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Abstract

The mechanism of rapid energy supply to the brain, especially to accommodate the height-
enedmetabolic activity of excited states, is not well-understood. We explored the role of gly-
cogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a
computational model of the neural-glial-vasculature ensemble (NGV). The detection of nor-
epinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insen-
sitive to the distance of the locus coeruleus projection release sites from the glia, implying a
diminished impact for volume transmission in high affinity receptor transduction systems.
Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP secondmes-
senger transduction winds sequentially through the glycolytic cascade, generating robust
increases in NADH and ATP before pyruvate is finally transformed into lactate. This astro-
cytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron,
demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a
likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy
supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neu-
romodulatory stimulus.

Author summary
Although efficient compared to computers, the human brain utilizes energy at 10-fold the
rate of other organs by mass. How the brain is supplied with sufficient on-demand energy
to support its activity in the absence of neuronal storage capacity remains unknown. Neu-
rons are not capable of meeting their own energy requirements, instead energy supply in
the brain is managed by an oligocellular cartel composed of neurons, glia and the local
vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neu-
ron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy
storage in the brain is glycogen, a polymerized form of glucose that is localized largely to
astrocytes, but its exact role and conditions of use are not clear. In this computational
model we show that neuromodulatory stimulation by norepinephrine induces astrocytes
to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the
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production of lactate. The ATP and NADH produced support metabolism in the astrocyte
while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neu-
rons and glia in a stimulated brain can be met by glycogen mobilization.

Introduction
The management of energy in the brain is organized by an oligocellular cooperative called the
neural-glial-vasculature ensemble (NGV). Each component is assigned distinct tasks during
the chain of events that extract reducing equivalents from glucose to support every brain func-
tion. While the continuous supply of energy to the brain is critical for basal functions, rapid
boosts in energy demand during higher states of alertness, often in response to neuromodula-
tory signals, must also be met. There is much controversy about how this kind of brain activity
is supported energetically. What is agreed upon is that glucose, glycogen and lactate are the
lead actors, with a cadre of support from intermediate metabolites [1±10]. The plot is compli-
cated by dynamic changes in the relative contributions and timing of their roles; sorting all
this out requires the insights provided by computational models.

The relationship among the NGV components is still being revealed with increasing inter-
est in the role of glycogenÐa form of polymerized glucose that constrains the energy storage
capacity in the brain [2,9±15]. It has long been observed that brain glycogen resides almost
exclusively in astrocytes [16±18], although its conservative presence in neurons has been noted
and associated with hypoxia resistance [19]. Recent studies have more precisely located glyco-
gen granules to the astrocytic lamelliform processes that ensheath synapses[20±23]. In fact,
among the first indications of the complexity of coupling between neurons and astrocytes
were the observations that synaptic and neuromodulatory activity promote glycogen hydroly-
sis in the mouse cerebral cortex [5,24]. Brain glycogen is the largest repository of energy in the
brain, retaining more glucose equivalents than the amount dissolved in the cytosol, and can
supplement the brain for more than an hour under conditions of hypoglycaemia [10].

The concept of the role of glycogen has evolved from a mere glucose storage depot for crisis
management [25] to being part and parcel of the dynamic energy milieu [15,26±29]. The on-
going turnover of glycogen involves the so-called glycogen shunt in which some of the blood-
borne glucose imported into the astrocyte is stored as glycogen before becoming available for
glycolysis via glycogenolysis [9,15,30,31].

Glycogenolysis not only contributes to commonplace energy supply [2,5,6,8,15,32±40], but
also to handling special requests including stability maintenance during hypoglycemia [41],
responding to rapid and high-demand needs signaled by neuromodulatory factors such as
norepinephrine (NE) [4], higher local energy demand due to regional stimulation [42±45],
memory formation and consolidation [35,46±51] drug addiction [52], as well as sleep and
development [29,53,54].

