well established. Previous studies focused on Severe Combined 258 

Immunodeficiency Disease Screening Programs in newborns (26) and on the 259 

management of patients affected by HIV and undergoing Highly Active Antiretroviral 260 

Therapy (HAART) (27) indicate that sjTRECs quantification is an easy, sensible and 261 

reliable technique to evaluate immunological function and also to drive therapeutic 262 

interventions in these settings. Although the experience of alloHSCT is more limited, 263 

there is growing evidence that sjTREC quantification by PCR is one of the easiest and 264 

most reliable methods to evaluate thymic activity after alloHSCT as well. This is because, 265 

compared to other techniques (i.e. flow cytometry), this method offers the advantage of 266 

not being influenced by any phenomena which typically occur after transplantation, such 267 
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as the opportunity of T memory cells to revert into a T naïve phenotype in case of 268 

recurrent herpes virus infection (28), the possibility of T naïve cells to maintain their 269 

phenotype while acquiring T memory cells’ function (29) and the maintenance of CD31 270 

expression during CD4+ cells cytokine-driven proliferation (30). Even though other 271 

studies have already shown that there is a correlation between sjTREC levels and the 272 

various phases of immune recovery after alloHSCT (10-12) and that patients with a more 273 

efficient thymic function show a better prognosis compared to others (13, 31), there are 274 

still very few studies specifically concerning pediatric patients and considering that aging 275 

is a major parameter impacting thymic function (9, 32), childhood may be considered an 276 

ideal setting to further consolidate these data. In the present study we analyzed in a 277 

population of pediatric patients undergoing alloHSCT, the role of sjTREC levels on the 278 

OS and found that patients with more efficient thymic function before the transplantation 279 

had better long term OS compared to others. However, sjTREC levels after 280 

transplantation, according to our data, did not have any influence on OS at any of the 281 

time-points considered. To our knowledge there are only two previous studies that 282 

specifically investigate the impact of sjTRECs on OS. Clave et al demonstrated a 283 

correlation between pre-transplantation sjTREC levels and OS but even though a high 284 

number of cases were reported (n=102), only sibling recipients were included, the 285 

patients’ median age was higher and only pre-transplantation sjTREC levels (17) were 286 

considered. Olkinuora et al in 66 pediatric patients who underwent alloHSCT reported a 287 

shorter median survival time for patients with low sjTREC levels at different time points 288 

(both before and after alloHSCT) compared to patients with high sjTREC levels, but their 289 

study lacked a real survival analysis performed with the Kaplan-Meier method and the 290 

follow-up is shorter (33). We basically confirmed a correlation between sjTREC levels 291 
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and OS in a more homogeneous and younger population also including unrelated 292 

transplant recipients and, by extending the follow-up to a median time of 72 months, we 293 

highlighted that among pediatric patients long-term survival is closely related to pre-294 

HSCT sjTREC levels. However, as a large proportion of the patients enrolled in our study 295 

have acute lymphoblastic leukemia (ALL) that tends to relapse in the first months after 296 

transplantation, the correlation between sjTREC levels and OS seems to be less strong in 297 

the short term moreover the small number of patients affected by non malignant disorders 298 

included in the study population might introduce some potential confounding factors that 299 

are to be considered. In order to understand whether the mortality reduction we observed 300 

was attributable to a reduction of either TRM or RI, we analyzed in the same population 301 

the impact of sjTREC levels on these two outcome parameters. In line with other authors’ 302 

findings, we observed a strong correlation between pre-transplantation thymic functions 303 

and RI (15, 16). However, unlike these authors, who investigated the role of sjTRECs in 304 

only one specific setting, surprisingly, we did not observe a correlation between post-305 

transplantation thymic activity and RI. This difference might be related to the 306 

heterogeneity of our study population that included bone marrow, peripheral blood stem 307 

cells and cord blood recipients. One possible objection to our observations might be that 308 

reduced sjTREC frequency before alloHSCT might be related to more intense treatments 309 

administered because of a more aggressive disease and that OS and RI differences might 310 

only be related to a more advanced disease phase. However, via multivariate analysis we 311 

were able to show how sjTREC levels before transplantation are statistically associated to 312 