The locus coeruleus (LC) in the brainstem sends far-reaching projections throughout
numerous brain regions. In the cortex, these inputs effect neuromodulatory control of arousal,
attention and memory via the LC-norepinephrine (LC-NE) arousal circuit [55±57]. The NE is
released from axonal varicosities from which it diffuses to find adrenergic receptors on neu-
rons [58] and astrocytes [59]. The activation of β2-adrenergic receptors (β2R) on astrocytes
by the volume transmitted NE [60] is thought to mediate the neuromodulatory stimulus-
demanding energy supply and consumption in the NGV, with glycogen implicated as a key
supplier of lactate [61±71].

On-demand energy from astrocytic glycogen
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Turnover of glycogen in astrocytes is triggered by NE from LC inputs and involves signal
transduction mediated by adenyl cyclase and the second messenger cAMP [68,72,73]. Glyco-
gen and β-adrenergic dysregulation are associated with neurodegeneration [46,74] and
astrocytic β2 receptors mediate hippocampal long-term memory consolidation and stress
response management through training-dependent lactate production [47]. Neuromodulatory
stimuli can mobilize more than half of stored glycogen; such glucose dumping could provide
rapid and large energy injections into the NGV system [75]. In the cortex, NE containing
varicosities are found near glia throughout development and adulthood concomitant with the
expression of glycogen, suggesting a persistent role for this pathway, [6,48,66,76±79], and NE
release from the LC modulates glycogenolysis and memory consolidation via β2-adrenergic
receptors [77,80]. The consumption of glycogen upon circuit activity in cortex [81,82] and its
activation and mobilization appear to be rapid [35].

Of particular importance to brain energy supply is the lactate derived from glycolysis in the
astrocyte and which is required to support higher metabolic brain activities, including during
intense exercise [83], in response to neuromodulation [61,68,71,84] and in support of memory
formation [47,50,85]. The production of lactate by whatever means is followed by its export to
neighboring neurons through monocarboxylate transporters (MCTs) in a process called the
astrocyte-to-neuron lactate shuttle (ANLS) [7,86±89].

This computational model tests the feasibility that glycogenolysis within the NGV ensem-
ble can respond rapidly and sufficiently to provide energy for both astroctyes and neurons in
response to neuromodulatory signals [90]. We built on our previous computational model of
ANLS to explore the dynamics of glycogen mobilization by NE release from LC terminals
and test whether existing knowledge of the enzymatic cascades supports the role of glycogen
as a source of energy both to astrocytes and neurons. We observed a rapid degradation of
glycogen, expected enzymatic cascades, the production of NADH and ATP and lactate for
the neuron via ANLS [7,8,87]. In addition, volume transmission resulting from differences
in release distances between the LC terminals and the astrocyte is unlikely to influence out-
come, at least in a high ligand affinity second messenger transduction pathway. These results
support the idea that glycogenolytic energy supports the enhanced metabolic demand of
neuromodulation.

Results
Overview
After using 3D electron microscopy (EM) to determine the locations of glycogen granules in
the somatosensory cortex, we employed a computational approach to elucidate the role of gly-
cogen in supporting neuromodulation by building upon our previous NGV model [87]. New
model features include a complex, multi-step glycogenolysis pathway, neuromodulation via
the LC-NE system in the cortex, and second messenger transduction (cAMP) [91]. We simu-
lated astrocytic stimulation by LC noradrenergic inputs with a focus on the contribution of
glycogenolysis to the local and exported energy supplies including the role of lactate shuttling
from the astrocyte to the neighboring neuron (ANLS) [7,89].

3D electron microscopy of murine somatosensory cortex
While it has been established that glycogen is located in astrocytes, we further explored the
subcellular distribution of glycogen granules within six astrocytic processes from layer I mice
somatosensory cortex[92,93] (Fig 1A). We measured the number of granules apparent over a
period of 4 (n = 3) and 24 (n = 3) months in 3D reconstruction from EM stacks of 125 cubic
micrometers volumes of neuropil. In order to obtain the density of glycogen granules, we
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divided the total number of granules per each of the reconstructed volumes (3038, 3738 and
11809 in 4 months old, and 6588, 7758 and 4287 in 24 months old) per the volume of the
reconstructed astrocyte (10.7 μm3, 10.8 μm3, 17.9 μm3 and 10.6 μm3, 12.3 μm3, 6.5 μm3 for 4
and 24 months old, respectively) and found a stable distribution between the two populations
(Fig 1B).

Fig 1. Visualization of glycogen granules in a 3D reconstructed astrocyte. A) Rendering of one astrocytic process (grey), in semi-transparency to highlight the
presence within its cytosol of the glycogen granules. B) Top and bottom panels, rendering of two reconstructed astrocytic processes (green, adult, red, aged), semi-
transparent to show the intracellular content of glycogen granules (grey). Whisker plot of the density of glycogen granules per astrocytic process in adult (4 months old
442.3 ± 112.2 granules / µ3, n = 3) and aged (24 months old; 526.3 ±98.6 granules / µ3, n = 3).

https://doi.org/10.1371/journal.pcbi.1006392.g001
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Modeling glycogenolysis stimulated by LC-NE volume transmission to
astrocytes

Model diagram. We integrated selected features of our previous NGV model [87]
with two new computational modules: one for NE neurotransmission and cAMP second mes-
senger transduction and one for glycogen metabolism (Fig 2A illustrates the compartmental
scheme). The parameters for the neuromodulation and glycogen modules can be found in
S3 Table.

NorepinephrineÐβ2-adrenergic receptor dynamics. We simulated the release of NE
from LC varicosities by creating simple waveforms of NE with single rise and decay time con-
stants. Volume transmission of NE at four distances from the astrocyte was simulated by vary-
ing the rise time constant (τrise) of the NE wave front as it encountered the astrocytic β2R; this
would clearly impact the amount of NE reaching the astrocytic receptors. These waveforms
were 10 seconds in duration at τrise = 10, 100, 1000, or 10000 ms, (Fig 2B). The activation of
the β2R to each of these release patterns demonstrated that the high affinity of the receptor
(Kd = 300 nM) makes for an almost all or nothing response to NE no matter what the wave-
form or corresponding concentration might be (Fig 2C and inset). A dose-response relation-
ship for NE and normalized β2R activity demonstrated the functional concentration range for
our ligand-receptor system (Fig 2D).

Based on the results from simulations of NE release (see S1 Text), we chose τrise = 10ms
for the remainder of the simulations reported in this study. We then chose 4 adenylate cyclase
amplification factors so as to yield a wide dynamic range of cAMP production in the astrocyte
in response to the NE stimulus (Fig 2E and inset zoom). The duration of NE application is
indicated by the gray shaded area in all relevant figures henceforth.

Enzyme cascade resulting from cAMP formation. The expected sequence of enzyme
activations in response to NE-elicited cAMP was observed including protein kinase A (PKA),
glycogen phosphorylase a (GPa), hexokinase/phosphofructokinase combined (HKPFK), phos-
phoglycerate kinase (PGK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) (Fig 3A,
real values; Fig 3B normalized, zoomed insets in both panels A and B focus on rise trajectories
showing the slower development of LDH). Although the responses begin in less than 1 sec, it
takes about 6 seconds for the group of enzymes to reach their (1-1/e) fold levels. The expected
inverse activation relationships between protein phosphatase 1 (PP1) and PP1 bound to GPa
(PP1-GPa), as well as the between GPa and GSa, were accurately simulated (Fig 3C).

Metabolites and byproducts of glycolysis. The cascade of metabolites produced by the
sequential activation of the battery of glycogenolytic and glycolytic enzymes was observed,
including glucose-6-phosphate (G6P), glyceraldehyde-3-phosphate (GAP), phosphoenolpyr-
uvate (PEP), pyruvate (PYR) and finally lactate (LAC) (percent increase featured in Fig 4A1,
the glucose shown in panel 4A1 is only normalized ordinate in 4A2 to show smaller
responses). Plotting the normalized responses reveals an extra-slow and long LAC response, as
well as an undershoot of PYR and GAP (Fig 4A2). The glucose originating only from glycogen
and is shown in panel 4A1 to illustrate the rapid conversion to G6P. The liberation of scores of
mM equivalents of glucose that are quickly converted to G6P upon activation of cAMP path-
ways is not surprising considering the calculations in S2 Text that suggest an astrocyte might
store hundreds of mM equivalents of glucose. The cytosolic glucose concentration, as well as
that of other metabolites from panel 1, are shown in panel 3 of Fig 4A.