OS and RI independently from other variables, including the presence of an advanced 313 

disease phase, and, by correlation analysis, we excluded a link between the disease phase 314 

at transplantation and the time between diagnosis and HSCT and sjTREC frequency 315 
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before alloHSCT. In multivariate analysis we found that the only other variable 316 

associated with OS was the presence of co-morbities as scored by Smith (18). Unlike 317 

previous observations (7, 13, 14, 33, 34), we did not observe a relationship between 318 

sjTRECs and TRM, probably because the very low incidence of these complications in 319 

our study population, related to the lower frequency of co-morbidities in young 320 

individuals. Finally, to clarify whether increased OS and reduced RI of patients with 321 

higher pre-HSCT sjTREC levels were related to an improved immune recovery, we 322 

evaluated the absolute lymphocyte count recovery and, surprisingly, we did not observe 323 

any differences between the patients with values over the 50th percentile or patients with 324 

values under the 50th percentile. Our data contrast with previous reports (12) but this 325 

might be due to our smaller sample size and might be related to the differences in the 326 

recovery of different lymphocyte subsets (T, B, NK) after HSCT. By analyzing transplant 327 

related factors that influence sjTREC frequency, we confirmed previously reported 328 

observations on adults (35) confirming GvHD as one of the most limiting factors in 329 

determining sjTREC levels after transplantation. However, according to our analysis, 330 

sjTREC reductions after HSCT was not statistically correlated with any worsening in 331 

terms of OS, TRM or Relapse.  332 

The main weakness of our study is that we analyzed sjTREC frequency on whole PBMCs 333 

while other authors performed the same analysis more precisely on selected lymphocyte 334 

populations (i.e.CD3+, CD3+ CD4+, CD3+ CD8+). 335 

Another limit of our study is that in the series of patients we have described, the majority 336 

of the patients was affected by ALL but no cases of T cell leukemia were included and 337 

this may have some consequences in terms of both RI and OS. 338 
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In conclusion our results confirm that thymic function does play an important role in 339 

determining the prognosis of pediatric patients undergoing alloHSCT, suggesting that an 340 

efficient thymic function before transplantation is related to improved long-term OS, 341 

mainly through a reduction of relapse opportunities. Obviously, larger and more accurate 342 

studies are needed both to confirm these observations and to identify the mechanism 343 

driving them, in order to find solutions aimed at improving T cell recovery after 344 

alloHSCT. 345 
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 470 

Tables 471 

Table 1. Patients’ and Hematopoietic Stem Cell Transplantation details  472 

 473 

 474 

*for malignant diseases only  475 

ALL: Acute Lymphoblastic Leukemia, AML: Acute Myelogenous Leukemia, MDS: myelodysplasia, JMML: Juvenile Myelo 476 
Monocytic Leukemia, HLH: Hemophagocytic Lymphohistiocytosis SAA: Severe Aplastic Anemia, CML: Chronic Myelogenous 477 
Leukemia, TBI: Total Body Irradiation, Bu: busulfan, BM: bone marrow, CB: cord blood, PBSC: peripheral blood stem cells, MUD: 478 
matched unrelated donor, MMUD: mismatched unrelated donor, CyA: cyclosporine, MTX: methotrexate, ATG: antithymocyte 479 
globulins, MMF: mycophenolate mofetil, PDN: prednisone. 480 
 481 
 482 
 483 
Table 2.  sjTREC frequency 484 

 n % 

Sex Male  38 67 % 

 Female  19 33 % 

    

Disease ALL 23 40 % 

 AML 8 14 % 

 Inborn errors 6 10 % 

 Solid Tumors 6 10 % 

 Lymphoma 5 9 % 

 MDS & JMML 4 7 % 

 HLH 2 3,5 % 

 SAA 2 3,5 % 

 CML 1 1 % 

    

Phase* Early 8 17 % 

 Advanced 39 83 % 

    

Co-morbity score (18) 0 44 79 % 

 1-2 13 23 % 

 3+ 0  

    

    

Conditioning Regimen TBI based 31 54 % 

 Bu based 13 23 % 

 Others 13 23 % 

    

HSC source BM 46 81 % 

 CB 8 14 % 

 PBSC 3 5 % 

    

Donor Sibling 21 37 % 

 MUD 17 30 % 

 MMUD 11 19 % 

 CB 8 14 % 

    

GvHD prohylaxis CyA-MTX-ATG 27 48 % 

 CyA 12 21 % 

 CyA-MTX 8 14 % 

 CyA-ATG-MMF 4 7 % 

 CyA-ATG-PDN 3 5 % 

 Others 3 5 % 
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 485 
 486 
 487 
 488 
HSCT hematopoietic stem cell transplantation, ATG: antithymocyte globulins *for malignant diseases only489 