The robust production of the ergogenic byproducts ATP and NADH in response to cAMP
was also observed. The relative magnitudes by percent increases indicate a larger cytosolic
NADH response (Fig 4B1;>500% increase in NADH and 100% increase in ATP) and the
normalized responses showing relative time course show a slower ATP response and an
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Fig 2. Noradrenergic modulation in glia. A) Schematic compartmental diagram of the NGV model with noradrenergic
locus coeruleus (LC) inputs, astrocyte, extracellular and neuronal compartments. The vasculature blood flow has been
clamped for these simulations for simplicity. B) Distance of NE release site from astrocyte was simulated as differences in
rise time constant (four NE waveforms with τrise = 1, 10, 100 and 1000 sec). C) Corresponding NE receptor (β2R)
activation levels show maximum receptor activation to each NE waveform. Inset: time domain zoom. Astrocytic β2R
receptor activation is largely invariant except within initial 50 ms from neurotransmitter release when source of NE release
is varied over 4 orders of magnitude. D)Dose-response relationship for NE and β2R activation (Kd = 300 nM). E) cAMP
production levels in response to 1 second pulses of NE and τrise = 10 (representing a constant, relatively close proximity of
the LC input, see S1 Text) at 4 different adenylate cyclase amplification factors selected in order to empirically produce a
wide dynamic range of cAMP. Inset: time domain zoom. NE duration indicated by gray shaded areas.

https://doi.org/10.1371/journal.pcbi.1006392.g002
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Fig 3. Activation of glycolytic enzyme cascade by cAMP in the astrocytic compartment. A) The sequence of
glycolytic enzyme cascade includes: protein kinase A (PKA), glycogen phosphorylase a (GPa), hexokinase/
phosphofructokinase combined (HKPFK), phosphoglycerate kinase (PGK), pyruvate kinase (PK) and lactate
dehydrogenase (LDH). B) Responses are normalized to emphasize temporal relationship. Insets in A and B: Zoom-in
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undershoot of mitochondrial NADH prior to stabilization (Fig 4B2). The concentrations of
these metabolites are also shown in panel 4B3.

Glycogen mobilization and cellular energy status. NE-induced cAMP production in
the astrocyte resulted in the degradation of glycogen that scaled with the dose of cAMP in the
astrocyte (Fig 5A). For all doses significant degradation of glycogen appears in less than 5 sec-
onds, with a time constant of decay at the largest dose of 29 seconds. Indicators of cellular
energy status NAD+/NADH ratio (oxidative state, astrocytic cytosol) as well as energy charge
((ATP + 0.5ADP)/(ATP+ADP+AMP)) changed in response to the cAMP-dependent glyco-
genolysis within expected ranges (Fig 5B).

Astrocyte-to-neuron lactate shuttle ANLS. Of particular interest to our current study
was the production and fate of lactate from glycogenolysis and whether it can plausibly partici-
pate in the astrocyte-to-neuron lactate shuttle [7,87]. While the production of lactate in the
astrocyte was demonstrated (Fig 4), we further examined to what degree the lactate could be
exported and found robust and rapid transport of lactate to the extracellular space from where
it was imported into the adjacent neuronal compartment (Fig 6A). When the lactate in the
neuron, the extracellular space and the neuron were plotted together, evident was the similar-
ity in the lactate transients, shifted only slightly in time as the wave of lactate passed from one
compartment to the other. The rise time constant of the lactate response was 13 sec. The direc-
tion and timing of lactate flow in the NE- stimulated and cAMP-dependent ANLS is better
seen by magnifying the traces (zoom in 6B).

Our previous NGV model demonstrated the production of lactate from synaptic transmis-
sion activity that was characterized by an initial dip (corresponding to the use of lactate for
energy) with a nadir around 20 seconds post stimulus (Fig 6C). In contrast, in this new study,
the lactate signal resulting from NE-stimulated glycogenolysis lacked the initial dip, even in
the neuron, and rose continuously with stimulus duration and decayed immediately upon
stimulus cessation (Fig 6A). These results suggest that the astrocyte-to-neuron lactate shuttle
(ANLS) activated by glycogenolysis, while lacking the initial oxidative dip, is at least as robust
as that induced by synaptic activity.

Discussion
The role of glycogen in neuromodulation
The value of the role of glycogen in balancing the energy budget of the brain should not be dis-
counted given its abundance in astrocytes in the vicinity of synapses [21,23] and experimental
evidence for its involvement in supporting brain activity [15,35,40,48,49,65,68,82,94]. What is
not clear is the feasibility of glycogen being able to respond rapidly and sufficiently enough
to neuromodulators that regulate neuronal circuit activity and to what degree the ANLS is
involved [47,51,83,85,89,95±97]. Since glycogenolysis has been suggested to provide energy to
both neurons and astrocytes during learning, the involvement of lactate would be a likely can-
didate in this mechanism [49]. Accordingly, we have investigated the role of astrocytic glyco-
gen in fueling and mediating neuromodulation in a computational model of glycogenolytic
and noradrenergic transduction pathways along with elements of our previous NGV model
[87].

showing later activation of LDH. C) Separated from other enzymes for clarity, reciprocal enzyme relationships shown
for protein phosphatase 1 (PP1) and when complexed with glycogen phosphorylase (PP1-GPa), as well as GPa and
glycogen synthase (GSa). NE duration indicated by gray shaded areas.

https://doi.org/10.1371/journal.pcbi.1006392.g003
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Fig 4. Production of metabolites by cAMP-dependent, NE-stimulated glycogenmobilization. A1) Percent increase of sequence of metabolites
triggered by cAMP including: glucose-6-phosphate (G6P), glyceraldehyde-3-phosphate (GAP), phosphoenolpyruvate (PEP), pyruvate (PYR) and
lactate (LAC). Inset: zoom that better shows relative rises of smaller responses from phoshoenolpyruvate to lactate.A2) same metabolites as in A1 but
normalized to emphasize longer response development and duration of lactate (LAC).A3) same metabolites as in A1, shown as concentrations. B)

On-demand energy from astrocytic glycogen
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Localization of glycogen. Anatomical evidence from 3D EM for the proximity of glyco-
gen granules to synaptic regions in the somatosensory cortex demonstrates that glycogen is
well-placed for a major role in the energetic support of brain activity (Fig 1). Although lower
than muscle glycogen levels, brain glycogen is thought to store more glucosyl energy than

Production of ergogenic byproducts ATP and NADH in response to cAMP. B1) Percent increase showing relative magnitude. B2)Normalized traces
showing relative time of activation. NE duration indicated by gray shaded areas. B3) same metabolites as in B1, shown as concentrations.

https://doi.org/10.1371/journal.pcbi.1006392.g004

Fig 5. Glycogen and cellular energy status. A) mobilization of glycogen in response to NE-triggered cAMP at each of
4 cyclase amplification coefficients (cyclase coef. in panels). B) Indicators of cellular energy status: astrocytic, cytosolic
NAD+/NADH ratio (oxidative state) as well as energy charge ((ATP + 0.5ADP)/(ATP+ADP+AMP)) in response to
cAMP. NE duration indicated by gray shaded areas.

https://doi.org/10.1371/journal.pcbi.1006392.g005
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soluble glucose [10] and our calculations support this view (S2 Text). One benefit of warehous-
ing energy in the form of glycogen would be the buffering of glucose supplies locally without
contributing to the osmotic tension associated with free glucose [20,21,23,23,98]. An addi-
tional advantage might be conveyed by reducing advanced glycation end products (AGEs) that
are associated with age-related neurodegenerative disorders (e.g., [99]).