 No. of patients with 
sjTREC level < of 

median value of the 

study population 

No. of patients with 
sjTREC level > of the 

median value of the study 

population 

p 

Pre-HSCT 

(pts evaluable 57) 

 

Age    

0-5 years   (n=15) 6  (40%) 9  (60%)  

6-8 years   (n=11) 3  (27%) 8  (73%)  

9-14 years (n= 16) 8  (50%) 8  (50%)  

>14 years  (n= 15) 8  (53%) 7  (47%)  

    

Disease   0.03 

Malignant (n= 47) 28 (60%) 19 (40%)  

Non-malignant (n= 10) 2   (20%) 8   (80%)  

    

Comorbities(18)   0.21 

Low risk (n=44)  21 (48%) 23 (52%)  

Intermediate risk (n= 13) 9   (70%) 4   (30%)  

    

Disease Phase*   

0.005 

Early (n= 8) 1  (12%) 7  (88%)  

Advanced (n=39) 27 (69%) 12 (31%)  

    

Time from diagnosis to HSCT   0.57 

< 6 months (n=25) 16 (64%)   9 (36%)  

> 6 months (n=22) 12 (54%) 10 (46%)  

 
Day +90 

(pts evaluable 57) 

 

ATG   0.02 

Yes (n= 37) 25 (68%) 12 (32%)  

No (n= 20) 5   (25%) 15 (75%)  

    

Viral Infection   0.01 

Yes (n=30) 21 (70%)   9 (30%)  

No  (n= 27)   9 (33%) 18 (67%)  

 
Day + 180 

(pts evaluable 57) 
grade II-IV acute GvHD   0.03 

Yes (n=21) 15 (71%)   6  (29%)  
No   (n= 36) 16 (44%) 20  (56%)  

 
Day + 365 

(pts evaluable 43) 
Age   0.03 

0-5 years   (n=9) 3 (33%) 6 (64%)  
6-8 years   (n=10) 3 (30%) 7 (70%)  
9-14 years (n=14) 7 (50%) 7 (50%)  
>14 years  (n=10) 9 (90%) 1 (10%)  
    
cGvHD    0.02 

Yes (n= 6) 6  (100%) 0  
No  (n= 37) 16 (43%) 21 (57%)  
    
Viral Infection   0.03 

Yes (n=24) 16 (67%) 8   (33%)  
No (n= 19) 6    (32%) 13 (68%)  
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Table 3. Overall Survival 490 
 491 

All the variables potentially able to influence OS were evaluated: sjTREC levels before alloHSCT patient’s sex, co-morbitidities  and 492 
disease phase showed a statistically significant (p < 0.05) correlation with OS. sjTRECs: signal joint T cell receptor excision circles, 493 
TBI: Total Body Irradiation, HSC: hematopoietic stem cells, BM: bone marrow, PBSC: peripheral blood stem cells, CB: cord blood, 494 
TNC: total nucleated cells  495 

Variable n Events 7 years OS 95% CI  Log Rank Test 

sjTRECs pre HSCT      

<50th percentile  30 13 56 % (38-73) p= 0.02 

>50th percentile  27 4 85 % (71-98)  

      

sjTRECs +90 days     p= 0.97 

<50th percentile 30 9 70 % (54-86)  

>50th percentile  27 8 70 % (52-88)  

      

sjTRECs +180 days     p= 0.1 

<50th percentile 29 7 60 % (42-78)  

>50th percentile  25 8 80 % (66-94)  

      

sjTRECs +365 days     p= 0.6 

<50th percentile 20 4 77 % (59-95)  

>50th percentile  18 6 83 % (65-100)  

      

Sex     p= 0.035 

Male 38 15 60 % (44-76)  

Female 19 2 89 % (75-100)  

      

Age     p= 0.28 

0-5 years 15 5 63 % (36-90)  

6-8 years 11 4 64 % (36-91)  

9-14 years 16 2 87 % (71-100)  

> 15 years 15 6 60 % (34-85)  

      

Disease     p= 0.14 

Malignant 47 16 65 % (53-81)  

Non-malignant 10 1 90 % (63-100)  

      

Co-morbidity score     p< 0,0001 

Low risk group 44 7 84 % (83-84)  

Intermediate risk group 13 10 23 % (0-46)  

      

Disease phase*     p= 0.04 

Early 8 0 100 %   

Advanced 39 16 60 % (44-76)  

      

Time between diagnosis and HSCT*     p = 0.55 

< 6 months 25 7 73 % (56-90)  