The EM results place glycogen near synapses, but to what extent is this source of energy des-
tined for local astrocytic needs versus export for neuronal consumption? A summary of experi-
mental evidence suggests both. Glycogen is degraded by neuronal stimulation [82], can sustain
gray and white matter survival in the absence of glucose [100,101] and is required to provide fast
local ATP to astrocytic SERCA pumps [6]. Many studies have shown that glycogen contributes
to the constitutive requirements of active neurons and not simply for rapid energy needs
[1,8,62,102]. In co-cultures of cerebellar neurons and astrocytes, energy from glycogen is
required both to support astrocytic demands as well as for neurotransmitter release in the
accompanying neuron [103]. ATP production in astrocytes depends on glycogenolysis [40] and
glucose deprivation in cultured astrocytes leads to glycogen depletion and export of lactate [104].

Fig 6. Glycogen derived lactate shuttle. A) Lactate (LAC) transients from 3 compartments in response to NE-
dependent cAMP signaling. Responses from astrocyte, extracellular space and neuron all show same kinetics and are
nearly overlapping, but slightly shifted in time, reflecting the transport time between compartments. B) Zoom-in of a
region of almost overlapping LAC traces from 3 compartments that demonstrates the flow of LAC from astrocyte to
extracellular space to neighboring neuron. Arrows indicate direction of LAC wave flow. C) ANLS with a characteristic
lactate oxidative dip (upper panel, arrow) produced by synaptic excitation instead of NE stimulation (lower panel, V
from neuron). The lactate dip is absent from the ANLS produced by glycogenolysis (panel A). NE duration indicated
by gray shaded areas.

https://doi.org/10.1371/journal.pcbi.1006392.g006
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Other research proposes that glycogen is mobilized to produce rapid energy during intense
neuronal activity [31,105] since glycogenolysis can be initiated by neurotransmitters (e.g., NE
and VIP) via a cAMP dependent mechanism [5,66,68,106,107] and this mechanism forms a
component of the coupling mechanism between astroglial and neuronal energy metabolism
within the NGV [108]. Glycogenolysis activated by NE inputs from the LC has been implicated
in memory consolidation, even perhaps factoring into the etiology of Alzheimer's disease
[77,80], chronic stress-induced atrophy and depression [109], as well as diabetic neuropathy
[110].

Lactate from glycogen. A preponderance of evidence thus far implicates the glycolytic
metabolite lactate as the major energy vehicle for the astrocytic support of neuronal activity
and cognitive functions [8,88,95,96,111±114]. Much as in muscle, lactate derived from glyco-
gen can serve as an energy supply buffer between fast and slow energy requirements [115].
During intense neural activity, lactate derived from glycogen provides the necessary energy to
sustain synaptic activity in the CNS [68,116,117].

The fate of lactate specifically produced from glycogen in astrocytes remains controversial.
Lactate may be used in astrocytes where it can support local energy demands or be exported to
neurons or parts unknown [49,118,119]. Other ergogenic molecules are derived from glycogen
phosphorylation in the astrocyte such as NADH and ATP and remain there (Figs 3 and 4).
Our model tested the viability of utilizing glycogen as a source of energy locally in the astrocyte
or by the neuron, or both. Our simulation results reported here support the view that glycogen
can feasibly support both roles when the astrocyte is stimulated by neuromodulatory signals.
Mobilization of glycogen by NE-stimulated cAMP signaling rapidly degrades glycogen with a
time constant of 29 seconds (Fig 5), resulting in the production of ATP and NADH for astro-
cytic use (Fig 4) and lactate that is produced with a time constant of 13 seconds and entirely
shuttled to the neuron (Fig 6).

The fact that we observe a small increase in lactate compared to the very large amount G6P
produced suggests that lactate production from glycogen may require concomitant kinetic
control of rate-limiting glycolytic enzymes or priming reactions [120]. Glycogen degradation,
therefore, may exert a leveraging effect on glycolysis in conjunction with other glycolytic sig-
nals. If this were to be the case, one would expect a much lower or more compartmentalized
effect of cAMP on glycogenolysis in vivo. In either case, a much more detailed model in terms
of reaction steps, regulation and spatial constraints should follow these results.

The results demonstrate the rapid production and export of lactate into the extracellular
space and the neighboring neuron as a result of NE-stimulated cAMP production. The lactate
exported to the neuron via MCTs stimulated the production of neuronal NADH similarly to
the ANLS triggered by synaptic activity in our previous model (Fig 6A). The glycogen-derived
NADH signal (Fig 4) mimics the experimental observation of [121] that related ANLS to
increases in neuronal NADH. That glycogen can produce so much lactate to support neuronal
functions, as well as NADH and ATP to support astocytic energy demands, is consistent with
its observed role in preventing spreading depression through a mechanism that involves lactate
[122].

The lack of an initial dip in lactate concentration (Fig 6B; as reported by [87]), which has
been attributed to an initial oxidative consumption of lactate in the neuron in response to syn-
aptic activity prior to eventual increases in production [123], suggests that the cAMP-depen-
dent mobilization of large amounts of glucose from glycogen stores is anaerobic and that the
presence or absence of the dip could be a signature of aerobic or anaerobic lactate signaling,
respectively. The dumping of glucose observed during glygogenolysis is consistent with the
large amounts of glucose stored in glycogen (S2 Text) and supports the idea of a compartmen-
talization of energy resources [103,124,125]. If so much glucose were not stored in glycogen
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and rapidly metabolized to downstream products it would present a potentially lethal chal-
lenge to the astrocytes osmotic balance, especially in the small volumes where glycogen is
found [20]. Subsequent iterations and improvements of this model will implement a separate
compartment for the fine astrocytic processes surrounding synapses that contain glycogen.

Thus, to the already familiar ANLS described experimentally [7,87,97,102,126] and compu-
tationally from neuronal glutamatergic and electrical activity [86,87] we confidently add the
plausibility of ANLS stimulated by glycogenolysis triggered by neuromodulation. Given the
persistent lactate gradient from astrocytes to neurons [127], it is not surprising that lactate
derived from any source would rapidly be transported by the array of MCTs and even high
capacity ion channels in the astrocyte and neuron [88,113,128].

The LC-NE network. The simulation results also lend credence to the idea that β2Rs par-
ticipate in long-term hippocampal learning via a mechanism involving lactate export to neu-
rons [47,129], and validate the involvement of a lactate rescue of cocaine-induced conditioned
memory when glycogenolysis is impaired [130]. The apparent irrelevance of the distance of
NE release from the glia (Fig 2) suggests a system fine-tuned to detect and respond to neuro-
modulatory signals; the mechanism of using high-affinity receptors in a volume transmission
scenario could effectively approximate wired transmission in a volume transmission setting
[131,132].

β2R activation triggers astrocytic glycogenolysis and dysregulation of these mechanisms is
associated with neurodegenerative diseases [133]. Impairment of β2R adrenergic expression
on astrocytes has been associated with the etiology of multiple sclerosis with a mechanism pos-
sibly involving the dysregulation of glycogenolysis [74]. It is tempting, therefore, to speculate
that the involvement of neuromodulation via astrocytes in neuropsychiatric diseases might be
related to their role in energy supply [134±138].

Conclusions and predictions
The results of our 3D electron microscopy and computational modeling study supports the
plausibility that glycogenolysis plays a major mechanistic role in fueling and transducing the
neuromodulatory signals mediated by cAMP. Significantly, we conclude that 1) glycogen gran-
ule density in layer 1 of somatosensory cortex is stable between 4±24months, the type of reli-
able expression that would be consistent with expectations for a fuel source responsible for
support of on-demand activity; 2) the distance of NE release from the astrocyte is not critically
important, implying that volume transmission effects can be mitigated by high-affinity recep-
tor or rapid transduction systems; 3) glycogenolysis evoked by cAMP elevations generate
energy in the form of ATP, NADH and lactate production, thus supplying energy to both the
astrocyte and the neuron; and 4) astrocytic lactate derived from glycogen is shuttled rapidly
and preferentially to the neuron (ANLS). 5) Altogether, our model supports observations of
the involvement of glycogen and lactate in supplying energy to both astrocytes and neurons
during learning events related to neuromodulatory inputs, as well as their involvement in
related disease states [35,45,47±49,51,52,97,108,109,139]. 6) The success of the model validates
our bottom-up modeling approach as a tool to complement and guide basic and disease-
related experimental studies.