> 6 months 22 9 60 % (40-80)  

      

TBI     p= 0.51 

Yes 31 8 73 % (57-89)  

No 26 9 65 % (47-83)  

      

HSC source     p= 0.27 

BM 46 16 65 % (51-79)  

PBSC 3 1 87 % (63-100)  

CB 8 0 100 %   

      

TNC     p= 0.65 

<50th percentile 29 9 69 % (51-87)  

>50th percentile  28 8 71 % (53-89)  

      

CD34+ cells     p= 0.78 

<50th percentile 30 9 70 % (54-86)  

>50th percentile  27 8 69 % (51-87)  
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Table 4. Transplant-related mortality (TRM) univariate analysis 496 

 497 

 498 

Single joint T cells receptor excision circles (sjTRECs)  level showed no statistically significant correlation (p< 0.05) with TRM at any 499 
of the time points considered 500 

 501 

 502 

 503 

  504 

Variable TRM 95% CI Grey test 

sjTRECs pre-HSCT   p = 0.46 

<50th percentile 3 % (0-23)  

>50th percentile 7 % (2-28)  

    

sjTRECs +90 days   p = 0.60 

<50th percentile 7 % (2-25)  

>50th percentile 4 % (0-26)  

    

sjTRECs +180 days   p= 0.10 

<50th percentile 11 % (4-32)  

>50th percentile 0   

    

sjTRECs +365 days   p= 0.17 

<50th percentile 10 % (1-37)  

>50th percentile 0   
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Table 5. Relapse Incidence for malignant diseases: univariate analysis 505 

 506 

 507 

Univariate analysis of variables potentially able to influence Relapse Incidence : single joint T cell receptor excision circles (sjTREC) 508 
before the transplantation and patients’ sex were statistically related to RI incidence (p < 0.05). HSC: hematopoietic stem cell, BM: 509 
bone marrow, PBSC: peripheral blood stem cells, CB: cord blood, aGvHD: acute graft versus host disease, cGvHD: chronic graft 510 
versus host disease  511 

Variable n Events Relapse  Incidence 95% CI Grey test 

sjTRECs pre-HSCT     p = 0.02 

<50th percentile 28 12 43% (28-66)  

>50th percentile 19 3 14% (5-41)  

      

sjTRECs +90 days     p = 0.60 

<50th percentile 26 7 26% (14-49)  

>50th percentile 21 8 33% (18-61)  

      

sjTRECs +180 days      

<50th percentile 27 10 37% (15-52) p = 0.34 

>50th percentile 20 5 25% (5-46)  

      

sjTRECs +365 days     p = 0.36 

<50th percentile   11% (3-41)  

>50th percentile   23% (8-62)  

      

Sex     p= 0.03 

Male 34 14 41% (27-61)  

Female 13 1 8 % (1-50)  

      

Age     p= 0.58 

0-5 years 12 4 33 % (14-69)  

6-8 years 8 4 50% (21-92)  

9-14 years 15 3 20 % (7-55)  

> 15 years 12 4 33 % (15-74)  

      

Disease phase     p= 0.20 

Early 8 1 12% (2-78)  

Advanced 39 14 35% (22-52)  

      

Time between diagnosis and HSCT     p= 0.67 

< 6 months 25 7 28% (15-52)  

> 6 months 22 8 36% (21-63)  

      

HSC source     p= 0.29 

BM 39 14 36% (24-55)  

CB 7 1 14% (2-87)  

PBSC 1 0 0   

      

Donor     p= 0.24 

Related 17 7 41% (23-73)  

Unrelated 30 8 27% (15-48)  

      

aGvHD     p= 0.41 

Yes 20 5 25% (12-53)  

No 27 15 37% (23-60)  

      

cGvHD      

Yes 8 2 25% (7-83) p= 0.57 

No 39 13 32% (20-50)  
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Figure legends 512 

 513 

Figure 1. Overall Survival according to sjTREC levels 514 

Patients with sjTRECs over the 50th percentile before HSCT (continuous line) showed a 515 

statistically significant increased survival rate compared to patients with sjTRECs under 516 

the 50th percentile (dotted line) at same time point.  517 

 518 

Figure 2. Relapse rate according to sjTREC levels 519 

Patients with sjTRECs over the 50th percentile before HSCT (continuous line) showed a 520 

statistically significant reduced relapse rate compared to patients with sjTRECs under the 521 

50th percentile (dotted line) at same time point.  522 

 523 
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 532 

 533 
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