Methods
3D EM reconstruction
We reconstructed astrocytic processes and the glycogen granules within the astrocytic profiles
of six volumes of 5x5x5 µm3 from FIBSEM image stacks (courtesy of Graham Knott, BioEM,
EPFL, Switzerland). Original samples were acquired from layer I somatosensory cortex of wild
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type mice aged 4 and 24 months (N = 3 per sample). Astrocytes were reconstructed using the
carving, semi-automated algorithm [140] of the ilastik 1.2 software (www.ilastik.org). Glyco-
gen granules were reconstructed using the trakEM2 software, by placing a sphere in the center
of each granule and adjusting its diameter to the size of the granule (Fig 1)

Modeling
Our modeling approach was to adapt our previous NGV model [87] by adding new modules
without changing the previous equations or parameters except where required for integration
of the new modules into the original model. We provide all the equations in this manuscript
for ease of reference.

Simulation environment. All simulations were carried-out in NEURON [141], using a
fixed time step of 3 µs with Euler integration, and was run either on a Ubuntu 14.04 LTS work-
station with a 3.6 GHz Intel Core i7-4790 CPU and 15.6 GB RAM, or on the Blue Gene/Q in
Lugano, Switzerland. Matlab was used for data analysis. We found that the model was highly
sensitive to the fixed time-step required for integration into larger models due to the rapid and
wide-range of biochemical reactions. Other researchers wishing to adapt our model to their
purposes should consider a variable time-step.

Neurotransmitter diffusion. To quantify the effects of diffusion on the waveform of NE,
we computed the summed concentration from a point release source at various lateral dis-
tances from the point of release of norephinephrine (NE) from the locus coeruleus (LC) vari-
cosities to the astrocytes as a function of time (t) and lateral distance (xdist) according the
procedures and equations in S1 Text. From these calculations, we chose a 10 ms rise time con-
stant (τrise) for the majority of the simulations in this study and lengthened this value 3 addi-
tional orders of magnitude in order to simulate progressively distant terminals for a dose-
response effect. Due to the saturation of the β2-adrenergic receptors (β2Rs) on the astrocytes
by the NE from the LC, a scaling factor was introduced for the cAMP production by adenylate
cyclase in order to produce a wide NE-cAMP dose-response relationship (Fig 1).

Glucose storage capacity of glycogen. We have made calculations of the glucose stor-
age capacity of glycogen in astrocytes and the effect of glycogenic glucosyl liberation on
intracellular glucose concentration (S2 Text) and found that glycogen is capable of storing
hundreds of mM equivalents of glucose in one astrocyte. These calculations were made to
support simulation results suggesting the release of scores of mM equivalents of glucose
upon stimulation.

Glycogen module. We built our glycogen shunt module with components from our pre-
vious multi-scale NGV metabolic model [87], without re-optimizing or recalibration of the
original model, such that each voxel in the circuit contains a unicompartmental point model
of the system of differential equations. Most of the equations for the glycogen module were
adapted from [91]. Additional mechanisms or rate constants were taken from [142] (cAMP
kinase rate constants), [143] (cAMP decay time constant), [144] (Kd for NE). The use of the
type of glycogen phosphorylase from [91] is supported by experimental results suggesting that
glycogen in astrocytes is mobilized by the muscle form of the enzyme glycogen phosphorylase
[145]. We chose the muscle pattern of regulation of glycogen phosphorylase over the liver
because muscle and brain isozymes share greater identity with regard to nucleotide and
deduced amino acid sequences and their role in responding to physiological activity is similar
[146]. Our model incorporated the feature of a dynamic Kd in order to account for the interac-
tions between GSa and GPa wherein GPa has an inhibitory effect on the activation of GS
[91,147]. Model equations and rate constants appear in S1 and S2 Tables, respectively, while
parameters can be found in S3 Table.
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Neuromodulation-free simulations. In order to demonstrate the ANLS produced by
neuronal excitation by glutamate in the absence of neuromodulation and glycogenolysis, the
original NGV model [87] was used (Fig 6C) in the absence of the neuromodulation and glyco-
genolysis modules.
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